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Abstract

Diagrams convey information, some intended some not. A history of the information content of ringed diagrams
and their use by Euler and Venn is given. It is argued that for the purposes of teaching introductory probability, Venn
diagrams are either inappropriate or inferior to other diagrams. A diagram we call an eikosogram is shown to be
coincident with what is meant by probability and so visually introduces all the rules of probability including Bayes’
theorem and the product rule for independent events. Eikosograms clearly demonstrate unconditional and conditional
independence – both of events and of random variables. An approach to teaching probability via the eikosogram
and other more familiar diagrams is described. It is recommended that Venn diagrams no longer be used to teach
probability.

Keywords: Eikosograms, Euler diagrams, Venn diagrams, outcome trees, outcome diagrams, vesica piscis, ideograms,
history of probability, logic and probability, understanding conditional probability, probabilistic independence, con-
ditional independence.

1 Introduction

It is now commonplace to use Venn diagrams to explain the rules of probability. Indeed, nearly every introductory
treatment has come to rely on them. But this was not always the case. In his book Symbolic Logic Venn makes much
use of these diagrams, yet in his book on probability, The Logic of Chance, they appear nowhere at all! 1

A cursory review of some well known probability texts reveals that the first published use of these diagrams
in probability may have occurred as late as 1950 with the publication of Feller’s Theory of Probability (details are
given in the Appendix). Venn diagrams don’t seem to have been that much used in probability or, if used, that much
appreciated. For example, Gnedenko (1966), a student of Kolmogorov, used Venn diagrams in the third edition of
his text Theory of Probability but does not refer to them as such until the book’s next edition in 1968, and then only
as “so-called Venn diagrams”. Even by 1969, the published use of Venn diagrams for probability was by no means
common.

In more recent years, some authors of introductory probability texts have called just about any diagram which
marks regions in a plane a ‘Venn diagram’. Others have written that no diagram should be called a ‘Venn diagram’.
Dunham (1994), for example, claims that the Venn diagram was produced a century before Venn by Euler and so “If
justice is to be served, we should call this an ‘Euler diagram’.” This view is surprisingly commonplace though not
everywhere expressed as strongly as Dunham (1994 p. 262) who dismissively writes “Venn’s innovation [over Euler’s
diagrams] . . . might just as well have been discovered by a child with a crayon.” In both cases, the sense of what
constitutes a Venn diagram has been lost. In the first case, the Venn diagram is not up to the job and so is stretched
beyond its definition, while in the second case it is Euler’s diagram that has been stretched beyond its definition to
mistakenly include Venn’s innovative use.

In what follows, the position is taken that diagrams convey information and like statistical graphics need to be
carefully designed so as to convey the intended information and, ideally, no other. There is no all-purpose diagram;
rather diagrams need to be tailored to specific purposes.

1It is true that Venn’s probability book predates his symbolic logic book, however the diagrams only ever appeared in the latter book. This is
more interesting given that Venn uses the word ‘logic’ in the titles of both books and also that Venn’s symbolic logic used the numerical values of 1
and 0 to indicate true and false (i.e. certainty and impossibility).
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In the next section we take up this point in more detail and apply it to the ringed diagrams used both by Euler and
by Venn. Some history is given which demonstrates that these ringed diagrams were long in use before either Euler
or Venn and would have been familiar to both men. Euler and Venn each use the diagrams in different ways as an
aid to understanding logic. The diagrams have seen much use historically because they convey essentially the same
information, information which is useful in many contexts. The information they convey however is not that which is
most useful to teaching and understanding probability. The weaknesses of Venn diagrams for teaching probability are
discussed in Section 3.

In Section 4, we explore the use of the eikosogram, a diagram which we argue is ideally suited to understanding
probability. As with the ringed diagrams, the eikosogram is not a new diagram but it has not yet been put to its full
use in teaching probability. Section 4 develops and uses the diagram as one would in teaching probability. From it
the axioms of probability can be intuited as can conditional probability. Bayes’ theorem and the subtle concepts of
conditional and unconditional independence both of random variables and of events are direct consequences of, and
derivable from, eikosograms.

Section 5 shows how the eikosogram complements other diagrams, notably outcome trees and outcome diagrams,
to present a coordinated development of probability. The role of Venn diagrams, if it exists at all, is significantly
diminished. Section 6 wraps up with some concluding remarks.

2 On Diagrams and the Meaning of Venn Diagrams

Good diagrams clarify. Very good diagrams force the ideas upon the viewer. The best diagrams compellingly embody
the ideas themselves.

For example, the mathematical philosopher Ludwig Wittgenstein would have that the meaning of the symbolic
expression 3 � 4 is had only by the “ostensive definition” shown by the diagram of Figure 1. ‘What is 3 � 4?’ can
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Figure 1: Defining multiplication: This figure is the meaning of 3� 4.

exist as a question only because the diagram provides a schema for determining that 3 � 4 = 12. The proof of 3 � 4
= 12 is embodied within the definition of multiplication itself and that definition is established diagrammatically by a
“perspicuous representation” (e.g. see Wittgenstein (1964) p 66 #27, p. 139, #117 or Glock, 1996, pp. 226 ff., 274 ff.,
278 ff.).

Diagrams which provide ostensive definitions of fundamental mathematical concepts have a long history. In the
Meno dialogue, Plato has Socrates engage in conversation with an uneducated slave boy, asking him questions about
squares and triangles ultimately to arrive at the diagram in Figure 2. Although ignorant at the beginning of the dialogue,

Figure 2: Each small square has area 1. The inscribed square has area of 2 and hence sides of length
p
2.

the slave boy comes to realize that he does indeed know how to construct a square of area 2 (the dialogue actually

2



constructed a square of area 8, or one having sides of length 2
p
2). Not having realized this before, nor having been

told by anyone, Socrates concludes that the boy’s soul must have known this from before the boy was born. With some
work, the boy was able to recall this information through a series of questions. From this Socrates concludes that the
soul exists and is immortal.

The simpler explanation however is that Socrates led the boy to a diagram (familiar to Socrates) which clearly
shows a square of area 2. By showing the existence of the length

p
2, Figure 2 actually gives meaning to the concept

of
p
2.

Together, Figures 1 and 2 allow us to pose the question as to whether
p
2 is a rational number. If

p
2 were rational,

then it would be possible to draw the square of Figure 2 as a square of circles as in Figure 1, each side having number
of circles equal to the numerator of the proposed rational number. That

p
2 is not rational is essentially the same as

saying that this cannot be done. Dewdney (1999, pp. 28-29 ) gives a proof such as the ancient Greeks might have
constructed along these lines.

Diagrams can give concrete meaning to concepts which might otherwise remain abstract. Although not always
immediately intuitive, like Socrates’ guiding of the slave boy, they can be reasoned about until their meaning becomes
strikingly clear. Two examples of more interactive diagrams of this nature which one of us has produced are 1. an
animation which shows the Theorem of Pythagoras and implicitly its proof (Oldford, 2001) and 2. a three-dimensional
physical construction which gives meaning to the statistical concepts of confounding and the role of randomization in
establishing causation (Oldford, 1995). In both cases, the visual representation secures the understanding of otherwise
abstract concepts.

Figure 3: Venn’s diagrams.

Venn-like diagrams have a varied history which long predates Venn’s use of them (Venn, 1880, 1881). The dia-
grams have often been given some mystical or religious significance, yet even then the content is conveyed via the
same essential features of the diagrams. The overwhelming features of these diagrams are the union and intersection
of individual regions.

2.1 The two-ring diagram

Consider diagram (a) of Figure 3. The simple interlocking rings have been used symbolically to represent the intimate
union of two as in the marriage of two individuals, or the union of heaven and earth, or of any two worlds (e.g. see
Liungman, 1991, Mann 1993). The intersection symbolizes where the two become one. This symbolism is of ancient,
possibly prehistoric, origin.

