
A proof of ω-stability for m-DCF0

University of Waterloo

Omar Leon Sanchez and Atul Sivaswamy∗

August 2009

These notes give a proof of ω-stability for m-DCF0. The theory of differ-
ential fields of characteristic zero in m commuting derivations, m-DF0, has
a model completion which we denote by m-DCF0 the theory of differentially
closed fields of characteristic zero in m commuting derivations. The usual
proof, due to McGrail [2], involves establishing a bijection between complete
1-types over a model K and prime differential ideals in K{y}. In the lec-
ture notes [5], Pillay gives an alternate argument for ω-stability of 1-DCF0

using quantifier elimination and reducing to ACF0. We act similarly, using
quantifier elimination for m-DCF0, ω-stability for ACF0, and induction on
m. Thus we avoid any serious differential algebra. A key ingredient that is
absent in the case of m = 1 is the use of Kolchin’s differential-type.

Let K be a ∆-field where ∆ = {∂1, . . . , ∂m} are m commuting deriva-
tions, we let K{ȳ} denote the ∆-polynomial ring in differential indetermi-
nates ȳ = (y0, . . . , yl) and think of it as a ∆-ring in the natural way. Note
that

K{ȳ} = K[∂em
m · · · ∂e1

1 yi : i ≤ l, ej ∈ ω]

thus we shall call the elements of the form ∂em
m · · · ∂e1

1 yi the algebraic inde-
terminates. Let us fix an ordering of type ω on the algebraic indeterminates
in K{ȳ} satisfying:

1.
[
∂em

m · · · ∂e1
1 yi < ∂

e′m
m yi

]
=⇒ [em < e′m]

2. [
∑m

i=1 ei ≤ e′m] =⇒
[
∂em

m · · · ∂e1
1 yi ≤ ∂

e′m
m yi

]
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For example, define

∂em
m · · · ∂e1

1 yi < ∂e′m
m · · · ∂e′1

1 yi′ ⇔

(
m∑

i=1

ei, i, em, ..., e1

)
<

(
m∑

i=1

e′i, i
′, e′m, ..., e

′
1

)
in the lexicographical order. Henceforth, enumerating the algebraic in-
determinates according to this ordering, we denote them by (Yj)j∈ω. If
Y = ∂em

m · · · ∂e1
1 yi and ā ∈ K l then we let Y (ā) = ∂em

m · · · ∂e1
1 ai. The

field of constants of K, denoted by CK , is the intersection of the kernels
of ∂1, . . . , ∂m.

Lemma 1 Let F ∈ K[x0, ..., xn] and consider F (Y0, . . . , Yn) ∈ K{ȳ}.
Then for any ∂ ∈ ∆,

∂(F (Y0, ..., Yn)) = F ∂(Y0, ..., Yn) +
n∑

j=0

∂F

∂xj
(Y0, ..., Yn) ∂Yj

where ∂F
∂xj

denotes the formal partial derivative of F and F ∂ denotes the
polynomial obtained by applying the derivation to the coefficients of F .

Proof. We shall prove this for polynomials of the form F = cxe0
0 ...x

en
n , where

c is an element from K,

∂F (Y0, ..., Yn) = ∂(c)Y e0
0 ...Y en

n +
n∑

j=0

cY e1
0 . . . ejY

ej−1
j . . . Y en

n ∂Yj

= F ∂(Y0, ..., Yn) +
n∑

j=0

∂F

∂xj
(Y0, ..., Yn) ∂Yj

The linearity of ∂ ensures that the formula holds for a general polynomial.

Let K ⊂ L be a ∆-field extension. Recall that an element a ∈ L is called
differentially algebraic over K if there is a differential polynomial in K{y}
vanishing on a and differentially transcendental otherwise. We let K < a >
denote the ∆-field generated by K ∪ {a}. For j ≤ m, let ∆j := {∂1, . . . , ∂j}
and (K,∆j) denote K considered as a ∆j-field. We let K < a >∆j denote
the ∆j-field generated by K ∪ {a}.

Recall that the leader of a differential polynomial P ∈ K{ȳ} is the great-
est algebraic indeterminant appearing nontrivially in P . The separant of P
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is the formal partial derivative of P (considered as an ordinary polynomial)
with respect to its leader.

Theorem 2 Let K � L |= m-DCF0 and let a ∈ L be differentially
algebraic over K. Suppose P ∈ K{y} vanishes at a but SP (a) 6= 0 (where
SP is the separant of P ) and the leader of P is ∂s

my for some s ∈ ω, then:
(i)

K < a >= K < a, ∂ma, . . . , ∂
s
ma >∆m−1

(ii) If b ∈ L is such that

tp∆m−1(a, ∂ma, . . . , ∂
s
ma/K) = tp∆m−1(b, ∂mb, . . . , ∂

s
mb/K) (1)

then tp(a/K) = tp(b/K).

Proof. (i) Note that P (y) = F (Y0, . . . , Yn−1, ∂
s
my) for some F ∈ K[x0, . . . , xn].

Using Lemma 1 we get,

0 = ∂m(P (a))

= F ∂m(a) +
n−1∑
i=0

∂F

∂xi
(Y0(a), . . . , ∂s

ma)∂mYi(a) + SP (a)∂s+1
m a.

