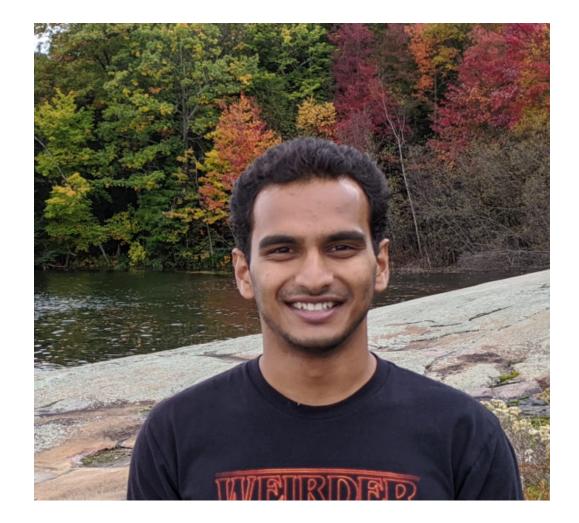
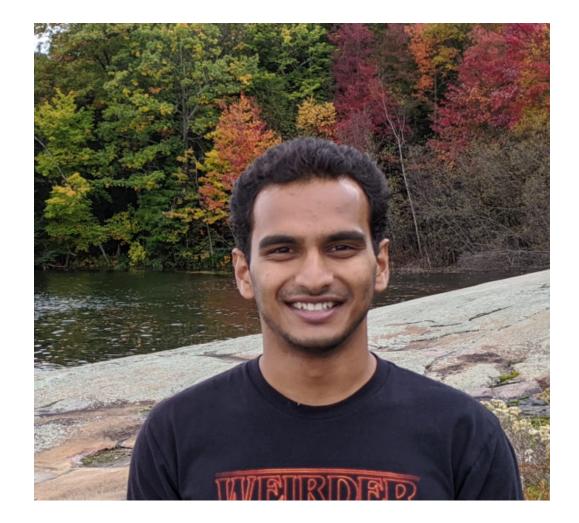
Stochastic Minimum Norm Combinatorial Optimization



Sharat Ibrahimpur

Chaitanya Swamy University of Waterloo

Stochastic Minimum Norm Combinatorial Optimization



Sharat Ibrahimpur

Chaitanya Swamy University of Waterloo

- > We have a combinatorial-optimization problem where costs involved are
 - random variables with given distributions

- > We have a combinatorial-optimization problem where costs involved are random variables with given distributions
- \triangleright Each feasible solution s induces a random m-dimensional cost vector Y^s such that $\{Y_i^s\}_{i\in[m]}$ are independent nonnegative random variables *Y^s* follows a product distribution on $\mathbb{R}^m_{>0}$

- > We have a combinatorial-optimization problem where costs involved are random variables with given distributions
- \triangleright Each feasible solution s induces a random m-dimensional cost vector Y^s such that $\{Y_i^s\}_{i\in[m]}$ are independent nonnegative random variables Y^s follows a product distribution on $\mathbb{R}^m_{>0}$
- \triangleright We are given (a value oracle for) a monotone symmetric norm $f: \mathbb{R}^m_{>0} \to \mathbb{R}_{>0}$

- > We have a combinatorial-optimization problem where costs involved are random variables with given distributions
- \triangleright Each feasible solution s induces a random m-dimensional cost vector Y^s such that $\{Y_i^s\}_{i\in[m]}$ are independent nonnegative random variables Y^s follows a product distribution on $\mathbb{R}^m_{>0}$
- \triangleright We are given (a value oracle for) a monotone symmetric norm $f: \mathbb{R}^m_{>0} \to \mathbb{R}_{>0}$ $x \ge y \ge 0 \implies f(x) \ge f(y)$

We *introduce* the following general model of 1-stage stochastic optimization:

- > We have a combinatorial-optimization problem where costs involved are random variables with given distributions
- \triangleright Each feasible solution s induces a random m-dimensional cost vector Y^s such that $\{Y_i^s\}_{i\in[m]}$ are independent nonnegative random variables Y^s follows a product distribution on $\mathbb{R}^m_{>0}$
- \triangleright We are given (a value oracle for) a monotone symmetric norm $f: \mathbb{R}^m_{>0} \to \mathbb{R}_{>0}$ $x \ge y \ge 0 \implies f(x) \ge f(y)$

invariant under permutations of coordinates $f(x) = f(x^{\downarrow}), x^{\downarrow}$ is x sorted in decreasing order

We *introduce* the following general model of 1-stage stochastic optimization:

- > We have a combinatorial-optimization problem where costs involved are random variables with given distributions
- \triangleright Each feasible solution s induces a random m-dimensional cost vector Y^s such that $\{Y_i^s\}_{i\in[m]}$ are independent nonnegative random variables Y^s follows a product distribution on $\mathbb{R}^m_{>0}$
- \triangleright We are given (a value oracle for) a monotone symmetric norm $f: \mathbb{R}^m_{>0} \to \mathbb{R}_{>0}$ $x \ge y \ge 0 \implies f(x) \ge f(y)$

Goal: Find an <u>oblivious</u> solution s that minimizes $\mathbb{E}[f(Y^s)]$

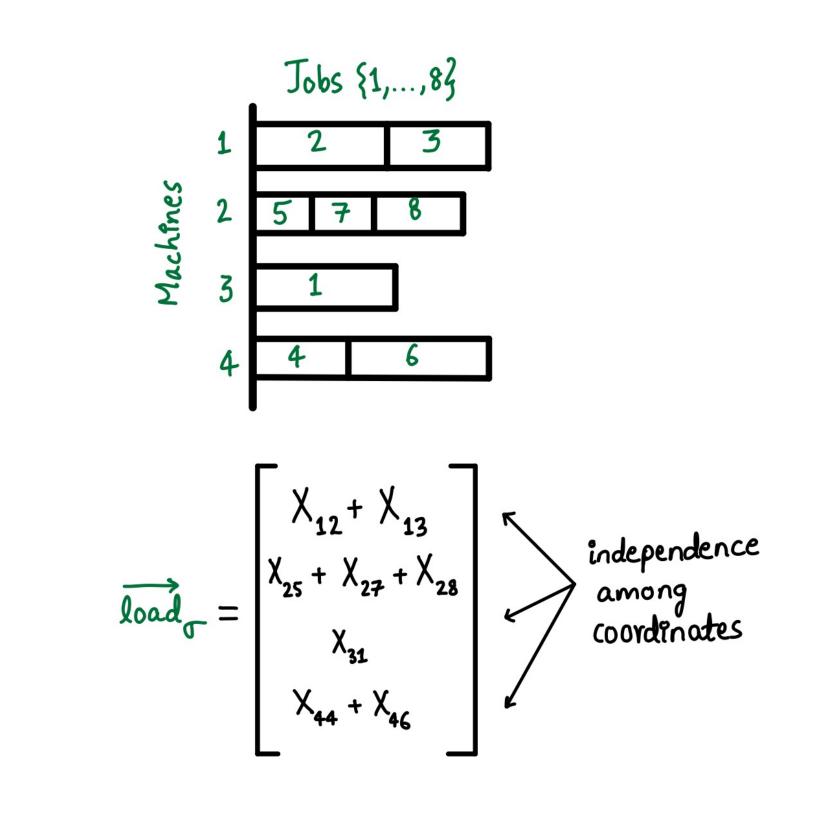
invariant under permutations of coordinates $f(x) = f(x^{\downarrow}), x^{\downarrow}$ is x sorted in decreasing order

set of *n* independent stochastic jobs *m* unrelated parallel machines $\{1, 2, ..., m\}$ X_{ii} nonnegative random variable denoting processing time of job *j* on machine *i* (we assume X_{ij} and $X_{i'j'}$ are independent whenever $j \neq j'$)

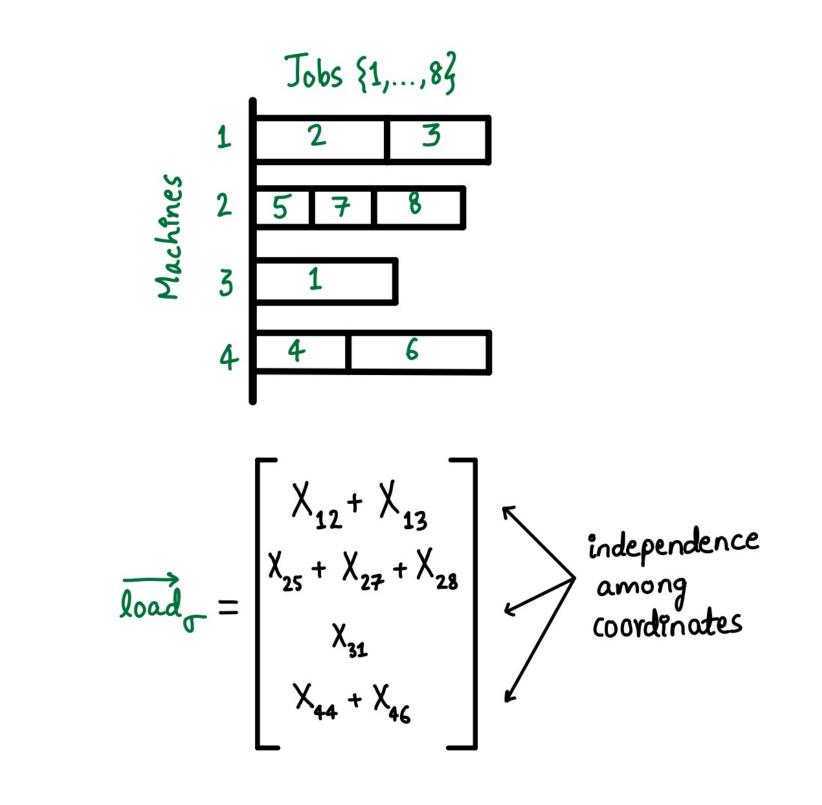
Input

 $f: \mathbb{R}^m_{>0} \to \mathbb{R}_{>0}$ monotone symmetric norm

- set of *n* independent stochastic jobs *m* unrelated parallel machines $\{1, 2, ..., m\}$ X_{ii} nonnegative random variable denoting Input processing time of job *j* on machine *i* (we assume X_{ij} and $X_{i'j'}$ are independent whenever $j \neq j'$) $f: \mathbb{R}^m_{>0} \to \mathbb{R}_{>0}$ monotone symmetric norm
- Feasible Assignment $\sigma : J \rightarrow \{1, ..., m\}$ Solutions of jobs to machines



- set of *n* independent stochastic jobs *m* unrelated parallel machines $\{1, 2, ..., m\}$ X_{ii} nonnegative random variable denoting Input processing time of job *j* on machine *i* (we assume X_{ij} and $X_{i'j'}$ are independent whenever $j \neq j'$) $f: \mathbb{R}^m_{>0} \to \mathbb{R}_{>0}$ monotone symmetric norm
- Feasible Assignment $\sigma : J \rightarrow \{1, ..., m\}$ Solutions of jobs to machines
- Find σ that minimizes $\mathbb{E}\left[f(\overline{\text{load}}_{\sigma})\right]$ Goal



Input

- G = (V, E) undirected graph on *n* vertices X_{ρ} nonnegative random variable denoting stochastic weight of edge $e \in E$ (we assume $\{X_e\}_{e \in E}$ are independent)
- $f: \mathbb{R}^{n-1}_{>0} \to \mathbb{R}_{>0}$ monotone symmetric norm

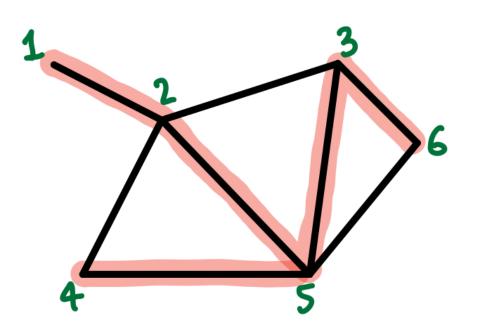
Input

G = (V, E) undirected graph on *n* vertices X_e nonnegative random variable denoting stochastic weight of edge $e \in E$ (we assume $\{X_e\}_{e \in E}$ are independent)

$$f: \mathbb{R}^{n-1}_{\geq 0} \to \mathbb{R}_{\geq 0}$$
 monotone symm

Feasible Spanning trees of *G* Solutions

etric norm



$$= \begin{bmatrix} X_{\{1,2\}} \\ X_{\{2,5\}} \\ X_{\{3,5\}} \\ X_{\{3,6\}} \\ X_{\{3,6\}} \\ X_{\{4,5\}} \end{bmatrix} \begin{bmatrix} x_{1,2} \\ x_{1,2$$

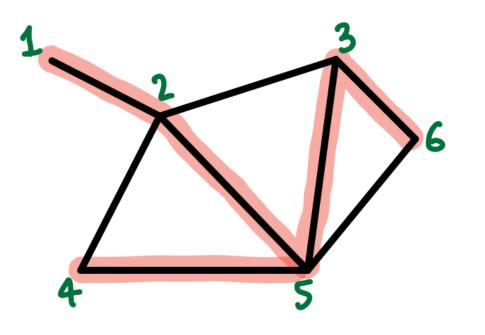
Input

Goal

G = (V, E) undirected graph on *n* vertices X_{ρ} nonnegative random variable denoting stochastic weight of edge $e \in E$ (we assume $\{X_e\}_{e \in E}$ are independent) $f: \mathbb{R}^{n-1}_{>0} \to \mathbb{R}_{>0}$ monotone symmetric norm

Feasible Spanning trees of GSolutions

> Find spanning tree $T = \{e_1, ..., e_{n-1}\}$ that minimizes $\mathbb{E}[f(Y^T)] = \mathbb{E}[f(X_{e_1}, \dots, X_{e_{n-1}})]$



$$\begin{bmatrix} X_{\{1,2\}} \\ X_{\{2,5\}} \\ X_{\{3,5\}} \\ X_{\{3,6\}} \\ X_{\{3,6\}} \\ X_{\{4,5\}} \end{bmatrix}$$
independence
among
coordinates

Some Remarks and Assumptions

Goal: Find an <u>oblivious</u> solution *s* that minimizes $\mathbb{E}[f(Y^s)]$

Some Remarks and Assumptions

Some Remarks and Assumptions

Goal: Find an <u>oblivious</u> solution *s* that minimizes $\mathbb{E}[f(Y^s)]$

▷ Three sources of complexity:

Feasibility for the combinatorial optimization problem

Stochasticity of costs

Controlling the norm of a cost vector

Some Remarks and Assumptions

Goal: Find an <u>oblivious</u> solution *s* that minimizes $\mathbb{E}[f(Y^s)]$

▷ Three sources of complexity:

Feasibility for the combinatorial optimization problem Stochasticity of costs

Controlling the norm of a cost vector

▷ Assumptions:

Complete distributional information of r.v.s (job-size r.v.s and edge-weight r.v.s)

- Can sample from these distributions
- Can compute expected value, evaluate moment generating functions, or
- truncate above/below a threshold etc.

