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    set of  independent stochastic jobs 
  unrelated parallel machines  
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      (we assume  and  are independent whenever ) 

 monotone symmetric norm

J n
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Input 

  undirected graph on  vertices 
 nonnegative random variable denoting 

      stochastic weight of edge  
      (we assume  are independent) 

 monotone symmetric norm

G = (V, E) n
Xe

e ∈ E
{Xe}e∈E

f : ℝn−1
≥0 → ℝ≥0

Feasible 
Solutions 

Spanning trees of G

Goal 
Find spanning tree  that  
minimizes 

T = {e1, …, en−1}
𝔼[ f(YT)] = 𝔼[ f(Xe1

, …, Xen−1
) ]
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 Goal: Find an oblivious solution  that minimizes s 𝔼[ f(Ys)]

 Three sources of complexity: 
       Feasibility for the combinatorial optimization problem 
       Stochasticity of costs 
       Controlling the norm of a cost vector

▹

 Assumptions: 
      Complete distributional information of r.v.s (job-size r.v.s and edge-weight r.v.s)
      Can sample from these distributions
      Can compute expected value, evaluate moment generating functions, or 
        truncate above/below a threshold etc. 

▹
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 Increased modeling power due to closure properties under taking 
    nonnegative linear combinations   (  mon. sym. norms   is a mon. sym. norm) 
    and 
    pointwise maximums         (  mon. sym. norms   is a mon. sym. norm)

▹
f, f′ ⟹ αf + βf′ 

f, f′ ⟹ max( f, f′ )

Feasibility problem with multiple 
norm-budget constraints:

 
Find  x ∈ P s.t. fr(x) ≤ Br ∀r = 1,…, k

Norm-minimization problem: 

Is 

where 

min{g(x) : x ∈ P} ≤ 1?

g(x) := max
r=1,…,k

fr(x)
Br

reduces  
to
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Most of this work has appeared at FOCS 2020, ICALP 2021, and SOSA 2022
                                                   [IS20]             [IS21]               [IS22]

Application of our framework to obtain approximation algorithms for 
stochastic min-norm load balancing and
stochastic min-norm spanning tree

(I will mention our main results towards the end of the talk)

∙



How do we reason about ?𝔼[ f(Y)]

      an arbitrary monotone symmetric norm 

                                          an arbitrary product distribution  on  

f : ℝm
≥0 → ℝ≥0

Y ℝm
≥0
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 Proof of approximate stochastic majorization using main theorem: 

     

▹
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 Non-separable nature of   norms makes controlling  challenging∙ 𝖳𝗈𝗉ℓ 𝔼[𝖳𝗈𝗉l(Y)]

 is usually controlled by deriving probability
bounds on the upper tail of 

𝔼[𝖳𝗈𝗉1(Y)]
Yi ∀i ∈ [m]

 We give two simple separable proxy functions for   
    that lead to an  loss in approximation
∙ 𝔼[𝖳𝗈𝗉l(Y)]

O(1)
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 We show  for product distributions .▹ 𝔼[ f(Y)] = Θ(f(𝔼[Y↓])) Y

 We give a framework for stochastic -norm optimization based on a reduction to 
    simultaneous stochastic -norm optimization for 's that are powers-of-2.
▹ f

𝖳𝗈𝗉ℓ ℓ

 Using our framework, we obtain approximation algorithms for stochastic min-norm
    optimization problems arising from load balancing and spanning tree applications.
▹

 We give two -approximate proxy functions for  that are 
    separable, linear, and simple.
▹ Θ(1) 𝔼[𝖳𝗈𝗉ℓ(Y)]
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 Is there an -approximation algorithm for StochNormLB with arbitrary

    monotone symmetric norms and arbitrary job-size distributions?

    (even the setting with identical machines is open) 

▹ O(1)

 Tighter bounds on the gap between  and 
    (current best bound is 7.634)
▹ 𝔼[ f(Y)] f(𝔼[Y↓])

 Other natural settings of StochNormOpt: 
    bipartite perfect matchings   
    k-clustering

▹



Thank You





More general models of StochNormOpt

27

 StochNormOpt when the cost vector  does not follow a product distribution: 
    stochastic load balancing with correlated jobs 
    stochastic unsplittable flows

▹ Y

 Generalizations of StochNormOpt that allow:
    Probing 
    Multi-stage decisions
    Adaptive solutions

▹



Gap between  and 𝔼[ f(Y)] f(𝔼[Y↓])

28

 Consider product distribution  over  where each  is a Bernoulli with activation probability ▹ Y ℝm
≥0 Yi 1/m

     and     ▹ 𝔼[𝖳𝗈𝗉1(Y)] = 1 −
1
e

𝔼[𝖳𝗈𝗉m(Y)] = 1

 Consider monotone symmetric norm  given by 

    

▹ f

f(y) := max( e
e − 1

𝖳𝗈𝗉1(y), 𝖳𝗈𝗉m(y))
    and ▹ f(𝔼[Y↓]) = 1 𝔼[ f(Y)] = 1 +

1
e(e − 1)

≈ 1.21

 Suppose ▹ m → ∞



Prior Work on Stochastic Bin Packing
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[KRT00] 
For weighted Bernoulli items
  ALG -apx. w/ -size bins and overflow prob.  
  ALG -apx. w/ size-1 bins and overflow , OPT uses size-1 bins and overflow 

  ALG uses  size-1 bins and overflow is 

For general distributions, incur a multiplicative  loss.

O(1/ε) (1 + ε) p
O(1/ε) p p1+ε

O( log 1/p
log log 1/p )B* + O(log 1/p) p

O(log n)



Prior Work on Stochastic Knapsack
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[KRT00] Items with high-low sizes
  ALG -approx.
  ALG -approx. w/ violation in knapsack capacity or overflow probability
 

O(log 1/p)
O(1/ε)

[De17]
  Bernoullis: (nearly) FPTAS by relaxing overflow probability 
  Items with shared constant-size support: quasi-FPTAS by relaxing overflow probability
  Hypercontractive r.v.s: PTAS that relaxes both capacity and overflow probability
 



Prior Work on Stochastic Unsplittable Flow
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[GK17] Collect value  for successfully routed stochastic flows  w/ mean . 

            Flow paths are chosen adaptively.
            No-bottleneck assumption, i.e.,  and edge capacity are at least 1

 

  Single-sink case: -approximation

  Trees: (non-adaptive) -approximation

  DAGs: -approximation, where k is # source-sink pairs

  General graphs: approximation quality depends on max degree, max expansion, and 

vj Sj μj

supp(Sj) ⊆ [0,1]

O (min(log k, log
maxj vj /μj

minj vj /μj
))

O(1)
O( n log k)

O(log2 n)


