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Abstract. We study elementary extensions of compact complex spaces and

deduce that every complete type of dimension 1 is internal to projective space.

This amounts to a nonstandard version of the Riemann Existence Theorem,
and answers a question posed by Anand Pillay in [13].

1. Introduction

A compact complex manifold can be viewed as a first order structure in the
language where there is a predicate for each analytic subset of its cartesian powers.
Recall that an analytic set is one that is given locally by the vanishing of holo-
morphic functions. The analytic sets form the closed sets of a noetherian topology
that is coarser than the underlying complex topology, and which we refer to as the
(analytic) Zariski topology. For example, in the special case of a projective variety
every analytic set is given (globally) by the vanishing of homogeneous polynomials
(Chow’s Theorem). Hence the analytic Zariski topology coincides with the usual
algebraic Zariski topology on a projective variety.

There is a nice model theory of compact complex manifolds. Zilber has shown,
in [17], that the theory of a compact complex manifold, viewed as a structure in this
language of analytic sets, admits quantifier elimination and is of finite Morley rank.
While compactness is essential here, smoothness is not. We can work instead with
compact complex varieties; where by a complex variety we will mean a (possibly non-
smooth) reduced and irreducible complex analytic space. In fact, it is convenient to
deal with all compact complex varieties at once: consider the many-sorted structure
A where there is a sort for each compact complex variety, and where the language,
L, consists of a predicate for each analytic subset of a cartesian product of sorts.
Sort by sort then, Th(A) admits quantifier elimination and is of finite Morley rank.
Moreover, Th(A) admits the elimination of imaginaries (a sketch appears in [13]
and details in [10]). A survey of this model-theoretic approach can be found in [9].

The projective varieties, which can be viewed as living definably on the projec-
tive line, play a distinguished role among the sorts of A. One form of the Riemann
Existence Theorem states that every compact complex curve is biholomorphic to
a projective curve. In [13] Anand Pillay asked whether this is also true in elemen-
tary extensions of A. At the level of types, this would say that every complete
type (over parameters) in Th(A) of dimension 1 is internal to the projective line.
For types over the standard model A itself (or equivalently over the empty set),
this is the Riemann Existence Theorem. Our main result is that it remains true
over arbitrary sets of parameters in any elementary extension of A. This can be
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translated back into the geometric language as follows: Let X and S be compact
complex varieties, and suppose X → S is a fibre space of curves, i.e., a holomorphic
surjection whose fibres over a nonempty Zariski open subset of S are irreducible of
dimension 1. Then, after base change if necessary, there exists a family Y → S
of projective curves and a meromorphic map h : X → Y over S such that for all
s in a nonempty Zariski open subset of S, the induced map hs : Xs → Ys is a
holomorphic bijection. The argument relies on a model-theoretic interpretation of
a theorem of Campana’s from [1], as well as an investigation of the relationship
between Moishezon morphisms and internality to the projective line. We conclude
with an application that characterises the infinite fields interpretable in Th(A).

Let us recall some notation: suppose X and Y are compact complex varieties.
By the dimension of X we mean its dimension as a complex analytic space. A
property is said to hold for general (respectively, ‘general’) points of X, if it holds
in a nonempty Zariski open subset of X (respectively, in a countable intersection of
nonempty Zariski open subsets). For example, a holomorphic surjection from X to
Y is called a fibre space if its general fibre is irreducible – that is, the fibres over some
nonempty Zariski open subset of Y are irreducible. A holomorphic map f : X → Y
is a modification if there exist proper analytic subsets A ⊂ X and B ⊂ Y such that
f restricts to a biholomorphic map from (X \ A) to (Y \ B). By a meromorphic
map from X to Y we will mean a multivalued map (written g : X → Y ) whose
graph, Γ(g) ⊂ X × Y , is an irreducible analytic set such that the first coordinate
projection restricts to a modification Γ(g)→ X. Off a proper analytic set A ⊂ X,
g is a well-defined holomorphic map to Y . Moreover, g : X → Y is holomorphic
(on all of X) if and only if Γ(g) → X is an isomorphism. A meromorphic map
g : X → Y is surjective if the second coordinate projection restricts to a surjection
Γ(g) → Y ; and it is bimeromorphic if Γ(g) → Y is also a modification. Note that
every irreducible analytic subset of X×Y whose general fibre over X is a singleton
gives rise to a meromorphic map from X to Y ; and this map is bimeromorphic if
and only if the general fibre over Y is also a singleton. While many of the notions
from complex analytic geometry will be treated in some detail, more comprehensive
introductions to the theory of complex analytic spaces can be found in [7] (for a
classical treatment) and [15] (for a modern treatment).

The results presented here constituted part of my PhD thesis [11] from the
University of Illinois at Urbana-Champaign. I would like to thank Anand Pillay
for his guidance and supervision during the writing of that thesis. I would also like
to thank Thomas Scanlon in discussions with whom the observation contained in
Corollary 4.6 was obtained. Finally, I am grateful to the University of California at
Berkeley and The Fields Institute in Toronto, where the final preparation for this
article were made.

2. Elementary extensions of compact complex varieties

In classical algebraic geometry, algebraically closed fields serve as the universal
domains in which all the objects live, and where “generic” points of varieties can
be found. There does not seem to be a direct analogue of this in complex analytic
geometry. Passing to elementary extensions of a standard universe is characteristic
of the model-theoretic approach, and in this case, it is one of the “new” techniques
that model theory brings to complex analytic geometry. Our purpose in this section
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is mainly to describe how the model theory of elementary extensions relates to the
geometry of A, and to describe techniques of passing from one to the other.

Fix a cardinal κ > |L|, and let A′ be a κ-saturated elementary extension of A of
size κ (which exists by stability). We treat A′ as a universal domain for Th(A). A
definable set will always mean an L-definable set in A′ with parameters from A′;
and a type will always mean a complete type over a subset of A′ of size strictly
less than κ. If X is a compact complex variety (hence a sort of A), and G ⊂ X
is a definable subset, then we sometimes use the notation G(A) and G(A′) to
distinguish between G and its interpretation in A′ – or, stated differently, between
the A-points and the A′-points of G.