The intersection set, or vesica piscis (i.e. fish-shaped container) of Figure 4, has been used by many cultures (the
term vesica piscis is also sometimes used for the whole diagram as in Figure 4 (a)). For example, the cover of the
famous chalice well at Glastonbury in Somerset England, whose spring waters have been thought of as sacred since
earliest times, is decorated with the vesica piscis as in Figure 4 (a). The figure is formed by two circles of equal radius,
each having its centre located on the perimeter of the other.

The mystical interpretation might have been amplified by the practical use of the vesica piscis in determining the
location and orientation of sacred structures. According to William Stukely’s geometric analysis of Stonehenge in
1726, the stones in the inner horseshoe rings seem to be aligned along the curves formed by vesica pisces as in Figure
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Figure 4: Vesica Piscis.

4(b) (see Mann, 1993, p. 44). Whether Stonehenge’s designers had this in mind or not, that Stukely would consider
this possibility indicates at least the mystical import accorded the vesica piscis in 1726.

Orientation according to the cardinal axes of the compass were determined via the vesica piscis as follows. The
path of the shadow cast by the tip of an upright post or pillar from morning to night determines a west to east line from
A to B of Figure 4 (c). The perpendicular line CD is determined by drawing two circles of radius AB, one centred at
A, the other at B - a vesica piscis. A rectangular structure with this orientation (or any other significant orientation,
e.g. along a sunrise line) and these proportions is easily formed as in Figure 4 (d). Should a square structure be desired
(e.g. Hindu temples for the god Purusha, Mann 1993, p. 72) a second vesica piscis can be formed perpendicular to the
first (after first drawing a circle of diameter AB centred at the intersection of the lines AB and CD so as to determine a
vertical line of length AB to fix the location of the second vesica piscis – the square is then inscribed by the intersection
points of the two vesica pisces).

According to Burkhardt (1967, pp. 23-24) (see also Mann, 1993, pp. 71-75) this means of orientation was
universal, used in ancient China and Japan and by the ancient Romans to determine the cardinal axes of their cities.
The Lady Chapel of Glastonbury Abbey (1184 C.E.) has both its exterior and interior proportions described exactly
by rectangles containing a vesica piscis as in Figure 4 (d) (see Mann. 1993, p. 152) and many of the great cathedrals
of Europe were oriented using much the same process.

The mathematical structure of the vesica piscis would have been well known and might itself have contributed
something to its mystery. The very first geometrical figure appearing in Euclid’s Elements is that of Figure 5.
Proposition 1 of the first book asserts that an equilateral triangle ABC can be constructed from the line AB, essentially

Figure 5: First Figure of Euclid’s Elements.

by constructing the vesica piscis (see Heath 1908, p. 241).
Interestingly, the equilateral triangle itself has long had a mystical interpretation. According to Liungman (1991),

the equilateral triangle is “first and foremost associated with the holy, divine number of 3. It is through the tension
of opposites that the new is created, the third” (his italics). Xenocrates, a student of Plato, regarded the triangle as a
symbol for God. Three appears again in the form of the irrational number

p
3 as the ratio of the length of CD to that of

AB in Figure 4 (b). Whether this fact in any way enhanced the mystical significance of the vesica piscis is unknown,
although it does seem a plausible speculation – especially for Christian thinkers.

The vesica piscis was adopted as an important symbol in Christianity and appears frequently in Christian art and
architecture. Besides the obvious connection with the fish symbol of Figure 4(b) used by early Christians, it came
to represent the purity of Christ (possibly through allusion to a stylized womb and so to the virgin birth of Christian
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scripture). Often the vesica piscis has appeared with a figure of Christ or the Virgin Mary within it (e.g. see Mann,
1993, pp. 24 and 52 for examples from the middle ages). The strength of this symbolism in the Christian faith no doubt
significantly contributed to the adoption of the pointed arch (see Figure 6) as a dominant feature in Gothic architecture
(e.g. notably in windows and vaults). The vesica piscis continues to be a popular symbol in Christian publications,

Figure 6: The Gothic arch.

art, and architecture to the present day.

2.2 The three-ring diagram

The three intersecting circles of Venn’s diagram in Figure 3(b) is itself an ancient diagram representing a “high spiritual
dignity” (Liungman, 1991). As mentioned earlier, the number 3 has long been considered divine. Xenocrates, for
example, held the view that human beings had a threefold existence: mind, body, and soul. One can see how, as in the
case for two intersecting rings, the union of three different but equal entities each having some attributes in common
with another and possibly with all others simultaneously could have a deep mystical or religious appeal.

Certainly, once the holy trinity of the “Father, Son, and Holy Spirit” became established as a fundamental tenet of
the Christian faith, the symbols were adopted with the obvious interpretation. The three intersecting rings have long
appeared in Christian art and architecture and continue to do so to the present day. Figure 7 shows some variations

Figure 7: Symbols of the Christian Trinity.

on the three intersecting rings used in Christian symbolism to represent the holy trinity. The last one, interestingly,
superimposes the equilateral triangle over the three circles thus making use of two ancient spiritual symbols. This
symbol is still commonplace on Christian vestments and altar decorations.

Mathematically, if the circles are drawn (as with the vesica piscis) so that their centres are at the three corners of
the intersection set, then the intersection set shares a curious geometric property with a circle – the figure, called a
Reuleaux triangle (e.g. see Santalo, 1976, p 8 ff), has constant width through its centre. That is, parallel tangent lines
have the same distance between them, wherever they are positioned on the boundary.

2.3 The logic diagrams of Euler

Over the course of one year from 1760 to 1761, the natural scientist and mathematician Leonhard Euler wrote a series
of letters to a German princess in which he presented his thoughts on a variety of scientific and philosophical topics
with such clarity and generality that the letters were to sweep Europe as “a treasury of science” (Condorcet, p. 12,
1823 preface to Euler) accessible to the reader without much previous knowledge of the subjects addressed.

In the 1823 preface to the third English edition, Euler is regarded as “a philosopher who devote[d] himself to the
task of perspicuous illustration.” When Euler comes to explain Aristotelian logic to the princess, he makes use of a
series of diagrams, diagrams which were to become known in logic as “Eulerian diagrams”.
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Euler was educated in mathematics as a child by his father, himself a Protestant minister educated in theology and
a friend of the great mathematician Johann Bernoulli (e.g. see O’Connor and Robertson, 2001). The plan had been
for the younger Euler to study theology at university and this he did, until Bernoulli convinced the father of the young
man’s formidable mathematical talents. A devout Christian all his life and one-time student of theology, it is hard to
imagine that Euler would not have been well aware of the pervasive Christian symbols.

Whatever the source, the diagrams he presented the princess to better explicate Aristotelian logic would be familiar
to someone both trained in mathematics and aware of Christian symbolism. The four basic propositions of Aristotle as
shown by Euler appear in Figure 8. The diagrams make the points by the intersection (or not) of the circular areas, by

Figure 8: Basic Euler diagrams for the four Aristotelian propositions.

containment (or not) of circular areas, and by containment of the letters A and B – the letter placement allowed Euler
to indicate the two “particular” propositions of Figure 8 (c) and (d).

Euler went on to show how all of the Aristotelian syllogisms might be demonstrated in the same way. For example,
Figure 9 shows how these diagrams illustrate a relatively simple syllogism.

Figure 9: Euler diagram for the syllogism: No B is C; All A is B; _:: no A is C.

Some syllogisms might need more than one diagram. Figure 10 shows all possible configurations for one such
syllogism. Each diagram is itself consistent with the whole of the information contained in the propositions and

Figure 10: Euler diagrams which are each consistent with the syllogism: No A is B; Some C is A; _:: some C is not B.

hence in the conclusion of the syllogism. While any one would explain the syllogism, it might be misleading in other
respects. Consequently, Euler would completely enumerate the different cases which generate a given syllogism and
present them all – nowhere in his letters to the German princess does Euler make use of the three ring diagram of
Figure 3(b).
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Unfortunately, not all syllogisms can be represented this way. As Venn (1881, pp. 523-4) pointed out even a fairly
straightforward proposition such as “All A is either B or C only (i.e. not both)” cannot be expressed with the circles
of an Euler diagram. One might attempt to do so via a collection of diagrams as we have done in Figure 11, but
individually these do not contain the complete information available in the syllogism and seemingly contradict one
another as to what that information might be.

