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Disclaimers

The only part of my talk that is CERTAIN:

IP/OR focus

Incomplete

My goal:

Give a very basic overview of the several issues that arise when considering
uncertainty
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Stochastic IP

min c(ξ)T x
s.t. A(ξ)x ≤ b(ξ)

x ∈ Zp × Rn−p

where ξ is a random vector.

But:

What does this mean?

How do we solve it?

Typical issues:

1 Choose a desired interpretation

2 Formulate a deterministic problem that can (approximately) solve it

3 Solve the deterministic problem

Hidden challenge: dealing with unknown probability distributions. Example:

Computing E[max{xT ξ, b}] where x is an arbitrary vector and each component of ξ
is an i.i.d. uniform random variable is #P-hard (Hanasusanto, Kuhn, and
Wiesemann, 2016)
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Two-stage stochastic programs

min E[Q(x , ξ)]
s.t. x ∈ X

(SP)

where

Q(x , ξ) :=
min q(ξ)T y
s.t. W (ξ)y ≤ h(ξ)− T (ξ)x

(REC)

x are called first-stage variables

y are called second-stage variables
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Hardness

Graph reliability problem

Given directed graph G = (V ,E), u, v ∈ V , count how many subgraphs H = (V ,F ) of
G have a u − v path
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Sample average approximation (Kleywegt, Shapiro, and Mello, 2002)

Addresses issue 2.

Instead of solving

z∗ :=
min E[Q(x , ξ)]
s.t. x ∈ X

(SP)

take ξ1, . . . , ξN i.i.d. samples of ξ and solve

zN :=
min

N∑
i=1

1
N
Q(x , ξi )

s.t. x ∈ X
(SAA-N)

Let xN be an optimal solution to (SAA-N)
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Sample average approximation (Kleywegt, Shapiro, and Mello, 2002)

Proposition

E[zN ] ≤ z∗

Proposition

E[zN ] ≤ E[zN+1]

Theorem

Assume X is compact, Q(x , ξ) is real-valued for all x ∈ X and all ξ. Then zN → z∗ and
every limit point of {xN} solves (SP) with probability 1.

Ahmed and Shapiro, 2002 extends it to cases with integral recourse.
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Solving (SAA-LP)

zN :=
min

N∑
i=1

1
N
Q(x , ξi )

s.t. Ax ≤ b
(SAA-LP)

where

Q(x , ξ) :=
min q(ξ)T y
s.t. W (ξ)y ≤ h(ξ)− T (ξ)x

(REC)

Given a fixed ξ, different x values give different RHS for (REC).

Value function of an LP:

V (d) :=
min gT y
s.t. Dy ≤ d

is a PWL convex function
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Solving (SAA-LP)

min q(ξ)T y
s.t. W (ξ)y ≤ h(ξ)− T (ξ)x

=
max [h(ξ)− T (ξ)]Tw
s.t. W (ξ)Tw = q(ξ)

w ≤ 0
= max

k=1,...,K(ξ)
[h(ξ)− T (ξ)]Tw(ξ)k

zN :=
min

N∑
i=1

1
N
Q(x , ξi )

s.t. Ax ≤ b
=

min
N∑
i=1

1
N
θi

s.t. Ax ≤ b
θi ≥ [h(ξ)− T (ξ)]Tw(ξi )k , ∀k = 1, . . . ,K(ξi )

which is solved in a cutting plane fashion.

This is called Benders’ decomposition.

Assumes second stage problem always has an optimal solution and does not work if
second stage variables are integer.
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Multistage stochastic programs

Generalizes two-stage to multiple, where uncertainty is revealed in stages and decisions
can be made in each stage considering all previous uncertainty realizations as
deterministic.

Much more complex, with tons of research questions on their own.

Stochastic Dual Dynamic Programming: Pereira and Pinto, 1991
Example performance:
Matos, Philpott, and Finardi, 2015: 300 power plants, 120 stages, 20 realizations
per stage: 2% gap within 2 hours.

Stochastic Dual Dynamic Integer Programming: Zou, Ahmed, and Sun, 2019
Example performance:
9 stages, 2% gap in 3h.
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Reducing scenarios (Song and Luedtke, 2015)

Addresses issue 3

zN :=
min

N∑
i=1

1
N
Q(x , ξi )

s.t. x ∈ X

where

Q(x , ξ) :=
min qT y
s.t. Wy ≤ h(ξ)− T (ξ)x

Let N = {P1, . . . ,PL} be a partition of 1, . . . ,N.

yP =
∑
i∈P

y i , TP =
∑
i∈P

T (ξi ), hP =
∑
i∈P

h(ξi )

min
∑

P∈N

1
N
qT yP

s.t. x ∈ X
WyP ≤ hP − TPx ,∀P ∈ N

Song and Luedtke, 2015: Propose a way to iteratively refine N until we reach optimal
solution to original problem.
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Stochastic cutting planes (Bertsimas and Li, 2022)

Addresses issue 3

Idea: Adapt cutting plane approach to Stochastic MINLP problems giving high
probability of getting good solution with much lower number of cuts.
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Other measures of risk

Adresses issue 1

Expected value is risk neutral:

Which is better:

A solution that 90% of the time has cost 1,000 and 10% of the time has cost 0

A solution that 100% of the time has cost 901

depends on how risk-averse you are.