Definition 2.1. Suppose F is an irreducible Zariski closed set from A. The generic
type of F over A is the type

p(x) = {x ∈ F, x /∈ H : H a proper Zariski closed subset of F}.
A generic point of F over A, is a realisation of the generic type in F (A′).

Remark 2.2. 1. The above definition is well-founded in the sense that the
generic type of an irreducible Zariski closed set is complete and consistent
(by quantifier elimination and noetherianity).

2. By saturation, every irreducible Zariski closed set has a generic point. Con-
versely, every tuple from A′ is a generic point of some irreducible Zariski
closed set in A – namely, its locus.

3. If P is a ∅-definable property of points in F , then P holds for general x ∈ F
if and only if it holds for a generic point.

4. Types over A are in fact over ∅, as all points of A are named in L.

The generic type over A of a compact complex variety is a bimeromorphic in-
variant in the following strong sense: if X, Y are compact complex varieties, then
X and Y are bimeromorphic if and only if for some generic points a and b, of X
and Y respectively, a and b are interdefinable over A. This will follow from the
following lemma by symmetry:

Lemma 2.3. Suppose X and Y are compact complex varieties, a is generic in X
over A, and b is generic in Y over A. Then b ∈ dcl(a) if and only if there is a
meromorphic surjection h : X → Y such that h(a) = b.

Proof. Note that a meromorphic map is definable at a generic point of its domain,
and hence the notation h(a) makes sense; we are interpreting the definable map h
in the elementary extension A′.

The right-to-left direction is immediate. Now assume b ∈ dcl(a). There is a
partial definable map f : X → Y whose interpretation in A′ takes a to b. Let
G ⊆ X×Y be the graph of f . By quantifier elimination, G = S1 \T1∪ · · ·∪S` \T`,
where S1, . . . , S` are distinct irreducible Zariski closed subsets of X × Y , and each
Ti is a proper Zariski closed subset of Si. As the fibre of G(A′) over a is the
singleton {b}, this must also be the case for some Si \ Ti, say i = 1. Now, as a
is a generic point of X, it follows that for general x ∈ X, (S1 \ T1)x = Gx is a
singleton. But for general x ∈ X, (S1 \ T1)x is a dense Zariski open set in (S1)x.
Hence for general x ∈ X, (S1)x = Gx is a singleton. That is, S1 is the graph of a
meromorphic function h : X → Y such that h(a) = b. As b is a generic point of Y ,
h is a meromorphic surjection. �
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Every definable set in A′ is of the form

G(A′)s = {y ∈ Y (A′) : (s, y) ∈ G(A′)}

where X and Y are sorts of A, G ⊂ X × Y is definable over A, and s ∈ X(A′).
In particular, G(A′)s is a nonstandard Zariski closed set if G can be chosen to be
Zariski closed. By quantifier elimination, every definable set is a finite boolean
combination of nonstandard Zariski closed sets.

There is a more canonical description of nonstandard Zariski closed sets. Suppose
Γ = G(A′)s is as above. Let S ⊂ X be the locus of s – so that s ∈ S(A′) is a generic
point. Letting H = G ∩ (S × Y ), the restriction of G to S, we have Γ = H(A′)s.
That is, we obtain Γ as a generic fibre over S of the family of Zariski closed sets

H ⊂ S × Y

��
S

where H → S is the surjection induced by the first coordinate projection. Such a
description is stable in the following sense: if Γ is also given as a generic fibre of some
other family K ⊂ S×Y , then K and H have the same general fibres. That is, there
is a nonempty Zariski open subset U ⊂ S, such that for every u ∈ U , Ku = Hu.
It follows that K and H share those irreducible components that project onto S.
The presentation of Γ as a generic fibre of a Zariski closed subset of S × Y over
S is therefore unique up to irreducible components whose projections are proper
subsets of S.

The above description also gives us a canonical way of going from one set of
parameters to another. Suppose that t is another parameter from A′. Then Γ can
be viewed as being definable over (s, t) as well; letting T be the locus of (s, t), Γ
can be presented as a generic fibre of some Zariski closed subset of T × Y over T .
How do these two descriptions of Γ compare? Let π be the coordinate projection
map taking (s, t) to s. Transferring back to the standard model, we get a surjective
holomorphic map π : T → S. We can lift H → S to T by base change:

S × Y ⊃ H

��

HT = (T ×S H)red ⊂ T × Y

��
S T

πoo

where HT = {(v, y) ∈ T × Y : (π(v), y) ∈ H}. Note that for any v ∈ T , the fibre
of HT above v is Hπ(v). That is, the fibres of HT → T and H → S are the same;
identified by π on the base. In particular, Γ, being (HT )(s,t), is a generic fibre of
HT → T . The point here is that working with additional parameters in the universal
domain corresponds to base change in the standard model.

Remark 2.4. Even if H is irreducible, HT need not be. However, if the general fibres
of H → S are irreducible (that is, H → S is a fibre space) then there is a unique
irreducible component of HT that projects onto T . Indeed, let Z1, . . . , Z` be the
irreducible components of HT that project onto T , and let V ⊆ T be a nonempty
Zariski open set over which the fibres of HT are irreducible. Shrinking V further
if necessary, we may assume that Z1, . . . , Z` are the only irreducible components
of HT that have nonempty fibres over V . So for each v ∈ V , (HT )v = (Zi)v for
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some i ∈ {1, . . . , `}. This is a definable property, and hence for t ∈ T (A′) generic,
HT (A′)t = Zi(A′)t for some i, say i = 1. Translating back into the standard model
we have that for general v ∈ T , (HT )v = (Z1)v and (Zj)v ⊆ (Z1)v for all 2 ≤ j ≤ `.
But then Zj ⊆ Z1 for all 2 ≤ j ≤ `, which is impossible unless ` = 1. That is, there
is a unique irreducible component of HT that projects onto T , which we denote by
H(T ). Moreover, the general fibres of H(T ) → T agree with the general fibres of
HT → T , and hence with those of H → S. In particular, H(T ) → T is again a fibre
space. We call H(T ) → T the strict pull back of H → S to T .