Figure 11: Euler diagrams which collectively express the single proposition: A is either B or C only.

2.4 The logic diagrams of Venn

John Venn graduated from Cambridge University in 1857, was ordained as a Christian priest two years later, and
returned to Cambridge in 1862 as a lecturer in “Moral Science” where he studied and taught logic and probability
(O’Connor and Robertson, 2001).

Venn was keenly interested in developing a symbolic logic and wanted a diagrammatic representation to go with
it. Euler’s diagrams were well known and had widespread appeal by the time of his writing in 1881:

“Until I came to look somewhat closely into the matter I had not realized how prevalent such an appeal as
this had become. Thus of the first sixty logical treatises, published in the last century or so, which were
consulted for this purpose:- somewhat at random, as they happened to be most accessible:- it appeared
that thirty-four appealed to the aid of diagrams, nearly all making use of the Eulerian Scheme.”
John Venn, Symbolic Logic, 1881 (page 110 of the 2nd Edition, 1894).

Venn’s logic, like Boole’s, was mathematical in nature. For example, xy�z = 0 indicates that the simultaneous
condition x and y and not z cannot occur. The mathematics allowed propositions such as this to accumulate and
inferences to be drawn as the information became available. Venn’s diagrams had to serve in the same way. In his
words:

“Of course we must positively insist that our diagrammatic scheme and our purely symbolic scheme
shall be in complete correspondence and harmony with each other. The main objection of the common
or Eulerian diagrams is that such correspondence is not secured. ... But symbolic and diagrammatic
systems are to some extent artificial, and they ought therefore to be so constructed as to work in perfect
harmony together.”
John Venn, Symbolic Logic, 1881 (page 139 of the 2nd Edition, 1894).
Italic emphasis is added.

Besides the failings alluded to in the previous section, Euler’s diagrams required considerable thought in the
construction – all possibilities needed to be followed as the diagrams were constructed. If you know the answer, as is
the case for simple syllogisms, the diagrams are easy to construct; if you don’t they can be considerable work.

Euler diagrams were designed to demonstrate the known content of a syllogism; Venn’s diagrams were designed
to derive the content. Remarkably, this profound distinction between the two diagrams can be missed by some mathe-
matical popularizers, notably Dunham (1994 p. 262) who imagines Venn’s innovation being discovered by any “child
with a crayon”.

Given his religious training, it would be surprising if Venn were unaware of the Christian symbolism of at least the
three ring diagram he was to introduce to the study of logic. This three-ring diagram was to be employed to record the
logical content of each proposition as it became available.

Figure 12 illustrates this use for a simple syllogism – one shades out the regions which correspond to impossible
conditions as they become known. In this way, information accumulates by being added to the diagram as it becomes
available. At any point one can see the consequences of the information to date – only the unshaded regions (including
the region outside all three circles: not A not B not C) are possible.
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Figure 12: No B is C; All A is B; therefore no A is C.

Figure 13 illustrates a more complicated syllogism which requires Venn’s diagram of Figure 3(c) (which seems to
be original to Venn) in order to render the logic diagrammatically. Left to right the diagrams show the effect of adding

Figure 13: A complex syllogism – the information of each statement is added to the diagram by progressively shading those
regions which the statement excludes. From left to right the cumulative effect of the following statements can be read from the
diagrams: i. All A is either B and C, or not B; ii. If any A and B is C, then it is D; and iii. No A and D is B and C. From the last
figure we see that together these statements imply that no A is B.

each new piece of information to what is known. Carrying out the logic via Euler diagrams would be considerably
more difficult.

Besides their active use in the analysis of logical structure, Venn’s diagrams differ from Euler’s in another important
respect. Each region represents a class; unshaded it remains possible, shaded it becomes impossible. There is no
provision for indicating the particular “Some A is B” – it remains indistinguishable from “A and B has not been
ruled out”. Venn sees no need to explicitly distinguish these possibilities; they remain only because of the historical
dominance of Aristotelian logic.

2.5 The essence of Venn diagrams

Throughout their long history, Venn-like diagrams seem to be put to similar use, albeit in different contexts. The
diagrams compel one to think in terms of identifying different entities, what they have in common, and how they differ
from one another and possibly from everything else. As formal set theory developed, the same figures were used to
naturally embody the properties of sets – intersection, union, complement. However, just as some ideas can be given
meaning only by a diagram, a diagram can be incapable of easily producing anything but these ideas.

3 Weakness of Venn Diagrams for Teaching Probability

Venn diagrams, as an extension of Euler diagrams, are a useful tool in logic where conditions are either possible or
impossible. Because the rules of probability are based on events and because events are traditionally represented as
sets, Venn diagrams would seem well suited also for illustrating probability concepts; this is not the case for three
main reasons.
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3.1 Teaching logic under the guise of probability

Venn diagrams skew the teaching of introductory probability towards what are fundamentally problems in logic which
only involve probability incidentally because the entities being manipulated happen to be probabilities.

For instance, a basic relationship in symbolic logic, self evident in set theory via Venn diagrams, is A [ B =
A + B � A \ B. Introductory probability texts merely exercise this idea, and its extension to three events, in its
probability version Pr(A[B) = Pr(A) +Pr(B)� Pr(A\B) (which says little more than probability behaves as
a measure on sets). Two typical examples are:

Illustration 1: Paul and Sarah both apply for jobs at a local shopping centre; the probability Paul gets a job is 0.4, the
probability Sarah gets a job is 0.45 and the probability they both get jobs is 0.1.
What is the probability at least one of them is employed?

Illustration 2: Suppose that 75% of all homeowners fertilize their lawns, 60% apply herbicides and 35% apply insecticides.
In addition, suppose that 20% apply none of these, 30% apply all three, 56% apply herbicides and fertilizer, and 33% apply
insecticides and fertilizer.
What percentage apply (a) herbicides and insecticides; (b) herbicides and insecticides but not fertilizer?

While the training in logic that such problems provide may be useful, this is outweighed by several disadvantages:

1. The values given for the probabilities in such problems would, in practice, have to come from survey data (e.g.
about employment success or lawncare practices). The probabilites asked for in the questions would then exist
as relative frequencies in the data; it is only the artificial selective revelation of data characteristics (proportions)
that allow the problem to be posed as an exercise in logic.

2. The probabilities of 0.4 and 0.45 for Paul and Sarah are misleading – what data would provide is such a proba-
bility for a randomly-selected person with particular characteristics of sex, age, etc. .

3. It is unclear in Illustration 1 what data would yield the estimate of the joint probability of 0.1.

4. It is unclear why any of the probabilities asked for is of interest; except as an exercise in logic, the student could
regard these as mere ‘make-work’ problems.

The first three disadvantages are already leading the student in unprofitable directions with regard to the use
of probabilistic ideas in statistics; this latter is the reason most students study introductory probability. The last
disadvantage tends to trivialize a field whose proper study is important, both for its use in statistics and in its own
right.

Such problems are typically artificial and give no insight into probability beyond the mathematical manipulation
of sets. It is only once some axioms for probability are in place that we have the corresponding probability results.
The Venn diagrams of Figure 3 give such prominence to the inclusion exclusion principle that it is commonplace
for introductory treatments of probability to fall into the trap of framing probability problems just to exercise this
principle.

3.2 Confusing the nature of relationships

A key idea in probability is independence as one pole in describing the continuum of relationships. At best, Venn
diagrams convey little information about independence and, when the idea of disjointness is included, they can be
actively misleading.

For example, a viewer of Figure 14 could be forgiven for thinking, wrongly, that the respective diagrams (a)
and (b) represent independent and dependent events. Figure 14 (a) shows Pr(AjB) = Pr(BjA) = 0 – that is,
if one event occurs, the other cannot. Thus, except for A or B being impossible events, Pr(AjB) 6= Pr(A) and
Pr(BjA) 6= Pr(B) so that, despite the clear visual suggestion to the contrary, the events are dependent. For Figure
14 (b), probabilities can be associated with events A and B so that they are independent, again contrary to what is
suggested visually. It should therefore not surprise us when students confuse disjoint events with independent events
when these ideas are introduced using Venn diagrams.
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Figure 14: Counter intuitive diagrams for probability.