Because SP (a) 6= 0, we can rearrange to get:

∂s+1
m a = −(F ∂m(a) +

n−1∑
i=0

∂F

∂xi
(Y0(a), . . . , ∂s

ma)∂mYi(a))(SP (a))−1

since the ∂m-order of each Y0, ..., Yn−1 is≤ s−1 and the derivations commute,
we get ∂s+1

m a = G1(a, ..., ∂s
ma) for some G1 ∈ K < x0, ..., xs >∆m−1 . Thus

∂s+1
m a ∈ K < a, . . . , ∂s

ma >∆m−1 .
Next, for r ≥ 1 inductively assume ∂s+r

m a ∈ K < a, . . . , ∂s
ma >∆m−1 .

This means
∂s+r

m a = Gr(a, . . . , ∂s
ma) =

H1(a, . . . , ∂s
ma)

H2(a, . . . , ∂s
ma)

for some Gr ∈ K < x0, ..., xs >∆m−1 . So

∂s+r+1
m a =

∂m(H1(a))H2(a)−H1(a)∂m(H2(a))
(H2(a))2
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but ∂m(Hi(a)) is in K < a, . . . , ∂s+1
m a >∆m−1= K < a, . . . , ∂s

ma >∆m−1 .
Thus ∂s+r+1

m a ∈ K < a, . . . , ∂s
ma >∆m−1 and there is a ∆m−1-polynomial

Gr+1(x0, . . . , xs) witnessing this. So

∂s+r
m a = Gr(a, . . . , ∂s

ma) ∈ K < a, . . . , ∂s
ma >∆m−1 ,

for all r = 1, 2, . . . , and so

K < a >= K < a, ∂ma, . . . , ∂
s
ma >∆m−1

(ii) Since P and SP both have ∂m-order s, our assumption on b implies
that P (b) = 0 and SP (b) 6= 0. In part (i), the constuction of the Gi’s used
only the fact that P (a) = 0 and SP (a) 6= 0, and so the same Gi’s will work
for b. That it, ∂s+r

m (b) = Gr(b, . . . , ∂s
mb) for r = 1, 2, . . . .

By quantifier elimination for m-DCF0 we only need to show that for
F ∈ K{y}, F (a) = 0 if and only if F (b) = 0. Note that there is F ∗ ∈
K{x0, ..., xl}∆m−1 such that F (y) = F ∗(y, ∂my, ..., ∂

l
my). If l ≤ s the result

follows immediately by (1). Thus assume l > s

F (a) = 0 ⇔ F ∗(a, ..., ∂s
ma, ∂

s+1
m a, ..., ∂l

ma) = 0
⇔ F ∗(a, ..., ∂s

ma,G1(a, ..., ∂s
ma), ..., Gl(a, ..., ∂s

ma)) = 0
by (1) ⇔ F ∗(b, ..., ∂s

mb,G1(b, ..., ∂s
mb), ..., Gl(b, ..., ∂s

mb)) = 0
⇔ F ∗(b, ..., ∂s

mb, ∂
s+1
m b, ..., ∂l

mb) = 0
⇔ F (b) = 0

Thus tp(a/K) = tp(b/K).

The following theorem is actually a step in Kolchin’s theorem on “differential-
type”, see [1,§2.11].

Theorem 3 Let a ∈ L be differentially algebraic over K. Suppose
P ∈ K{y} vanishes at a but SP (a) 6= 0. Then we can find derivations
∆′ = {∂′1, . . . , ∂′m} such that ∆ = C∆′ for some C = (cij) ∈ GLm(CK), and
if P∆′

denotes P viewed as a ∆′-polynomial then the leader of P∆′
is of the

form ∂′smy for some s ∈ ω and SP∆′ (a) 6= 0.

Proof. Fix a matrix C = (cij) ∈ GLm(CK) and let ∆′ = {∂1, . . . , ∂
′
m} be the

derivations on K given by ∆′ = C−1∆. So for each i, ∂i =
∑
cij∂

′
j . We need

to show that C can be chosen so that the conclusion of Theorem 3 holds.
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Let s be the order of P , if ∂e1
1 · · · ∂em

m is a derivative of order s then

∂e1
1 · · · ∂em

m y = (
m∑

i=1

c1i∂
′
i)

e1 · · · (
m∑

i=1

cmi∂
′
i)

emy

= ce1
1m · · · c

em
mm∂

′s
my +Q(y)

where Q is a ∆′-polynomial with ∂′m-order < s. Using the chain rule and
letting {γk}k∈I be a basis of L over CK we get

∂P∆′

∂(∂′smy)
(a) =

∑
P

ej=s

∂P

∂(∂e1
1 · · · ∂em

m y)
(a)ce1

1m · · · c
em
mm

=
∑

P
ej=s

(
∑

i

β(i)
e1,...,em

γi)ce1
1m · · · c

em
mm

=
∑

i

(
∑

P
ej=s

β(i)
e1,...,em

ce1
1m . . . cem

mm)γi

=
∑

i

gi(c1m, . . . , cmm)γi

where the gi’s are homogeneous (algebraic) polynomials over CK . Note that
the leader of P is a derivative of order s, so one of the formal partial deriva-
tives in the first equality is the separant of P , and by assumption it doesn’t
vanish at a. So for some i and e1, ..., em, β(i)

e1,...em 6= 0, and hence gi is a
non-zero polynomial. Let g be such a gi. Since we are in characteristic zero,
CK is an infinite field and so we can find an invertible matrix C = (cij) such
that g(c1m, . . . , cmm) 6= 0.