Using this description of nonstandard Zariski closed sets we prove the following
observation from Zilber [17]:

Proposition 2.5. For any compact complex variety X, the nonstandard Zariski
closed subsets of X(A′) form the closed sets of a noetherian topology on X(A′).

Proof. Suppose X is a compact complex variety and Γ1,Γ2 ⊂ X(A′) are non-
standard Zariski closed sets obtained as generic fibres of G1 → S1 and G2 → S2

respectively. Let S = S1×S2. Then Γ1∩Γ2 (respectively Γ1∪Γ2) is a generic fibre
of G1S ∩G2S → S (respectively G1S ∪G2S → S). The nonstandard Zariski closed
sets are closed under finite unions and finite intersections.

Now suppose that the descending chain condition fails. That is, for some compact
complex variety X there are infinitely many nonstandard Zariski closed subsets
Γi ⊂ X(A′), i ∈ ω, where each Γi+1 is a proper subset of Γi. For each i, let Γi be
obtained as the generic fibre of Gi → Si. By base change, we may assume that there
are surjective holomorphic maps Si+1 → Si. Since Γi+1 ⊂ Γi, the general fibres of
Gi+1 → Si+1 are proper subsets of the general fibres of Gi → Si. This then yields
an infinite properly descending chain of Zariski closed subsets in the ‘general’ fibre
of G0 → S0 (i.e. in the fibres above a countable intersection of nonempty Zariski
open subsets of S0) – contradicting the descending chain condition of the Zariski
topology on X. �

A consequence of the descending chain condition is that every nonstandard
Zariski closed set has a unique irredundant expression as the union of finitely many
absolutely irreducible Zariski closed sets. We use the term absolutely irreducible in
order to distinguish it from the following relative notion:

Definition 2.6. Suppose B is a set of parameters from A′, and Γ is a nonstandard
Zariski closed set. We say that Γ is over B if it is definable with parameters from
the set B. If Γ is over B then we say it is irreducible over B if it cannot be written
as the union of two proper nonstandard Zariski closed sets over B. Finally, we say
that Γ is absolutely irreducible if it is irreducible over any set of parameters C ⊃ B.

Note that Γ is irreducible over B if and only if it is irreducible over every finite
tuple from B over which it is defined. Moreover, if Γ = G(A′)s where G → S is
a surjection of Zariski closed sets and s ∈ S(A′) is generic, then Γ is irreducible
over s if and only if G has a unique irreducible component projecting onto S.
For absolutely irreducible nonstandard Zariski closed sets, we have the following
characterisation in terms of the standard model:

Lemma 2.7. Suppose Γ = G(A′)s where π : G → S is a surjection of irreducible
Zariski closed sets and s ∈ S(A′) is generic over A. Then Γ is absolutely irreducible
if and only if π is a fibre space.
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Proof. If π : G→ S is a fibre space, then for any surjection T → S, GT has a unique
irreducible component, G(T ), that projects onto T (see Remark 2.4). It follows that
Γ is irreducible over any tuple extending s, and hence is absolutely irreducible.

For the converse, assume that Γ is absolutely irreducible. Let f : G∗ → G be a
resolution of G, and πf : G∗ → S the composition. Now let

G∗
f //

g

''PP
PPP

PPP
PPP

PPP
G

π // S

T

σ

OO

be the Stein factorisation of πf (see §1 of [16]). In particular, σ is finite-to-one and
the fibres of g are connected. But as G∗ is smooth, the general fibres of g are also
smooth (see 1.22 in [12]), and hence irreducible.

Now work in A′. As Γ is absolutely irreducible, the above diagram implies
that for some t ∈ σ−1(s), f maps G∗(A′)t surjectively onto Γ = G(A′)s. This is
a definable property of s, and hence in the standard model, for general s′ ∈ S,
Gs′ = f(G∗t′) for some t′ ∈ σ−1(s′). As the general fibres of g are irreducible, the
general fibres of π are irreducible, as desired. �

Suppose Γ is a nonstandard Zariski closed set over B. Then its absolutely irre-
ducible components are defined over acl(B). Indeed, since there are only finitely
many such components, and automorphisms of A′ that fix B pointwise must per-
mute them, each absolutely irreducible component of Γ has only finitely many B-
conjugates. By elimination of imaginaries and saturation, they must be definable
over acl(B). Hence over (model-theoretically) algebraically closed sets, irreducibil-
ity and absolute irreducibility agree.

From now on, by a nonstandard variety we will mean a nonstandard absolutely
irreducible Zariski closed set.

Definition 2.8. Suppose Γ is a nonstandard Zariski closed set obtained as a generic
fibre of a holomorphic surjection G → S. The dimension of Γ is by definition the
dimension of the general fibres of G→ S.

The well-foundedness of Definition 2.8 follows from the definability of dimension
in A. Indeed, by a theorem of Remmert (the “dimension formula”) the dimension
of the general fibres of each irreducible component of G that projects onto S is
constant. A proof of this fact can be found in Chapter 3 of [3]. Hence the general
fibres of G → S are also of constant dimension. Moreover, if Γ is obtained as a
generic fibre of another analytic family H → T , then by base change to S × T , we
have seen that the general fibres of G→ S and H → T agree. Hence the dimension
of a nonstandard Zariski closed set is well-defined.

