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Abstract

All possible independence structures available between three variables are explored via a simple visual display
called an eikosogram (see Cherry and Oldford, 2002). Formal mathematical development is complementary rather
than necessary.

If well understood, independence structures provide a solid basis for discussion of study design issues and statisti-
cal modelling. Eikosograms provide a simple visual basis for that understanding. Graphical and log-linear models, as
well as covariance graphs are examined via eikosograms with a critical eye towards how these models either succeed
or fail to capture the different independence structures.

New graphs are derived from the eikosograms which permit simple visual reasoning about the independence
structures possible between three variables. Entirely visual proofs are available and given. Some independence
structures which hold in general, are shown not to hold when one or more variables is binary. In this case some
further results can be proven visually. Consequences for statistical planning of this and other results are briefly
discussed.

1 Introduction

Cherry and Oldford (2002) show how the fundamentals of probability, its meaning, axioms, Bayes’ and other theorems,
conditional and unconditional independence, dependence relations, and the distinction between events and variables
all naturally fall out of a particular diagram called an eikosogram. In this paper eikosograms are used to explore more
deeply the related notions of conditional and unconditional independence. In particular, the variety of independence
structures available with three categorical variables is explored in detail.

Much of the motivation is to provide simple visual helps which will enable one to better appreciate and to un-
derstand the complexity of dependence and independence relationships which are possible between random variables.
This topic is important not only for understanding probability but also for understanding statistical modelling and
design. Eikosograms, and the new graphs derived from them, make it possible to introduce these ideas and to prove
results about the relations between independence structures without resort to symbolic mathematics.

Such an understanding can then be exploited in discussion of statistical design and modelling. The eikosograms
provide a visual display of the underlying probability distribution against which the characteristics of statistical models
can be fruitfully compared. Critical comparison reveals the strengths and weaknesses of the model and leads to a
deeper understanding of the models and their application. Many planning and design fundamentals can be expressed
in terms of the relation between three variates — a response variate, a treatment variate, and some auxiliary (i.e. non-
treatment) explanatory variate which may or may not be known. Understanding the independence structures for three
variables gives insight into such fundamentals as blocking or matching and randomization. A new result proved here
shows here that extra care needs to be taken when the auxiliary explanatory variate is binary.

The remainder of the paper is organized as follows. Secton 2 gives a brief introduction to eikosograms and how
they display the dependence between variables and between some variables conditional on others. The absence of
dependence (unconditionally or conditionally) visually stands out in an eikosogram and visually defines what is meant
by independence. Dawid’s (1979) notation is extended slightly from a binary to n-ary operator to describe complete,
or mutual, independence between all of its arguments. This helps clarify the variety of independence constraints which
must hold to produce complete independence.



Section 3 enumerates all independence structures (there are eight modulo permutation of the variables, seven if all
are binary) which can exist between three categorical variables. These independence structures are easily read off the
eikosograms (numerical details of which are recorded in the Appendix) and the eikosograms can be used to illustrate
and to prove theorems about independence relationships.

Section 4 deals with the common statistical models for categorical data and how they match up (or not) to the
variety of independence structures uncovered in Section 3. Section 4.1 explores these structures via graph-based
models — both those based only on marginal independence relations (e.g. covariance graphs of Cox and Wermuth,
1996) and those based on conditional independencies, the so-called graphical models (e.g. Darroch et al 1980). When
only three variables are considered, combining both types of graphs in a single one yields a one to one correspondence
between the graphs and the possible independence structures displayed in Section 3. Being a proper super-set of the
graphical models, the hierarchical log-linear models of Section 4.2 have many of the same shortcomings but also some
advantages over graphical models in describing independence and dependence structures of statistical interest.

Section 5 adapts the combined graphs from Section 4 to show how theorems on independence between three
variables can be easily proven using a graph where known independence or dependence is explicitly marked with
distinct edges — absence of edges asserts only ignorance. Similar in spirit to \enn’s use of his diagrams in logic (e.g.
see Cherry and Oldford 2002), these graphs can be used to visually express and even to prove independence relations
without resort to formal mathematics; Dawid’s notation provides the symbolic expressions. Eikosograms are used to
give visual proof of two basic results on independence from which the remaining results can be proved using only the
graphs. The case where at least one of the three variables is binary requires formal proof as detailed in the Appendix.
Altogether, the graphs can be used to prove that the structures seen in Section 3 are all that are possible. Moreover,
how the graphs help shed light onto important and fundamental statistical design issues is briefly discussed.

The last section contains a few concluding remarks.

2 Eikosograms

Eikosograms display probability for discrete random variables as area on a unit square; the calculation rules for
probability are one to one with the calculation rules for rectangular areas (see Cherry and Oldford, 2002). Figure 1
shows three eikosograms displaying the marginal distribution of a binary random variable Y and its joint probability
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Figure 1: The eikosogram for one and for two variables.

distribution with each of two other binary random variables, X and Z respectively (the values ‘y’ and ‘n’ stand for the
binary possibilities ‘yes’ and ‘no’). The area of the shaded areas in all three diagrams is 1/3 and so Pr(Y =y) =
1/3 in each of the three cases.

In Figure 1(b), one can additionally read off from the horizontal axis that Pr»(X =y) = 1/4 (the area of the entire
vertical strip) and that P»(X = n) = 1 — 1/4 = 3/4; from the vertical axis we read the values of the conditional
probabilities Pr(Y = y|X =y) =2/3 and Pr(Y = y|X = n) = 2/9. Because these conditional probabilities are
not equal, there is probabilistic dependence between the random variables Y and X.



To find the marginal of Y as in Figure 1(a) from the joint of Y versus X as in Figure 1(b) a visual metaphor
helps. Imagine Figure 1(b) as a container of water divided into two chambers by a barrier at 1/4 with the shaded
regions representing the water in each chamber. Finding the marginal distribution amounts to removing the barrier and
allowing the water to settle at its natural level — here the depth of 1/3 across the container as in Figure 1(a).

The relationship between Y and Z is different. In Figure 1(c), we see that Pr(Y =y|Z =y) = Pr(Y =y|Z =
n) = 1/3 = Pr(Y = y), and similarly for Y = n, which means that Y and Z are probabilistically independent.
Visually, this independence is indicated by the flatness along the shaded regions in the eikosogram of Y and Z. In
Figure 1(c) removal of the barrier at 1/4 will not affect the water level — hence independence.

Figure 2 shows different levels of association between the two binary variables Y and X. Across these diagrams
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Figure 2: Binary associations left to right. (a) Perfect positive association: Y = X; (b) Part perfect positive association: 1 =
Pr(Y = y|X =y) > Pr(Y = y|X = n); (c) Positive association: Pr(Y = y|X =y) > Pr(Y = y|X = n); (d)
Independence; (e) Negative association: Pr(Y = y|X =y) < Pr(Y = y|X = n); (f) Part perfect negative association; (g)
Perfect negative association: Y is the complement of X .

the marginal distribution of X is held fixed, that of Y is not. Providing a measure of association is not obvious; even
the most commonly recommended one, the odds ratio, fails to distinguish ‘Perfect’ association (Figure 2a) from “Part
Perfect’ association (Figure 2b) (or “Absolute” from “Complete” association as in Fienberg, 1977, pp. 18-19).

The eikosogram naturally distinguishes the variable on the vertical axis making the reading of its conditional
probabilities easy. Two eikosograms, one with Y on the vertical axis and one with X on the vertical axis would
be required to present the variables symmetrically. Probabilistic independence will produce a flat shaded region in
both eikosograms. For binary random variables X and Y the associations seen in Figure 2 will be apparent in both
eikosograms for Pr(Y = y|X =y) > Pr(Y = y|X =n) holds iff Pr(X =y|Y =y) > Pr(X =y|Y =n) -
similarly for negative association.