6

- Uncertainty is ubiquitous in real-world optimization problems
- A principled approach that works across multiple combinatorial-optimization settings

6

- Uncertainty is ubiquitous in real-world optimization problems
- A principled approach that works across multiple combinatorial-optimization settings
- Working at the generality of monotone symmetric norms has several benefits:

0

- Uncertainty is ubiquitous in real-world optimization problems
- A principled approach that works across multiple combinatorial-optimization settings
- Working at the generality of monotone symmetric norms has several benefits:
 - ▷ Contains popular objectives:

 $\mathbf{0}$

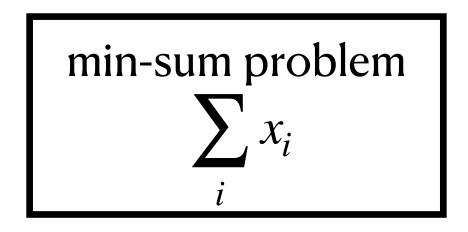
- Uncertainty is ubiquitous in real-world optimization problems
- A principled approach that works across multiple combinatorial-optimization settings
- Working at the generality of monotone symmetric norms has several benefits:
 - Contains popular objectives:

min-max problem $\max_{i} x_{i}$

 $\mathbf{0}$

- Uncertainty is ubiquitous in real-world optimization problems
- A principled approach that works across multiple combinatorial-optimization settings
- Working at the generality of monotone symmetric norms has several benefits:
 - Contains popular objectives:

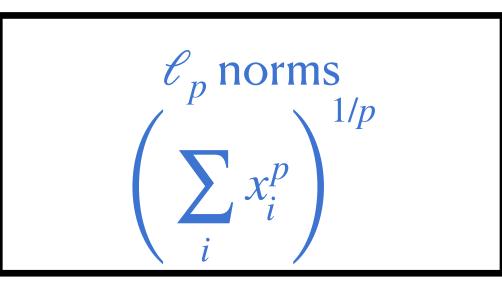
min-max problem $\max_{i} x_{i}$

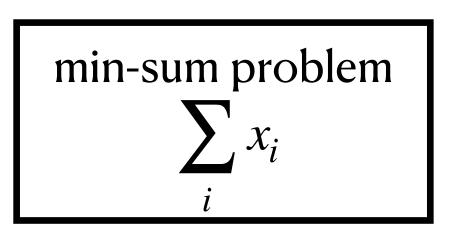


 $\mathbf{0}$

- Uncertainty is ubiquitous in real-world optimization problems
- A principled approach that works across multiple combinatorial-optimization settings
- Working at the generality of monotone symmetric norms has several benefits:
 - Contains popular objectives:

min-max problem $\max_{i} x_{i}$

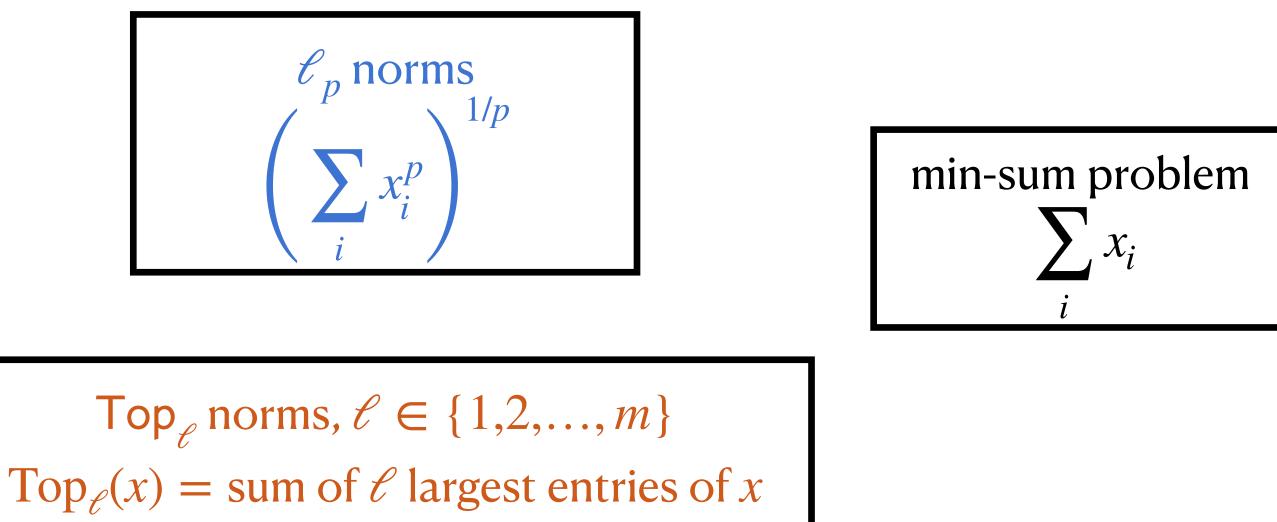




 $\mathbf{0}$

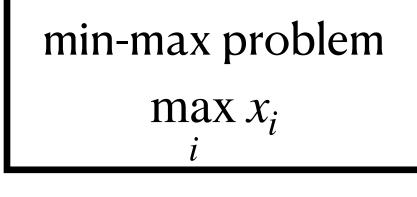
- Uncertainty is ubiquitous in real-world optimization problems
- A principled approach that works across multiple combinatorial-optimization settings
- Working at the generality of monotone symmetric norms has several benefits:
 - Contains popular objectives:

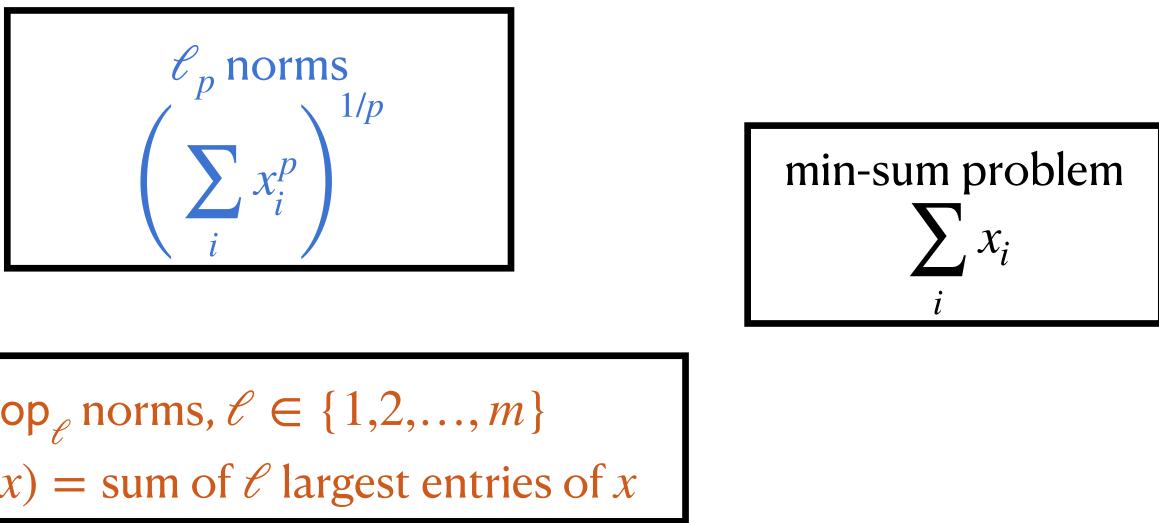
min-max problem $\max x_i$



 \mathbf{O}

- Uncertainty is ubiquitous in real-world optimization problems
- A principled approach that works across multiple combinatorial-optimization settings
- Working at the generality of monotone symmetric norms has several benefits:
 - Contains popular objectives:





$$Top_{\ell} \text{ norms, } \ell \in$$
$$Top_{\ell}(x) = \text{ sum of } \ell \mid$$

> Unify algorithm-design principles for a wide class of objectives under one umbrella

0

Significance contd...

Increased modeling power due to closure properties under taking and

pointwise maximums

Significance contd...

nonnegative linear combinations $(f, f' \text{ mon. sym. norms} \implies \alpha f + \beta f' \text{ is a mon. sym. norm})$

 $(f, f' \text{ mon. sym. norms} \Longrightarrow \max(f, f') \text{ is a mon. sym. norm})$

Increased modeling power due to closure properties under taking and pointwise maximums

Feasibility problem with multiple norm-budget constraints:

Find $x \in P$ s.t. $f_r(x) \leq B_r \forall r = 1, ..., k$

Significance contd...

nonnegative linear combinations $(f, f' \text{ mon. sym. norms} \implies \alpha f + \beta f' \text{ is a mon. sym. norm})$

 $(f, f' \text{ mon. sym. norms} \Longrightarrow \max(f, f') \text{ is a mon. sym. norm})$

Increased modeling power due to closure properties under taking and pointwise maximums

Feasibility problem with multiple norm-budget constraints:

Find $x \in P$ s.t. $f_r(x) \leq B_r \forall r = 1, ..., k$

Significance contd...

nonnegative linear combinations $(f, f' \text{ mon. sym. norms} \implies \alpha f + \beta f' \text{ is a mon. sym. norm})$

 $(f, f' \text{ mon. sym. norms} \Longrightarrow \max(f, f') \text{ is a mon. sym. norm})$

Norm-minimization problem: reduces $\operatorname{ls\,min}\{g(x): x \in P\} \le 1?$ to where $g(x) := \max_{x \in X} g(x)$ $r=1,...,k \ B_r$

Summary of Our Contributions

Summary of Our Contributions

Approximation-Algorithms Framework for StochNormOpt

Approximation-Algorithms Framework for StochNormOpt

Component #1: Work with simpler norms

Summary of Our Contributions

Approximation-Algorithms Framework for StochNormOpt

Component #1: Work with simpler norms

Find solution *s* such that $\mathbb{E}[f(Y^s)] = O(\alpha) \cdot \mathbb{E}[f(Y^{s^*})],$ where *s*^{*} is an optimal solution

Approximation-Algorithms Framework for StochNormOpt

Component #1: Work with simpler norms

Find solution *s* such that $\mathbb{E}[f(Y^s)] = O(\alpha) \cdot \mathbb{E}[f(Y^{s^*})],$ where *s** is an optimal solution

reduces to (at an O(1) loss in approximation)

Approximation-Algorithms Framework for StochNormOpt

Component #1: Work with simpler norms

Find solution *s* such that $\mathbb{E}[f(Y^s)] = O(\alpha) \cdot \mathbb{E}[f(Y^{s^*})],$ where *s** is an optimal solution

reduces to (at an O(1) loss in approximation) Find solution *s* such that $\mathbb{E}[\operatorname{Top}_{\ell}(Y^{s})] \leq \alpha \cdot \mathbb{E}[\operatorname{Top}_{\ell}(Y^{s^{*}})]$ for all $\ell = 1, 2, 4, \dots, 2^{\lfloor \log_{2} m \rfloor}$

Approximation-Algorithms Framework for StochNormOpt

Component #1: Work with simpler norms

Find solution *s* such that $\mathbb{E}[f(Y^s)] = O(\alpha) \cdot \mathbb{E}[f(Y^{s^*})],$ where *s** is an optimal solution

reduces to (at an O(1) loss in approximation)

Component #2: Tools for handling stochastic optimization problem for a single Top_{e} norm

Find solution *s* such that $\mathbb{E}[\operatorname{Top}_{\ell}(Y^{s})] \leq \alpha \cdot \mathbb{E}[\operatorname{Top}_{\ell}(Y^{s^{*}})]$ for all $\ell = 1, 2, 4, \dots, 2^{\lfloor \log_{2} m \rfloor}$

Approximation-Algorithms Framework for StochNormOpt

Component #1: Work with simpler norms

Find solution *s* such that $\mathbb{E}[f(Y^s)] = O(\alpha) \cdot \mathbb{E}[f(Y^{s^*})],$ where *s** is an optimal solution

reduces to (at an O(1) loss in approximation)

Component #2: Tools for handling stochastic optimization problem for a single Top_{e} norm

Find solution *s* such that $\mathbb{E}[\operatorname{Top}_{\ell}(Y^{s})] \leq \alpha \cdot \mathbb{E}[\operatorname{Top}_{\ell}(Y^{s^{*}})]$ for all $\ell = 1, 2, 4, \dots, 2^{\lfloor \log_{2} m \rfloor}$

Our Contributions contd...

Our Contributions contd...

Application of our framework to obtain approximation algorithms for stochastic min-norm load balancing and stochastic min-norm spanning tree

(I will mention our main results towards the end of the talk)

Our Contributions contd...

Application of our framework to obtain approximation algorithms for stochastic min-norm load balancing and stochastic min-norm spanning tree

(I will mention our main results towards the end of the talk)

Most of this work has appeared at FOCS 2020, ICALP 2021, and SOSA 2022 [IS22] [IS21] [IS20]

How do we reason about $\mathbb{E}[f(Y)]$?

 $f: \mathbb{R}^m_{\geq 0} \to \mathbb{R}_{\geq 0}$ an arbitrary monotone symmetric norm

Y an arbitrary product distribution on $\mathbb{R}^m_{\geq 0}$

Some results from the deterministic world...

Some results from the deterministic world...

▷ Classical result in majorization theory [HLP34]: for any $x, y \in \mathbb{R}_{>0}^{m}$,

 $\operatorname{Top}_{\ell}(x) \leq \operatorname{Top}_{\ell}(y) \, \forall \ell \in \{1, \dots, m\} \implies f(x) \leq f(y) \text{ for any monotone symmetric norm } f$

Some results from the deterministic world...

▷ Classical result in majorization theory [HLP34]: for any $x, y \in \mathbb{R}_{>0}^{m}$,

 $\operatorname{Top}_{\ell}(x) \leq \operatorname{Top}_{\ell}(y) \, \forall \ell \in \{1, \dots, m\} \implies f(x) \leq f(y) \text{ for any monotone symmetric norm } f$

- \triangleright By homogeneity of norms, working only with powers-of-2 ℓ leads to at most factor-2 loss in approximation

Some results from the deterministic world...

▷ Classical result in majorization theory [HLP34]: for any $x, y \in \mathbb{R}_{>0}^{m}$, $\operatorname{Top}_{\ell}(x) \leq \operatorname{Top}_{\ell}(y) \, \forall \ell \in \{1, \dots, m\} \implies f(x) \leq f(y) \text{ for any monotone symmetric norm } f$

 \triangleright By homogeneity of norms, working only with powers-of-2 ℓ leads to at most factor-2 loss in approximation

▷ For any decreasing vector $w \in \mathbb{R}_{>0}^m$, the *w*-ordered norm is defined as:

$$\|x\|_{w} := w^{T} x^{\downarrow} = \sum_{\ell \in [m]} w_{\ell} x_{\ell}^{\downarrow} = \sum_{\ell \in [m]} (w_{\ell} - w_{\ell+1}) \operatorname{Top}_{\ell}(x)$$

Some results from the deterministic world...

- ▷ Classical result in majorization theory [HLP34]: for any $x, y \in \mathbb{R}_{>0}^{m}$, $\operatorname{Top}_{\mathcal{P}}(x) \leq \operatorname{Top}_{\mathcal{P}}(y) \, \forall \, \ell \in \{1, \dots, m\} \implies f(x) \leq f(y) \text{ for any monotone symmetric norm } f(x) \leq f(y) = 0$
- ▷ For any decreasing vector $w \in \mathbb{R}_{>0}^m$, the *w*-ordered norm is defined as:

$$\|x\|_{w} := w^{T} x^{\downarrow} = \sum_{\ell \in [m]} w_{\ell} x_{\ell}^{\downarrow} = \sum_{\ell \in [m]} (w_{\ell} - w_{\ell+1}) \operatorname{Top}_{\ell}(x)$$

Theorem [see CS19]: For any monotone symmetric norm $f: \mathbb{R}^m_{>0} \to \mathbb{R}_{>0}$, w∈C

 \triangleright By homogeneity of norms, working only with powers-of-2 ℓ leads to at most factor-2 loss in approximation

 \exists a (possibly uncountable) collection \mathscr{C} of ordered norms s.t. $f(x) = \sup w^T x^{\downarrow}$ for all x

Some results from the deterministic world...

- ▷ Classical result in majorization theory [HLP34]: for any $x, y \in \mathbb{R}_{>0}^{m}$, $\operatorname{Top}_{\mathcal{P}}(x) \leq \operatorname{Top}_{\mathcal{P}}(y) \, \forall \, \ell \in \{1, \dots, m\} \implies f(x) \leq f(y) \text{ for any monotone symmetric norm } f(x) \leq f(y) = 0$
- ▷ For any decreasing vector $w \in \mathbb{R}_{>0}^m$, the *w*-ordered norm is defined as:

$$\|x\|_{w} := w^{T} x^{\downarrow} = \sum_{\ell \in [m]} w_{\ell} x_{\ell}^{\downarrow} = \sum_{\ell \in [m]} (w_{\ell} - w_{\ell+1}) \operatorname{Top}_{\ell}(x)$$

Theorem [see CS19]: For any monotone symmetric norm $f: \mathbb{R}^m_{>0} \to \mathbb{R}_{>0}$, \exists a (possibly uncountable) collection \mathscr{C} of ordered norms s.t. $f(x) = \sup w^T x^{\downarrow}$ for all x w∈C

 \triangleright Does the above extend to the stochastic setting?

 \triangleright By homogeneity of norms, working only with powers-of-2 ℓ leads to at most factor-2 loss in approximation

Some results from the deterministic world...

- ▷ Classical result in majorization theory [HLP34]: for any $x, y \in \mathbb{R}_{>0}^{m}$, $\operatorname{Top}_{\mathcal{P}}(x) \leq \operatorname{Top}_{\mathcal{P}}(y) \, \forall \, \ell \in \{1, \dots, m\} \implies f(x) \leq f(y) \text{ for any monotone symmetric norm } f(x) \leq f(y) = 0$
- ▷ For any decreasing vector $w \in \mathbb{R}_{>0}^m$, the *w*-ordered norm is defined as:

$$\|x\|_{w} := w^{T} x^{\downarrow} = \sum_{\ell \in [m]} w_{\ell} x_{\ell}^{\downarrow} = \sum_{\ell \in [m]} (w_{\ell} - w_{\ell+1}) \operatorname{Top}_{\ell}(x)$$

Theorem [see CS19]: For any monotone symmetric norm $f: \mathbb{R}^m_{>0} \to \mathbb{R}_{>0}$, \exists a (possibly uncountable) collection \mathscr{C} of ordered norms s.t. $f(x) = \sup w^T x^{\downarrow}$ for all x w∈C

 \triangleright Does the above extend to the stochastic setting?