Remark 2.9. It follows from Lemma 2.7 that if Γ is a nonstandard variety, and
Σ ⊂ Γ is a proper nonstandard Zariski closed subset, then dim Σ < dim Γ. Indeed,
we obtain Γ as a generic fibre of a fibre space G→ S, and Σ as a generic fibre of a
surjection H → S. As Σ is a proper subset of Γ, the general fibres of H → S are
proper subsets of the general fibres of G → S (which are irreducible). Hence the
dimension of the general fibre of H → S is strictly less than that of G→ S.

Definition 2.10. Suppose Γ is an irreducible nonstandard Zariski closed set over
B. The generic type of Γ over B is the type p(x) = {x ∈ Γ, x /∈ Σ} where Σ varies
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among all proper nonstandard Zariski closed subset of Γ over B. A generic point
of Γ over B, is a realisation of the generic type of Γ in A′.

Suppose c is a tuple from A′. The B-locus of c is the smallest nonstandard
Zariski closed set over B containing c. The dimension of c over B (or of tp(c/B))
is the dimension of the B-locus of c.

Again, by quantifier elimination and noetherianity, the generic type of a non-
standard irreducible Zariski closed set over B is complete and consistent. Moreover,
c is generic in Γ over B if and only if Γ is the B-locus of c. Saturation ensures that
every nonstandard irreducible Zariski closed set over B has a generic point.

We describes the geometric content of stationarity for types:

Lemma 2.11. Suppose a is a finite tuple, B is a set of parameters, and Γ is the
B-locus of a. Then Γ is pure-dimensional in the sense that the absolutely irreducible
components of Γ all have the same dimension. Moreover, the number of components
is equal to the number of distinct extensions of tp(a/B) to acl(B). In particular,
tp(a/B) is stationary if and only if Γ is absolutely irreducible.

Proof. Let Σ1 ⊆ Γ be the acl(B)-locus of a, and Σ1, . . . ,Σ` the conjugates of
Σ1 under automorphisms that fix B pointwise. Then Σ1, . . . ,Σ` are absolutely
irreducible, each of the same dimension, and their union – which is over B and
contains a – is Γ. Hence they are the absolutely irreducible components of Γ, which
is thereby pure-dimensional.

Moreover, the generic types of Σ1, . . . ,Σ` over acl(B) are (distinct) extensions of
tp(a/B) (as they are conjugates of tp(a/ acl(B)) under B-automorphisms). Con-
versely, if q ∈ S(acl(B)) extends tp(a/B) and b |= q, then the B-locus of b is Γ. As
we saw above, this implies that the acl(B)-locus of b is an absolutely irreducible
components of Γ, and so one of the Σi’s. Hence tp(a/B) has exactly ` distinct
extensions to acl(B), as desired. Finally, by elimination of imaginaries, stationarity
means exactly that tp(a/B) has a unique extension to acl(B). �

We recover nonforking independence (in the sense of the stable Th(A)):

Lemma 2.12. Suppose a and b are finite tuples and B is a set of parameters. Then
a is independent of b over B if and only if dim(a/B) = dim(a/Bb).

Proof. As a is independent of acl(B) over B, and dim(a/B) = dim(a/ acl(B)), we
may assume that B = acl(B). Let Γ be the B-locus of a and Σ ⊂ Γ the (Bb)-locus
of a. Suppose dim(a/B) = dim(a/Bb). As Γ is absolutely irreducible, this implies
that Σ = Γ. Hence, every automorphism of A′ that fixes B pointwise fixes Σ.
As tp(a/Bb) is the generic type of Σ, this means that every automorphism fixing
B fixes the set of realisations of tp(a/Bb) setwise. It follows that tp(a/Bb) is a
nonforking extension of tp(a/B), as desired.

For the converse, suppose a is independent of b over B. Let c ∈ Γ be generic in
Γ over Bb. In particular c is generic over B, and so tp(c/B) = tp(a/B). Moreover,
as Γ is both the (Bb)-locus and B-locus of c, dim(c/Bb) = dim(c/B). By the
argument in the previous paragraph, this implies that tp(c/Bb) is a nonforking
extension of tp(c/B) = tp(a/B). By stationarity, tp(c/Bb) = tp(a/Bb), and hence
dim(a/Bb) = dim(a/B). �

We end this section with a uniform version of Lemma 2.3.
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Lemma 2.13. Suppose S is a compact complex variety, and X → S and Y → S
are fibre spaces over S. Suppose s ∈ S(A′) is generic, a ∈ X(A′)s is generic over
s, and b ∈ Y (A′)s is generic over s. Then b ∈ dcl(a) if and only if there is a
meromorphic map h,

X

��@
@@

@@
@@

@
h // Y

����
��
��
��

S

such that for general s′ ∈ S, hs′ : Xs′ → Ys′ is a meromorphic surjection; and
hs(a) = b.

Proof. The right-to-left direction is immediate. For the other direction, let H be
the locus of (a, b) in X × Y . Note that H ⊂ X ×S Y , as both a and b map to
s. Moreover, H(A′)a ⊂ Y (A′)s is the a-locus of b, and hence is a singleton by
assumption. Since a is generic in X(A′)s over s and b is generic in Y (A′)s over s, it
follows that H(A′)s ⊂ X(A′)s × Y (A′)s is one-to-one outside a proper s-definable
nonstandard Zariski closed subset of X(A′)s, and onto Y (A′)s. As s is generic in
S over A, transferring back to the standard model we have that for general s′ ∈ S,
Hs′ ⊂ Xs′ ×Ys′ is one-to-one over a nonempty Zariski open subset of Xs′ , and onto
Ys′ . This implies that Hs′ is the graph of a surjective meromorphic map Xs′ → Ys′ .
That is, H induces a meromorphic map h : X → Y over S, such that for general
s′ ∈ S, hs′ : Xs′ → Ys′ is a meromorphic surjection. By construction hs(a) = b. �

Remark 2.14. Note that if a and b were interdefinable over s, then we would obtain
a bimeromorphism h : X → Y over S.