Variables displayed in eikosograms need not be binary. Figure 3 shows three eikosograms with a vertical binary
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Figure 3: Multiple categories for the conditioning variable.

variable, Y, and a three-valued ordinal variable X on the horizontal axis. Probabilities can be read off as before
and flatness again indicates probabilistic independence while absence of flatness indicates dependency between the
two variables. If the vertical variable has multiple categories distinguished by different colours, independence would
correspond to horizontal colour bars across the eikosogram.



When more than two variables are involved, all but one are displayed along the horizontal axis as conditioning
variables. Figure 4 shows a typical eikosogram for three binary variables together with the canonical ordering we will
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Figure 4: Three variables (binary here); Two conditioning variables. Y vs. X & 7.

adopt for the values of the binary conditioning variables. As with two variables, the conditional probabilities can be
read off the vertical heights of the shaded bars to give:

PrY =y|X=y,Z=y) = 4/5, Pr(Y =y|X=n,Z=y)=1/2,
Pr(Y =y|X=y,Z=n) = 3/10, Pr(Y =y|X=n,Z=n)=3/5.
Similarly reading from the horizontal axis gives Pr(X =y,Z =y) = 1/6, Pr(Z =y) = 1/2,and so on.

Again dependence and independence relationships are apparent from the eikosogram but, with three and more
variables, these can be much more involved. Figure 5 gives some indication of the possibilities. Here again there
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Figure 5: Various dependency relations (a) inconsistent dependence, (b) consistent dependence, (c) conditional independence, (d)
asin (c) but X &7 have their order in the display interchanged.

are three binary variables and flatness is an indicator of some sort of independence. The values of the conditioning
variables are canonically ordered with the values of the first variable mentioned changing most quickly (y to n) left to
right across the eikosogram as in Figure 4.

In Figure 5(a) we say that the dependence is inconsistent because the conditional probability that Y = y given the
values of the others decreases as the X value changes from y to n when Z =y and does the opposite when Z = n.
The inconsistency is extreme in the sense that it is also the case that the conditional probability of Y =y given the
values of the others decreases as the Z value changes from y to n when X =y and does the opposite when X = n.
Either one or both of these inconsistencies could hold in any given situation.

In Figure 5(b) we say that the dependence is consistent. The conditional probability of Y = y given the values
of the others changes with the value of X in the same direction (i.e. decreases) when Z =y and when Z = n. A



similarly consistent relationship holds between Y and Z when X = y and X = n (in Figure 5(b) the conditional
probability decreases as Z changes from y to n when X = y and when X = n). Either one or the other or both of
these consistent dependencies could hold. Because both hold in Figure 5(b), the dependency is, in a sense, maximally
consistent.

Figures 5(c) and 5(d) show a relationship between the three variables which is identical in both figures. The only
difference is that in Figure 5(c) the values of X change first and in Figure 5(d) the columns of the eikosogram are
re-ordered so that the values of Z now change first. The probabilistic relationship is identical, but the flats which
appear in the eikosograms of both Figure 5(c) and Figure 5(d) are more obvious in the arrangement of the latter.

As before, these flats are indicative of some probabilistic independence. From either Figure 5(c) or 5(d), the two
flat regions occur when X = y and when X = n, each across all values of Z. The existence of these flat regions
are necessary and sufficient conditions to conclude that Y and Z are conditionally independent given X, written as
Y 1 Z| X (following Dawid, 1979).

Had it been the case in Figure 5(d) that a flat existed only on the left where X = y and not on the right where
X = n, then we would have Y conditionally independent of Z given the event X = y but conditionally dependent
given the event X = n. We write these two possibilitiesas Y 1L Z|{X =y} and Y )L X|{X = n}, respectively. The
eikosogram allows us to visually distinguish the case for events from the corresponding case for variables (see Cherry
and Oldford, 2002 for further discussion on this point).

From Figure 5 we can see that the following results hold:

YI1ZIX <= both YILZ{X =y} and YIZ|{X =n},
YIZIX = VYIZ

A formal proof can be easily had by symbolically describing the appropriate features of the eikosogram.
Figure 6(a) shows a distribution where the flat extends across all values of the conditioning variables. As was the
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Figure 6: One 4-flat does not imply mutual independence of Y, X, and Z.

case with two variables, one might be tempted to think this complete flat meant the mutual independence of all three
variables Y X and Z — but this would be wrong! From Figure 6(a) the eikosogram of the joint distribution of Z versus
X can be derived and as shown in Figure 6(b) clearly demonstrates the dependence between Z and X.

A flat extending across all values of the conditioning variables as in Figure 6(a) implies the following four inde-
pendencies: Y 1. X|Z, Y1 Z|X,Y 1 X, and Y Z. Moreover, the eikosograms of Figures 6(a) and (b) give visual
proof of the following results:

YUX|Z and Y 1Z|X together = YIUX and YIZ but
YI1X|Z and Y1 Z|X together #+ X1z

It should come as no surprise that if, in addition to the premises above, we also have X Il 7, then it will follow that Y,
X, and Z are mutually, or completely, independent.



2.1 A notation for complete independence

Expressing this last result in terms of Dawid’s (1979) notation is difficult because the symbol L as used there is a
binary operator, although on possibly vector valued operands. For example, the expression X 1Y 1l Z, which might
mistakenly suggest the mutual independence of all three variables, can be meaningfully interpreted only as X 1L Y and
Y AL Z. A suggestive and compact notation for mutual independence can be had by allowing L as an operator on two
or more symmetrically treated variables whose meaning is taken to be as follows:

L(Y,X) means YIX
IL(Y,X)|Z means YIX|Z
1(Y,X,7Z) means IL(Y,X)|Z, 1(Y,2Z)|X, IL(X,2Z)|y, IL(Y,X), I(Y,Z), and IL(X,Z) all hold
or in the original (infix) notation
YIX|Z YIZ|X, XIZ|Y, YIX, YIZ, and X1 Z all hold

When only the binary operation is called for, either the prefix or infix notation will be used depending on which seems
clearer in the context.

As always, conditioning variables or events appear to the right of a vertical line (if more than one variable is
conditioned on, as in Dawid (1979), they can appear listed separately within parentheses after the vertical bar). The
prefix notation 1L(Y, - - -, Z) is intended to indicate the complete probabilistic independence of its arguments which,
as with pairwise independence, can occur for its arguments either unconditionally or conditionally given other random
variables or events. So,

LY, X, Z)|W means 1(V,X
1LY, X
all hold

IN(Z, W), LY, 2)[(X, W), LL(X,Z)|(Y,W),
)W, ALY, Z)|W, and IL(X,Z)|W

For four variables the recursive definition is

1LY, X,Z,W) meansthat (Y, X, Z)|W, IL(Y,X,W)|Z, IL(Y,Z,W)|X, IL(X,Z, W)Y,
1LY, X,7), IL(Y,X,W), IL(Y,Z, W), and 1(X,Z, W),
all hold.

The extension of the notation to more than four variables is entirely analogous. J_ (Y, ---, Z) means that at least one
of the independencies on the right hand side does not hold.

Given the number of independencies that are entailed, the phrase complete independence seems more evocative of
the strength of the assertion than does the traditional mutual independence.

We are now in a position to succinctly express the result on complete independence which was suggested (but not
proved) by Figure 6, namely:

AL(Y,X,Z) < 1(Y,X)|Z, IL(Y,Z)|X, and IL(X,Z) 1)

3 Exploringindependencefor threevariables

A collection of three or more random variables can have a variety of different independencies of potential interest
without ever achieving complete independence. But not all combinations of pairwise independencies (conditional and
unconditional) are possible. In this section we enumerate this set of possibilities by looking at the different ways in
which flat regions describe independence with three variables.

