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Abstract

Diagrams convey information, some intended some not. A history of ringed
diagrams including their use by Euler and Venn shows that the information
content of these diagrams is consistent and inescapable — they describe abstract
interrelations between different entities. This historical consistency predates
and would have been known to both Euler and Venn. Venn’s use was a true
innovation over Euler’s and, contrary to what some have recently suggested,
Venn’s name deserves to be attached to these diagrams.

Venn diagrams visually ground symbolic logic and abstract set operations.
They do not ground probability. Their common overuse in introducing proba-
bility, especially in teaching, can have undesirable consequences. We define the
eikosogram and show it to be semantically coincident with the calculus of prob-
ability. The eikosogram visually grounds probability — conditional, marginal
and joint — and facilitates its study. To visually ground definition of events,
outcome diagrams and outcome trees are recommended.

The eikosogram can be used to develop an axiomatic treatment of proba-
bility based on random variables rather than on sets — Kolmogorov’s axioms
need not be employed but could be derived. Probabilty calulations amount
to calculating rectangular areas. Probability statements on random variables
can be visually distinguished from those on events as can the separate ideas
of disjoint and independent events. Bayes’ theorem, the product rule for inde-
pendence, unconditional and conditional independence all follow simple visual
features of the eikosogram.



Eikosograms should be used for the calculus of probability and outcome
diagrams and trees to motivate and understand random variables and events.
Venn diagrams need no longer be used in teaching probability; if used they
should be confined to the consideration of abstract relations between pre-
defined events and appear after the introduction of the calculus of probability.
Keywords: Eikosograms, Euler diagrams, Venn diagrams, outcome trees,
outcome diagrams, vesica piscis, ideograms, history of probability, logic and
probability, understanding conditional probability, probabilistic independence,
conditional independence.

1 Introduction

It is now commonplace to use Venn diagrams to explain the rules of probability.
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Figure 1: Venn’s diagrams.

Indeed, nearly every introductory treatment has come to rely on them. But this
was not always the case. In his book Symbolic Logic Venn makes much use of these
diagrams, yet in his book on probability, The Logic of Chance, they appear nowhere
at allll

A cursory review of some well known probability texts reveals that the first pub-
lished use of these diagrams in probability may have occurred as late as 1950 with
the publication of Feller’s Theory of Probability (details are given in the Appendix).
Venn diagrams don’t seem to have been that much used in probability or, if used,
that much appreciated. For example, Gnedenko (1966), a student of Kolmogorov,
used Venn diagrams in the third edition of his text Theory of Probability but does

Tt is true that Venn’s probability book predates his symbolic logic book, however the diagrams
only ever appeared in the latter book. This is more interesting given that Venn uses the word ‘logic’
in the titles of both books and also that Venn’s symbolic logic used the numerical values of 1 and
0 to indicate true and false (i.e. certainty and impossibility).



not refer to them as such until the book’s next edition in 1968, and then only as
“so-called Venn diagrams”. Even by 1969, the published use of Venn diagrams for
probability was by no means common.

In more recent years, some authors of introductory probability texts have called
just about any diagram which marks regions in a plane a ‘Venn diagram’. Others
have written that no diagram should be called a ‘Venn diagram’. Dunham (1994),
for example, claims that the Venn diagram was produced a century before Venn by
Euler and so “If justice is to be served, we should call this an ‘Euler diagram’.”
This view is surprisingly commonplace though not everywhere expressed as strongly
as Dunham (1994 p. 262) who dismissively writes “Venn’s innovation [over Euler’s
diagrams] ... might just as well have been discovered by a child with a crayon.” In
both cases, the sense of what constitutes a Venn diagram has been lost. In the first
case, the Venn diagram is not up to the job and so is stretched beyond its definition,
while in the second case it is Euler’s diagram that has been stretched beyond its
definition to mistakenly include Venn’s innovative use.

Diagrams convey information and so, like statistical graphics, need to be carefully
designed to ensure that the intended information is clearly conveyed, unobscured by
unintended interpretation. Diagrams need to be tailored to specific purposes.

Ringed diagrams have a long history in which the information conveyed is con-
sistent and useful in many different contexts. We show their long use in Christian
symbolism and hence how the diagrams would have been familiar to both Euler and
Venn — attributing originality of ringed diagrams to describe intersection, union or
complement to either man would be a mistake. First Euler (in a descriptive post-hoc
sense), then Venn (in an active ad hoc sense) would use these and similar diagrams
to aid understanding of logic — both uses were important innovations.

The strong coupling of probability and set theory via Kolmogorov’s axioms has
led to a tradition where many writers overuse Venn diagrams to introduce probability.
Besides showing Venn diagrams to be unnecessary and even inferior to other diagrams
for understanding different aspects of probability (esp. the older outcome diagrams
and trees and the newer eikosogram) we illustrate some of the negative consequences
of their use.