3.3 Inability to quantify probabilities

The inherent ability of Venn diagrams to distinguish the dichotomy of what is possible and what is impossible does not
lend itself to quantifying probabilities on a continuous scale. This is obviously the case with the roughly circular or
elliptical shapes commonly used for events within a sample space, and the situation is not greatly improved if squares
or rectangles are used instead.

However, just as Venn’s apparently minor adaptation of Euler diagrams substantially enhanced their usefulness in
logic, so what we call an eikosogram takes the idea of a Venn diagram with rectangular areas and adapts it to provide
a powerful tool for visualizing probabilities. The rectangular shapes of the regions of an eikosogram provide a natural
scale for quantifying probabilities and their layout gives appropriate visual emphasis to the regions/events.

4 Eikosograms

For probability, Venn’s diagrams fall far short of satisfying his own dictum (Venn, 1881, p.139) that “. . . symbolic
and diagrammatic systems . . . be so constructed as to work in perfect harmony together.” – no surprise since they
were designed for Venn’s symbolic logic system, not for probability. A diagram tailored to probability and one
which arguably fulfills Wittgenstein’s notion of an “ostensive definition” for probability (especially for conditional
probability) is the eikosogram – a word2 constructed to evoke ‘probability picture’ from classical Greek words for
probability (eikos) and drawing or writing (gramma).

Just as the ring diagrams were not new to Venn, so too this diagram has seen use before – variants of it have been
used to describe observed frequencies for centuries (at least as early as 1693 by Halley; see Friendly 2002 for some
history on these variants). Recently Michael Friendly has developed and promoted a variant he calls “mosaic plots” to
display observed frequencies upon which fitted model residuals are layered using colour (Friendly, 1994). The earliest
use of an eikosogram (i.e. displaying probabilities) of which we are aware is by Edwards (1972, p. 47) where a single
diagram appears with the unfortunate label of ‘Venn diagram’. The label is an example of how far the sense of a Venn
diagram has been stretched.

Certainly teachers of probability have long used relative areas when teaching probability. That such diagrams have
been used and developed independently by many authors over time speaks to their naturalness and consequent value
in describing and understanding probability.

All eikosgrams are built on a unit square whose unit area represents the probability 1, or certainty. An eikosogram
is constructed by dividing the square first into vertical strips, each one corresponding to a conditioning event and
the width determined by that event’s probability. Each strip is then divided horizontally according to the values of
probabilities conditional on the event defining the vertical strip. All resulting rectangular blocks have areas equal to
the probabilities involved. Shading is used to distinguish the blocks vertically. This definition will become clear with
a few eikosograms.

4.1 The basic eikosogram.

The basic eikosogram is that of a single event for which no conditioning event is considered and so no division into
vertical strips is made. Suppose we have such an event, A say, which occurs with probability of 1=3. Then the
eikosogram representing this probability is shown in Figure 15.

2This construction was kindly suggested by our colleague Prof. G.W. Bennett.
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Figure 15: Eikosogram: Shows Pr(A) = 1=3.

The unit square is divided only horizontally at 1=3, and the area of the shaded region gives the probability of
the event A occurring. Horizontal and vertical positions can be read off the top and right sides of the unit square,
so rectangular areas are easily calculated (having these sides of the square as labelled axes produces a left to right
order in reading the diagram as in the symbolic statement Pr(A) = 1=3). The unshaded region has area equal to the
probability that the event A does not occur (here 2=3, from 1� 1=3).

A physical analogy to give meaning to the probability is easily had. Imagine this eikosogram lying flat on the
ground in the rain; of those raindrops which hit the square, the proportion which strike the shaded region corresponds
to the probability that the event A occurs. This could be easily simulated by Monte Carlo and displayed on a computer
screen (cf Oldford, 2001b).

All characteristics of this simple picture are true to the idea of probability; none is misleading. Already, the
following points can be made:

� The idea of “odds” follows by pointing out that twice as many of the raindrops striking the square will miss the
shaded region as will hit it. We say that the odds are 2 to 1 against A (or 1 to 2 in favour of A), as determined
by the ratio of the relevant areas.

� Because all probabilities are areas within (or equal to) the unit square, the diagram shows that probabilities can
only take on real values from 0 to 1 inclusive.

� The probabilities which correspond to A occurring and A not occurring must sum to one because their regions
clearly divide the unit square; symbolically we have Pr(A not occurring) = 1� Pr(A occurring).

� More generally, the areas of non-overlapping regions which cover the unit square sum to one.

Axioms for probability are naturally embedded in this picture. Note that the complement of A, a set theoretic term, is
unnecessary at this point and should be avoided; that the event A either occurs or does not (i.e. a raindrop strikes the
shaded area or it does not) is quite natural and appears as such in the eikosogram.

To capitalize on this, one could introduce a random variable, say Y , which takes one of two values to indicate
whether A occurs or does not. If A occurs, Y has value “y” (short for “A occurs”); if A does not occur, then Y takes
value “n” (short for “A does not occur”). The eikosogram of Figure 15 could then be redisplayed using Y as in Figure
16. In any application, the variate Y and its values will be more meaningful. For example, Y might represent gender
and hence take values of “male” and “female” rather than “n” and “y” resulting in a more meaningful labelling of
the eikosogram. Examples abound and could easily be constructed in class.

From Figure 16 we can read directly that Pr(Y = y) = 1=3 and that Pr(Y = n) = 2=3 Together these two
numbers determine what is called the probability distribution of the binary random variable Y , denoted by Pr(Y ).
Each such distribution will produce its own eikosogram; the eikosogram is 1-1 with the distribution. It is a short step
from the eikosogram to the more traditional display of this distribution as shown in Figure 17.

This bar-chart is well-suited to display the characteristics of the distribution of Y , not least because the bar heights
share a common vertical axis, the elementary graphical perceptual task at which humans excel (e.g., see p. 254 of
Cleveland, 1985). For either assessment or comparisons of distributions, particularly if either Y takes on many values
or the values Y takes can be meaningfully ordered along its horizontal axis, this diagram will be superior to the
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Y=y

Y=n

 0

 1/3

1

 

Figure 16: Eikosogram: Shows Pr(Y = y) = 1=3.

Figure 17: Distribution for the random variable Y .

eikosogram. The superiority of the eikosogram lies rather in the development of an understanding of probability and
its rules, something which must precede the comparison of whole distributions.

4.2 Conditional and joint probabilities

The explanatory power of the eikosogram is put to fuller use when more than one random variable is considered. In
this case, the ideas of conditional and joint probabilities arise in addition to the marginal ones.

Conditional probability is introduced to the student by showing them the eikosogram of Figure 18. There we see

Y=y

Y=n

X=y X=n

 0  1/4

 0

 2/9

 2/3

1

Figure 18: Eikosogram for Y given X .

that a second variable X has been introduced which like Y takes on two values X = y (the left vertical strip) and
X = n (the right vertical strip). As before the shaded area corresponds to the probability that Y = y, the unshaded to
Y = n.

Again, the raindrop metaphor can be put to good use in giving a direct interpretation of the various probabilities
involved. The probability of any event is the area of that region of the unit square matching the event.
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From Figure 18, the region corresponding to the event X = y is the entire left vertical strip. From the diagram,
this rectangular area is simply the width�height = 1=4�1 = 1=4, so Pr(X = y) = 1=4. SimilarlyPr(X = n) =
3=4 = 1 � Pr(X = y). In the case of vertical strips, the probabilities can be determined directly from the horizontal
axis at the top of the eikosogram since each entire vertical strip will have height = 1 (i.e. these marginal probabilities
determine the width of the strips).

Determining Pr(Y = y) amounts to summing the areas of the two shaded rectangles, which from Figure 18 is
easily seen to be 1=4�2=3+3=4�2=9 = 1=3. Figure 18 was constructed with probabilities to match those in Figure
16; Figure 16 is the display of the marginal distribution of Y corresponding to the joint of X and Y seen in Figure 18.