Every flat region corresponds to an independency of some sort; absence of a flat region means a dependence.
Flat regions which cross all values of the conditioning variables either as a single flat or as a sequence of plateaus
(one plateau for each value of one of the conditioning variables) correspond to some independence of variables either
unconditionally or conditionally. From these features, it is possible to see at once what the independence relations are.
Moreover, it will be possible to use the eikosograms to make apparent a number of theoretical results.



With three variables, there are six different possible three-way eikosograms: each of the three variables can appear
on the vertical and for each of these the order of the remaining two variables on the horizontal axis can be interchanged.
In general there will be n! different n-way eikosograms for n variables. Because we are looking for flat areas however,
if care is taken to recognize that the discontiguous flats of Figure 5(c) would actually appear as contiguous were the
horizontal variables interchanged as in Figure 5(d), then it is sufficient to draw only three (more generally n) of the
possible eikosograms.

For three variables, when interest lies in examining conditional independence of two variables given a third, only
three possible configurations of a three way eikosogram are of interest: a “full-flat” which means a single flat across
all vertical bars; a multi-flat where for each value of one conditioning variable a separate plateau crosses all values of
the other; or the absence of either of these, a “no-flat”. These possibilities have been shown for three binary variables:
a “full-flat” in Figure 6 (a), a multi-flat in Figures 5(c) or (d), and a ‘no-flat” in Figures 5(a) or (b).

For simplicity of exposition, it will be convenient to have all three variables be binary. These possibilities are now
more precisely described as a ‘4-flat” a ‘2 x 2 flat’ and a ‘no-flat’, respectively. Unless otherwise indicated, the results
which follow hold for any number of categories for each of the three variables.

For any triple of variables Y, X, and Z, only three eikosograms need be considered; the canonical arrangements
will be: Y vs. X&Z, Z vs. X&Y', and X vs. Z&Y . Treating the variables symmetrically, it turns out that only four
collections of flat configurations are possible. These are now examined in turn.

3.1 Case 1: All three diagrams are flat.

This is the case of complete independence, 1L (Y, X, Z). An example is given in Figure 7 (numerical values for this

X&Z X&Y Z&Y

Figure 7: Complete independence: any two 4-flats imply the third is a 4-flat; three 4-flats if and only if Y X and Z are completely
independent. Left to right: (a) Y vs X&Z, (b) Z vs X&Y, and (c) X vs Z&Y.

and other examples are recorded in a table in the Appendix). The three variables are completely independent iff all
three diagrams are flat. As indicated in the caption, if only two of the three eikosograms are produced and both show
a 4-flat, then there is no need to produce the third, for it too must be a 4-flat.

Figure 7(a) shows Y 1L X |Z and Y 1L Z| X and, as a consequence, that Y Il X and Y 1L Z; similar results hold from
Figures 7(b) and (c). That two 4-flats imply the third is a restatement of the result given by equation number (1);
Figure 7(a) provides the first two results of the right hand side of (1), Figure 7(b) shows the third holds as well. It
follows then that 1L (Y, X, Z) and so the third eikosogram must be flat as well.

In the case of complete independence, the pairwise independence relations are apparent (via the water container
metaphor) from the three-way eikosograms. When complete independence does not hold, the marginal relationship
between any pair of variables will need to be examined directly from the relevant two-way eikosogram.

3.2 Case 2: one 4-flat, two 2 x 2-flats

As seen in Figure 6 and in more detail here again in Figure 8, it is possible to observe a single 4-flat without there being
complete independence between the variables. The two conditional independencies given by a 4-flat imply that the
vertical variable (in Figure 8 this is X) is independent of every other variable both conditionally and unconditionally.
The water container metaphor makes this plain and easily extends the result to any number of variables. In Figure 8
all conditional and marginal independencies are immediate consequences of the 4-flat.

For three variables, any independence between the remaining two variables, that is either Y 1L Z| X or Y 1L Z, will
imply complete independence between those three variables or 1L(Y, X, Z). (This is true for four or more variables



Figure 8: One 4-flat and two 2 x 2-flats.

provided the additional independence involves only the three named variables.) That is, both of the other three-way
eikosograms must be 4-flats as well. The result is again easily seen from the eikosograms of Figure 8 via the water
container metaphor. Symbolically,

XUZ|Y, X1Y|Z, andeither Y1 Z|X or Y17 —= I(YV,X,7)

It follows from the above that if a 4-flat is observed in one three-way eikosogram, then the others are either both
4-flats (Case 1), or both 2 x 2 flats (Case 2) and that it is impossible for all three-way eikosograms to be 2 x 2 flats.

It is possible, however, to have only two 2 x 2-flats with the third eikosogram containing no flats whatsoever; this
is Case 3.

3.3 Case 3: two 2 x 2-flats, one no-flat

This happens when there is only one conditional-independence. Figure 9 shows an example in which the first and third

Figure 9: Two 2 x 2-flats, one no-flat.

eikosograms in the top row are each a 2 x 2 flat representing a single conditional independence, namely Y 1L X'|Z. No
other independence, conditional or marginal appears to exist.
More formally,

YUX|Z and YL Z|X = VL7 @)



This result is easily proven via the eikosograms by recalling that the marginal eikosogram of Y versus 7 is had from
that of Y versus X and Z simply by removing the barriers between the X's separately for each value of Z. As in
Figure 9, when Y L X| Z there would be no effect on the corresponding water levelsandso Y L Z if Y /L Z| X.

By symmetry (simply exchanging X and Y’) or from the corresponding eikosogram it also follows that

YUX|Z and ZUX|Y = X)L Z

which explains the X vs Z marginal dependency observed.
The third dependency, namely Y L X, does not always hold unless, as in this case, Z is binary. Then, when Z is
binary (either or both of Y and Z can have more than two categories), the following must hold

YAX|Z, YLZIX and ZLX|Y = VIX. ©)

This explains the marginal dependence of Y and X seen in Figure 9. When (3) holds, a number of other results also
follow. These are discussed later and the algebraic proof for the binary case is given in the Appendix.

That the result (3) does not hold when Z is not binary, is shown by the counter-example given by the three-way
eikosogram of Figure 10 The numerical values are given in the Appendix.

Y&Z X&Z Z&X X=y X=n

Figure 10: When Z isnot binary Y L X|Z , YU Z|X and ZY X|Y ==Y L X. Lefttoright: (a) X YL Z|Y and X 1L Y]Z,
(b) Again Y ILX|Z,Y =y darker when X =y than when X = n, (c) Rearrange (b) to group firstby X =y then X = n, and
finally (d) Remove the Z barriers in (c) to level outat Y 1l X .

Observing one conditional independence between two variables, say Y 1L X |Z, says nothing about any other con-
ditional independence nor about any marginal independence. Any one of Cases 1 through 3 could have occured. How-
ever if no other conditional independence exists between the three variables, then it follows that the two conditionally
independent variables Y and Z are each marginally dependent upon the conditioning variable Z. If, additionally, the
conditioning variable is binary, then no marginal independence will hold. If Z is not binary, then Y and X might or
might not be independent.

3.4 Case 4: three no-flats

It is possible for there to be no flat, neither any 4-flat nor any 2 x 2 flat, in any of the three-way eikosograms. Contrary
to what might at first seem to be meant by this, it is not the case that this means that the three variables are completely
dependent. Figure 11 provides an example where it is the case that no independence relationship exists between any
variables, conditionally or unconditionally.