3. Projective and Moishezon Morphisms

In this section we discuss notions of relative algebraicity based on projective
linear spaces and bundles. Our main purpose is to make explicit the relationship
between these various notions, in a way that makes clear their model-theoretic
content. While we intend to provide sufficient background and motivation, the
reader is referred to Section 3 of [12] for a more detailed account.

Let Pn(C), or just Pn, denote projective n-space viewed as a sort in A. A
projective variety is a compact complex variety which embeds in Pn, for some n ≥ 0.
Note that the complex field, (C,+,×), is definable in P(C); where an identification
of C with an affine open subset of P(C) is fixed once and for all. Conversely, every
projective variety is naturally interpretable in (C,+,×); that is, an affine atlas and
the associated transition functions are definable. Moreover, a fundamental fact
(this is Chow’s Theorem) is that every analytic set in projective space is algebraic;
it is given by homogeneous polynomial equations. In this sense, algebraic geometry
is purely embedded in A; living definably on the sort P(C) and being the only
structure induced on it by A.

More generally, a Moishezon variety is a compact complex variety that is bimero-
morphic to a projective variety. From the point of view of generic types, as wit-
nessed by Lemma 2.3, Moishezon varieties are part of this “algebraic universe”.

Fix a compact complex variety S and consider the category of compact complex
varieties over S. The analogue of projective space in this relative category is the
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notion of a projective linear space over S. Let F be a coherent analytic sheaf on
S. We sketch a (local) construction of the projective linear space over S associated
to F , denoted by π : P(F)→ S. Let U ⊂ S be an open (in the complex topology)
subset for which there exists a resolution of FU as follows:

OpU
α // OqU // FU // 0

where O denotes the structure sheaf of S, and OU its restriction to U . As an OU -
linear homomorphism, α can be represented by a q × p matrix M = (mij), where
each mij ∈ OU . Letting X be coordinates for U and (Y1 : · · · : Yq) homogeneous
coordinates for Pq−1, P(F)U is the analytic subset of U × Pq−1 defined by the
equations:

m1i(X)Y1 + · · ·+mqi(X)Yq = 0

for i = 1, . . . , p. One checks that P(F)U depends only on the coherent sheaf FU ,
and not on the particular resolution chosen above. We then patch the P(F)U to
obtain P(F). The structure of a space over S is induced on P(F) by the coordinate
projection maps U × Pq−1 → U .

For each s ∈ S, the fibre P(F)s is isomorphic to Pr, where r + 1 is the rank
of F at s. In the special case when F is locally free, this rank is constant and
π : P(F) → S is called a projective bundle over S. Projective bundles are locally
trivial in the following strong sense. There is an open cover {Ui} of S and local
trivialisations

P(F)Ui

hi

'
//

π

##F
FF

FF
FF

FF
Ui × Pr

{{ww
ww
ww
ww
w

Ui

such that the induced transition functions

Ui ∩ Uj × Pr
hih
−1
j

'
//

&&NN
NNN

NNN
NNN

Ui ∩ Uj × Pr

xxppp
ppp

ppp
pp

Ui ∩ Uj

are of the form hih
−1
j (x, p) = (x, gij(x)(p)), where gij : Ui ∩ Uj → PGL(r,C) is

holomorphic. In other words, a projective bundle over S of rank r is locally a
product of the base with projective r-space, where the transition functions fix the
base points while permuting the fibres as elements of the projective general linear
group. A trivial projective bundle over S is one of the form S × Pr → S. This
corresponds to the free analytic sheaf of rank r + 1 on S.

A projective morphism, f : X → S, of compact complex varieties is then a holo-
morphic map that factors through an embedding into a projective linear space over
S. That is, there is a coherent analytic sheaf F on S and a holomorphic map
g : X → P(F);

X

f ��?
??

??
??

?
� � g // P(F)

}}{{
{{
{{
{{

S
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such that g is an isomorphism with its image. In this case, we also say that X is
projective over S. The idea is as follows: if we take projective linear spaces over S
to be the relativisation of the notion of projective space, then projective morphisms
are the natural analogue of projective varieties. Indeed, if S is a point, then P(F)
is a projective space and X is a projective variety. Similarly, we obtain a relative
notion of Moishezon: a Moishezon morphism is a holomorphic map h : Y → S that
is bimeromorphic over S to a projective morphism. That is, there is a projective
morphism f : X → S and a meromorphic map σ,

Y

h ��?
??

??
??

?
σ // X

f��~~
~~
~~
~~

S

such that for general s ∈ S, σs : Ys → Xs is a bimeromorphism.

The following lemma says that if we are willing to pass to a bimeromorphically
equivalent situation, as is justified from the point of view of generic types, then we
may work with projective bundles rather than projective linear spaces.

Lemma 3.1. Suppose f : X → S is a projective morphism whose general fibres are
irreducible. There is a modification σ : T → S and a projective bundle P(E) → T ,
such that X(T ) is isomorphic to a subvariety of P(E) over T :

X

f

��

X(T )

��

� � // P(E)

{{xx
xx
xx
xx
x

S T
σoo

Proof. This is a known consequence of Hironaka’s Flattening Theorem (see the
proof of 5.1 in [5]). Suppose the projectivity of f is witnessed by a coherent analytic
sheaf F on S such that X is a subvariety of P(F) over S. By Hironaka’s Flattening
Theorem, there is a modification σ : T → S such that the quotient of σ∗(F) by its
torsion elements, E , is a flat, and hence locally-free, sheaf on T . The strict pull
back of X → S to T , is a subvariety of the projective bundle P(E) over T . �

Remark 3.2. Recall that a modification is, in particular, a bimeromorphism. Hence
X(T ) → T is a bimeromorphic copy of the original X → S.