One way of imagining this derivation of the marginal distribution of Y is to think of the eikosogram of Figure 18
as a water container with the shaded areas corresponding to the level of water in each of two separate chambers: one
being the left vertical strip with water filling 2/3 of the chamber, the other being the right vertical strip with water
filling only 2/9 of this chamber. Imagine further that the line making the vertical division at 1/4 is actually a removable
barrier which has created the separate chambers. Finding the marginal distribution of Y amounts to removing this
barrier and having the water settle to some new level in the whole container as seen in Figure 16.

Conditional probability is introduced via Figure18 by considering each vertical strip in turn. The leftmost strip
fixes the condition X = y. When we ask the question ‘Of those raindrops which strike the leftmost strip, what
proportion lands on the shaded area?’, then we are asking for the probability that Y = y conditional on, or given
that, X = y, or symbolically for Pr(Y = yjX = y). The raindrop metaphor makes it clear that this conditional
probability is the ratio of the area of the bottom left shaded rectangle to the area of the rectangle which is the leftmost
strip.

Since the width of both of these rectangles is identical by design (1/4 in Figure 18), this amounts to asking for
the relative height of the smaller shaded one to the larger rectangular strip which contains it. This in turn amounts
to asking for the absolute height of the bottom left shaded rectangle (since again by design, the strip’s height is 1).
Reading from the vertical axis of Figure 18 we see that the desired value is 2/3. While we could have similarly found
that Pr(Y = njX = y) = 1=3 it is apparent from the diagram that symbolically we must have Pr(Y = njX = y) =
1�Pr(Y = yjX = y) and so the value 1/3. Note that the point could now be made that althoughPr(Y = yjX = y)
and Pr(Y = njX = y) must sum to one, Pr(Y = yjX = y) and Pr(Y = yjX = n) need not (a conceptual mistake
sometimes by students).

It is as if we isolated the leftmost strip, widened it to width 1, and read off the vertical value of a basic eikosogram
like that of Figure 16 except having shaded height of 2/3. The leftmost strip (widened to have width 1) displays the
conditional probability distribution for Y given X = y. To emphasize the point, simply draw the corresponding basic
eikosogram when X = y. If all individual eikosograms for every vertical strip are imagined drawn separately, it
becomes apparent that the joint distribution can be thought of as the weighted collection of conditional distributions,
where the weights given by the marginal probabilities of each strip (here 1/4 for X = y and 3/4 for X = n) are
identified with the widths for the eikosogram of the joint distribution. The joint is thus shown to be a mixture of the
conditionals, formed by pushing together the individual (i.e. conditional) eikosograms having the correct width. In
this way complex eikosograms can be built up from simpler ones and conversely simpler ones had from complex ones.

4.2.1 Probability calculation rules.

When we calculate areas on the eikosogram of Figure 18, all essential relationships between probabilities tumble out. 3

Once the conditional probabilities just determined are understood, then rules for calculating joint probabilities
from marginal and conditional can be introduced by simply calculating the corresponding areas. From Figure 18
these are demonstrably as follows:

Pr(Y = y and X = y) = Pr(Y = yjX = y)� Pr(X = y)

= 2=3� 1=4 = 1=6

Pr(Y = n and X = y) = Pr(Y = njX = y)� Pr(X = y)

= 1=3� 1=4 = 1=12

3All of these results hold for eikosograms with any finite number of values for X or for Y or for both X and Y . Neither need be only binary.
Formally, for infinitely many values, some extension would be required as the eikosograms would not be defined. The move to probability density
functions would be opportune then, perhaps following a transition much like that from Figure 16 to Figure 17.
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Pr(Y = y and X = n) = Pr(Y = yjX = n)� Pr(X = n)

= 2=9� 3=4 = 1=6

Pr(Y = n and X = n) = Pr(Y = njX = n)� Pr(X = n)

= 7=9� 3=4 = 7=12

which of course sum to 1. Together these values determine what is called the joint probability distribution of X and Y
and is generally written as Pr(X and Y ) or more compactly as as Pr(X;Y ). The general calculation rule used here
was that of the Area(rectangle) = width � height and applied whatever the value of X or Y . The corresponding
rule of probability is therefore expressed as:

Pr(X;Y ) = Pr(Y jX) � Pr(X)

Rules for calculating marginal probabilities from joint are easily demonstrated from Figure 18 by determining
Pr(Y = y). This probability must be the total area of the shaded regions corresponding to the event Y = y.
Mathematically, one sees immediately that marginal probabilities are determined by summing over the relevant pieces
of the joint distribution as in

Pr(Y = y) = Pr(Y = y and X = y) + Pr(Y = y and X = n)

= 1=6 + 1=6 = 1=3

= 1� Pr(Y = n):

Bayes’ rule follows directly from calculating the only remaining probabilities, namely the conditional probability
of X = y or X = n given Y = y or Y = n. Conditioning on Y = y amounts to considering only the shaded regions
of Figure 18. We are asking of those raindrops which strike a shaded area, what proportion also fall on the leftmost
strip where X = y? Finding the Pr(X = yjY = y), say, is equivalent to finding the ratio of the leftmost shaded area
to the total shaded area.

Bayes’ rule falls out as a consequence:

Pr(X = yjY = y) = Pr(Y = yjX = y)Pr(X = y)=Pr(Y = y)

= (1=2) � (1=3)=(7=18) = 3=7;

or equivalently

Pr(X = yjY = y) = Pr(Y = y and X = y)=Pr(Y = y)

= (1=6)=(7=18) = 3=7:

The general Bayes’ rule is expressed as either

Pr(XjY ) = Pr(Y jX)� Pr(X)=Pr(Y )

or more compactly as
Pr(XjY ) = Pr(X;Y )=Pr(Y )

Had we drawn the probability strips by conditioning on Y = y and Y = n, rather than X = y and X = n, then
the eikosogram would appear as in Figure 19. Note that the events have the same areas as before. Transforming the
eikosogram from that of Figure 18 to that of Figure 19 is a good exercise in probability calculation for the student.
It requires determining first one of Pr(Y = y) or Pr(Y = n) to fix the location of the vertical strip, then each of
the conditional probabilities Pr(X = yjY = y) and Pr(X = yjY = n) to determine the heights of each shaded
rectangle.
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X=n

Y=y Y=n

 0  1/3

 0

 1/8

 3/7

1

Figure 19: Eikosogram for X given Y . This is one to one with the eikosogram for Y given X given in Figure 18

4.3 Probabilistic independence

Probabilistic independence is a much more subtle concept than most introductory treatments of probability would
have one believe. In particular, independence of events can and should be carefully and explicitly distinguished from
independent random variables, yet this is rarely the case. Whereas Venn diagrams are ill-suited to, and even misleading
for, elucidating the probabilistic independence of events, they are quite incapable of distinguishing independent events
from independent random variables. Eikosograms on the other hand, seem well suited to exploring independence.

Consider again the eikosogram of Figure 18 from which it can be seen that

Pr(Y = y) 6= Pr(Y = yjX = y)

The left hand side of the equation is the proportion of raindrops which strike the shaded area (i.e. Y = y) of Figure
18. The right side of the equation, on the other hand, restricts focus to those raindrops striking the leftmost strip of
Figure 18 (i.e. X = y) and gives the proportion of these which strike a shaded area. The inequality states simply that
the proportion of raindrops striking a shaded area depends on whether you are considering the figure as a whole or just
the one strip.

Formally we say that the event Y = y depends on the event X = y. It can be determined that we also have that
the event X = y depends on the event Y = y (either directly from the eikosogram, or formally as derivation using
the calculation rules for probability). This symmetry always holds. Consequently, we talk about the events Y = y and
X = y symmetrically as being dependent events.