Like complete independence, the complete dependence illustrated in Figure 11 is everywhere between all the
variables. For two variables, complete dependence is simply unconditional pairwise dependence and can be indicated
symbolically by the symbol for the absence of independence: JL. For three or more variables, something different is
needed as JL (Y, - - -, Z) does not preclude the possibilitiy of independence structure existing amongst the arguments,
only that it is not complete.

We propose to use n-ary symmetric operator X (as produced by the Latex symbol \Joi n) to indicate complete
dependency; its negation )4 will indicate the absence of complete dependence. The definition of X (Y, - - -, 7) follows
the same pattern as the definition of IL(Y,---, Z) except that L is replaced everywhere by X. For the n-ary case with
n > 3, it should be clear that

(Y, Z) =W (Y-, Z), and X (V,---,Z) = U (Y,---, %)
but W (V,---, 2) F= UL(Y,---,Z) and (Y-, Z) 5> X (Y-, 7).



Figure 11: No flats. Complete dependence: X (Y, X, Z)

When n = 2, the implications in the second line above hold — Y IL X is the same as Y b4 X and Y JL X the same as
Y X X. This notation will be most useful when four and more variables are involved and different kinds of complete
dependencies and complete independencies, conditional and unconditional, can be distinguished.

Figure 12 gives an example where there are no flats in the three-way eikosograms, indicating no conditionally
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Figure 12: No flats. No complete dependence b (Y, X, Z). One marginal independence. No other independence

independent distribution for any two variables given the third. Yet there is a single marginal dependence, namely
Z 1. X as can be seen from the relevant flats in the second row of Figure 12. This example also has a conditional
independence for one value of Z, namely Y 1L X|{Z = n}; this is not necessary to produce the observed marginal
independence but rather included to show that further independencies exist and are of possible interest besides those
associated with conditioning on every value of a random variable.

Figure 13 illustrates the case where no conditional independence exists but two marginal independencies do. This
can appear surprising when encountered for the first time symbolically as in

Y Zand ZILX == 1(Y, X, 7).

However, the possibility is clear from the eikosograms of Figure 13.
Figure 14 shows the case where all three marginal independencies occur but no other independence structure exists.
To those just learning about probability this result expressed symbolically as

Y1 Zand ZILX and Y ILX == IL(Y, X, Z).

10
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Figure 13: No flats. Two marginal independencies. No other independence

X&Z X&Y Z&Y
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Figure 14: No flats. Three marginal independencies. No other independence

is perhaps the most counter-intuitive. The eikosograms of Figure 14 not only demonstrate the possibility but also give
some indication as to how it can occur.

4 Statistical models

A number of different statistical models have been suggested to meaningfully describe the joint distribution of cate-
gorical random variables. Two classes of models which are currently advocated are graph-based models, especially
graphical models, and log-linear models. The first of these is motivated largely by appeal to a graph theoretical repre-
sentation of the joint distribution; the second is motivated by analogy to the analysis of variance style models which
grew out of classic experimental design.

4.1 Graph-based models

In graph-based models, interest lies predominantly in determination of independencies that exist between the variables
involved. Intuition is derived from a graph where variables are represented as nodes and dependencies as the arcs
which link the nodes. — presence of an arc indicates a given kind of pairwise dependence, absence the corresponding
pairwise independence.

Figure 15 shows all such graphs for three variables (modulo permutation of the variables), each a different model
for the joint distribution. The visual emphasis which these graphs give to probabilistic dependence over independence

11
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Figure 15: Dependence graphs: A summary of the joint distribution of the variables which visually emphasizes some kind of
pairwise (possibly conditional) dependency. Nodes are variables and an edge between variables a dependency; no edge indicates
an independence of some kind.

suggests the name dependence graphs. This visual emphasis has the models corresponding to Figures 15(a)-(d) appear
to increase in complexity from left to right as more arcs are added to the diagram.

When one considers that independence between two variables is an assertion which requires testing, then left
to right the models actually decrease in the number of assertions made about the joint distribution. The increased
simplicity of the model dependence structure is had only by increased complexity of the independence structure
imposed.

The independence graphs of Figure 16 instead match visual complexity to that of the independence assertions

¥ ¥ ¥ ¥

e e . e
o0 e—ie e ° ° °
X E X E X E X Z

(& (B o] (=)

Figure 16: Independencegraphs: The complement of those of Figure 15. Here the arcs do not quite connect and are blunted as if
keeping the nodes/variables apart to emphasize the barrier of independence rather than the join of dependence.

made by the model they represent. The arcs are shown blunted and not quite reaching the nodes so as to suggest
independence denying or barring the connection of dependence; for mnemonic convenience the blunted arcs will be
called ‘I -bars’. Figures 16 (a)-(d) describe the same models as those of Figures 15(a)-(d), respectively. Although
graph-based modellers at present make use only of dependence graphs, both visual representations need to be kept in
mind when modelling: the dependence graph Figure 15 indicates the simplicity of the model, while its counterpart
Figure 16 shows the complexity of the model’s assumptions. Whenever one graph is sparsely connected, it will be the
easier of the two to comprehend and suggests that one graph might be preferable to the other in some situations.

Using the graphs of Figure 15, it is easy to visually associate complete independence, 1L (Y, X, Z), with (a) and
complete dependence, X (Y, X, Z), with (d); but this would be a mistake. What can be asserted, or not, depends upon
the kind of dependence which an arc in Figure 15 represents. Given the dependence type of the arc, the eikosograms
of the last section can now be put to good use to better understand what each model in Figure 15 has to say about the
underlying distribution.

41.1 Conditional dependence graphs

The original (Darroch, et al, 1980) and most common (e.g. Whittaker, 1990, Lauritzen, 1996, Cox and Wermuth,
1996) graphical model is that where the presence of an arc between two nodes in any graph in Figure 15 means that
the two variables are conditionally dependent given all other variables in the graph, the absence means conditional in-
dependence. These models were first introduced (Darroch, et al, 1980) as a subset of the hierarchical log-linear models
and have seen much use in artificial intelligence programs — first for the propagation of uncertainty in expert systems
(e.g. Lauritzen and Spiegelhalter, 1988) in sparsely connected graphs and now for some knowledge representation
applications in data mining.

The dependence graph becomes a conditional dependence graph and the independence graph a conditional inde-
pendence graph. The former has traditionally been called a conditional independence, rather than dependence, graph
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(e.g. Whittaker, 1990) largely because only this choice of display has been used for graph-based modelling. Given
its visual emphasis, the traditional naming seems misleading and better suited to graph representations like those of
Figure 16. Cox and Wermuth (1996, p. 30) use the name concentration graph although this too seems an unfortu-
nate choice based as it is on appeal to the concentration matrix (inverse covariance matrix) of a multivariate normal
distribution for its conditional independence interpretations — absent the multivariate normal joint distribution and the
concentration matrix interpretation becomes focused on the presence or absence of linear conditional dependence for
which the term ‘concentration graph’ might better be reserved (see Cox and Wermuth, 1996, pp. 63-69).

Because flats are the visual manifestation of independence in an eikosogram, the conditional independence graphs
are easily matched to characteristics of an eikosogram. Each | -bar of a conditional independence graph in Figure 16
marks the presence of a 2 x 2 flat in each of two three-way eikosograms, namely those having one of the two variables
involved as the vertical variable. A “V’ configuration, as for example Y to X to Z in Figure 16(b), indicates a 4-flat
in the corresponding three-way eikosogram when X, the variable at the point of the “V’, is the vertical variable of the
eikosogram. As a consequence marginal independence will hold as well.

4.1.2 Marginal dependence graphs

For model development, it can be argued that marginal dependence or independence of two variables is relatively easy
to think about because the other variables are essentially ignored by the marginalization. Certainly marginal pairwise
independence helps model interpretation afterwards. In either case, having the arcs of Figure 15 indicate marginal
dependence (i.e. unconditional dependence) provides a help to understanding the joint distribution of the variables.