In fact, this is the matrix we are looking for. Recall P has order s and
hence so does P∆′

. On the other hand,

∂P∆′

∂(∂′smy)
(a) =

∑
i

gi(c1m, . . . , cmm)γi 6= 0

since g(c1m, . . . , cmm) 6= 0. So ∂′sm(y) must appear in P∆′
. It follows, by the

nature of the ordering, that ∂′sm must be the leader of P∆′
. Also, it is clear

that P∆′
(a) = 0 and the last inequation tells us that the separant of P∆′

does not vanish at a.

Lemma 4 Let (K,∆) |= m-DCF0 and let ∆′ = {∂′1, . . . , ∂′m} be deriva-
tions given by ∆ = C∆′ for some C ∈ GLm(CK). Then (K,∆′) |= m-DCF0.
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Proof. Let δ1, . . . , δm be the derivative symbols in L the language of fields
with m derivations. Let φ(x̄) be a quantifier free LK-formula. Suppose
(K,∆′) ⊂ (M,∆′) where (M,∆′) |= m-DF0. Let ā be a tuple in M such
that (M,∆′) |= φ(ā).

Note (M,∆) |= m-DF0. Write C−1 = (cij). Let ψ(x̄) be the quantifier
free LK-formula obtained by replacing each occurrence of δi in φ(x̄) by the
LK-term ti =

∑m
j=1 cijδj . In (K,∆′) and (M,∆′), each δi is interpreted as

∂′i and so ti is interpreted as ∂i. Hence, for any c̄ from M

(M,∆′) |= φ(c̄) ⇐⇒ (M,∆) |= ψ(c̄)

and similarly for K. Thus (M,∆) |= ψ(ā), but since (K,∆) is existen-
tially closed there is a tuple b̄ in K such that (K,∆) |= ψ(b̄). This implies
(K,∆′) |= φ(b̄) and hence (K,∆′) |= m-DCF0.

Recall that an L-theory T is ω-stable if for any M |= T, and any count-
able A ⊂ M, we have that SMn (A) is also countable. In fact, it suffices to
consider the case n = 1.

Lemma 5 Let L be a countable language, and T an L-theory. If for all
countable N |= T we have |N | = |SN1 (N)|, then T is ω-stable.

Proof. Let M |= T , and let A be a countable subset of M. By the Downward
Lowenhiem-Skolem Theorem, there exists a countable N � M containing
A. Thus ω ≥ |SN1 (N)| ≥ |SN1 (A)| = |SM1 (A)|, and hence T is ω-stable.

Theorem 6 The theory m-DCF0 is ω-stable.

Proof. We will prove ω-stability by induction on the number of derivations,
the base case is when m = 0 and so we get ACF0 which we know is ω-
stable. Assume (m− 1)-DCF0 is ω-stable. Let K |= m-DCF0 be countable
and K � L sufficiently saturated, so counting SK

1 (K) amounts to counting
{tp(a/K) : a ∈ L}.

Fix a ∈ L.
Case 1 Suppose a is differentially transcendental. Then the only atomic

formulas realized by a are equivalent to (0 = 0), so by QE, tp(a/K) is
completely determined.

Case 2 Otherwise a is differentially algebraic over K. If we establish an
embedding of the types of differentially algebraic elements into⋃

∆′
m−1

⋃
n

S
(K,∆′

m−1)
n (K) (2)
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where we range over all ∆′ such that ∆ = C∆′ for some C ∈ GLm(CK),
then we will have shown m-DCF0 is ω-stable. Indeed, by Lemma 4

(K,∆′
m−1) |= (m− 1)-DCF0

and so by induction is ω-stable. Hence (2) is a countable set. Since a is
differentially algebraic over K we can always pick a differential polynomial
vanishing at a that is minimal with respect to the degree of its leader, so
its separant will not vanish at a. Thus, by Theorem 3, we can find ∆′ and
P ∈ K{y}∆′ such that the leader of P is of the form ∂′smy and the separant
SP does not vanish on a. Send

tp(a/K) 7−→ tp∆′
m−1

(a, ∂′ma, . . . , ∂
′s
ma/K)

we will show this map is injective. By Theorem 2(ii) applied to (K,∆′), if

tp∆′
m−1

(a, ∂′ma, . . . , ∂
′s
ma/K) = tp∆′

m−1
(b, ∂′mb, . . . , ∂

′s
mb/K)

then tp∆′(a/K) = tp∆′(b/K). But, clearly

tp∆′(a/K) = tp∆′(b/K) ⇔ tp(a/K) = tp(b/K)

and so the map is indeed injective.
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