If instead we have
Pr(Y = y) = Pr(Y = yjX = y)

then the proportion of raindrops striking a shaded area is the same whether we consider just the one strip, or the figure
as a whole. We say that the event Y = y does not depend on, or is independent from, the event X = y. More
symmetrically, we say that the events Y = y and X = y are independent events. Figure 20 shows the eikosogram for

Y=y

Y=n

X=y X=n

 0  1/4

 0

 1/3

1

Figure 20: Independent events from independent random variables X and Y .
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which this is the case (and Pr(Y = y) = 1=3 to be consistent with Figure 16).
The striking characteristic of this eikosogram is that it is flat – the shaded areas have the same vertical coordinate,

in this case 1/3. If the vertical line at 1/4 were removed as well as any reference to X and the values it can take, then
Figure 20 would be identical to Figure 16. In terms of the water container metaphor, removing the vertical barrier at 1/4
has no effect on the water levels in either container. This flatness (or common water level) is an essential characteristic
of probabilistic independence in an eikosogram.

This flatness also indicates that in addition to independent events Y = y and X = y, we also have independence
of the events Y = n and X = n, of the events Y = y and X = n, and of the events Y = n and X = y. That is, the
independence holds for all possible values of the variables Y and X. When this is the case, we say that Y and X are
independent random variables and express this symbolically either as

Pr(Y ) = Pr(Y jX)

or equivalently as
Pr(X) = Pr(XjY )

either of which imply via the (rectangle area) calculation rule that

Pr(X;Y ) = Pr(X) � Pr(Y ):

This last expression (or the corresponding one for events) is sometimes taken ab initio to define probabilistic indepen-
dence, a choice which can appear to be arbitrary. The route just taken through conditional probability, which instead
derives this multiplicative rule for independence, seems more natural and compelling.

Symbolically we denote independence with a ‘??’ as in Y??X for the independence of the random variables and
(Y = y)??(X = y) for the events. Dependence will be indicated using the same symbol but with a stroke through it
as in Y??= X when Y and X are known to be dependent (similarly for events).

In this example, the flatness indicated independence both of the events Y = y and X = y and of the random
variables Y and X. Figure 21 shows a case where if X takes on more than two values, say X = a, X = b, or X = c,

Figure 21: Dependent random variables Y and X . Independent events Y = y and X = a since Pr(Y = yjX = a) = Pr(Y =
y).

then we can have independent events Y = y and X = a but dependent random variables Y and X. Symbolically we
can have (Y = y)??(X = a) yet Y ??= X.

The independence of the two events can be determined in any one of several ways:

� The appropriate calculation could be done directly from the eikosogram of Figure 21 by calculating the sum of
all shaded areas and observing this to be equal to the height of the leftmost shaded bar, namely 1/3.

� The eikosogram could be transformed to one which considers only the cases in which the events of interest
either occur or do not occur. For X this amounts to the cases X = a and X 6= a which is to say either X = b
or X = c.

The eikosogram for this is had from Figure 21 by removing the vertical barrier at 3/4 and allowing the water
of the two rightmost containers to mix and settle at a common level. The common level would be 1/3 and the
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resulting eikosogram would be identical to that of Figure 20 except that instead of “X = y” and “X = n”
we would have “X = a” and “X = b or c”. The flatness would allow us to immediately conclude the
independence of the events.

� If the eikosogram of Figure 16 is available, then simply noticing that the height of the shaded bar there (i.e the
unconditional probability) is identical to that of the leftmost shaded bar in Figure 21 (the conditional probability)
is sufficient to declare the independence of the events Y = y and X = a.

Each of these approaches provides the student with different insights into the nature of independence.
The dependence of the random variables is indicated from the eikosogram by the varying heights of the shaded

bars; had these all been the same height (whatever the widths) the variables would have been independent. The flatness
of the eikosogram for two random variables is both necessary and sufficient for independence of the variables.

Independence of events is easily seen to be a special case of independence of random variables. As in the second
bullet above, we can see that the independence of events looks for flatness in an eikosogram involving only binary
random variables indicating the occurrence, or not, of the events in question. Flatness here is coincident with the
independence of these two binary random variables, which in turn is coincident with the independence of the events.

A random variable is a broad concept, one which is used to label a collection of mutually exclusive events (e.g. X
covers each of the events X = a, X = b, or X = c). The independence of two random variables is thus seen to be a
broad assertion about the independence of many different events. While it is the case that Y ??X ) (Y = y)??(X =
a) the above example shows that the converse is not true.

4.4 Conditional independence

Once probabilistic independence has been explored with two random variables, conditional independence (depen-
dence) can be introduced. Because events are always to be distinguished from variables, the simplest way to proceed
is with three binary variables X, Y , and Z whose discussion will cover both cases.

Figure 22 gives an eikosogram which illustrates many of the concepts (N.B. this eikosogram has not been con-

Y=y

Y=n

X=y X=n X=y X=n

Z=y Z=n

 0  1/4  3/8  5/8

 0

 1/8

 1/3

 3/4

1

Figure 22: Random variables Y and X are conditionally independent given Z = y but are not conditionally independent given
Z = n. Symbolically Y??Xj(Z = y) but Y??= Xj(Z = n)

structed to agree with that of Figure 16, i.e. Pr(Y = y) 6= 1=3). As before, the conditioning variable values (or
events) are given along the horizontal axis. With three variables there are six different eikosograms possible: one
of three variables must be placed on the vertical axis and for each of these the two horizontal variables could be
interchanged. In practice, it is the exchange of variables on the vertical axis which matters most.

This eikosogram is interpreted in a fashion similar to that for two variables. One can essentially read off

� the joint probabilities for all combinations of X and Z
(e.g. Pr(X = y and Z = y) = 1=4, Pr(X = n and Z = y) = 3=8� 1=4 = 1=8, etc.),

� the marginal probabilities of Z
(i.e. Pr(Z = y) = 3=8 and Pr(Z = n) = 1� 3=8 = 5=8),
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� the marginal probabilities of X
(i.e. Pr(X = y) = 1=4 + (5=8� 3=8) = 1=2 and Pr(X = n) = 1� 1=2 = 1=2),

� and easiest of all the conditional probabilities of Y given each pair of values for X and Z
(e.g. Pr(Y = yjZ = n and X = y) = 1=8).

Other probabilities require a little more calculation. For example Pr(Y = y) is the sum of all shaded areas and
Pr(Y = yjX = y) is the proportion of the area in the vertical strips having X = y that is shaded. Calculating other
joint or conditional probabilities amounts to similar calculations of the relevant rectangular areas.

The flat area at the left of this eikosogram is indicative of some sort of independence when Z = y. In particular,
it implies the independence of the random variables Y and X provided Z = y. We say that the random variables
Y and X are conditionally independent given the event Z = y and express this symbolically as Y ??Xj(Z = y).
Similarly we can see that the events Y = y and X = y are conditionally independent given Z = y, or symbolically
(Y = y)??(X = y)j(Z = y). Other events associated with this flat area are conditionally independent given the
event Z = y.

Conditional independence occurs when shaded bars in an eikosogram have the same height (to make a contiguous
flat area requires only rearrangement of the conditioning events along the horizontal axis). No flat area on the right (i.e.
Z = n) of the eikosogram of Figure 22 means these independencies do not hold when Z = n. That is Y??= Xj(Z = n)
and (Y = y)??= (X = y)j(Z = n). Had the area at the left not been flat, then the conditional independence there
would have disappeared as well.

Figure 23 is similar to Figure 22 matching all of its probabilities but the conditional probabilities of Y given X

Y=y

Y=n

X=y X=n X=y X=n

Z=y Z=n

 0  1/4  3/8  5/8

 0

 1/3

 1/2

1

Figure 23: Random variables Y and X are conditionally independent given Z . Symbolically, Y??XjZ .

when Z = n. In this configuration there are flats both when Z = y and when Z = n. Because there is a flat for each
value of Z, we say that the random variables Y and X are conditionally independent given Z and write Y??XjZ. It is
clear both notationally and from the comparison of Figures 22 and 23 that Y ??XjZ is a much stronger condition than
Y??Xj(Z = y).4

Were the flats all to occur at the same level, as in Figure 24, then more independencies must hold. In particular all
of the following hold iff there is a single flat: conditionally Y??XjZ and Y??ZjX; and unconditionally Y ??X, and
Y??Z.