With this interpretation, each dependence graph of Figure 15 is now a marginal dependence graph and each
independence graph of Figure 16 a marginal independence graph. Cox and Wermuth (1996, p. 30) call the former
a covariance graph even though the motivation for associating zero covariance with independence comes from their
identity in the case of multivariate normal random variables. Again, the idea of covariance is much too restrictive to
meaningfully describe a graph whose arcs represent marginal dependencies in an arbitrary joint distribution; better to
use the longer but accurate ‘marginal dependence graph’ and reserve covariance graph for those situations when linear
dependence (or not) is being shown.

The | -bars of the marginal independence graph now mark the fact that either marginal two-way eikosogram for
the pair involved is flat; it says nothing about the flatness of any three-way eikosogram. The existence of a “V’ in the
marginal independence diagram is not as strong as in a conditional independence diagram and says only that both sets
of two-way eikosograms are flat.

Because the arcs (or | -bars) of a marginal dependence (independence) graph are determined entirely from the two
variables involved, unlike their conditional counterparts, marginal realtionship graphs can be built up incrementally
adding variables as they become of interest or available. Introducing a new variable in a conditional graph affects
every pairwise relationship in the graph —all arcs (and | -bars) would need to be re-determined.

4.1.3 Inability of either graph-based model to distinguish cases.

As has already been noted, neither graph is intended to show independence relations involving single events. An
example of some practical import would be the conditional independence of variables for a particular value of a third,
e.g. Y L X |{Z = n} as was built into the eikosograms of Figure 12. If for example Y represents survival, X a medical
treatment and 7 the patient’s sex, then it would be important to know, for example, that the treatment was ineffective
for females, however effective it might have been for males. While visually clear in an eikosogram (e.g. Figure 12)
this would be completely obscured in a conditional dependence graph. Independencies which occur only for particular
values of the conditioning variable fall outside the domain of these models.

When examing the various possibilities of independence amongst three variables which were outlined in Section
3, the two types of graph-based models match cases with varying success. Figure 17 shows the difficulties in going
from either (conditional or marginal) graph-based model to the corresponding histograms.

Reading across the third row, we see that the conditional independence graphs successfully match only the first two
cases corresponding to the eikosograms of Figures 7 and 8. While there is a match on Cases 3 as well, this corresponds
to two separate independence structures which are indistinguishable from one another via the graphical model. The
match is especially bad for the fourth graph. There one graph covers four separate independence structures which
expands to eight when all possible combinations of the three variables is considered!
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Figure 17: Matching graph-based models to eikosogram cases.

For the marginal graphs, the match up is even worse; each graph corresponds to at least two possible sets of
independence structures.

4.1.4 Combined marginal and conditional dependence graphs

Cox and Wermuth (1996) suggest using dashed lines between variables to indicate marginal pairwise dependence and
solid lines to indicate conditional dependence. However they use these different line styles only to distinguish the
marginal dependence graph from the conditional dependence graph even though the different line styles would permit
both graphs to be merged into one. For three variables the combined graph will capture and display every possible
variable independence structure.

The eikosograms of Figures 7 to 14 are now each matched by either one of two combined graph representations —
one being the combined dependence graphs of Figure 18, the other being the combined independence graphs of Figure
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Figure 18: Combined dependence graphs: First row: (a) Case 1 of no dependencies as in the eikosgrams of Figure 7, (b) Case 2
with one marginal and corresponding conditional dependency as in Figure 8, (c) Case 3 as in Figure 9, (d) Case 3 but as in Figure
10 where Z must have more than two categories; Second row: The four possibilities for all conditional dependencies of Case 4,
(e) All marginal and conditional dependencies as in Figure 11, (f) Two marginal dependencies as in Figure 12, (g) One marginal
dependency as in Figure 13, (h) No marginal dependencies as in Figure 14.

19. Dashed arcs (I -bars) represent marginal dependence (independence), solid arcs (I -bars) conditional dependence
(independence); arcs are now curved with the marginal ones on the inside of the triangle.
As before, the graphs of Figure 18 and Figure 19 are complementary.
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Figure 19: Combined independence graphs: First row: (a) Case 1, All marginal and conditional independencies as in the eikos-
grams of Figure 7, (b) Case 2 with two marginal and corresponding conditional independency pairings as in Figure 8, (c) Case 3
with a single conditional independency as in Figure 9, (d) Case 3 with both one conditional and one marginal independency as
in Figure 10, Z must have more than two categories; Second row: The four possibilities for no conditional independence of Case
4, (e) No additional marginal independencies as in Figure 11, (f) One marginal independency as in Figure 12, (g) Two marginal
independencies as in Figure 13, (h) Three marginal independenciesas in Figure 14.

4.2 Log-linear models

Log linear models are perhaps the most common statistical model for contingency tables. The model is expressed in
terms of the natural logarithm of the joint probability of all variables and u-terms representing anova style additive
effects (overall, main, two-way and three-way interaction). For three categorical variables the model has p;;;, =
PrY =y, X =2;,Z =z)fori=1,...I,j=1,...J,and k= 1,...K, and

log(pijr) = u + uy () + ux(j) + Uz k) + Uy x(ij) + Uy z(ik) + Ux2Z(jk) + VY X Z(ijk)-

Being overparameterized wrt to the u-terms, the ‘usual constraints’ imposed on the u-terms are that the sum of any
u-term over any one of its indices is zero (e.g. see Fienberg, 1977).

Hierarchical log-linear models are those for which a zero low-order interaction (or main) term implies that all
higher order terms involving the same variables are also zero. For example, the log-linear model having uy x (;;) = 0
for all  and j but uy x z(;;x) # 0 for some 4, j and & is not hierarchical. Non-hierarchical models are generally
difficult to interpret and are not used for that reason (computationally, they can be more difficult to fit as well).

Hierarchical log-linear models include the graphical models (i.e. conditional dependence graph based models) as
a proper subset. Graphical models are identified with setting to zero different two way u-terms (and all higher, being
hierarchical); the result is conditional independence between those variables which define the two way interactions
(given all others in the model). A model which has all three way and higher order terms zero but no two way terms
zero is an example of a hierarchical non-graphical log-linear model.

Conditional independence of two variables given all other variables in the model and complete independence of
variables can be expressed by setting relevant u-terms to zero. Because marginalization requires summation over
exp(log(pi;r)), there is no similarly simple relationship between setting u-terms to zero and marginal independence
(absent conditional independence); the same is true for conditional independence given a proper subset of the remain-
ing variables.

Hierarchical models which are non-graphical can give insight into the nature of the dependence as opposed to the
independence. For three variables the only non-graphical hierarchical model has uy xz(;;x) = 0 for all 4, j and &
but no other u-term is everywhere zero. While asserting nothing about independence, the zero three way interaction
ensures some consistency in the conditional dependencies. Figure 20 shows three examples where u ;. (;;x) = 0. In
the 2 x 2 x 2 case, the conditional dependencies have the same direction whatever the value of the third variable. The
third example is graphical in that a conditional independence also exists.

Log-linear models are also capable of expressing a conditional independence for particular events. For three
variables, if say uy x(ij) = uy xz(ijx) Only for k = 1 say, thenthe Y IL X' [{Z = z; }. Only if equality holds for all &,
in which case the usual constraints force equality to zero as well, will Y 1L X | Z.

Like the graphical models, a single log-linear model (hierarchical or not) does not distinguish the different pos-
sibilities of Cases 3 and 4. Unlike the individual graph-based methods, log-linear models can handle conditional
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Figure 20: Three examples where uy x ;(;;x) = 0 for all 4, j, k.

independence given single events and will not be mute about the nature of the dependencies.