The notion of a projective morphism may still seem somewhat weak. From the
model-theoretic point of view, one might ask that a generic fibre of a projective
morphism be a nonstandard Zariski closed set in projective space. That is, one
might expect a projective morphism to factor through a trivial projective bundle
over the base, S × Pn → S. Lemma 3.1 says that this is the case locally (in the
complex topology, after a bimeromorphic base change if necessary). It is not the
case globally. The main point seems to be that we need to allow for additional
parameters from A′. In the standard model this means allowing arbitrary (that is,
not just bimeromorphic) base change:
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Lemma 3.3. If P(E) → S is a projective bundle, then for some n ≥ 0, there is a
holomorphic surjection π : T → S, and a bimeromorphic map g:

P(E)

��

T ×S P(E)
g //

��

T × Pn

xxqqq
qqq

qqq
qqq

S T
πoo

such that for general t ∈ T , gt : P(E)π(t) → Pn is an isomorphism.

Proof. We could not find a reference for this fact in the literature, though it seems
implicit in [5]. In any case, we use Fujiki’s work on holomorphic fibre bundles [4]
to give a proof.

We also use Douady spaces, a discussion of which can be found in [2]. A survey
of the theory of Douady spaces and their relevance to the model theory of compact
complex varieties can also be found in [9]. Briefly, if X is a complex analytic space
then the Douady space of X, denoted by D(X), is a complex analytic space which
parametrises the analytic subspaces of X. If X is projective, D(X) is the Hilbert
scheme, and its components are themselves projective. In general, the components
of the Douady space need not be compact. If X → S is a holomorphic surjection
of complex analytic spaces, then the relative Douady space of X over S, denoted
by D(X/S)→ S, is an analytic space over S whose fibres are the Douady spaces of
the corresponding fibres of X → S. If X and S are compact, and X is projective
over S, then the components of D(X/S) are also compact and projective over S.

Let rank(E) = n + 1. For fixed s ∈ S, P(E)s is isomorphic to Pn. Any such
isomorphism can be identified with its graph, which can in turn be identified with
a point in the Douady space of P(E)s × Pn. The set of all such isomorphisms (for
fixed s) form a subset Us of D(P(E)s × Pn). Varying s in S we obtain a subset,
denoted by IsomS(P(E), S × Pn), of the relative Douady space of P(E)×S (S × Pn)
over S. That is, there is an induced map IsomS(P(E), S × Pn) → S, such that for
all s ∈ S, IsomS(P(E), S × Pn)s = Us. Let U = IsomS(P(E), S × Pn). Fujiki has
shown that U is a Zariski open subset of D(P(E)×S (S×Pn)/S), which accordingly
inherits the structure of a complex analytic space.

Moreover, since P(E)×S (Pn×S)→ S is projective, the components of its relative
Douady space are compact. This implies that U has a natural compactification,
I = Isom∗S(P(E), S × Pn), all of whose irreducible components project onto S.
Let T be an irreducible component of I, and let V be the Zariski open subset
of T obtained by intersecting with U . We argue that this T works, namely that
T ×S P(E) is bimeromorphic to T × Pn over T .

We first point out that V ×S P(E) is isomorphic to V ×Pn over V . It is not hard
to see, by the definition of Isom, that what is required is a holomorphic section to

IsomV (V ×S P(E), V × Pn) −→ V

But by the functoriality of Isom (see 1.1(b) of [4])

IsomV (V ×S P(E), V × Pn) ≈ V ×S IsomS(P(E), S × Pn)

over V . The right hand side is just V ×SU , and so the diagonal map d : V → V ×SU
yields the desired section.

We want the above isomorphism to extend to a bimeromorphism from T ×S P(E)
to T × Pn over T . For this it is sufficient (and necessary) that d extend to a
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meromorphic section to

Isom∗T (T ×S P(E), T × Pn) −→ T

(see Remark 2 to Definition 1 of [4]). But by the functoriality of Isom∗ this time
(Remark 4 to Definition 1 of the same paper),

Isom∗T (T ×S P(E), T × Pn) ≈ T ×S Isom∗S(P(E), S × Pn)

over T . The right hand side is just T ×S I. As T is an irreducible component of I,
the diagonal T → T ×S I yields the desired extension to d.

We obtain a bimeromorphism g : T ×S P(E)→ T × Pn over T . As g restricts to
an isomorphism from V ×S P(E) to V ×Pn over V , and as V is a nonempty Zariski
open set in T , it follows that for general t ∈ T , gt is an isomorphism. �

4. Nonstandard Algebraicity

Fix a saturated elementary extension A′ of A which, as before, we treat as a
universal domain for Th(A). Note that if (C′,+,×) denotes the interpretation of
the complex field in A′, then P(C)(A′), the interpretation of P(C) in A′, is the
projective line over the algebraically closed field C′. That is, P(C)(A′) = P(C′).
Hence by a nonstandard projective variety we will mean a projective variety over
the field C′ (identified with its C′-points).

It may be useful at this point to recall some results of stability theory.

Remark 4.1. Suppose T is a stable theory, M |= T , and S is a sort in M . Then
S is stably embedded in M – that is, every definable subset of Sn is definable with
parameters from S. Indeed, this is an instance of the definability of types in stable
theories (see 6.7.8 of [8]): if φ(x, y) is a formula (without parameters) where x
is a tuple of variables belonging to the sort S, and b is from the sort of y, then
there is a formula χ(x) with parameters from S such that |= χ(a) if and only if
φ(a, y) ∈ tp(b/S). Hence, χ(x) defines the same set as φ(x, b) and is over S.

The above remark, together with Chow’s theorem mentioned earlier, implies
that the full structure induced on P(C′) by A′ is interpretable in the algebraically
closed field (C′,+,×, ) (which is itself definable in the sort P(C′)). A number of
things follow from this, including the fact that the structure induced on P(C′) has
elimination of imaginaries (as this is the case for pure algebraically closed fields).
Note that this does not follow directly from elimination of imaginaries for Th(A)
– we are representing definable quotient spaces in the sort P(C′) by definable sets
also in that sort.