The flat says nothing about the relationship between the conditioning variables X and Z. In this figure they are
dependent both unconditionally and given Y . This can be seen by the fact that the ratio of the width of strip X = y
to that of the strip X = n is different depending on whether Z = y or Z = n. The ratio when Z = y is 1/4:1/8 or
2:1 and when Z = n it is 1/4:3/8 or 2:3. These correspond to the odds of X = y to X = n when Z = y and when
Z = n, respectively. Had they been equal, then we would have had X??Z.

Had the ratios been the same, then this together with the flat constitute necessary and sufficient conditions for the
mutual independence of all three variables X, Y , and Z. An example of such an eikosogram is given in Figure 25.

4For a variety of reasons (not least of which is model simplicity) to date statistical models (e.g. graphical models, log-linear models) do not
usually distinguish the case Y ??Xj(Z = y) but Y??= Xj(Z = n) from the case Y??= XjZ. Interactive statistical graphics do sometimes explore
the former through ‘slicing’.
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Figure 24: Random variables Y and X are conditionally independent given Z and Y and Z are conditionally independent given
X . Unconditionally Y and X are independent, as are Y and Z . However, X and Z are dependent.
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Figure 25: Random variables X , Y and Z are mutually independent.

While more could be said about conditional independence via eikosograms the essential points are made with the
few we have already presented. Further exploration is beyond the scope of the present paper.

5 Diagrams for Probability Modelling.

Like probability, eikosograms presume that events or random variables have already been provided. Eikosograms are
useful to explore the properties of particular probability models but are of no use in identifying the random variables
or events on which the probabilities are defined. This aspect of probability modelling must be served by different
diagrams.

One might think that this would be the proper place to use Venn diagrams, to define the events on which probability
operates. However, Venn diagrams are ideally suited to describe logical relationships between existing events; what is
needed are diagrams which help define events in the first place.

As is often the case, turning to historical sources where concepts were first correctly formulated can provide insight
into how best to teach those concepts. After all, those earlier struggles are akin to those of students and, like students,
those first formulating the concepts look for aids, diagrammatic and otherwise, which help naturally to clarify the
concept itself.

5.1 Outcome trees.

Trees are perhaps the earliest diagrams used in probability dating back to at least Christiaan Huygen’s use in 1676
(see Shafer, 1996). They are natural when the outcomes lead one to another in time. Figure 26(a) shows a simple
tree describing two tosses of a coin. Branches at a point in the tree represent the mutually exclusive and exhaustive
outcomes which could follow from that point.
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Figure 26: Defining events on an outcome tree.

While some notion of time is generally associated with movement from left to right across the tree, this is not
strictly required. For some situations, the ordering of the tree branches might rather be one of convenience. For
example, the tree of Figure 26 could also be used to provide a description for the simultaneous toss of two coins, with
left and right components being labelled as “Coin 1” and “Coin 2”.

Either way, the diagram provides a complete description of the situation under consideration in terms of all possible
outcomes at each step – hence the name outcome tree.5 If the branching probabilities were attached we would have
the familiar probability tree. However, determining the probabilities is a separate stage in the probability modelling,
and so it is best to spend some time with the outcome tree before moving on to this next stage. 6

Events can now be defined by reference to the outcome tree. For example, the thick branches of Figure 26(b) show
the event ‘one head and one tail’ without specifying which toss produced which. Similarly, if we were considering
the event ‘a head followed by a tail’ only the topmost of the two thickly shaded paths would define the event; the
bottommost of the two defines the event ‘a tail followed by a head’. These two events combine to produce the first
event of ‘one head, one tail’.7 The notion of outcome space (or more traditionally the sample space, a term we find to
be less clear) could now be introduced as the set of all individual paths through the tree. An event, being a collection
of paths, is simply a subset of the outcome space.

Outcome trees describe what can happen, step by step. The probability model is built on this structure by attaching
conditional probabilities to each branch. The resulting probability tree will visually emphasize the conditional branch-
ing structure of the probability model whereas the corresponding eikosogram will visually emphasize the probability
structure itself. One is easily constructed from the other since they contain the same information. The important
difference is the different spatial priority each gives to the components of that information.

5.2 Outcome diagrams.

While outcome trees are often the most natural way to show how outcomes are possible, in some problems it is simpler
just to show what outcomes are possible.

5Other authors, notably Edwards(1983) and following him Shafer (1996), prefer the name event tree for this diagram.
6Huygens’s (1676) tree was not a probability tree in the modern sense. Huygens was interested in solving an early version of the gambler’s

ruin problem and labelled his branches with the ‘hope’ of winning (essentially the odds of winning at each stage) and the return due the gambler
if the game were ended at that point. According to Shafer (1996, p.4) “[i]t was only after Jacob Bernoulli introduced the idea of mathematical
probability in Ars Conjectandi that Huygens’s methods became methods for finding ‘the probability of winning’.” (Ars Conjectandi was published
posthumously in 1713.)

There are many interconnections between the players in this story. Jacob was the brother, teacher, and ultimately the mathematical rival of the
Johann Bernoulli under whom Euler studied. Euler’s father had attended Jacob’s lectures and had lived with Johann at Jacob’s house.

7This is the usual probabilistic use of the word event. Recently, in the development of a general theory for causal conjecture (one that depends
heavily on the outcome tree description), Shafer has proposed calling such events Moivrean events. This then permits him to introduce what he calls
Humean events to capture what common usage might consider to be a causal event in the tree structure. For example, the taking of a given branch
might be considered the ‘event’ which ‘caused’ all that followed to be possible. The branch would be a Humean event whereas a Moivrean event
must be one or more complete paths through the tree. With the introduction of Humean events for each branch, one can see why Shafer (1996)
would choose to call these diagrams ‘event trees’.

Since probability theory depends only on so-called ‘Moivrean’ events, we prefer ‘outcome trees’ to ‘event trees’.
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A notable early example of this approach is De Moivre’s 1718 Doctrine of Chances in which he developed prob-
ability theory by addressing one problem after another. Although postdating Huygens (1676), no probability trees
appear there. De Moivre did, however, find it convenient to completely enumerate all possible outcomes for some
problems and, occasionally, to arrange these spatially in a table (e.g. De Moivre, 1756, p. 185). To each outcome,
the number of ‘chances’ or frequency with which it can occur was attached and provided the information needed to
determine the probability of any event composed from the listed outcomes.

In more modern times (dating to at least Fraser (1958) and predating standard use of Venn diagrams in probability
books), it has been useful for teaching purposes to show all possible outcomes as spatially distinct points in a rect-
angular field as in Figure 27 (a). The spatial locations are arbitrary and so may be chosen so the events of interest

Figure 27: Defining events on an outcome diagram.

easily display as regions encompassing those outcomes which make up the event. In Figure 27(b) there are three non-
overlapping regions which cover the entire field illustrating three mutually exclusive and exhaustive events. In Figure
27(c) two overlapping regions are drawn indicating two different events which have some outcomes in common. 8 In
this figure, the unenclosed outcomes seem to constitute an event of no intrinsic interest; if they were of interest they
would be best enclosed in a separate third region.

As with outcome trees, probabilities are missing from the outcome diagram. It is necessary to add them (usually
to each individual outcome) in order to complete the probability model. Once outcome probabilities and events are
in hand, any eikosogram for the events can be determined, although with more work than from a probability tree.
Note however that, unlike probability trees, it will not generally be possible to construct an outcome diagram (and
possibilities) from an eikosogram; at best only the construction of a Venn diagram (and attendant probabilities) will
be possible.

5.3 A proposed teaching order.

The diagrams now in hand need to be used in concert to maximize their effectiveness in teaching probability and
probability modelling.

Probability itself should be first introduced as an abstract concept related to area via eikosograms and further
explored in the order delivered in Section 4. The focus should be on the mathematical abstraction of probability as
grounded in a diagram with a simple raindrop metaphor. This material should be well exercised as preparation for its
application. Those of mathematical bent could be drawn through the symbolic formalism of probability axioms based
on conditional probability as defined by the eikosograms.