Ruszczyński and Shapiro, 2006: Investigate optimization of risk functions (not
recommend for reading group).
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Other measures of risk

Adresses issue 1

Value at Risk: V@Rα(Z) := inf{t : P[Z ≤ t] ≥ α}
Conditional Value-at-Risk: CV@Rα(Z) := E[Z |Z ≥ V@Rα(Z)]

Lemma (Rockafellar and Uryasev, 2002)

If P[Z = V@R(Z)] = 0 then CV@Rα(Z) = min
γ∈R

{
γ + 1

1−α
E[Z − γ]+

}
If Z = Q(x , ξ) with ξ having finite support distribution P(ξ = ξi ) = pi , i = 1, . . . ,N then:

min CV@Rα(Q(x , ξ))
s.t. x ∈ X

=

min γ + 1
1−α

N∑
i=1

piwi

s.t. x ∈ X
wi ≥ Q(x , ξi )− γ, i = 1, . . . ,N
γ ∈ R,w ≥ 0

(1)
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Chance constraint

(Joint) chance-constraint:

z∗ϵ :=
min cT x
s.t. x ∈ X

P{fi (x , ξ) ≤ 0, ∀i = 1, . . . ,m} ≥ 1− ϵ
(CC)

Individual chance-constraint: m = 1 (our focus next)
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Tractable approximation (Nemirovskii and Shapiro, 2006)

Suppose ψ : R → R is:

Nonnegative

nondecreasing

convex

ψ(a) > ψ(0) = 1,∀z > 0.

If Z is a random variable and t > 0

E[ψ(tZ)] ≥ E[I[0,+∞](tZ)] = P[tZ ≥ 0] = P[Z ≥ 0] ≥ P[Z > 0]

Consider
S = {x : P{f (x , ξ) ≤ 0} ≥ 1− ϵ} = {x : P{f (x , ξ) > 0} ≤ ϵ}

Therefore, if we can guarantee:

E[ψ(tf (x , ξ))] ≤ ϵ

then chance constraint is satisfied.
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Tractable approximation (Nemirovskii and Shapiro, 2006)

If f is convex on x , leads to conservative convex constraint approximation of
chance-constraint:

inf
t>0

[
tE[ψ(1

t
f (x , ξ))]− tϵ

]
≤ 0

Nemirovskii and Shapiro, 2006 study choices of ψ

Ahmed et al., 2017 give a different way to approximate chance-constraints.
Xie and Ahmed, 2020 give a bi-criteria approximation for covering programs
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Scenario approximation (Calafiore and Campi, 2005)

Take samples ξ1, . . . , ξN and solve:

min cT x
s.t. x ∈ X

f (x , ξi ) ≤ 0, ∀i = 1, . . . ,N

Theorem

Assume X convex, f (x , ξ) convex on x for every ξ. Let δ > 0.
If N ≥ 2

ϵ
log

(
1
δ

)
+ 2n + 2n

ϵ
log( 2

ϵ
) then, with confidence 1− δ, the optimal solution x∗ to

the scenario approximation problem will satisfy chance-constraint.
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Sample average approximation (Luedtke and Ahmed, 2008)

Take samples ξ1, . . . , ξN and solve the chance-constrained problem with confidence α
over finite distribution.

z∗N,α :=

min cT x
s.t. x ∈ X

N∑
i=1

1
N
I(f (x , ξi ) ≤ 0) ≥ 1− α

(SAA-CC)

Assume that (CC) has an optimal solution.

Theorem

If α > ϵ then
P[z∗N,α ≤ z∗ϵ ] ≥ 1− exp{−2N(α− ϵ)2}

Theorem

Suppose X is finite and α < ϵ. Then, all feasible solutions to the sample problem at level
α are feasible to the nominal problem at level ϵ with probabaility at least

1− |X |exp{−2N(ϵ− α)2}
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Distributional robustness

Main idea:

Often times, exact probability distribution is not really known.

Want to have some guarantees of feasibility/optimality for ALL probability
distributions that share certain characteristics

Example: We want to solve

min{ max
P∈BW (Q)

EP[Q(x , ξ)] : x ∈ X}

where Q is a given probability distribution, and BW (Q) is a set of probability distributions
that are “like” Q.
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Distributional robustness (Esfahani and Kuhn, 2018)

Distance between two probability distributions:

dW (Q1,Q2) := inf

{
EQ||ξ1 − ξ2|| : Q is a joint distribution of ξ1 and ξ2

with marginals Q1 and Q2

}

If Qi (i = 1, 2) are finite discrete distributions with N possible realizations ξi1, . . . , ξ
i
k and

probabilities qi
1, . . . , q

i
N , then

dW (Q1,Q2) :=

min
N∑
j=1

N∑
k=1

||ξ1j − ξ2k ||Πjk

s.t.
N∑
j=1

Πjk = q2
k ,∀k = 1, . . . ,N

N∑
k=1

Πjk = q1
j , ∀j = 1, . . . ,N

Π ≥ 0

We can then define: BW (Q) := {P : dW (P,Q) ≤ ϵ}
and rewrite our problem as a tractable optimization problem.

Chen, Kuhn, and Wiesemann, 2018 deals with distributionally robust chance-constraints
Rahimian and Mehrotra, 2019 provides a review of DRO.
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Conclusion

Takeaways:

Tons of possible ways to interpret an optimization problem with uncertainty

Theoretical and computational challenges are plentiful

Mix of statistics, optimization, engineering, economics

Missing:

Tons of details

Lots more references

Specific ideas to particular combinatorial optimization problems

Combinatorial/Approximation algorithms
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