Definition 4.2. Suppose T is a stable theory, M |= T is a sufficiently saturated
model, p(x) ∈ S(A) is a stationary type, and S is a sort of M . Then we say that p is
internal to S if there exist B ⊇ A, a realisation a |= p(x) that is independent from B
over A, and finitely many elements x1, . . . , xn ∈ S, such that a ∈ dcl(B, x1, . . . , xn).

Remark 4.3. If in addition the structure induced on S eliminates imaginaries, then
one can conclude that a is interdefinable over B with a tuple from S. Indeed, let c
be a code for the definable set X := {x ∈ Sn : g(x) = a}, where g is the B-definable
function witnessing that a ∈ dcl(B, x1, . . . , xn). By elimination of imaginaries c can
be chosen to be a tuple from S, and c is interdefinable with a over B.
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Proposition 4.4. Suppose X and S are compact complex varieties and f : X → S
is a fibre space. Then the following are equivalent:

(i) For generic a ∈ X(A′), tp(a/f(a)) is internal to P(C′).
(ii) For some n ≥ 0, there is a compact complex variety T and a holomorphic

surjection T → S, such that X(T ) is bimeromorphic to a subspace of T ×Pn
over T .

(iii) There is a compact complex variety T and a holomorphic surjection T → S,
such that X(T ) → T is Moishezon.

Proof. It follows from the above remarks that (i) is equivalent to there being a
tuple t containing f(a) such that:

• a is independent of t over f(a); and,
• a is interdefinable, over t, with a tuple from P(C′).

For (i) implies (ii), suppose that such a t exists. Let T be the locus of t. As f(a)
is a subtuple of t, and as f(a) is generic in S over A, we obtain a holomorphic
surjection T → S. We claim that a is generic in Xf(a) = (X(T ))t over t. Indeed,
as a is generic in Xf(a) over f(a), and as a is independent of t over f(a), we have
that dim(a/t) = dimXf(a). By absolute irreducibility, the t-locus of a is Xf(a), as
claimed. The interdefinability of a with a tuple from P(C′) over t thus means that
for some n ≥ 0 there is a meromorphic map g,

X(T )

��

g // T × Pn

zzuuu
uu
uu
uu
u

T

such that g is bimeromorphic with its image over T .
Clearly (ii) implies (iii): the bimeromorphic image of X(T ) – being a subspace

of the trivial projective bundle T × Pn – is projective. So by definition, X(T ) → T
is Moishezon.

Finally, suppose (iii) holds. That is, there exists a compact complex variety T ,
and a holomorphic surjection T → S, such that X(T ) → T is Moishezon. Applying
Lemmas 3.1 and 3.3, and possibly base changing to a different T , we get that for
some n ≥ 0, there is a meromorphic map h,

X

f

��

X(T )
h //

��

T × Pn

zzuuu
uu
uu
uu
u

S Too

such that for general t′ ∈ T , ht′ is a meromorphic embedding of (X(T ))t′ into Pn.
Now fix a ∈ X(A′) generic, and choose t ∈ T (A′) lying over f(a) also generic over
A, and such that a is independent of t over f(a). Then, as before, a is generic
in Xf(a) over t; and ht witnesses that a is interdefinable over t with a tuple from
P(C′). This proves that tp(a/f(a)) is internal to P(C′), as desired. �

Theorem 4.5. Suppose p(x) is a stationary type of dimension 1. Then p(x) is
internal to P(C′).

Proof. Let p(x) = tp(a/B) and let Γ be the B-locus of a. As p is stationary,
Lemma 2.11 tells us that Γ is absolutely irreducible. Let s be a finite tuple from
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B over which Γ is defined. As the s-locus of a is also Γ, it follows that tp(a/s) is
stationary and a is independent of B over s (by Lemma 2.12). It suffices to show
that tp(a/s) is internal to P(C′).

LettingX be the locus of (s, a) and S the locus of s, we have that Γ = X(A′)s and
the general fibres of the induced holomorphic surjection f : X → S are irreducible
and 1-dimensional. By Proposition 4.4 it is sufficient to show that after base change,
f : X → S is Moishezon. Moreover, we may assume that f admits a holomorphic
section. Indeed, base changing f : X → S with itself, we obtain X(X) → X which
admits the diagonal section.

The theorem then follows from the following fact (see Lemma 3.10 in [2]): Any
holomorphic surjection of compact complex varieties whose general fibres are irre-
ducible and of dimension 1, and which admits a holomorphic section, is Moishezon.
A proof of this fact can be found in Campana [1] (Théorème 2′). We briefly dis-
cuss the idea of the proof here. Assume that X is smooth. Fixing general s ∈ S,
we know by the Riemann Existence Theorem that Xs is embeddable in projec-
tive space. Such an embedding is given by a very ample line bundle on Xs. Now
if σ : S → X is a holomorphic section to f , then σ(S) is a Cartier divisor that
gives rise to a line bundle E on X. If g is the genus of the general fibres of f , let
F = E⊗2g+1. For general s ∈ S, Fs is a very ample line bundle on Xs. The main
point is that the embeddings of the Xs’s into projective space associated to the
Fs’s are given uniformly by a meromorphic map

X
f

��?
??

??
??

?
h // P(f∗F)

||xx
xx
xx
xx
x

S

where P(f∗F)→ S is the projective linear space associated to the coherent analytic
sheaf f∗F on S (of rank g + 2). See page 19 of Ueno [16] for details on the con-
struction of h. Since hs is an embedding for general s ∈ S, h is a bimeromorphism
onto its image. Hence f : X → S is Moishezon. �

Let us make more explicit in what sense the above theorem can be considered
as a nonstandard version of Riemann Existence. From the equivalence of (i) and
(ii) in Proposition 4.4, we see that if Γ is a nonstandard variety whose generic
type is internal to the projective sort, then Γ is “generically definably isomorphic”
to a nonstandard projective variety. That is, there is a projective variety V over
C′ and a definable isomorphism, using possibly additional parameters, between
nonempty Zariski open subsets of Γ and V . Considering the case of dimension 1,
we can therefore conclude from Theorem 4.5 that up to finitely many points every
nonstandard curve is definably isomorphic to a nonstandard projective curve.