 \triangleright By homogeneity of norms, working only with powers-of-2 ℓ leads to at most factor-2 loss in approximation

YES!! approximately...

Theorem [IS20]

For product distributions Y and W, and any monotone symmetric norm f,

$\mathbb{E}[\mathsf{Top}_{\ell}(Y)] \leq \alpha \cdot \mathbb{E}[\mathsf{Top}_{\ell}(W)] \,\forall \ell \in [m] \implies \mathbb{E}[f(Y)] \leq O(\alpha) \cdot \mathbb{E}[f(W)]$

Theorem [IS20]

For product distributions Y and W, and any monotone symmetric norm f,

 $\mathbb{E}[\mathsf{Top}_{\ell}(Y)] \leq \alpha \cdot \mathbb{E}[\mathsf{Top}_{\ell}(W)] \,\forall \ell \in [m] \implies \mathbb{E}[f(Y)] \leq O(\alpha) \cdot \mathbb{E}[f(W)]$

Consequence of:

Theorem [IS20]

For product distributions Y and W, and any monotone symmetric norm f,

Consequence of:

▷ Lower bound follows from symmetry and convexity: $\mathbb{E}[f(Y)] = \mathbb{E}[f(Y^{\downarrow})] \ge f(\mathbb{E}[Y^{\downarrow}])$

 $\mathbb{E}[\mathsf{Top}_{\ell}(Y)] \leq \alpha \cdot \mathbb{E}[\mathsf{Top}_{\ell}(W)] \,\forall \ell \in [m] \implies \mathbb{E}[f(Y)] \leq O(\alpha) \cdot \mathbb{E}[f(W)]$

Theorem [IS20]

For product distributions Y and W, and any monotone symmetric norm f,

 $\mathbb{E}[\mathsf{Top}_{\ell}(Y)] \leq \alpha \cdot \mathbb{E}[\mathsf{Top}_{\ell}(W)] \,\forall \ell \in [m] \implies \mathbb{E}[f(Y)] \leq O(\alpha) \cdot \mathbb{E}[f(W)]$

Consequence of:

▷ Lower bound follows from symmetry and convexity: $\mathbb{E}[f(Y)] = \mathbb{E}[f(Y^{\downarrow})] \ge f(\mathbb{E}[Y^{\downarrow}])$

▷ Note $\mathbb{E}[Y_{\ell}^{\downarrow}] = \text{expected value of the } \ell^{\text{th}} \text{ maximum in } Y$, and $\mathbb{E}[\text{Top}_{\ell}(Y)] = \text{Top}_{\ell}(\mathbb{E}[Y^{\downarrow}])$

Theorem [IS20]

For product distributions Y and W, and any monotone symmetric norm f,

 $\mathbb{E}[\mathsf{Top}_{\ell}(Y)] \leq \alpha \cdot \mathbb{E}[\mathsf{Top}_{\ell}(W)] \,\forall \ell \in [m] \implies \mathbb{E}[f(Y)] \leq O(\alpha) \cdot \mathbb{E}[f(W)]$

Consequence of:

▷ Lower bound follows from symmetry and convexity: $\mathbb{E}[f(Y)] = \mathbb{E}[f(Y^{\downarrow})] \ge f(\mathbb{E}[Y^{\downarrow}])$

▷ Note $\mathbb{E}[Y_{\mathscr{P}}^{\downarrow}] =$ expected value of the \mathscr{C}^{th} maximum in *Y*, and $\mathbb{E}[\text{Top}_{\mathscr{P}}(Y)] = \text{Top}_{\mathscr{P}}(\mathbb{E}[Y^{\downarrow}])$

▷ Proof of approximate stochastic majorization using main theorem: $\mathbb{E}[f(Y)] = O(1) \cdot f(\mathbb{E}[Y^{\downarrow}]) \le O(1) \cdot \alpha \cdot f(\mathbb{E}[W^{\downarrow}]) \le O(1) \cdot \alpha \cdot \mathbb{E}[f(W)]$

Component #2: Stochastic Top₁ Optimization for a single ℓ

Component #2: Stochastic Top, Optimization for a single *l*

• Non-separable nature of $\operatorname{Top}_{\ell}$ norms makes controlling $\mathbb{E}[\operatorname{Top}_{l}(Y)]$ challenging

Component #2: Stochastic Top, Optimization for a single ℓ

• Non-separable nature of $\operatorname{Top}_{\mathscr{P}}$ norms makes controlling $\mathbb{E}[\operatorname{Top}_{I}(Y)]$ challenging

 $\mathbb{E}[\mathsf{Top}_1(Y)]$ is usually controlled by deriving probability bounds on the upper tail of $Y_i \forall i \in [m]$

Component #2: Stochastic Top, Optimization for a single *l*

• Non-separable nature of $\operatorname{Top}_{\mathscr{P}}$ norms makes controlling $\mathbb{E}[\operatorname{Top}_{\mathscr{P}}(Y)]$ challenging

• We give two simple separable proxy functions for $\mathbb{E}[\mathsf{Top}_{I}(Y)]$ that lead to an O(1) loss in approximation

 $\mathbb{E}[\mathsf{Top}_1(Y)]$ is usually controlled by deriving probability bounds on the upper tail of $Y_i \forall i \in [m]$

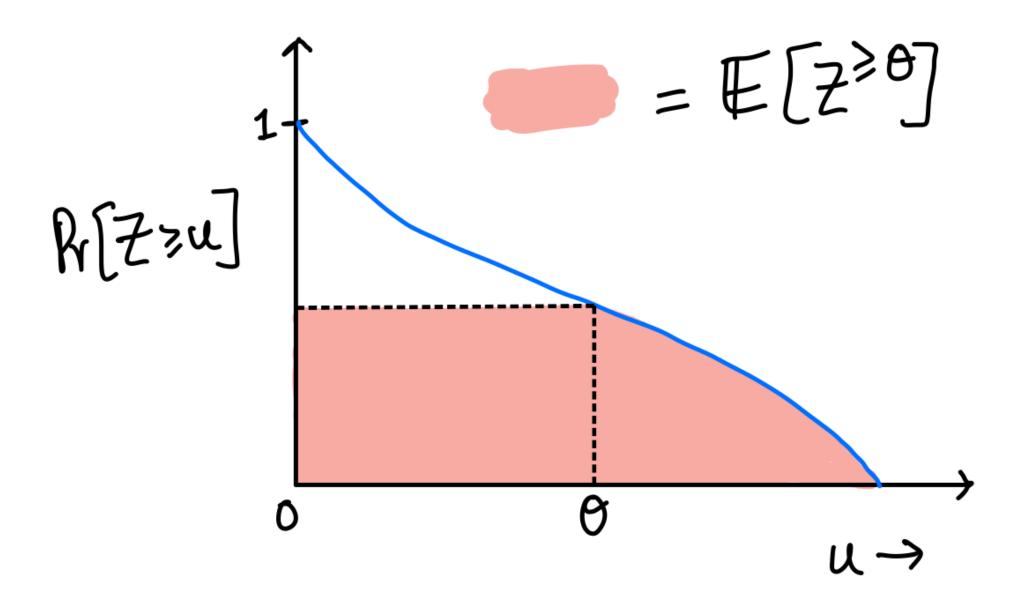
Based on exceptional variables....

Based on exceptional variables....

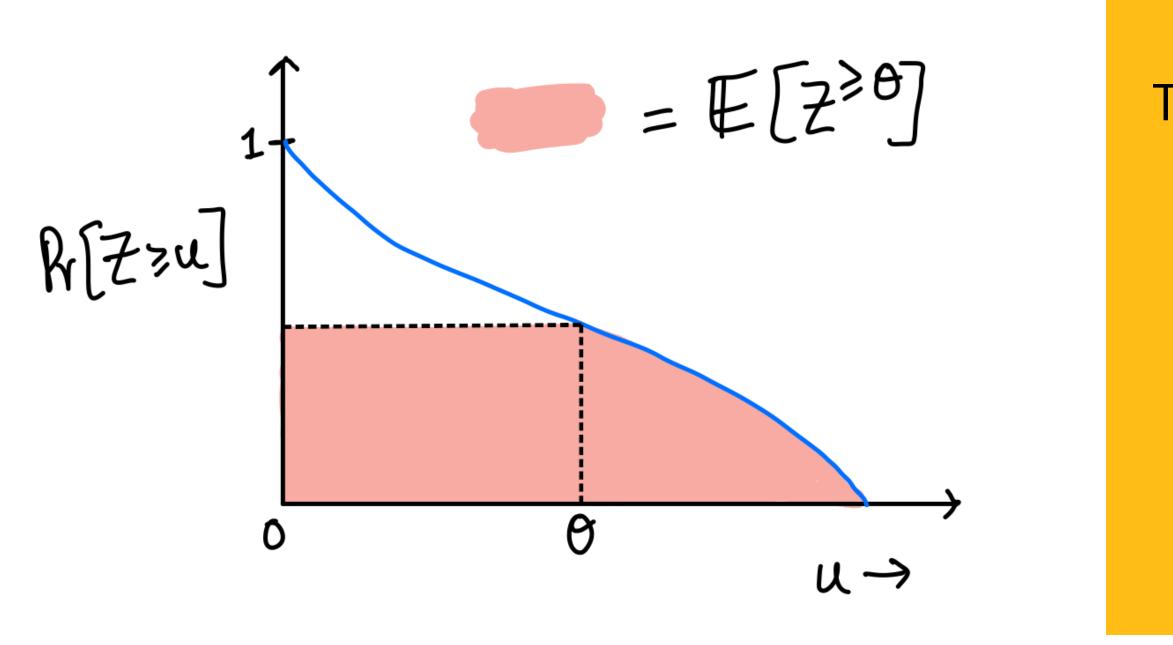
For nonnegative r.v. *Z* and scalar $\theta \ge 0$, define *exceptional variable* $Z^{\ge \theta} := \begin{cases} Z & \text{if } Z \ge \theta \\ 0 & \text{otherwise} \end{cases}$

Based on exceptional variables....

For nonnegative r.v. *Z* and scalar $\theta \ge 0$, define *exceptional variable* $Z^{\ge \theta} := \begin{cases} Z & \text{if } Z \ge \theta \\ 0 & \text{otherwise} \end{cases}$



Based on exceptional variables....



For nonnegative r.v. *Z* and scalar $\theta \ge 0$, define *exceptional variable* $Z^{\ge \theta} := \begin{cases} Z & \text{if } Z \ge \theta \\ 0 & \text{otherwise} \end{cases}$

Theorem [IS20]: For product distribution Y,

 $\sum \mathbb{E}[Y_i^{\geq \theta}] > \ell \theta \implies \mathbb{E}[\mathsf{Top}_{\ell}(Y)] > \ell \theta/2$ $i \in [m]$

 $\sum \mathbb{E}[Y_i^{\geq \theta}] \leq \ell \theta \implies \mathbb{E}[\mathsf{Top}_{\ell}(Y)] \leq 2\ell \theta$ $i \in [m]$

Based on a "fractile" viewpoint.... Define $\tau_{\ell}(Y) := \text{smallest } \theta \text{ s.t. } \sum \Pr[Y_i > \theta] < \ell$ for deterministic $y \in \mathbb{R}^m_{>0}$, $\tau_{\mathcal{C}}(y) = y_{\mathcal{C}}^{\downarrow}$ $i \in [m]$

in general,

 $\mathbb{E}[Y_{\mathcal{P}}^{\downarrow}] \ge \tau_{\mathcal{C}}(Y)/2$

Based on a "fractile" viewpoint.... Define $\tau_{\ell}(Y) := \text{smallest } \theta \text{ s.t. } \sum \Pr[Y_i > \theta] < \ell$ $i \in [m]$

Define
$$\gamma_{\ell}(Y) := \ell \tau_{\ell} + \sum_{i \in [m]} \mathbb{E}[\max(0, Y_i - \tau_{\ell})]$$

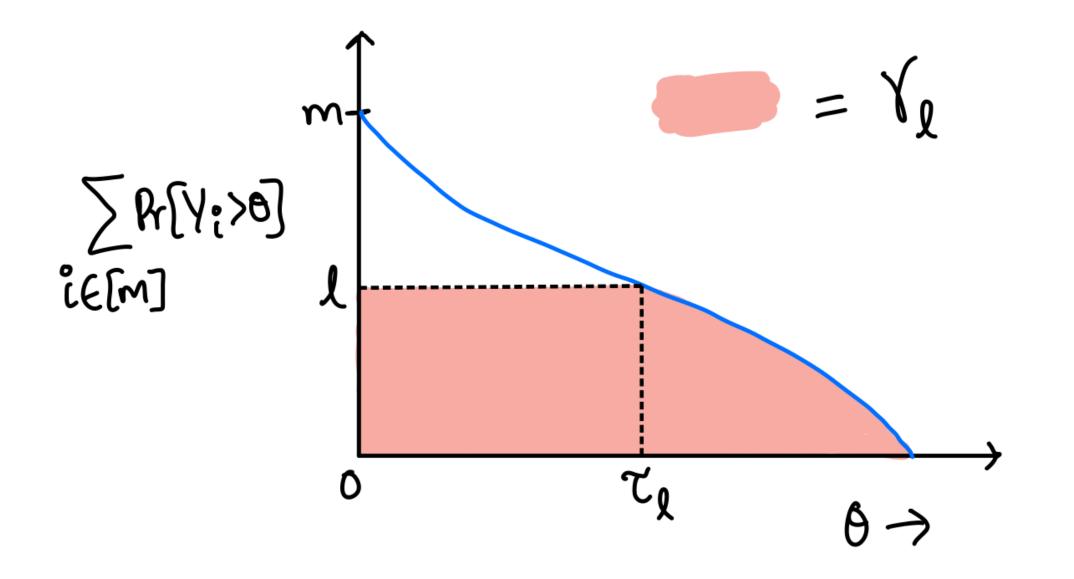
for deterministic $y \in \mathbb{R}^m_{>0}$, $\tau_{\mathcal{C}}(y) = y_{\mathcal{C}}^{\downarrow}$

 $\mathbb{E}[Y_{\mathcal{C}}^{\downarrow}] \geq \tau_{\mathcal{C}}(Y)/2$ in general,

for deterministic $y \in \mathbb{R}^m_{>0}$, $\gamma_{\ell}(y) = \mathsf{Top}_{\ell}(y)$

Based on a "fractile" viewpoint.... Define $\tau_{\ell}(Y) := \text{smallest } \theta \text{ s.t. } \sum \Pr[Y_i > \theta] < \ell$ for deterministic $y \in \mathbb{R}^m_{>0}$, $\tau_{\ell}(y) = y_{\ell}^{\downarrow}$ $i \in [m]$

Define
$$\gamma_{\ell}(Y) := \ell \tau_{\ell} + \sum_{i \in [m]} \mathbb{E}[\max(0, Y_i - \tau_{\ell})]$$



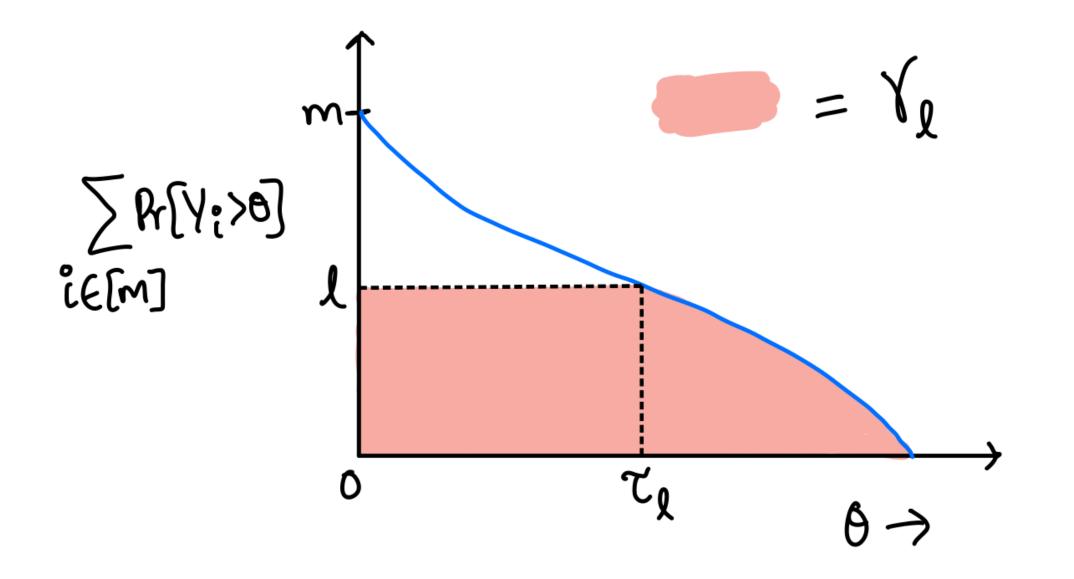
 $\mathbb{E}[Y_{\mathcal{C}}^{\downarrow}] \geq \tau_{\mathcal{C}}(Y)/2$ in general,

for deterministic $y \in \mathbb{R}^m_{>0}$, $\gamma_{\ell}(y) = \mathsf{Top}_{\ell}(y)$