Outcome trees should then be introduced to provide the structure of a probability model for a real probabilistic
situation. The real situation motivates the reasoned definition of a tree. This tree thus provides a situational description
which can be used to define events and variables and so doing gives the student the first steps in understanding the
probabilistic situation.

Next would be to assign branch probabilities which further model the situation. Given the probability tree, the
corresponding eikosogram can be constructed and the probabilistic consequences of the model examined. Outcome
trees and eikosograms would then be worked hand in glove to exercise much of probability theory in a variety of
natural contexts. The challenge would be to come up with a variety of realistic problem situations to work on; this is
easier done than coming up with realistic probability situations which sensibly exercise a Venn diagram.

8Figure 27(c) is also a diagram which would be useful to ground Venn’s diagrams in an application and is often used for that purpose. It is a
mistake, however common, to call Figure 27(c) a Venn diagram.
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Outcome diagrams would be introduced last. In their discussion it should be pointed out that outcome diagrams
are not generally as useful as outcome trees wherever the latter are applicable. For example, in the toss of two coins,
the outcome diagram might have four outcomes – ‘HH’, ‘TT’, ‘HT’, and ‘TH’ – or it might only have three outcomes
– ‘2H’, ‘2T’, and ‘1H,1T’. Only the first of these outcome diagrams would match the four paths of the outcome tree
of Figure 26. Whenever an outcome tree is possible, it is recommended to be constructed first; the outcome space
from the outcome tree (i.e. all of the paths through the tree) can be used to define the outcome diagram. Determining
model probabilities for each of the points in an outcome diagram is often more difficult than determining the branching
probabilities for an outcome tree.9

Events defined from an outcome diagram (perhaps constructed via an outcome tree) would then be used to explore
the probability of one or another event occurring, of both events occurring, etc. as the situations warranted. In
discussion of the logic of the intersection and union of events, only the outcome diagrams are needed. Venn diagrams
(e.g. as in Figure 3) would be used only to introduce a further level of abstraction so as to discuss the logic more
generally if that were desired.

6 Concluding remarks

Diagrams are important in learning any material, provided the diagram is well matched to that material. The eikoso-
gram is just such a diagram for the introduction, definition, and exploration of probability and its attendant concepts
such as conditional, marginal, and joint distributions as well as the more subtle concepts of probabilistic dependence
and independence both unconditionally and conditionally.

Eikosograms obey Venn’s dictum to match features of the diagram directly to the symbolic expression of the ideas.
They fulfill Wittgenstein’s notion of an ‘ostensive definition’ in that they can be used directly to define what is meant
by these probability concepts. What eikosograms do not do is say how to use probability to model the real world.

This focus entirely on the mathematical abstraction of probability is a strength. Eikosograms permit a fundamental
understanding of probability concepts to be had unclouded by the inherent difficulty of probability modelling. They
do so by providing a definitive diagrammatic grounding for the symbolic expressions rather than one which appeals to
some putatively natural application. Not only is the simultaneous introduction of probability and its application (often
a source of confusion to many students) easily avoided but the important distinction between probability and model
can be made early and more easily maintained thereafter.

If Venn’s diagrams are to play a role in teaching probability it must be one considerably diminished from their
present role. Outcome trees and probability trees have greater value for understanding events and the structure of a
probability model. Eikosograms are coincident with probability. And outcome diagrams do much of the rest. Because
of their inherent weaknesses for teaching probablity, it might be best at this time to avoid Venn diagrams altogether.

It is true that the intersecting ring diagrams are not original to Venn. But neither are they to Euler. The history of
the diagrams, particularly in Christian symbolism, has shown them to be long associated with the demonstration of
things separate and common to one another. This association is ostensibly inseparable from the diagrams. Given the
religious training of both Euler and Venn, as well as the time periods in which these men lived, it seems likely that
both men would have been aware of the vesica piscis and of the Christian symbolism associated with the two and three
ring diagrams.

Euler’s innovation was to use two-ring diagrams to demonstrate Aristotle’s four fundamental propositions and to
use more rings to illustrate the known outcomes of the syllogisms of Aristotelian logic. Venn, well aware of Euler’s
use, took the idea of intersecting rings (and of intersecting ellipses) to build a diagram which could be used to derive
the consequence of possibly complex syllogisms as the logical information became available.10 Each was an important
and innovative use in its own right.

Historically and conceptually, eikosograms are direct descendants from Venn diagrams (e.g. Edwards, 1972).
Their information content is that of probability and is easily organized and conveyed. Eikosograms should play a

9The example just given is a case in point. Early in the history of probability where it was applied to games of chance, Laplace’s ‘Principle
of Indifference’ was often applied to situations to model their probability. This principle says to model distinguishable outcomes as equiprobable.
In the example just given, this would mean assigning equal probability of 1/4 to each of four outcomes in the first case and probabilities of 1/3 to
each of three outcomes in the second. The latter solution was disposed of by applying the principle to the outcome tree thus assigning conditional
probability of 1/2 to each of the two branches along the tree and so probability of 1/4 to each path in the tree.

10Venn even describes how to construct a physical apparatus based on the four ellipse diagram which can be used to carry out the logical
calculations – foreshadowing today’s digital, but electronic, computer.
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central role in teaching probability. Venn diagrams can be safely set aside, their value replaced by outcome trees and
outcome diagrams.

Appendix: Use of Venn diagrams in probability texts

Judging by today’s texts, one might have thought that Venn diagrams had been used in expositions of probability
for well over 100 years since Venn first wrote about them, or at least dating back to the beginnings of the use of an
axiomatic set theoretic approach to probability. But as the following table shows, this doesn’t seem to be the case.

Author Date Title Use of Venn Diagrams

LaPlace 1812 Theorie Analytique des Probabilites None

Venn, J. 1876 Logic of Chance None

Venn, J. 1881 Symbolic Logic Introduction and extensive use

Woodward, R.S. 1906 Probability and the Theory of Errors None

Poincare, H. 1912 Calcul des Probabilites None

Burnside, W. 1928 Theory of Probability None

Jeffreys, H. 1939 Theory of Probability (1st Ed.) None
1960 Theory of Probability (3rd Ed.) None

Feller, W. 1950 An introduction to probability theory Yes
and its application (1st Ed.)

Kolmogorov, A.N. 1951 Foundations of the Theory of Probability None
(2nd Eng. Ed.)

Levy, P. 1954 Theorie de L’Addition None
des Variables Aleatoire

Loeve, M.M. 1955 Probability Theory: Foundations, random sequences None

Cramer, H. 1955 The Elements of Probability Theory and None
Some of its Applications

Renyi, A. 1957 Calcul des Probabilites None, but uses his own series of concentriccircle di-
agrams to illustrate sets, their intersection and union

Fraser, D.A.S. 1957 Nonparametric Methods in Statistics None

Fraser, D.A.S. 1958 Statistics: An Introduction No. Instead he uses what we call outcome diagrams
though he doesn’t name them.

Dugue, D. 1958 Ensembles Mesurables et None, but shows a (noncircular)
Probabilisables set B nested within a larger (noncircular) set A

Derman, C. 1959 Prob. and Stat. Inference for Engineers None, even though it begins with a set theoretic ap-
proach

Gnedenko, B.V. 1966 Theory of Probability (3rd Ed.) Yes, but doesn’t name them
1968 Theory of Probability (4th Ed.) Yes, but now introduced with quotes as “so-called

Venn diagrams”

David, F.N. 1962 Combinatorial Chance None
and D.E. Barton

Lindley, D. 1969 Intro. to Prob. and Stats. from a Not really, uses overlapping
Bayesian Viewpoint rectangular boxes for motivating

axioms but curiously not for his conditional proba-
bility axiom

The table summarizes the presence or absence of Venn diagrams for several books. Many authors used no diagrams
or used their own diagrams. Some, like Gnedenko (a student of Kolmogorov) used Venn diagrams without calling them
such. In any case use of the diagrams in probability seems to have been rare and certainly not popular until more than
100 years after Venn promoted them for symbolic logic.
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