5 Theoremsfor threevariablesfrom doubly combined graphs

Several theoretical results are either directly apparent from the eikosograms or can be proven by algebraically matching
the relevant visual characteristics. The combined dependence and independence graphs for three variables suggest
a number of fundamental relationships which underlie the graphs of Figures 18 and 19. These two visual displays,
eikosograms and graphs, can now be worked together to prove and illustrate a number of theorems on the independence
relations between three variables.

The complementarity of the dependence and independence graphs means that the two can be put together on the
same graph to produce a complete graph showing every dependence as an arc and every independence as an | -bar.
Using different line styles, solid for conditional and dashed for marginal, allows the two complete graphs (one dashed,
one solid) to be put together as well. Figure 21 shows the doubly combined graphs which result from putting together
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Figure 21: Doubly combined graphs: Putting Figures 18 and 19 together produces doubly complete graphs which show every
dependence and every independence explicitly.

the graphs of Figures 18 and 19. The result is a doubly complete graph which expresses all of the independence and
dependence structures explicitly in the one display.

Each graph in Figure 21 provides an easily interpreted graph description for all the eikosograms of that case from
Section 3. Independencies, being straight-lined | -bars in the graph suggest corresponding flats in an eikosogram; de-
pendencies as curves in the graph visually suggest non-flats in an eikosogram. Three way eikosograms (i.e. conditional
ones) are built from following the solid lines, two way (i.e. marginal eikosgrams) follow the dashed lines.

Knowing that the goal is to produce a complete doubly combined graph, the components can be used to assert
what is known about the independence relations. For example, the incomplete graph of Figure 22(a) is interpreted
as asserting only that Y and Z are conditionally dependent given X. Because no other relationship (dependence or
independence) appears in Figure 22(a), no more than what is seen has been asserted — i.e. nothing is said for example
about the marginal relationship of Y and Z nor about the relationship, conditional or marginal, between Y and X
or between X and Z. Similarly, Figure 22(b) asserts only that X Il Z and expresses no information about any other
relationship; any one of the graphs (a), (b), (f), (g), or (h) of Figure 21 would correspond to Figure 22(b).

This interpretation provides a means of visually expressing, and even proving, results on the independence of three
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Figure 22: Graphically asserting pairwise relations. No connection/I -bar means no statement about the pairwise relationship
while connections and | -bars mean the same as before. (a) Y IL Z| X, other (in)dependencies may or may not exist, (b) X 1L 7,
other (in)dependencies may or may not exist, and (c) A graphical statement of the theorem Y 1L X'|Z and Y L X is sufficient to

produce the structure seen in Case 3, Figures 9 and 21(c).

variables. Figure 22(c), for example, provides a visual statement of a theorem:

YUX|Z and YUX = ZLY, ZYX, ZULY|X, and ZJ X|Y.

5.1 Flat water theorems

Theorems such as this can be built up from smaller, less complex results. The most fundamental of these are what might
mnemonically be called “flat water” theorems because their proof follows directly from the water barrier metaphor
when the water is the same level, or flat, across the barrier. These are summarized graphically in Figure 5.1.

Label Graph representation Symbolically Proof
o e YIUX|Z and YIZ|X
Ry
LN DD | = vax ad vz w
. L L) ]

. . YIX|Z and Y1Z & :
FW2 j“‘,‘y i '\ — YJ.LZ|X. w

Figure 23: Flat water theorems.

The proofs of these two theorems follow directly from examining the relevant eikosograms (as shown in the third
column of Figure 5.1) and applying the water container metaphor for marginalization - beginning with flat water can
only yield flat water. These results hold however many categories each of the three variables might have.

The leftmost graphical relation of Figure 24 (i.e. FWC-1) shows a symmetry theorem which can be proven simply

FWC-1 FWC-2
of 4.‘; <=> : i \. .‘I\—‘:‘; => Of\;

YIUX, YIZ = YIX|ZadYIZ|X
YIUX|Z and YIZ <= YIX and YIZ|X
and X 1LZ|Y (or 1L(Y, X, Z))

Figure 24: Immediate corollaries of the flat-water theorems.
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by appeal to the graphical statements of the flat water theorems. The right figure is a rotational symmetry theorem
proven simply by repeated application of FW2. Together these show that complete independence between three
variables holds iff a complete graph whose edges are | -bars can be formed, of which at least one edge is a conditional
| -bar.

Some other simple but fundamental results can also be proven entirely by appealing to the graphs. These are
summarized in Figure 25. Knowing that a doubly combined graph cannot have both an | -bar and an arc of the same

Label Graph representation Symbolically
g ] YUX|Z and YU Z|IX
FWC-3 f\ = o Yyx
L] L ] L J
K] YULX and YU Z
FWC-4 LD —YUX|Z
L) ‘e L]
® YUX|Z and YU Z
FWC-S 7 oD = YUX|Z
L] » L ]
g (] ; YUX|Z and YUX
wee g2 > = YUZIX ad YUZ
L 4 [} . *
- YUX|Z and YUIX
FWC-7 [ = = YU ZIX
L ] L ]

Figure 25: Corollaries of the flat-water theorems via proof by contradiction.

type (conditional or marginal; solid or dashed) between two nodes, these results follow from the flat water theorems
via proof by contradiction.

For example, FWC-3 follows by assuming to the contrary that a marginal independence is the consequence. But
FW-2 asserts that the conditional dependence seen in the premise of FWC-3 must be therefore be a conditional inde-
pendence — a contradiction.

The corollary FWC-4 is of especial statistical interest. Label the nodes with 7 at the bottom left, X at the top,
and Y at the bottom right and think of X as an experimental treatment and Y as a response and Z being of little
interest. Then if Z is known, by blocking on its values, we can assure that the treatment is marginally independent of
the blocking variable Z. Consequently observing a marginal dependence between Y and X means that a dependence
will be observed conditionally as well. If Z is not known, then the act of randomly allocating the treatment ensures
that X and Z are marginally independent and so observing the marginal dependence (which is all that is possible to
observe, since Z is not known) guarantees that a conditional independence holds as well. Note that seeing a marginal
independence between response and treatment guarantees nothing about the existence of a conditional independence.
More can be said on the statistical interpretation of these theorems and they provide interesting starting points for
discussion.

From these few fundamental theorems, a number of results follow. The theorem of Figure 22 follows from twice
applying FWC-6. Figure 26 illustrates a few other theorems similarly proved. For example, Figure 26(a) indicates that
although three variables are pairwise independent, should any two be conditionally dependent given the third, then
every pair is conditionally dependent given the remaining variable. The remaining Figures 26(b)-(d) can be similarly
interpreted.

Together these consequences of the flatwater theorems are sufficient to enumerate almost all of the independence
structures seen in the eikosograms of Section 3 and summarized in the doubly complete graphs of Figure 21. It only
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Figure 26: Some further consequences of the flat-water theorems provable via the graphs.

remains to show that the independence structure given by Figure 21 (d) is not possible when the conditioning variable
is binary.

5.2 Rubber wishbone results when the connecting variable is binary

Binary variables are ubiquitous — male and female, treatment-A and treatment-B, and so on. In the case where at least
one variable is binary (the other two can have any number of categories > 2), a number of other results can be shown
to hold which do not hold otherwise. The results require that the dependence/independence structure is ‘wishbone
shaped” with the binary variate appearing at the join of the wishbone.

The fundamental result is a rubber wishbone theorem which is stated graphically and symbolically in Figure 27.
Its proof is given in the Appendix. The graphical representation of the conditions of the theorem (left hand of the

Graph representation Symbolically Proof
. Y binary: See Appendix.
=> YUX|Z, YU Z|IXandZILX
b---l . _* = ZYX|Y.