Second Proxy Function for Stochastic Top, Optimization

Based on a "fractile" viewpoint.... Define $\tau_{\ell}(Y) := \text{smallest } \theta \text{ s.t. } \sum \Pr[Y_i > \theta] < \ell$ $i \in [m]$

Define
$$\gamma_{\ell}(Y) := \ell \tau_{\ell} + \sum_{i \in [m]} \mathbb{E}[\max(0, Y_i - \tau_{\ell})]$$



for deterministic $y \in \mathbb{R}^m_{>0}$, $\tau_{\mathcal{C}}(y) = y_{\mathcal{C}}^{\downarrow}$

 $\mathbb{E}[Y_{\mathcal{C}}^{\downarrow}] \geq \tau_{\mathcal{C}}(Y)/2$ in general,

for deterministic $y \in \mathbb{R}^m_{>0}$, $\gamma_{\ell}(y) = \mathsf{Top}_{\ell}(y)$

Theorem [IS20]: For product distribution Y,

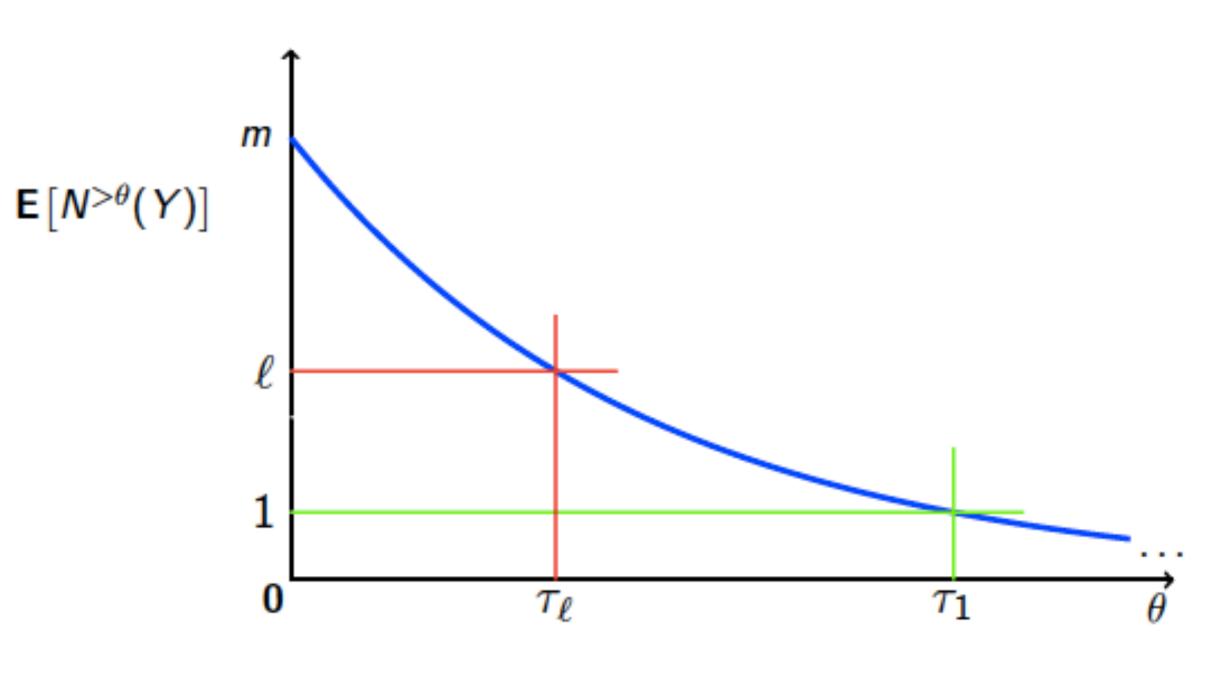
$$\frac{\gamma_{\ell}}{2} \leq \mathbb{E}[\operatorname{Top}_{\ell}(Y)] \leq \gamma_{\ell}(Y)$$

i.e., $\ell \theta + \sum_{i \in [m]} \mathbb{E}[\max(0, Y_i - \theta)] \approx \mathbb{E}[\operatorname{Top}_{\ell}(Y)]$ when $\theta \neq 0$

▷ Consider integer r.v. $N^{>\theta}(Y) := #$ of coordinates of Y that are > θ

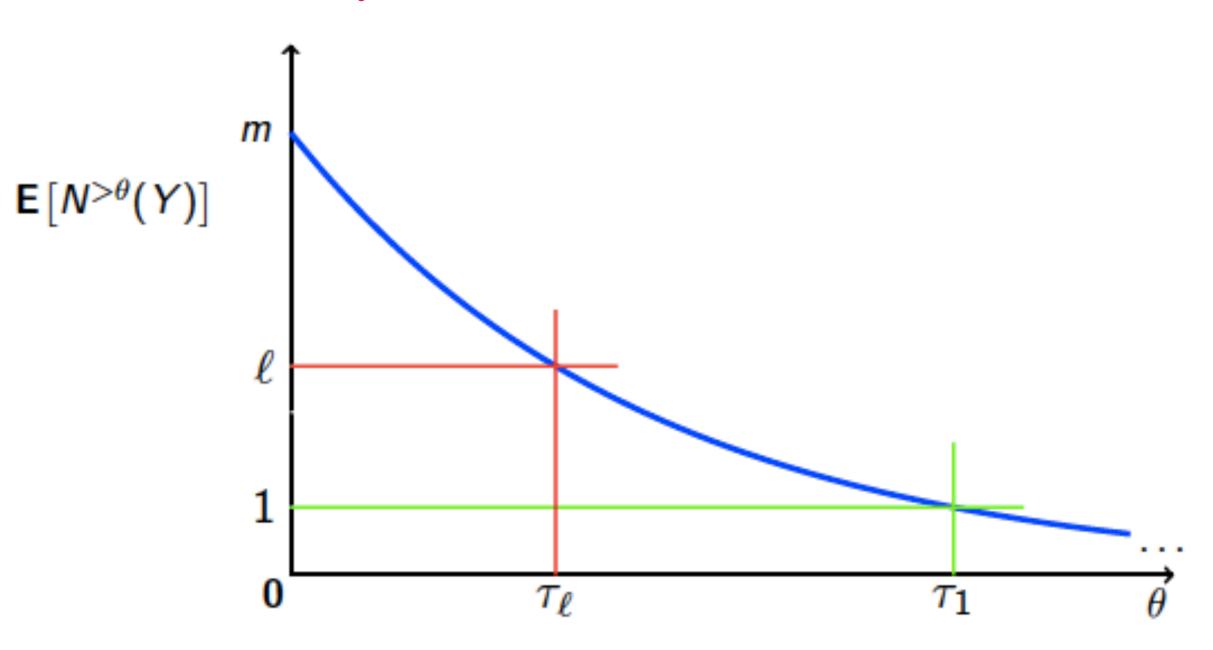
▷ Consider integer r.v. $N^{>\theta}(Y) := #$ of coordinates of Y that are > θ

▷ Plot expected histogram curve $\mathbb{E}[N^{>\theta}(Y)] = \sum \Pr[Y_i > \theta]$ vs. θ



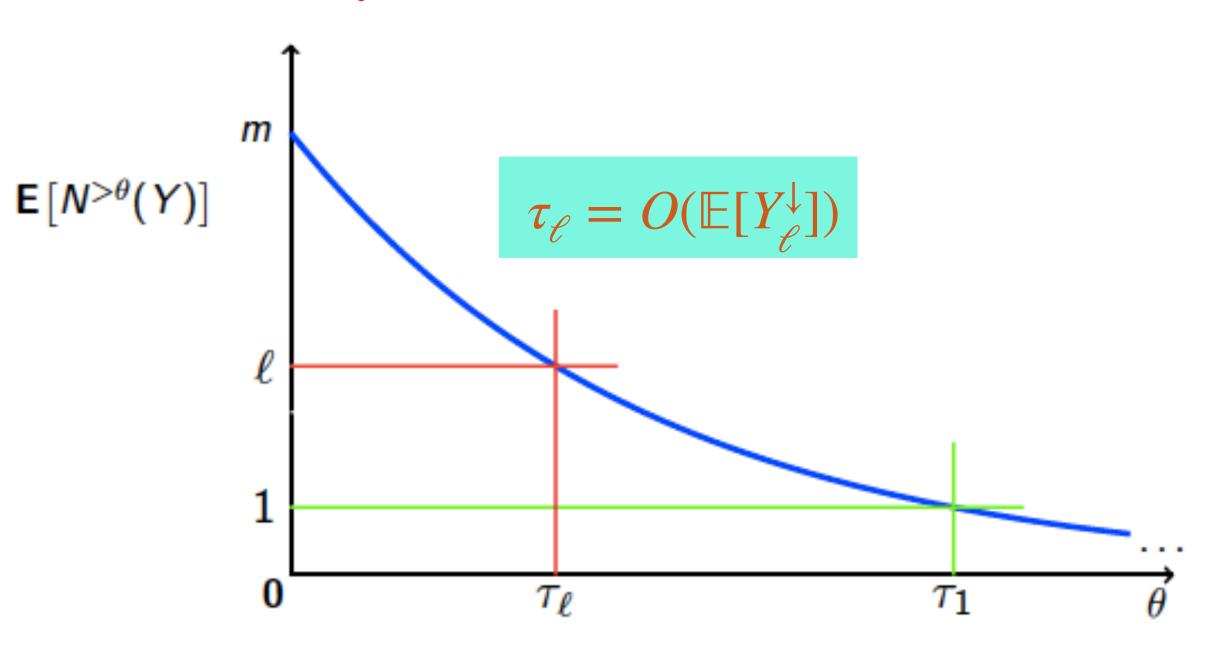
Expected Histogram Curve

- ▷ Consider integer r.v. $N^{>\theta}(Y) := #$ of coordinates of Y that are > θ
- ▷ Plot expected histogram curve $\mathbb{E}[N^{>\theta}(Y)] = \sum \Pr[Y_i > \theta]$ vs. θ
- ▷ Define τ_{ℓ} such that $\mathbb{E}[N^{>\tau_{\ell}}(Y)] = \ell$ holds



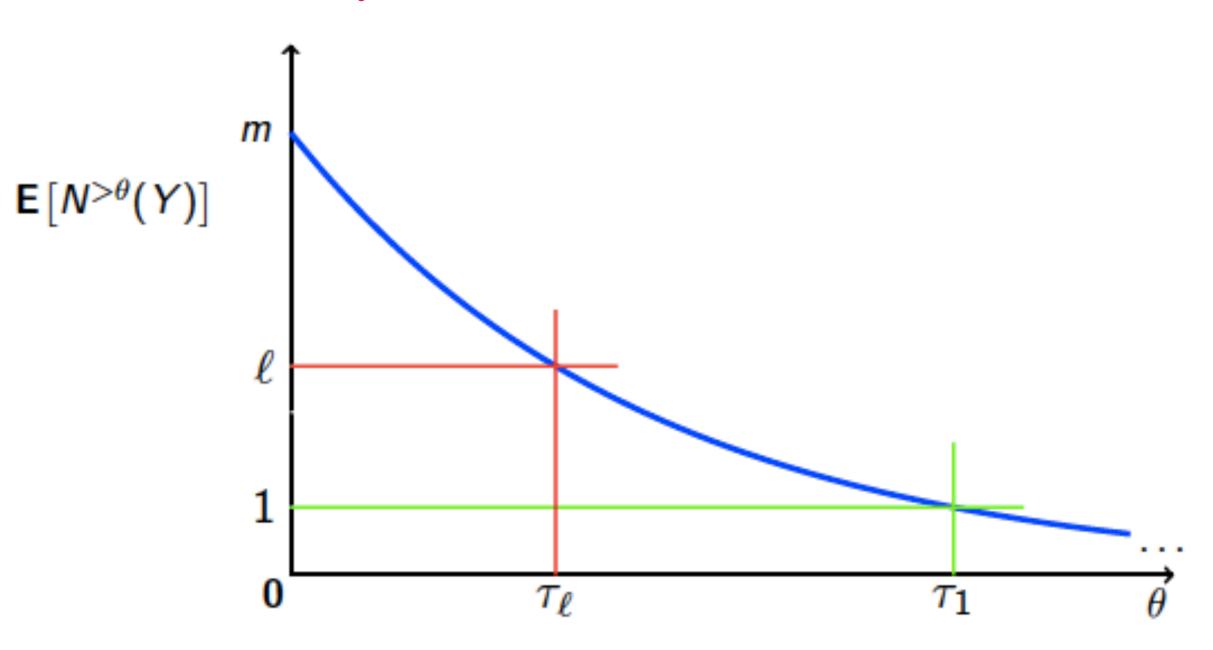
Expected Histogram Curve

- ▷ Consider integer r.v. $N^{>\theta}(Y) := #$ of coordinates of Y that are > θ
- ▷ Plot expected histogram curve $\mathbb{E}[N^{>\theta}(Y)] = \sum \Pr[Y_i > \theta]$ vs. θ
- \triangleright Define τ_{ℓ} such that $\mathbb{E}[N^{>\tau_{\ell}}(Y)] = \ell$ holds



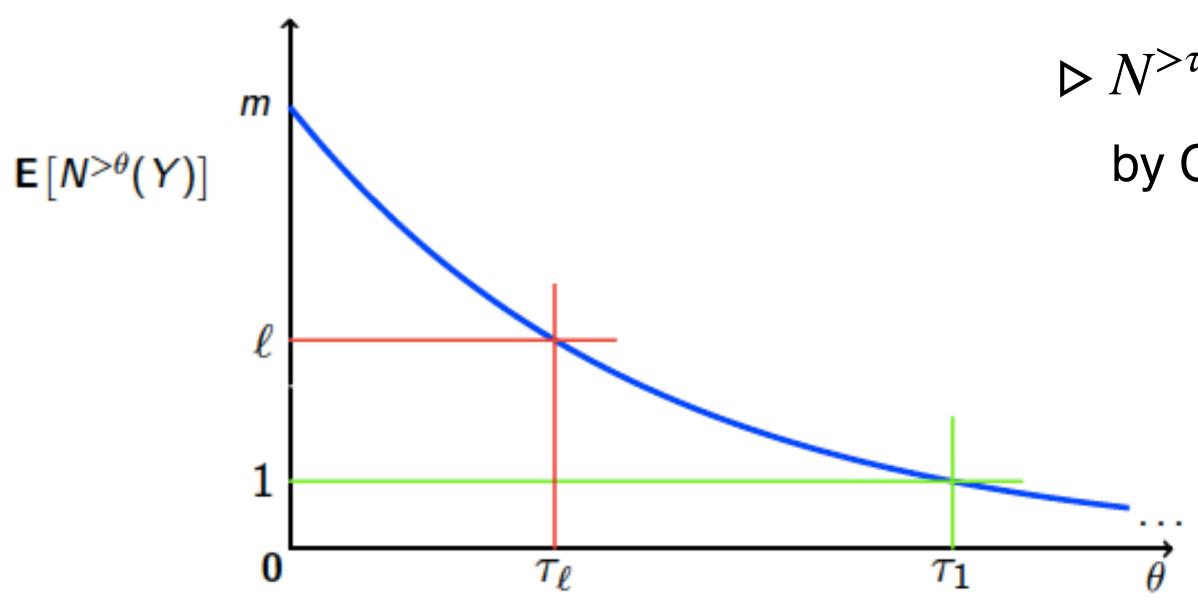
Expected Histogram Curve

- ▷ Consider integer r.v. $N^{>\theta}(Y) := #$ of coordinates of Y that are > θ
- ▷ Plot expected histogram curve $\mathbb{E}[N^{>\theta}(Y)] = \sum \Pr[Y_i > \theta]$ vs. θ
- ▷ Define τ_{ℓ} such that $\mathbb{E}[N^{>\tau_{\ell}}(Y)] = \ell$ holds



