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These notes give a proof of w-stability for m-DCFy. The theory of differ-
ential fields of characteristic zero in m commuting derivations, m-D Fjy, has
a model completion which we denote by m-DCF{y the theory of differentially
closed fields of characteristic zero in m commuting derivations. The usual
proof, due to McGrail [2], involves establishing a bijection between complete
1-types over a model K and prime differential ideals in K{y}. In the lec-
ture notes [5], Pillay gives an alternate argument for w-stability of 1-DC Fy
using quantifier elimination and reducing to AC'Fy. We act similarly, using
quantifier elimination for m-DCFy, w-stability for AC'Fp, and induction on
m. Thus we avoid any serious differential algebra. A key ingredient that is
absent in the case of m =1 is the use of Kolchin’s differential-type.

Let K be a A-field where A = {d4,...,0,} are m commuting deriva-
tions, we let K{y} denote the A-polynomial ring in differential indetermi-
nates ¥ = (yo,...,y;) and think of it as a A-ring in the natural way. Note
that

K{y} =K[0;---0{'yi - i <1, ej € w]

thus we shall call the elements of the form 95 - - - 97'y; the algebraic inde-
terminates. Let us fix an ordering of type w on the algebraic indeterminates
in K{y} satisfying:

1. |9m - 00 y; < 8%”3/4 = [em < €]

2. Dot ei<e = [arenm Oy < az;myi
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For example, define

m
/ e/ .
876;:”'”8161:[/75<8’rc;zm"'allyi’<:> (E €iry1,€m, ..., € > <§ 67,7 ) m:"'v >
i=1

in the lexicographical order. Henceforth, enumerating the algebraic in-
determlnates according to this ordering, we denote them by (Yj)jen. If

= 0om ... 9%y; and @ € K'! then we let Y(a) = 9o - 861% The
ﬁeld of constants of K, denoted by Cg, is the intersection of the kernels
of&l,...,ﬁm.

Lemma 1 Let F' € Klxo,...,x,] and consider F(Yp,...,Y,) € K{y}.
Then for any 0 € A,

OF
OF (Yo, ..., Yn)) = FO(Yo, .. Ya) + > 2—(¥0, ..., Yn) 0

where 8—F denotes the formal partial derivative of F' and F? denotes the
polynomlal obtained by applying the derivation to the coefficients of F.

Proof. We shall prove this for polynomials of the form F' = cx°...x5", where
c is an element from K,

n
OF (Yo, Yn) = (Yo Y+ Vgt e;Y 7 Y 9y,
j*O

= FOY,,...Y, +Z YO Y,,) 9Y;

The linearity of @ ensures that the formula holds for a general polynomial.
O

Let K C L be a A-field extension. Recall that an element a € L is called
differentially algebraic over K if there is a differential polynomial in K{y}
vanishing on a and differentially transcendental otherwise. We let K < a >
denote the A-field generated by K U {a}. For j < m, let A; := {01,...,0;}
and (K, A;) denote K considered as a Aj-field. We let K < a >a, denote
the Aj-field generated by K U {a}.

Recall that the leader of a differential polynomial P € K{gy} is the great-
est algebraic indeterminant appearing nontrivially in P. The separant of P



is the formal partial derivative of P (considered as an ordinary polynomial)
with respect to its leader.

Theorem 2 Let K < L = m-DCF, and let a € L be differentially
algebraic over K. Suppose P € K{y} vanishes at a but Sp(a) # 0 (where
Sp is the separant of P) and the leader of P is 07,y for some s € w, then:

(i)
K <a>=K <a,0pa,...,00a>na,, ,
(ii) If b € L is such that
tpa,, ,(a,0ma,...,05a/K) =tpa,, ,(b,0md,...,0:b/K) (1)
then tp(a/K) = tp(b/K).