Figure 27: Rubber wishbone theorem holds for binary Y. It does not hold if Y has more than two values.

graphical representation in Figure 27) look like a wishbone where each dependency is identified with a bone and the
independency appears to be pushing the bones apart.

In the case of Figure 27 the dependencies are conditional and the independency is unconditional but this need not
be the case. Figure 28 shows six results which are equivalent in the sense that if any one of these theorems hold, then

L) L] L)
1 '
bl = IN = N =
LN Gi---e - beocle N
YUX|Z, YL Z X, andZLLX YUX, YUY ZandZIL X YUX|Z,YYL ZandZLLX
= ZY X|Y. = ZJ X|Y. = ZJ X|Y.
L ] x L ] ' L]
(= Ao AN
—i v e o —Te 7 e e « e
YUX|Z,YULZX,andZLX|Y YUX, YUY ZandZUX|Y YUX|Z, YL ZandZLLX|Y
= 7Yy X. = ZJ X. = ZJ X.

Figure 28: The rubber wishbone: these several variations of rubber wishbone results (binary Y') are equivalent in the
sense that if any one of these hold, they all hold. The equivalencies are easily proved graphically using flat-water
results.

they must all hold. Each can be proved graphically to follow from any one of the others.

The name of the theorem is meant to present an image of its content. Choose any of the equivalent statements
in Figure 28. The nature of the theorem is that: if a wishbone shape of dependencies holds on three variables and
the variable at the join is binary, then this wishbone cannot be “pulled apart’ in the sense of having both conditional
and marginal independences simultaneously hold between the two end variables. If one pulls at the wishbone’s ends
by inserting a conditional independence, then a marginal dependence brings the two ends back together; pull at the
ends by inserting a marginal independence and a conditional dependence brings the two ends back together — it is as
if the wishbone were made of rubber. This holds no matter which dependencies (conditional or marginal) define the
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wishbone shape. But, if the joining variable is not binary, then the wishbone is not rubber and can break in the sense
that both kinds of independences can exist simultaneously between the two end variables.

5.2.1 Someinferential consequences

The inferential consequences of the rubber wishbone results can be subtle and are perhaps best understood when the
variables are meaningful. A simple but general case of some import is that seen in Figure 29. There the explanatory

Confounder

F
Explanatory Response

Figure 29: Wishbone configuration between an explanatory variable of interest, a response variable and some con-
founding variable marginally associated with each of the other variables.

variable of interest is marginally independent of the response as might be observed when considering the variables
in some study. However, suppose there exists a confounding (sometimes sinisterly called ‘lurking’) variable which is
marginally associated with each of the response and the explanatory variable. The result is a wishbone shape.

Scientifically, it can be desirable that a marginal independence observed between the explanatory variable and the
response also hold when a third variable associated with both is taken into account — that is, conditionally on the third
the explanatory and response variate remain independent. The reason is that this introduces some simplification as
the explanatory variable is usually then discounted in terms of its ability to explain the response; other explanatory
variables are pursued instead. Of course when this is not the case, further investigation of the relationship between
explanatory variable and response conditional on the third variable is pursued.

If the confounding variable has more than two possible categories, then the conditional independence might or
might not hold between the explanatory and the response given the confounder. However, should the confounding
variable be binary, then the rubber wishbone dictates that the explanatory and response variables are necessarily
conditionally dependent.

A scenario where this consequence might be of concern is as follows. Suppose that the wishbone configuration
is obtained with a multi-category (> 2) background variable and further that the response and explanatory variable
are conditionally independent given the background variable. Scientifically, then, some simplification seems possible.
However, suppose that we combine categories of the confounding variable until the confounding variable is binary
and the wishbone structure is preserved (this is possible). Because the confounder is now binary, the explanatory and
response variables must be conditionally dependent and scientifically merit further investigation. Where independence
existed between the explanatory variable and the response both marginally and conditionally given the values of
the confounder the conditional independence can be destroyed simply by reducing the number of categories of the
confounder to two and the scientific investigation possibly turn in a different direction.

While combining categories mathematically changes the variable from what it was, it might not cause investigators
to substantively change its meaning in the context of a study. Imagine a study for each of the fictitious examples in
Figure 30.

Background Progranume Parents® Background
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Figure 30: Fictitious examples to consider some inferential consequences of the rubber wishbone theorem.

In the first example, a background variable (e.g. features of the patient’s prior hospitalization record) on patients in
a medical study is seen to exhibit the wishbone structure. If the background variable has more than two categories, then
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it may be that the conditionally on this variable the survival probabilities are independent of the different treatments
given in the study. The disturbing thing is that by reducing the background variable’s categories to two (preserving the
wishbone structure) will result in a conditional dependence which suggests the treatments might be effective (or not)
depending on which of two categories of background variable the patient belongs to. More time and effort will then be
spent on determining why this is the case when it may in fact be entirely an artifact of the rubber wishbone theorem.

In an experimental study, this problem can be avoided. Randomly allocating treatment values to patients ensures
that any background variable whose values are determined (though possibly unknown) prior to treatment are distributed
independently of the treatment variable and so the wishbone structure cannot occur. The difficulties remain where
random allocation is not possible, or not done.

The two remaining examples provide socio-economic contexts where studies are more likely to be observational
than experimental. The first imagines that there is no relationship between the sex of an applicant and their consequent
admission to university (a twist on the now classic Berkeley Graduate School admissions version of Simpson’s para-
dox). If, however the programme to which the application is made is considered then a wishbone structure can occur
and the consequent difficulty of the conditional relationship between sex and admission depending on the number of
programmes defined.

The last context supposes that a person’s income category does not depend on their ethnic background. Some
feature of their parents’ background (e.g. citizenship, education, ethnicity, urban/rural, etc.) could produce a wishbone
structure and consequently the possibility of introducing a conditional relationship between ethnicity and income
simply by forcing the parents background variable to be binary.

As these examples illustrate, the rubber wishbone results can be avoided by good statistical practice. Variables
whose values are known at the plan stage of the study can be made distributionally independent of the explanatory
(or treatment) variable by matching study units and so avoid the wishbone structure. Random allocation, if available,
will introduce the same independence between the treatment and unknown (but pre-determined) confounders. To this
practice it must be added that care needs to be taken in the construction of the number of categories which a potential
confounder takes and interpretations based on binary confounder variables be made with caution.

6 Concluding remarks

Exploring the independence possibilities of three variables is an important topic which merits solid treatment in intro-
ductory probability courses. Eikosograms can be used to assist that exploration and to help ground the understanding.
They provide a concrete basis for discussion without the necessity of a mathematical treatment. Other independence
structures (e.g. Markov process) could be given visual display via eikosograms as well.

Dawid’s notation (slightly extended to cover events and n-ary arguments) is well suited to describe the indepen-
dence features visible on the eikosograms. The flat water graphs which fall out of the flat water eikosograms provide
visual tools for formal reasoning about independence structures — again no symbolic representation is needed for all
but one proof. From the flat water theorems, the corollaries are so easily derived that they need never be committed to
memory. The nature of the dependence and any independence involving only events, as opposed to variables, will be
well represented by eikosograms but not at all by the graphs.

A deep understanding of these possibilities leads to deeper understanding of the structure of statistical models for
categorical data. Graphical models having sparse dependence graphs appear visually benign but contain a great deal of
independence assertions which are visually hidden; these are given explicit emphasis in independence graphs. Com-
bining both types of graphs gives more accurate visual description of the model involved. Lower order in/dependencies
(e.g. marginal) will be obscured in graphical and log-linear models (and in high order eikosograms, absent the lower
order ones).