Expected Histogram Curve

- ▷ Consider integer r.v. $N^{>\theta}(Y) := #$ of coordinates of *Y* that are > θ
- ▷ Plot expected histogram curve $\mathbb{E}[N^{>\theta}(Y)] =$
- \triangleright Define τ_{ℓ} such that $\mathbb{E}[N^{>\tau_{\ell}}(Y)] = \ell$ holds



Expected Histogram Curve

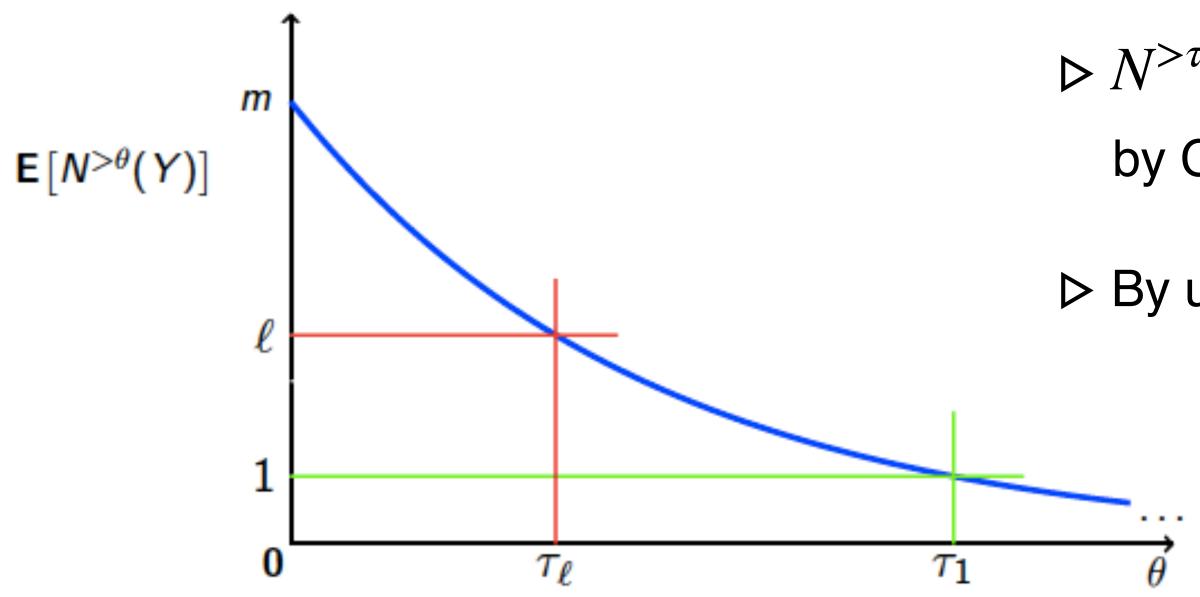
$$\sum_{i \in [m]} \Pr[Y_i > \theta] \quad \text{vs. } \theta$$

 $\triangleright N^{>\tau_{\ell}}(Y)$ is a sum of independent Bernoullis with mean ℓ , so by Chernoff, $\Pr[Y_{\alpha\ell}^{\downarrow} > \tau_{\ell}] = O(\exp(-\alpha\ell))$ for large α

▷ Consider integer r.v. $N^{>\theta}(Y) := #$ of coordinates of *Y* that are > θ

▷ Plot expected histogram curve $\mathbb{E}[N^{>\theta}(Y)] =$

 \triangleright Define τ_{ℓ} such that $\mathbb{E}[N^{>\tau_{\ell}}(Y)] = \ell$ holds



Expected Histogram Curve

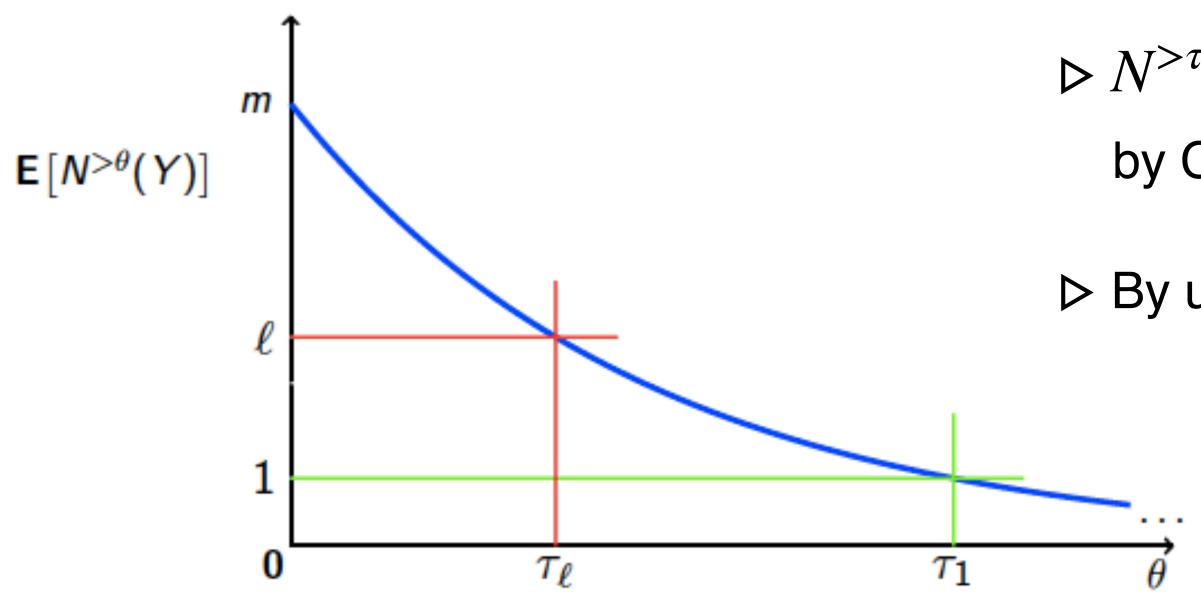
$$\sum_{i \in [m]} \Pr[Y_i > \theta] \quad \text{vs. } \theta$$

 $\triangleright N^{>\tau_{\ell}}(Y)$ is a sum of independent Bernoullis with mean ℓ , so by Chernoff, $\Pr[Y_{\alpha\ell}^{\downarrow} > \tau_{\ell}] = O(\exp(-\alpha\ell))$ for large α ▷ By union-bound, $\Pr[Y_{\alpha\ell}^{\downarrow} \le \tau_{\ell} \forall \ell \in [m]] \ge 1 - O(\exp(-\alpha))$

▷ Consider integer r.v. $N^{>\theta}(Y) := #$ of coordinates of *Y* that are > θ

▷ Plot expected histogram curve $\mathbb{E}[N^{>\theta}(Y)] =$

 \triangleright Define τ_{ℓ} such that $\mathbb{E}[N^{>\tau_{\ell}}(Y)] = \ell$ holds



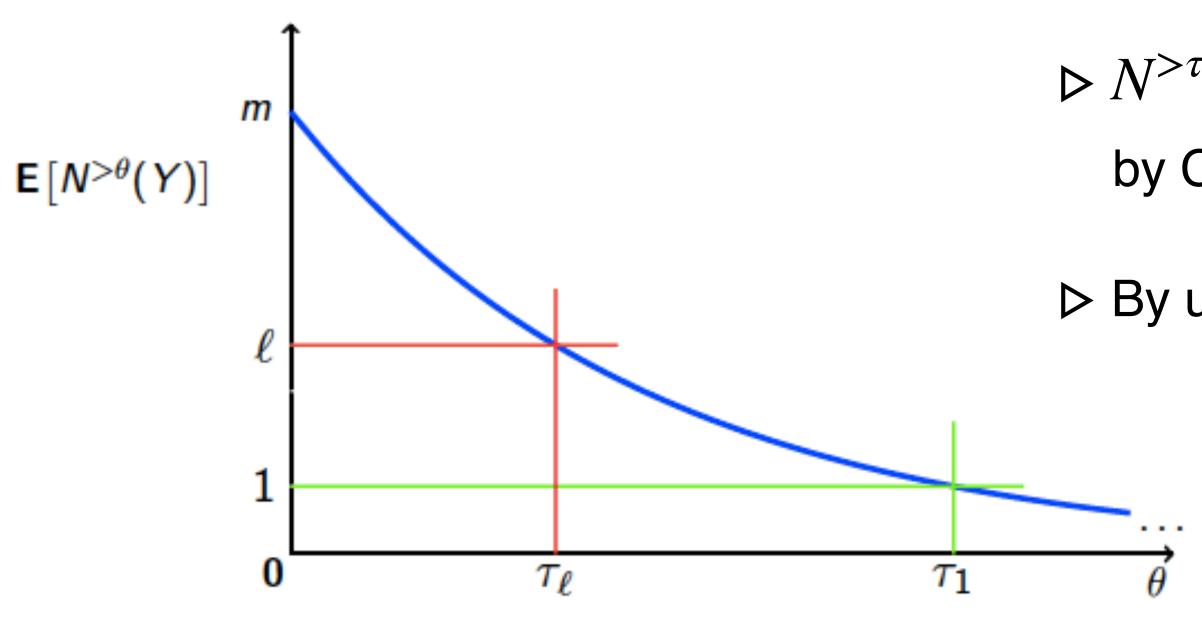
Expected Histogram Curve

$$\sum_{i \in [m]} \Pr[Y_i > \theta] \quad \text{vs. } \theta$$

 $\triangleright N^{>\tau_{\ell}}(Y)$ is a sum of independent Bernoullis with mean ℓ , so by Chernoff, $\Pr[Y_{\alpha\ell}^{\downarrow} > \tau_{\ell}] = O(\exp(-\alpha \ell))$ for large α ▷ By union-bound, $\Pr[Y_{\alpha \ell}^{\downarrow} \le \tau_{\ell} \forall \ell \in [m]] \ge 1 - O(\exp(-\alpha))$ \triangleright By properties of *f*,

 $\Pr[f(Y) > \alpha \cdot f(\tau_1, \tau_2, \dots, \tau_m)] \le O(\exp(-\alpha))$

- ▷ Consider integer r.v. $N^{>\theta}(Y) := #$ of coordinates of *Y* that are > θ
- ▷ Plot expected histogram curve $\mathbb{E}[N^{>\theta}(Y)] =$
- \triangleright Define τ_{ℓ} such that $\mathbb{E}[N^{>\tau_{\ell}}(Y)] = \ell$ holds



Expected Histogram Curve

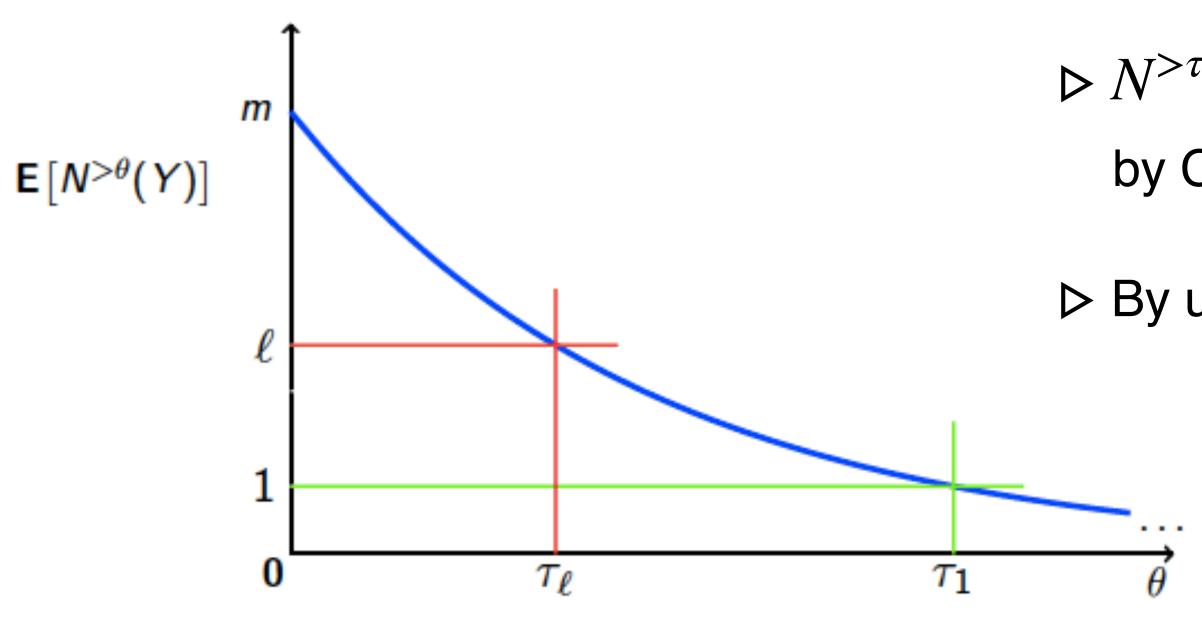
$$\sum_{i \in [m]} \Pr[Y_i > \theta] \quad \text{vs. } \theta$$

 $\triangleright N^{>\tau_{\ell}}(Y)$ is a sum of independent Bernoullis with mean ℓ , so by Chernoff, $\Pr[Y_{\alpha\ell}^{\downarrow} > \tau_{\ell}] = O(\exp(-\alpha \ell))$ for large α ▷ By union-bound, $\Pr[Y_{\alpha \ell}^{\downarrow} \le \tau_{\ell} \forall \ell \in [m]] \ge 1 - O(\exp(-\alpha))$ \triangleright By properties of *f*,

 $\Pr[f(Y) > \alpha \cdot f(\tau_1, \tau_2, \dots, \tau_m)] \le O(\exp(-\alpha))$

$$Y)] = \Theta\left(f(\tau_1 + \sum_{i \in [m]} \mathbb{E}[\max(0, Y_i - \tau_1)], \tau_2, \dots, \tau_m)\right)$$

- ▷ Consider integer r.v. $N^{>\theta}(Y) := #$ of coordinates of *Y* that are > θ
- ▷ Plot expected histogram curve $\mathbb{E}[N^{>\theta}(Y)] =$
- \triangleright Define τ_{ℓ} such that $\mathbb{E}[N^{>\tau_{\ell}}(Y)] = \ell$ holds



Expected Histogram Curve

$$\sum_{i \in [m]} \Pr[Y_i > \theta] \quad \text{vs. } \theta$$

 $\triangleright N^{>\tau_{\ell}}(Y)$ is a sum of independent Bernoullis with mean ℓ , so by Chernoff, $\Pr[Y_{\alpha\ell}^{\downarrow} > \tau_{\ell}] = O(\exp(-\alpha \ell))$ for large α ▷ By union-bound, $\Pr[Y_{\alpha \ell}^{\downarrow} \le \tau_{\ell} \forall \ell \in [m]] \ge 1 - O(\exp(-\alpha))$ \triangleright By properties of *f*,

 $\Pr[f(Y) > \alpha \cdot f(\tau_1, \tau_2, \dots, \tau_m)] \le O(\exp(-\alpha))$

$$Y)] = \Theta\left(f(\tau_1 + \sum_{i \in [m]} \mathbb{E}[\max(0, Y_i - \tau_1)], \tau_2, \dots, \tau_m)\right)$$

Given: G = (V, E), stochastic weights $\{X_e\}_{e \in E}$, norm f Find: Spanning tree $T = \{e_1, ..., e_{n-1}\}$ minimizing $\mathbb{E}[f(Y^T)] = \mathbb{E}[f(X_{e_1}, ..., X_{e_{n-1}})]$

Given: G = (V, E), stochastic weights $\{X_e\}_{e \in E}$, norm f Find: Spanning tree $T = \{e_1, ..., e_{n-1}\}$ minimizing $\mathbb{E}[f(Y^T)] = \mathbb{E}[f(X_{e_1}, ..., X_{e_{n-1}})]$

Recall ... $\mathbb{E}[f(Y)] = \Theta(f(\tau_1 + \sum \mathbb{E}[\max(0, Y_e - \tau_1)], \tau_2, ..., \tau_{n-1}))$ $e \in Y$

Given: G = (V, E), stochastic weights $\{X_e\}_{e \in E}$, norm f Find: Spanning tree $T = \{e_1, ..., e_{n-1}\}$ minimizing $\mathbb{E}[f(Y^T)] = \mathbb{E}[f(X_{e_1}, ..., X_{e_{n-1}})]$

Recall ... $\mathbb{E}[f(Y)] = \Theta(f(\tau_1 + \sum \mathbb{E}[\max(0, Y_e - \tau_1)], \tau_2, ..., \tau_{n-1}))$ $e \in Y$