It is natural to ask for more (as was suggested to me by Dave Marker): namely
that every nonstandard curve is outright definably isomorphic to a projective curve
(not just up to finitely many points). In fact, it is not hard to see, and was observed
by myself and Thomas Scanlon, that this follows from the weaker statement:

Corollary 4.6. Every nonstandard variety of dimension 1 is definably isomorphic
to a nonstandard projective curve.

Proof. Suppose Γ is a nonstandard curve. By Theorem 4.5 and Proposition 4.4 we
obtain Γ as a generic fibre of some fibre space of curves in the standard model,
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X → S, such that X is bimeromorphic over S to a subspace V ⊆ S × Pn. As
P(C′) is stably embedded (see Remark 4.1), a generic fibre of V over S is definable
with parameters in the sort P(C′). Hence, after taking a bimeromorphic copy over
S, we may assume that V → S is obtained by base change from a fibre space of
projective curves over a projective variety. We summarise this by following diagram
of compact complex varieties:

X

  B
BB

BB
BB

BB
h // Y(S)

��

Y ⊂ Q× Pn

��
S

τ
// Q

where

• Q is projective and Y is an algebraic family of projective curves over Q,
• τ : S → Q is a holomorphic surjection
• h : X → Y(S) is a meromorphic map such that for general s′ ∈ S, hs′ is a

bimeromorphism from Xs′ to (Y(S))s′ = Yτ(s′), and
• Γ = X(A′)s for some generic s ∈ S(A′).

Replacing Y with a resolution, we may also assume that the general fibres of Y → Q
(and hence of Y(S) → S) are smooth curves. It follows that for general s′ ∈ S,

h−1s′ : Yτ(s′) → Xs′ is a holomorphic map (though hs′ may only be meromorphic).

Note that while the parameters used to define h−1s′ come from outside the projective

sort, the definable equivalence relation on Yτ(s′) determined by h−1s′ is over P(C)
(again by stable embeddability).

On the other hand, by the Riemann Existence Theorem, Xs′ is isomorphic to
some projective curve Z(s′) living in some projective space Pm (where m depends
on s′). Note that the isomorphism betweeen Xs′ and Z(s′) does not necessarily vary
uniformly with s′. Nevertheless, composing with h−1s′ , we obtain a holomorphic map

from Yτ(s′) to Z(s′), that produces the same equivalence relation on Yτ(s′) as h−1s′ .
This is now occurring entirely on the sort P(C), where the induced structure is
purely algebraic. By saturation in that sort (i.e., of the complex field) this happens
at the generic fibres as well. That is, there is another algebraic family of projective
curves Z → Q, and a meromorphic map g : Y → Z over Q, such that if we lift g to
Y(S) by defining g(S)(s, y) := (s, g(y)) then we obtain:

X

!!C
CC

CC
CC

CC
h // Y(S)

��

g(S) // Z(S)

||yy
yy
yy
yy

S

where h−1s : (Y(S))s → Γ and (g(S))s : (Y(S))s → (Z(S))s are defined everywhere
and induce the same equivalence relation on (Y(S))s = Yτ(s). It follows that the
relation obtained by composing (the graphs of) hs and (g(S))s determines a definable
bijection between Γ and the nonstandard projective curve (Z(S))s = Zτ(s). �

Remark 4.7. The proof of Corollary 4.6 actually yields something more: the graph
of the definable isomorphism that we construct is a (nonstandard) Zariski closed set
(namely the image of (Y(S))s in Xs × (Z(S))s under h−1s × (g(S))s). Hence it comes
from a family of graphs of holomorphic bijections in the standard model. This
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gives the geometric formulation mentioned in the introduction. Moreover, if Γ were
smooth in the sense that it came from a family of smooth curves in the standard
model, then this graph would come from a family of graphs of isomorphisms in the
standard model.

We conclude with an application of Theorem 4.5 suggested by Anand Pillay,
that describes the infinite fields interpretable in Th(A). First of all, by elimination
of imaginaries, it is sufficient to consider infinite fields definable in this theory.
Working in the standard model, Pillay has shown that every such field in A is
definably isomorphic to the complex field (see the discussion after 3.10 in [13]). The
argument makes use of the Riemann Existence Theorem (as well as an observation
of Kobi Peterzil). However, in order to understand infinite fields definable in Th(A)
one must also consider elementary extensions of the standard model:

Corollary 4.8. Up to definable isomorphism, the only infinite field definable in A′
is (C′,+,×).

Proof. Suppose X is a compact complex variety and F ⊂ X(A′) is an infinite
definable set equipped with a definable field struicture (F,+,×). Let Γ be the
(absolute) Zariski closure of F . We first claim that dim Γ = 1. Indeed, let s be a
tuple from A′ over which (F,+,×) and Γ are definable. Let S be the locus of s. In
the standard model, there is a definable subset G ⊂ S ×X, such that G(A′)s = F .
For general s′ ∈ S, Gs′ is an infinite definable field in A, and hence definably
isomorphic to C. In particular, the Zariski closure of Gs′ is of dimension 1. It
follows that the dimension of Γ is 1.

From Theorem 4.5 and the discussion following it, we obtain a definable embed-
ding of F into the projective sort. Carrying over the field structure to the image,
we have a definable isomorphism of (F,+,×) with an infinitite field definable in
the projective sort, (H,+,×). As all of the structure induced on P(C′) comes from
the pure algebraically closed field (C′,+,×), it follows that (H,+,×) is definable in
(C′,+,×). But the only infinite field definable in (C′,+,×) is C′ itself, up to defin-
able isomorphism (see [14], p.150). Hence, (H,+,×) is in turn definably isomorphic
to (C′,+,×). �
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