For three variables the two kinds of in/dependencies given by solid and dashed edges are sufficient to graphically
represent all possibilities. For more than three variables, they will not be sufficient and the flat water graphs will not
apply without extension. It should be noted however that all of the three variable results hold when all are understood
to be conditional on any other set of variables (e.g. U, W, ... ) and so retain value in more complex situations. There
are extensions of the flat theorems that correspond to those of graphical models and isolated groups of nodes. In the
case of four and more variables, the notation of complete independence and complete dependence, marginally and
conditionally, could be used to simplify or possibly focus the description.

A deep understanding of even the case of three variables provides a base for understanding the consequences on
statistical inference of certain design decisions as noted in Section 5. This understanding could be put to good use in
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statistics courses which followed the probability course.

Acknowledgements

I am grateful to my colleagues Profs. Winston Cherry and Mary Thompson at Waterloo: to Winston Cherry for
discussions on eikosograms leading to this paper and to Mary Thompson for her careful reading and comments on an
earlier draft which helped improve the presentation.

Appendix

Parameter values for the figures

For three binary variables, the eikosograms are simply parameterized by eight letters a, b, ..., h as shown in the
diagram for Y vs X & Z incanonical form as shown in Figure 31. Following the canonical layout we have: Pr(X =

Figure 31: Parameter values for Y vs X & Z in canonical form: bar widths a b ¢ and d; bar heights e f g and h.

YV, Z=Y)=a,Pr(X=n,Z=y)=betc.and Pr(Y =y|X =y, Z=y)=¢, Pr(Y =y|X=n,Z=y) =,
etc.
The values for the Figures in the paper (where not available on the Figure itself) are given in Table 1.

Figure a b c d e f g h
5(a) 2/7 8135 1/7 12/35 | 4/5 1/2 3/10 7/10
5(b) 2/7 8135 17 12/35 | 4/5 12 35 15
5(c) 2/7 8135 17 12/35 | 4/5 12 45 12
6 2/7 8135 1/7 12/35 | 7/10 7/10 7/10 7/10
7 10/33 4/11 5/33 2/11 | 7/10 7/10 7/10 7/10
8 1/3 16 13 16 | 7/10 7/10 3/10 3/10
9 2/9 19 219 4/9 213 213 16 16
11 17 ur 37 217 3 213 U4 16
12 1/4 4 14 1/4 34 12 1A 14
13 1/3 16 13 1/6 23 12 56 16
14 1/6 13 1/6 1/3 16 2,3 56 13

Table 1: Parameter values for the figures: bar widths a b ¢ and d; bar heights e f g and h.

These parameters can also be expressed in terms of the usual contingency table notation:

a = po11 + P111 e = p111/a or eqUiVﬂlently piir1=aXxXe Poi1 = a X (1 — 6)
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b =poo1 + pro1 [ =Dpio1/b proi=bxf  poor=bx(1—F)
¢=poio+Ppiio ¢ = p1io/c prio=cxg poo=cx(l—g)
d = pooo + P1oo thmo/d pioo=d X h Pooo = d X (1—h)

Rubber wishbone theorem

Theorem: When Y is a binary random variable, Y L X|Z,Y L Z|X and X Z together imply X L Z|Y".
Proof: It will be more convenient in the proof to use the following notation notation:

a;p = P?‘(X = l‘j,Z: Zk) and €ijk = PT’(Y = yi|X = l‘j,Z: Zk)

foralli=1,...,I,7=1,....,Jand k = 1, ..., K representing the distinct values of the three variables ( = 2 and
J, K > 1). These values give the dimensions of the Y vs X & Z eikosogram — a ;s provide the bar widths and e; ;xS
the heights. All probabilities will be taken to be strictly between 0 and 1.

Y U X|Z means that for at least one j., j.. and k. with j. # j.., we have

€ijuke 7 €ijok, TOri=1,2. 4)

Similarly, Y )L Z| X means that for at least one 5, k¥’ and k" with k&’ # k", we have

eijipt £ eijpn fore=1,2. (5)
The third premise, X 1L Z implies that
Pr(X =x;|Z =2z,) = Pr(X ==z;|Z=z,) forall j,ki,ks
or ki Gika gopq)) Jy k1, ko (6)
Atky Atkso

where a ‘4’ subscript means summation over all values of that subscript.
The theorem is now proved by contradiction. Assuming that X 1L Z|Y holds as well implies that for all 4, j1, k1
and &,

PrX=z;|Y =y, Z=12p,) =Pr(X=2;|Y =y, Z = zx,)

ajlkleijlkl - a]1k262]1k2

Do €ijkiGiky D CijhaGika

—

€ijiky _ %irka D2j Cijki%iks -

Cijiks  Qjky D Cijkaliks

Together with equation (6) this means that

Cijiky ks Do Cijhy ik,

€ijiks  Qthy D ; €ijkalihs

the right hand side of which no longer depends on the value of j,. This means that for all 4, j, jo, k1, and ko we have

it i ) it st
ij1k1 — ijak1 or eqUIvaIentIy ij1k1 — ij1ka (8)
eij1k2 eij2k2 eij2k1 eij2k2
A binary Y is now put to use. For any I we have ey, = 1, so when ¢ = 2 we have ey, = 1 — ey forall 7, &
and from (8) we find that for all 54, j2, k1, and &,

e]‘jlkl — 61]1k2 (9)
61j2k1 61]2k2
and (1 - 61j1k1) — (1 - 61j1k2) (10)
(1= €15k, ) (1= €1jahs)
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Taking the value of ey;,x, from (9) and substituting it into (10) gives (after some algebraic manipulation) for all 7,
J2, k1, and ko

(€1jaks — €141ks) (€1j2ky — €1j2k,) =0 (11)

In particular, consider the case ji1 = jx, j2 = j«« and ko = k.. It follows from (4) that e1;, %, # e1;.,.%, and hence
from (11) that e1;,,x, = e1;,.% for all & or, equivalently, for all &

Cljeske

=1
€1j..k
Because of (8), it must be that
“Uke _ 1 forall k and forall ;. (12)
€15k
Choosing in one case k¥ = &’ and in another £ = k" gives
| = Sk _ Clike forall j

€1k €15k

or equivalently ey ;5 = ey~ for all j. Choosing j = j contradicts (5) and so proves the theorem. O
That the restriction to non-zero probabilities is immaterial can be seen as follows.

o If any marginal probability is zero, that category is removed and the proof follows as before.
o If a;is zero then because X 1L Z, either ay or a;4 is zero and the appropriate category removed.

o If, say, e1;,%, is zero then the line immediately preceding (7) holds for this j; but (7) itself does not.

In this case ey, is zero for all k& which either contradicts (5) and the theorem is proved or j’ cannot be this
value of j;. A similar argument shows that k. cannot be this value of k1. The proof proceeds with (7) exclusive
of those values of 7, 7, and & for which ¢;;, = 0.

That the theorem does not hold when I > 2 was shown by counter example in the text. The difficulty is that while
(9) holds for all 7 when the first subscript on e is i rather than 1, (10) does not. Instead (10) becomes

I-1 I-1
(L= iy €ijnky) _ (1= 30520 €ijaka)
I-1 - I-1
(1= 22ic1 €ijakn) (1= 20520 €ijaka)
which does not yield a factorization as in (11).

When I = J = K = 2, the notation of Table 1 can be used which considerably simplifies the proof. The proof of
the theorem then becomes suitable as a mathematical problem for undergraduates.

Values for the counter-example of Figure 10

Using the notation introduced in the rubber wishbone theorem, Figure 10 was produced with the following values
(varying the index j faster than k from left to right as in the leftmost eikosogram of Figure 10).

ek 1/3 1/3 1/3 1/3 3/5 3/5
aje: 15128  5/32  3/128  5/64  15/64  25/64
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