Guess the right τ_{ℓ} -statistics

W := cost vector of optimal tree

Guess $t_{\ell} \approx \tau_{\ell}(W)$ for powers-of-2 ℓ s

Given: G = (V, E), stochastic weights $\{X_e\}_{e \in E}$, norm f Find: Spanning tree $T = \{e_1, ..., e_{n-1}\}$ minimizing $\mathbb{E}[f(Y^T)] = \mathbb{E}[f(X_{e_1}, ..., X_{e_{n-1}})]$

Recall ... $\mathbb{E}[f(Y)] = \Theta(f(\tau_1 + \sum \mathbb{E}[\max(0, Y_e - \tau_1)], \tau_2, ..., \tau_{n-1}))$ $e \in Y$

Guess the right τ_{ℓ} -statistics

W := cost vector of optimal tree

Guess $t_{\ell} \approx \tau_{\ell}(W)$ for powers-of-2 ℓ s

Solve an LP

Consider an optimal fractional spanning tree for:

$$\min \sum_{e \in E} \mathbb{E}[\max(0, X_e - t_1)] \cdot z_e$$

s.t.
$$\sum_{e \in E} \Pr[X_e > t_e] \cdot z_e \leq \ell \quad \forall \ell = 1, 2, 4, .$$

 $z \in$ spanning tree polytope

Given: G = (V, E), stochastic weights $\{X_e\}_{e \in E}$, norm f Find: Spanning tree $T = \{e_1, ..., e_{n-1}\}$ minimizing $\mathbb{E}[f(Y^T)] = \mathbb{E}[f(X_{e_1}, ..., X_{e_{n-1}})]$

Recall ... $\mathbb{E}[f(Y)] = \Theta(f(\tau_1 + \sum \mathbb{E}[\max(0, Y_e - \tau_1)], \tau_2, ..., \tau_{n-1}))$ $e \in Y$

Guess the right τ_{ℓ} -statistics

W := cost vector of optimal tree

Guess $t_{\ell} \approx \tau_{\ell}(W)$ for powers-of-2 ℓ s

Solve an LP

Consider an optimal fractional spanning tree for:

$$\min \sum_{e \in E} \mathbb{E}[\max(0, X_e - t_1)] \cdot z_e$$

s.t.
$$\sum_{e \in E} \Pr[X_e > t_e] \cdot z_e \leq \ell \quad \forall \ell = 1, 2, 4, .$$

 $z \in \text{spanning tree polytope}$

Note: Column sums in the LP are bounded by O(1)after normalising each RHS to 1

Given: G = (V, E), stochastic weights $\{X_e\}_{e \in E}$, norm f Find: Spanning tree $T = \{e_1, ..., e_{n-1}\}$ minimizing $\mathbb{E}[f(Y^T)] = \mathbb{E}[f(X_{e_1}, ..., X_{e_{n-1}})]$

Recall ... $\mathbb{E}[f(Y)] = \Theta(f(\tau_1 + \sum \mathbb{E}[\max(0, Y_e - \tau_1)], \tau_2, ..., \tau_{n-1}))$ $e \in Y$

Guess the right τ_{ℓ} -statistics

W := cost vector of optimal treeGuess $t_{\ell} \approx \tau_{\ell}(W)$ for powers-of-2 ℓ s

Rounding

Using [LOSZ20]'s iterative rounding machinery, we obtain tree T s.t. τ_{ℓ} statistics of Y^T and W are "comparable"

Solve an LP

Consider an optimal fractional spanning tree for:

$$\min \sum_{e \in E} \mathbb{E}[\max(0, X_e - t_1)] \cdot z_e$$

s.t.
$$\sum_{e \in E} \Pr[X_e > t_e] \cdot z_e \leq \ell \quad \forall \ell = 1, 2, 4, .$$

 $z \in \text{spanning tree polytope}$

Note: Column sums in the LP are bounded by O(1)after normalising each RHS to 1

Our Approximation Guarantees for StochNormTree

Our Approximation Guarantees for StochNorm Tree

Theorem [IS20]: O(1)-approximation algorithm with arbitrary monotone symmetric norms and arbitrary edge-weight distributions.

Improved $(2 + \varepsilon)$ -approximation for Top_e norms

Our Approximation Guarantees for StochNorm Tree

Theorem [IS20]: O(1)-approximation algorithm with arbitrary monotone symmetric norms and arbitrary edge-weight distributions.

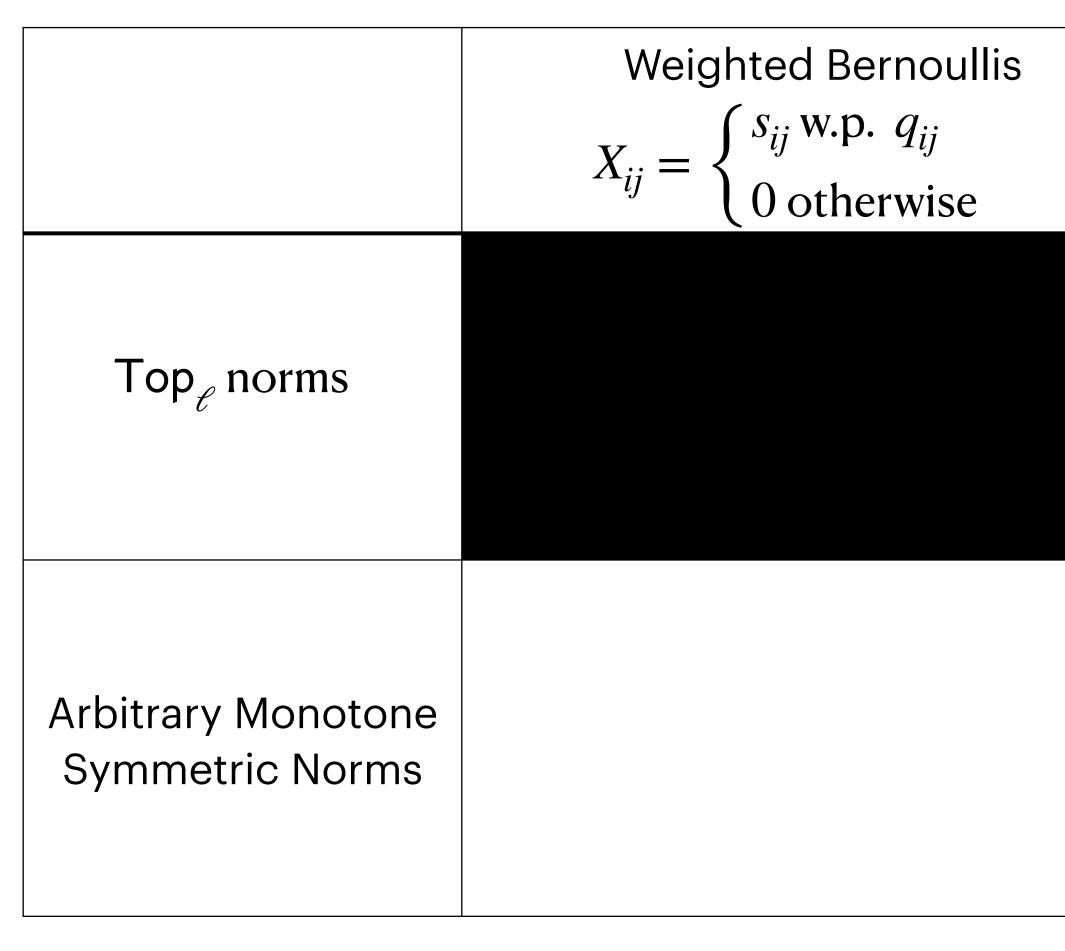
Improved $(2 + \varepsilon)$ -approximation for Top_{φ} norms

 \triangleright Same approximation strategy extends to stochastic min-norm versions of: Matroid Base Bounded-Degree Spanning Tree (with O(1) violation in degree constraints) **Traveling Salesman Problem**

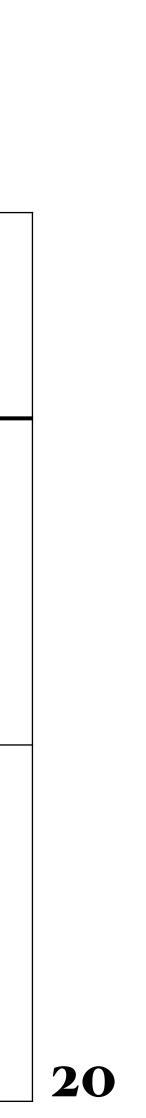
Given: *m* unrelated machines, stochastic job-sizes $\{X_{ij}\}_{i \in [m], j \in J}$, norm *f*

Find: Assignment $\sigma: J \to [m]$ minimizing $\mathbb{E}[f(\overline{\text{load}}_{\sigma})]$

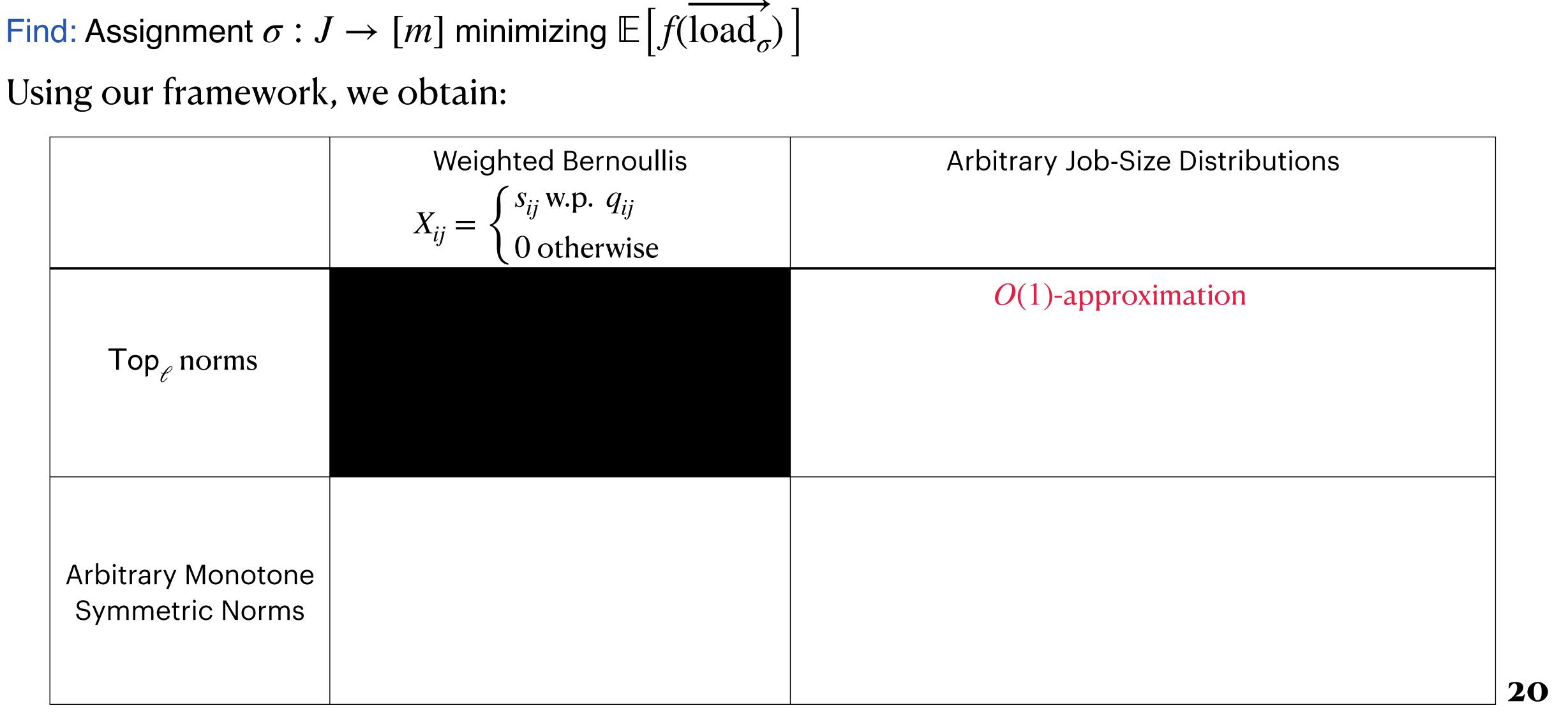
s $\{X_{ij}\}_{i \in [m], j \in J}$, norm f $\overrightarrow{ad}_{\sigma}$]

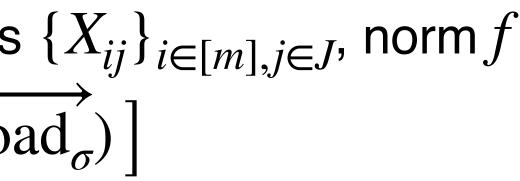


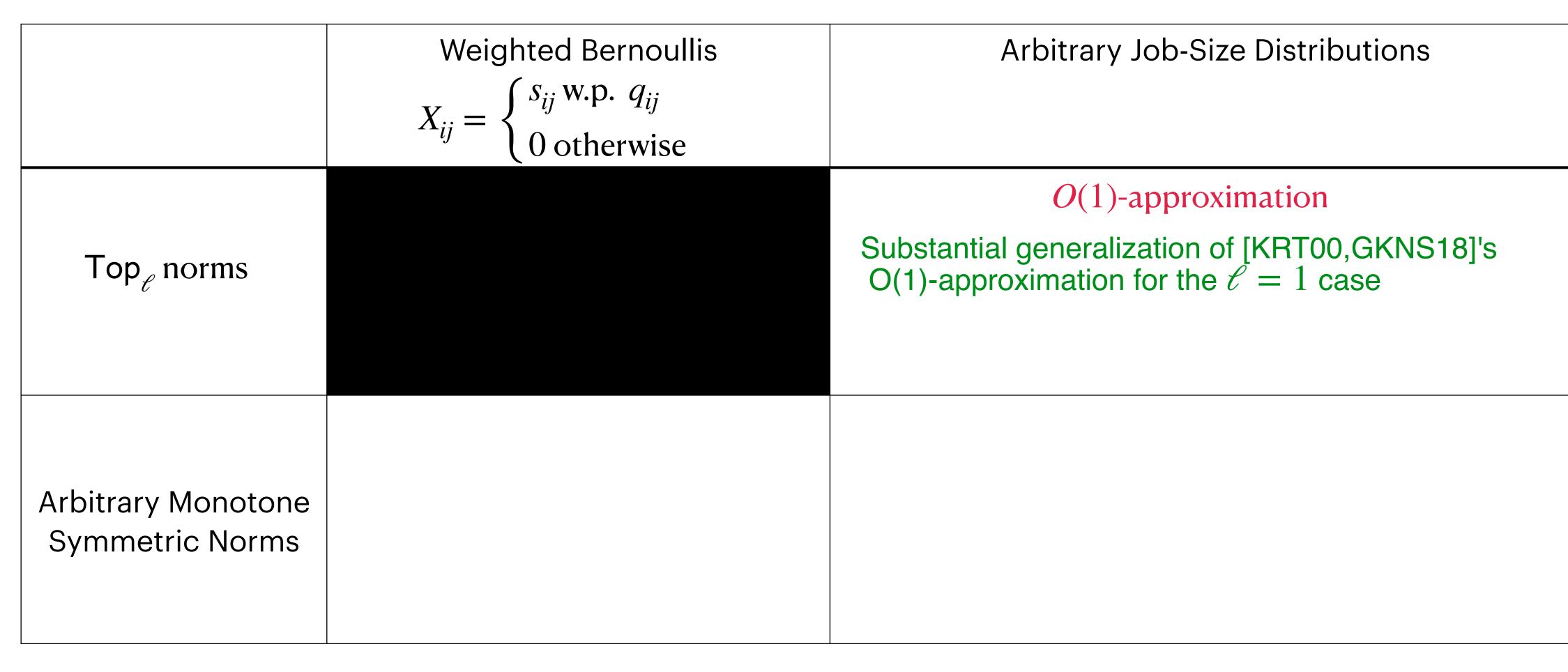
Arbitrary Job-Size Distributions

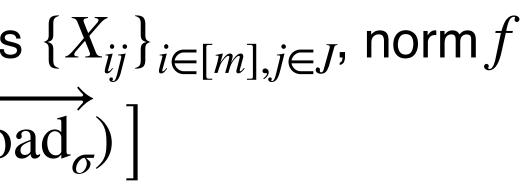


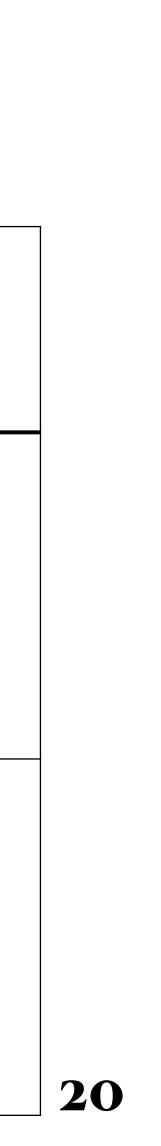
Given: *m* unrelated machines, stochastic job-sizes $\{X_{ij}\}_{i \in [m], j \in J}$, norm *f* Using our framework, we obtain:

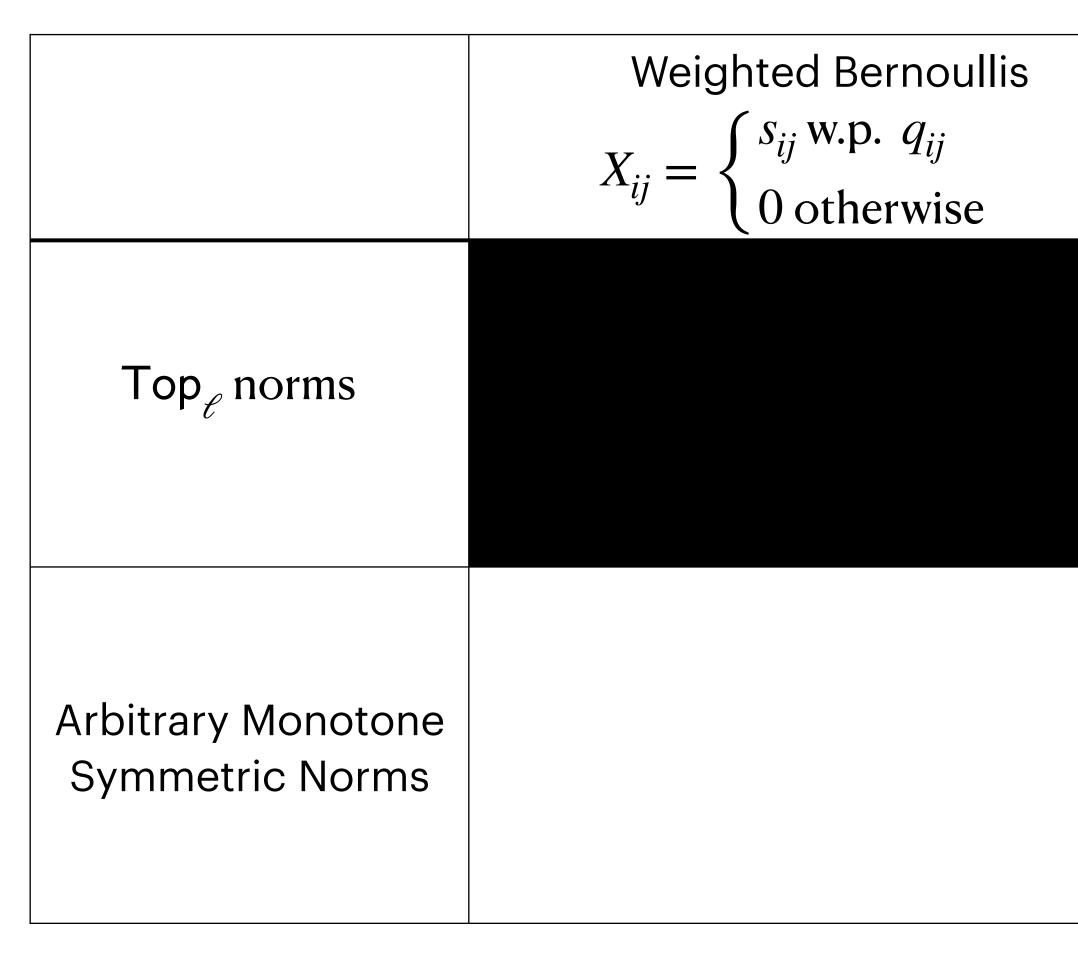


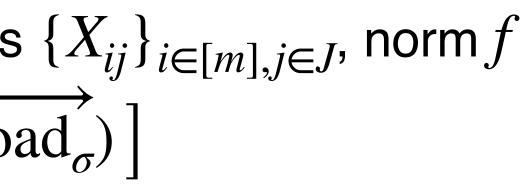


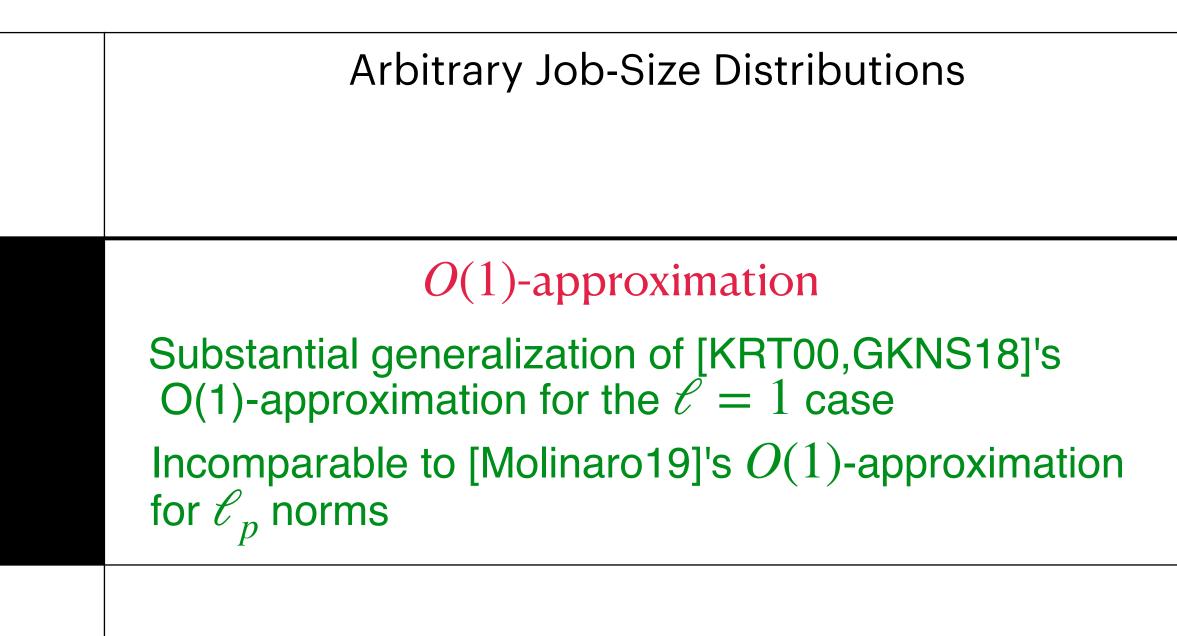


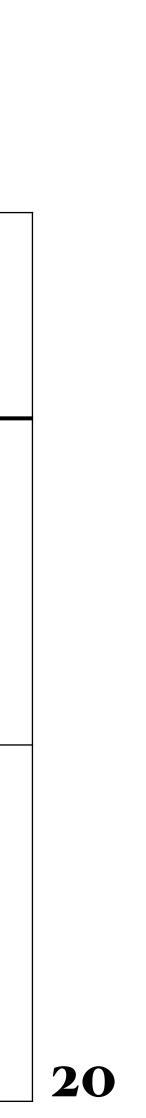


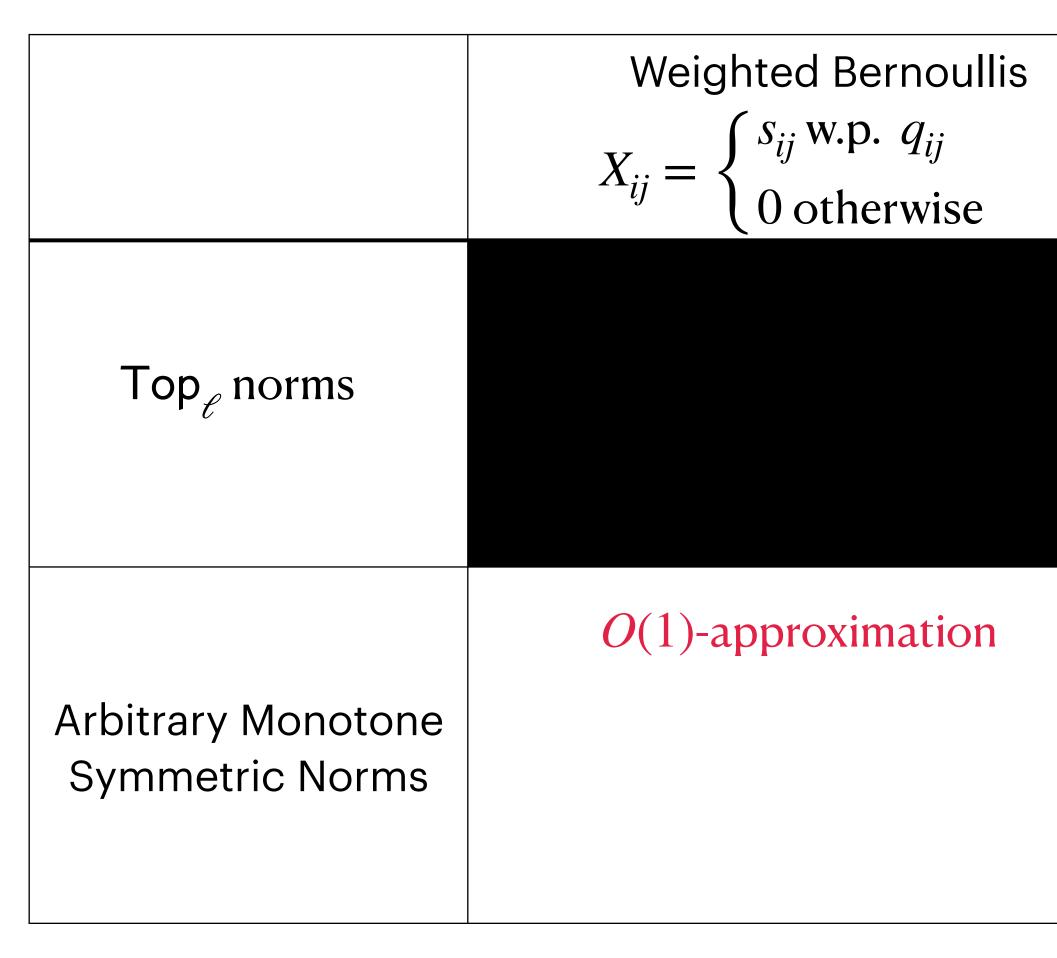


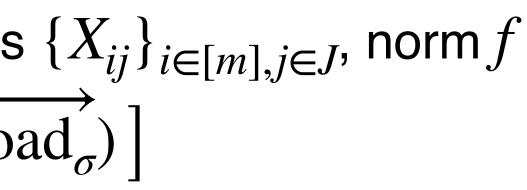


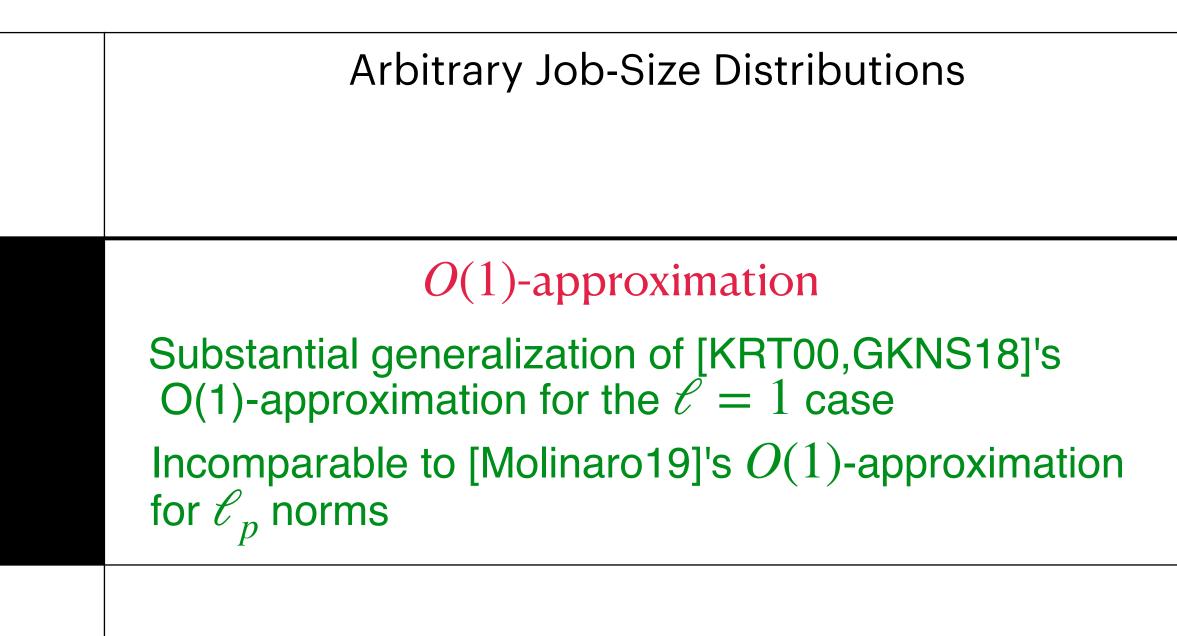


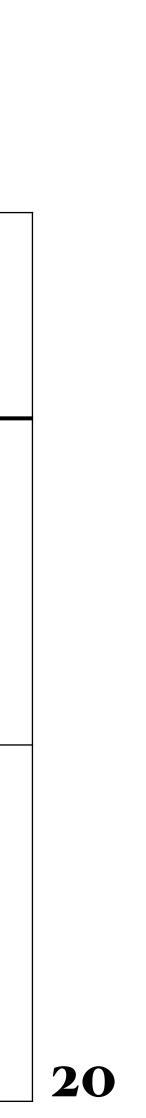




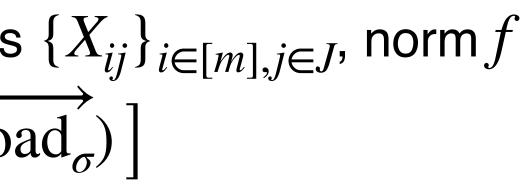


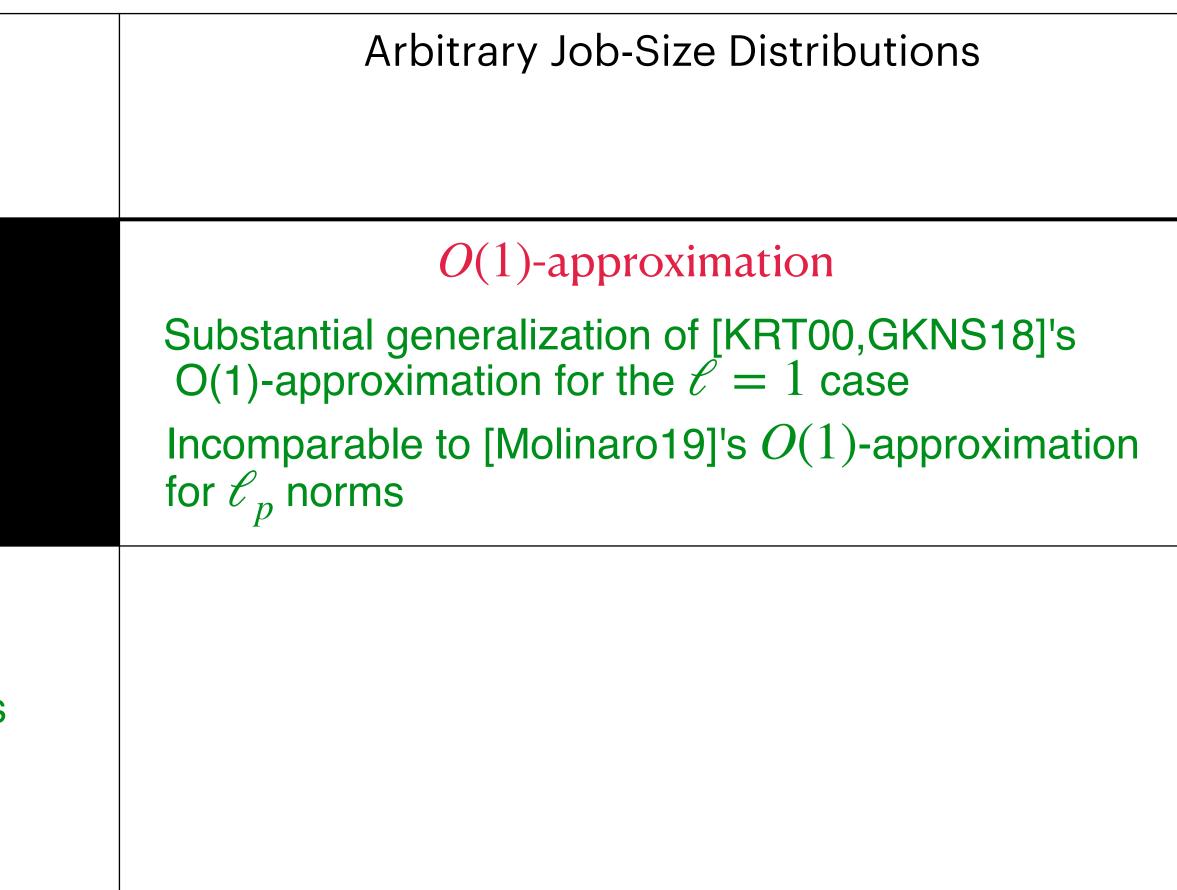


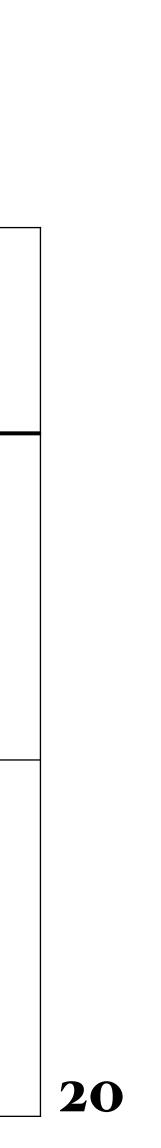




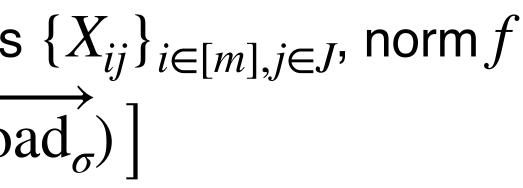
	Weighted Bernoullis
	$\mathbf{v} = \int S_{ij} \mathbf{w}.\mathbf{p}. \ q_{ij}$
	$X_{ij} = \begin{cases} s_{ij} \text{ w.p. } q_{ij} \\ 0 \text{ otherwise} \end{cases}$
Top _e norms	
Arbitrary Monotone Symmetric Norms	<i>O</i> (1)-approximation Strictly generalizes [CS19]'s O(1)-approximation for the deterministic setting