Proof. (i) Note that P(y) = F(Yo,...,Y,_1,05y) for some F' € K|[xg,...,zy].
Using Lemma 1 we get,

0 = 9m(P(a))

n—1
= Fam(a) + Z 251: (Yo(a),...,0%a)0mYi(a) + Sp(a)di a.
i=0 ¢

Because Sp(a) # 0, we can rearrange to get:

s+1_ Om “ OF s - —1
O a=—(F (a)+zaxi(Yo(a),---ﬂma)@myz(a))(SP(a))

i=0

since the 0,,-order of each Yy, ..., Y,,_1 is < s—1 and the derivations commute,
we get 95 a = Gi(a,...,05,a) for some G1 € K < x9,...,x5 >n,, ,- Thus
BEHlaec K <a,...,05a>n, ;.

Next, for 7 > 1 inductively assume 95"a € K < a,...,05a >a
This means

m—1"°

Hl(a, cee ,6;9,10,)
Hg(a, ce ,8;310,)

05ta = Gy(a,...,05a) =

m
for some G, € K < xg,...,Ts >a,,_;- SO

Om(H1(a))Ha(a) — Hi(a)0m(Hz(a))
(Ha(a))?

a5 Ha =



but O, (H;(a)) is in K < a,...,05Ha >a, = K < a,...,05a >a,,_,
Thus 95" a € K < a,...,05a >a and there is a A,,_1-polynomial
Gry1(xo,...,zs) witnessing this. So

m—1

05t a = Gr(a,...,05a) € K <a,...,05a>a

m—17

forallr=1,2,..., and so
K <a>=K <a,0pa,...,00a>na,, ,

(ii) Since P and Sp both have 0,,-order s, our assumption on b implies
that P(b) = 0 and Sp(b) # 0. In part (i), the constuction of the G;’s used
only the fact that P(a) = 0 and Sp(a) # 0, and so the same G;’s will work
for b. That it, 95" (b) = G,(b,...,05.b) for r =1,2,....

By quantifier elimination for m-DCFy we only need to show that for
F € K{y}, F(a) = 0 if and only if F(b) = 0. Note that there is F* €
K{zo,...,z1}A,,_, such that F(y) = F*(y,0my, ...,04,y). If | < s the result
follows immediately by (1). Thus assume [ > s

Fla)=0 & F*(a,.., 050,05 a, .,8,lna) =
< F*(a,..,0;a,Gi(a,...,0na),...,Ga,..., 0, )):0
by (1) & F*(b,... 3 b, G1(b, 35 b), .. Gl( 35 b)) =
& F*(b,...,05b, 8S+1b Lol b) =
< F((b)=0
Thus tp(a/K) = tp(b/K). O

The following theorem is actually a step in Kolchin’s theorem on “differential-
type”, see [1,§2.11].

Theorem 3 Let a € L be differentially algebraic over K. Suppose
P € K{y} vanishes at a but Sp(a) # 0. Then we can find derivations
A" ={01,...,0.,} such that A = CA’ for some C = (¢;;) € GL,(Ck), and
if PA" denotes P viewed as a A’-polynomial then the leader of P2 is of the
form 0)yy for some s € w and Spar(a) # 0.

Proof. Fix a matrix C' = (¢;j) € GL,(Cx) and let A" = {01,...,0,,} be the
derivations on K given by A’ = C~tA. So for each i, 8; = Y ¢;j ;. We need
to show that C can be chosen so that the conclusion of Theorem 3 holds.



Let s be the order of P, if 97" --- 9™ is a derivative of order s then

m m

L. Pemy = (Z c1;00)t - - - (Z cmidf) "y

i=1 i=1
= i GOy + Q)

where @ is a A’-polynomial with 9/ -order < s. Using the chain rule and
letting {7vx}xer be a basis of L over Cx we get

opPA

B(c%gy) (CL) = Z a 861 . aem )( ) T CiTm
- Z Zﬁel, ,emry’L Clm Cf‘r;nm
2ej=s 1
= Z Z Bel, Sem lm ’ Cfr;nm)’y
i Yej=s

= ) gilCims - Com) i
i

where the g;’s are homogeneous (algebraic) polynomials over Cx. Note that
the leader of P is a derivative of order s, so one of the formal partial deriva-
tives in the first equality is the separant of P, and by assumption it doesn’t
vanish at a. So for some 7 and ey, ..., €, ﬁé?,mem =# 0, and hence g; is a
non-zero polynomial. Let g be such a g;. Since we are in characteristic zero,
Ck is an infinite field and so we can find an invertible matrix C' = (¢;;) such
that g(cim, - -+, ¢mm) # 0.