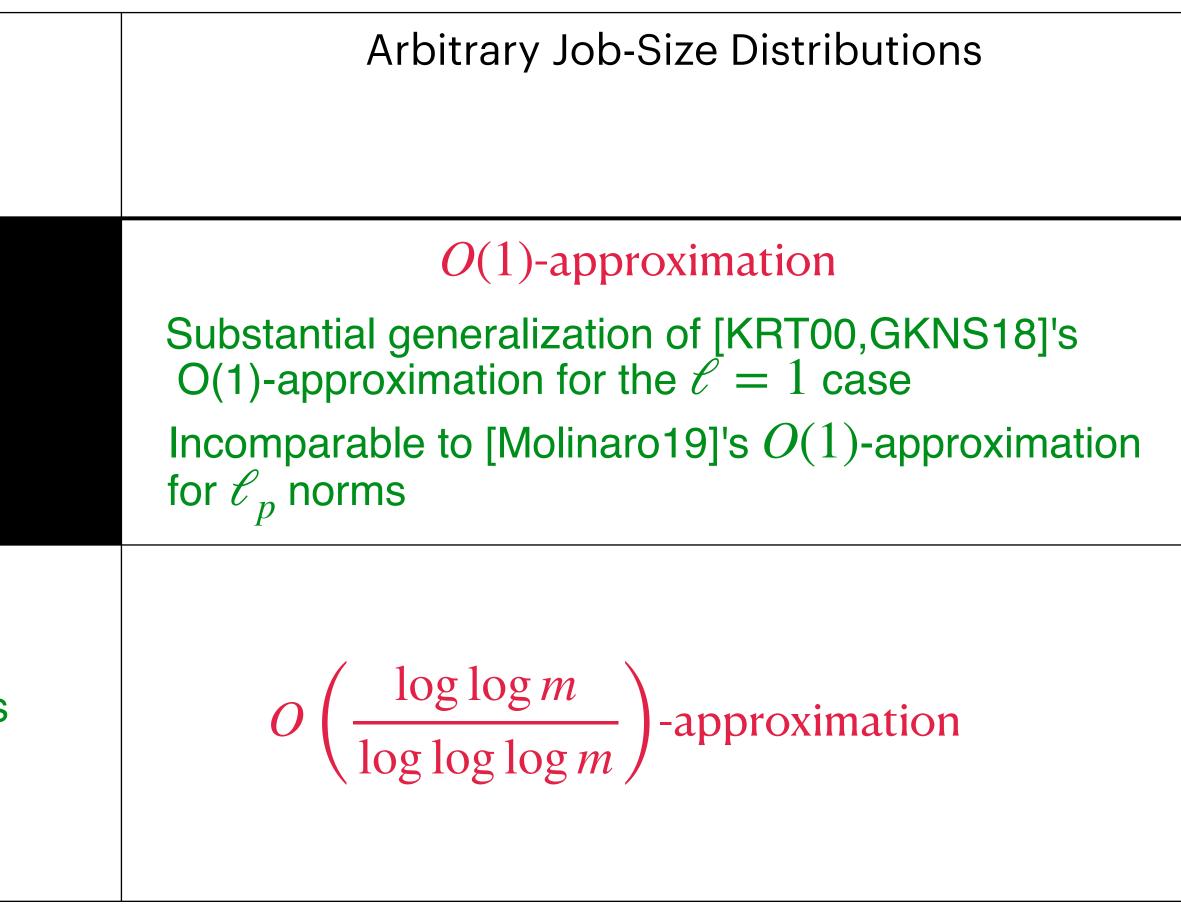


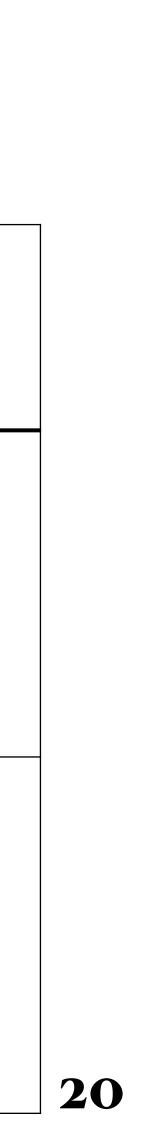




	Weighted Bernoullis
	$\mathbf{v} = \int S_{ij} \mathbf{w}.\mathbf{p}. \ q_{ij}$
	$X_{ij} = \begin{cases} s_{ij} \text{ w.p. } q_{ij} \\ 0 \text{ otherwise} \end{cases}$
Top _e norms	
Arbitrary Monotone Symmetric Norms	<i>O</i> (1)-approximation Strictly generalizes [CS19]'s O(1)-approximation for the deterministic setting







StochNormOpt with Poisson Random Variables

StochNormOpt with Poisson Random Variables

Suppose entries of cost vector Y are Poisson variables

StochNormOpt with Poisson Random Variables

Suppose entries of cost vector Y are Poisson variables

for $\lambda \in \mathbb{R}_{>0}$, Pois(λ) takes size $k \in \mathbb{Z}_{>0}$ w.p. $e^{-\lambda}\lambda^k/k!$

Suppose entries of cost vector Y are Poisson variables

Using Schur-convexity of $g(y) := \mathbb{E}[f(\text{Pois}(y_1), \dots, \text{Pois}(y_m))]$ over $\mathbb{R}^m_{>0}$,

for $\lambda \in \mathbb{R}_{>0}$, Pois(λ) takes size $k \in \mathbb{Z}_{>0}$ w.p. $e^{-\lambda}\lambda^k/k!$

Suppose entries of cost vector Y are Poisson variables

Using Schur-convexity of $g(y) := \mathbb{E}[f(\text{Pois}(y_1), \dots, \text{Pois}(y_m))]$ over $\mathbb{R}^m_{>0}$,

PoisNormOpt

essentially reduces to

for $\lambda \in \mathbb{R}_{>0}$, Pois(λ) takes size $k \in \mathbb{Z}_{>0}$ w.p. $e^{-\lambda}\lambda^k/k!$

Deterministic Min-Norm Opt (possibly with a different norm)

Suppose entries of cost vector Y are Poisson variables

Using Schur-convexity of $g(y) := \mathbb{E}[f(\text{Pois}(y_1), ..., \text{Pois}(y_m))]$ over $\mathbb{R}^m_{>0}$,

PoisNormOpt

essentially reduces to

▷ In PoisNormLB, size of job *j* on m/c *i* is distributed as Pois(λ_{ii}) Load on m/c *i* is Pois($\sum \lambda_{ij}$) iob $i \mapsto i$

In [IS21] we give: $(2 + \varepsilon)$ -approx for unrelated machines, PTAS for identical machines

for $\lambda \in \mathbb{R}_{>0}$, Pois(λ) takes size $k \in \mathbb{Z}_{>0}$ w.p. $e^{-\lambda}\lambda^k/k!$

Deterministic Min-Norm Opt (possibly with a different norm)

Suppose entries of cost vector Y are Poisson variables

Using Schur-convexity of $g(y) := \mathbb{E}[f(\text{Pois}(y_1), ..., \text{Pois}(y_m))]$ over $\mathbb{R}^m_{>0}$,

PoisNormOpt

essentially reduces to

▷ In PoisNormLB, size of job *j* on m/c *i* is distributed as Pois(λ_{ii}) Load on m/c *i* is Pois($\sum \lambda_{ij}$) iob $i \mapsto i$

In [IS21] we give: $(2 + \varepsilon)$ -approx for unrelated machines, PTAS for identical machines

for $\lambda \in \mathbb{R}_{>0}$, Pois(λ) takes size $k \in \mathbb{Z}_{>0}$ w.p. $e^{-\lambda}\lambda^k/k!$

Deterministic Min-Norm Opt (possibly with a different norm)

Substantial generalization of [DKLN20]'s PTAS for ℓ_{∞} case

Suppose entries of cost vector Y are Poisson variables

Using Schur-convexity of $g(y) := \mathbb{E}[f(\text{Pois}(y_1), \dots, \text{Pois}(y_m))]$ over $\mathbb{R}^m_{>0}$,

PoisNormOpt

essentially reduces to

▷ In PoisNormLB, size of job *j* on m/c *i* is distributed as $Pois(\lambda_{ii})$ Load on m/c *i* is Pois($\sum \lambda_{ij}$) iob $i \mapsto i$

In [IS21] we give: $(2 + \varepsilon)$ -approx for unrelated machines, PTAS for identical machines

▷ In PoisNormTree, weight of edge *e* is $Pois(\lambda_{\rho})$ PoisNormTree can be solved exactly because deterministic version can be solved exactly

for $\lambda \in \mathbb{R}_{>0}$, Pois(λ) takes size $k \in \mathbb{Z}_{>0}$ w.p. $e^{-\lambda}\lambda^k/k!$

Deterministic Min-Norm Opt (possibly with a different norm)

▷ We show $\mathbb{E}[f(Y)] = \Theta(f(\mathbb{E}[Y^{\downarrow}]))$ for product distributions *Y*.

▷ We show $\mathbb{E}[f(Y)] = \Theta(f(\mathbb{E}[Y^{\downarrow}]))$ for product distributions *Y*.

 \triangleright We give a framework for stochastic f-norm optimization based on a reduction to simultaneous stochastic $\operatorname{Top}_{\ell}$ -norm optimization for ℓ 's that are powers-of-2.

- ▷ We show $\mathbb{E}[f(Y)] = \Theta(f(\mathbb{E}[Y^{\downarrow}]))$ for product distributions *Y*.
- \triangleright We give two $\Theta(1)$ -approximate proxy functions for $\mathbb{E}[\mathsf{Top}_{\mathscr{C}}(Y)]$ that are separable, linear, and simple.

 \triangleright We give a framework for stochastic f-norm optimization based on a reduction to simultaneous stochastic $\mathsf{Top}_{\mathscr{P}}$ -norm optimization for \mathscr{C} 's that are powers-of-2.

- ▷ We show $\mathbb{E}[f(Y)] = \Theta(f(\mathbb{E}[Y^{\downarrow}]))$ for product distributions *Y*.
- \triangleright We give two $\Theta(1)$ -approximate proxy functions for $\mathbb{E}[\mathsf{Top}_{\mathscr{C}}(Y)]$ that are separable, linear, and simple.

 \triangleright We give a framework for stochastic f-norm optimization based on a reduction to simultaneous stochastic $\mathsf{Top}_{\mathscr{P}}$ -norm optimization for \mathscr{C} 's that are powers-of-2.

Using our framework, we obtain approximation algorithms for stochastic min-norm optimization problems arising from load balancing and spanning tree applications.

 \triangleright Is there an O(1)-approximation algorithm for StochNormLB with arbitrary monotone symmetric norms and arbitrary job-size distributions? (even the setting with identical machines is open)

- \triangleright Is there an O(1)-approximation algorithm for StochNormLB with arbitrary monotone symmetric norms and arbitrary job-size distributions? (even the setting with identical machines is open)
- ▷ Tighter bounds on the gap between $\mathbb{E}[f(Y)]$ and $f(\mathbb{E}[Y^{\downarrow}])$ (current best bound is 7.634)

- \triangleright Is there an O(1)-approximation algorithm for StochNormLB with arbitrary monotone symmetric norms and arbitrary job-size distributions? (even the setting with identical machines is open)
- ▷ Tighter bounds on the gap between $\mathbb{E}[f(Y)]$ and $f(\mathbb{E}[Y^{\downarrow}])$ (current best bound is 7.634)
- Other natural settings of StochNormOpt: bipartite perfect matchings k-clustering

Thank You

More general models of StochNormOpt

- stochastic load balancing with correlated jobs stochastic unsplittable flows
- Generalizations of StochNormOpt that allow: Probing Multi-stage decisions Adaptive solutions

 \triangleright StochNormOpt when the cost vector Y does not follow a product distribution:

Gap between $\mathbb{E}[f(Y)]$ and $f(\mathbb{E}[Y^{\downarrow}])$

- \triangleright Suppose $m \rightarrow \infty$
- $\triangleright \mathbb{E}[\mathsf{Top}_1(Y)] = 1 \frac{1}{e} \text{ and } \mathbb{E}[\mathsf{Top}_m(Y)] = 1$

▷ Consider monotone symmetric norm *f* given by $f(y) := \max\left(\frac{e}{e - 1} \operatorname{Top}_{1}(y), \operatorname{Top}_{m}(y)\right)$ $\triangleright f(\mathbb{E}[Y^{\downarrow}]) = 1$ and $\mathbb{E}[f(Y)] = 1 + \frac{1}{e(e-1)} \approx 1.21$

 \triangleright Consider product distribution Y over $\mathbb{R}_{>0}^m$ where each Y_i is a Bernoulli with activation probability 1/m

Prior Work on Stochastic Bin Packing

[KRT00]

For weighted Bernoulli items

ALG $O(1/\varepsilon)$ -apx. w/ $(1 + \varepsilon)$ -size bins and overflow prob. p ALG $O(1/\varepsilon)$ -apx. w/ size-1 bins and overflow p, OPT uses size-1 bins and overflow $p^{1+\varepsilon}$

ALG uses
$$O\left(\sqrt{\frac{\log 1/p}{\log \log 1/p}}\right)B^* + O(\log 1/p)$$

For general distributions, incur a multiplicative $O(\log n)$ loss.

- (p) size-1 bins and overflow is p

Prior Work on Stochastic Knapsack

[KRT00] Items with high-low sizes ALG $O(\log 1/p)$ -approx. ALG $O(1/\varepsilon)$ -approx. w/ violation in knapsack capacity or overflow probability

[De17]

Bernoullis: (nearly) FPTAS by relaxing overflow probability Items with shared constant-size support: quasi-FPTAS by relaxing overflow probability Hypercontractive r.v.s: PTAS that relaxes both capacity and overflow probability

Prior Work on Stochastic Unsplittable Flow

[GK17] Collect value v_i for successfully routed stochastic flows S_i w/ mean μ_i . Flow paths are chosen adaptively.

Single-sink case:
$$O\left(\min\left(\log k, \log \frac{\max_j v_j/\mu_j}{\min_j v_j/\mu_j}\right)\right)$$
-approximation

Trees: (non-adaptive) O(1)-approximation DAGs: $O(\sqrt{n \log k})$ -approximation, where k is # source-sink pairs

- No-bottleneck assumption, i.e., $supp(S_i) \subseteq [0,1]$ and edge capacity are at least 1

- General graphs: approximation quality depends on max degree, max expansion, and $O(\log^2 n)$