In fact, this is the matrix we are looking for. Recall P has order s and
hence so does P2’. On the other hand,

8PA/
8/5 Zgz Clm;-”ycmm)’}/i 3& 0

since g(Cim, - -+ s Cmm) # 0. So &2 (y) must appear in P2, It follows, by the
nature of the ordering, that 9/ must be the leader of P2 Also, it is clear
that P2'(a) = 0 and the last inequation tells us that the separant of P2’
does not vanish at a. d

Lemma 4 Let (K,A) = m-DCFy and let A’ = {9],...,0,,} be deriva-
tions given by A = C'A’ for some C € GL,,(Ck). Then (K,A’) = m-DCF.



Proof. Let 61,...,0, be the derivative symbols in L the language of fields
with m derivations. Let ¢(Z) be a quantifier free Ly-formula. Suppose
(K,A") C (M,A") where (M,A") = m-DFy. Let a be a tuple in M such
that (M,A’) &= ¢(a).

Note (M,A) | m-DFy. Write C~! = (¢;;). Let 1(Z) be the quantifier
free L g-formula obtained by replacing each occurrence of §; in ¢(z) by the
Lp-term t; = 3700, ¢;50;. In (K, A') and (M, A'), each d; is interpreted as
0! and so t; is interpreted as 0;. Hence, for any ¢ from M

(M, A) = ¢(e) <= (M,A) = 4(e)
and similarly for K. Thus (M,A) = v¥(a), but since (K,A) is existen-

tially closed there is a tuple b in K such that (K, A) = ¥(b). This implies
(K,A") = ¢(b) and hence (K,A’) E m-DCF,. O

Recall that an L-theory T is w-stable if for any M | T, and any count-
able A C M, we have that S;*{(A) is also countable. In fact, it suffices to
consider the case n = 1.

Lemma 5 Let L be a countable language, and T an L-theory. If for all
countable N = T we have |[N| = |SIV(N)|, then T is w-stable.

Proof. Let M |= T, and let A be a countable subset of M. By the Downward
Lowenhiem-Skolem Theorem, there exists a countable N' < M containing
A. Thus w > [SV(N)| > |SV(A)] = |SM(A)|, and hence T is w-stable. [

Theorem 6 The theory m-DC'Fy is w-stable.

Proof. We will prove w-stability by induction on the number of derivations,
the base case is when m = 0 and so we get ACFy which we know is w-
stable. Assume (m — 1)-DCFj is w-stable. Let K = m-DCFy be countable
and K =< L sufficiently saturated, so counting S (K) amounts to counting
{tp(a/K) :a € L}.

Fix a € L.

Case 1 Suppose a is differentially transcendental. Then the only atomic
formulas realized by a are equivalent to (0 = 0), so by QE, tp(a/K) is
completely determined.

Case 2 Otherwise a is differentially algebraic over K. If we establish an
embedding of the types of differentially algebraic elements into

U Usi ) (2)
AL



where we range over all A’ such that A = CA’ for some C € GL,,(Ck),
then we will have shown m-DC'Fy is w-stable. Indeed, by Lemma 4

(K,A,,_,) E (m—1)-DCF,

and so by induction is w-stable. Hence (2) is a countable set. Since a is
differentially algebraic over K we can always pick a differential polynomial
vanishing at a that is minimal with respect to the degree of its leader, so
its separant will not vanish at a. Thus, by Theorem 3, we can find A’ and
P € K{y}as such that the leader of P is of the form 0/3y and the separant
Sp does not vanish on a. Send

tp(a/K) — tpar  (a, oa,...,0na/K)
we will show this map is injective. By Theorem 2(ii) applied to (K, A’), if
tpA;n_l(a,ﬁjna, L 08a/K) = tpar (b, olb,...,05b/K)
then tpar(a/K) = tpa/(b/K). But, clearly
tpar (/) = tpas(b/K) & tp(a/K) = tp(b/K)

and so the map is indeed injective. O
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