We introduce and develop the diagram called an eikosogram and show how it vi-
sually grounds probability and naturally incorporates the rules of probability within
its construction. As with the ringed diagrams, the eikosogram is not a new diagram
although it has not yet been put to its full use in understanding the probability
calculus. It can be used descriptively to identify independence structures at a glance
(conditionally and unconditionally) and to distinguish independence statements on
events from those on random variables. The distinct notions of disjoint and inde-



pendent events are easily distinguished visually via eikosograms. Eikosograms can
be used actively to derive and to explain probability calculations (e.g. measures of
association, determination of marginal and conditional probabilities) and to visually
derive theorems (e.g. Bayes theorem).

More formally, the eikosograms provide a visual basis for motivating axioms of
probability. As with Kolmogorov these could be based on sets, however we show
that eikosograms nicely lend themselves to providing the intuition for axioms based
on random variables. As with Whittle’s (1970) axioms for expectation of random
variables, set based results could be developed afterwards to yield the Kolmogorov
formulation as a special case.

Together, eikosograms, outcome trees and outcome diagrams provide the visual
means to ground probability and should form the basis for any introductory treat-
ment. The role of Venn disagrams in probability, if it exists at all, is for the abstract
treatment of pre-defined events after the probability calculus is well understood via
eikosograms.

The remainder of the paper is organized as follows. Section 2 explores the meaning
of diagrams in general and in particular the meaning and use of ring diagrams,
historically leading up to their distinctive uses in logic by each of Euler and Venn.
The weaknesses of Venn diagrams for teaching probability are discussed in Section
3. In Section 4, we introduce the eikosogram and explore its use for developing
the calculus of probability. Section 5 shows how the eikosogram complements other
diagrams, notably outcome trees and outcome diagrams, to present a coordinated
development of probability. Section 6 wraps up with some concluding remarks.

2 On Diagrams and the Meaning of Venn Dia-
grams

Good diagrams clarify. Very good diagrams force the ideas upon the viewer. The
best diagrams compellingly embody the ideas themselves.

For example, the mathematical philosopher Ludwig Wittgenstein would have that
the meaning of the symbolic expression 3 x 4 is had only by the “ostensive definition”
shown by the diagram of Figure 2 ‘What is 3 x 47’ can exist as a question only
because the diagram provides a schema for determining that 3 x 4 = 12. The proof
of 3 x 4 = 12 is embodied within the definition of multiplication itself and that
definition is established diagrammatically by a “perspicuous representation” (e.g.
see Wittgenstein (1964) p 66 #27, p. 139, #117 or Glock, 1996, pp. 226 ff., 274 ff.
278 ff.).
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Figure 2: Defining multiplication: This figure is the meaning of 3 x 4.

Diagrams which provide ostensive definitions of fundamental mathematical con-
cepts have a long history. In the Meno dialogue, Plato has Socrates engage in con-
versation with an uneducated slave boy, asking him questions about squares and
triangles ultimately to arrive at the diagram in Figure [3] Although ignorant at the

Figure 3: Each small square has area 1. The inscribed square has area of 2 and hence
sides of length v/2.

beginning of the dialogue, the slave boy comes to realize that he does indeed know
how to construct a square of area 2 (the dialogue actually constructed a square of
area 8, or one having sides of length 2v/2). Not having realized this before, nor
having been told by anyone, Socrates concludes that the boy’s soul must have known
this from before the boy was born. With some work, the boy was able to recall this
information through a series of questions. From this Socrates concludes that the soul
exists and is immortal.

The simpler explanation however is that Socrates led the boy to a diagram (fa-
miliar to Socrates) which clearly shows a square of area 2. By showing the existence
of the length v/2, Figure |3 actually gives meaning to the concept of v/2.

Together, Figures [2| and [3| allow us to pose the question as to whether v/2 is a
rational number. If v/2 were rational, then it would be possible to draw the square
of Figure [3| as a square of circles as in Figure [2| each side having number of circles
equal to the numerator of the proposed rational number. That v/2 is not rational is
essentially the same as saying that this cannot be done. Dewdney (1999, pp. 28-29
) gives a proof such as the ancient Greeks might have constructed along these lines.



Diagrams can give concrete meaning to concepts which might otherwise remain
abstract. Although not always immediately intuitive, like Socrates’ guiding of the
slave boy, they can be reasoned about until their meaning becomes strikingly clear.
Two examples of more interactive diagrams of this nature which one of us has pro-
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Figure 4: A visual proof of the theorem of Pythagoras. The gray area within the
large square remains the same in all layouts.

duced are 1. an animation which shows the Theorem of Pythagoras and implicitly its
proof (a static version appears as Figure ; animated in Figure |4] (¢) of the electronic
version of this paper and also at Oldford, 2001a) and 2. a three-dimensional physical
construction which gives meaning to the statistical concepts of confounding and the
role of randomization in establishing causation (Oldford, 1995). In both cases, the
visual representation secures the understanding of otherwise abstract concepts.
Venn-like diagrams have a varied history which long predates Venn’s use of them
(Venn, 1880, 1881). The diagrams have often been given some mystical or religious
significance, yet even then the content is conveyed via the same essential features
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of the diagrams. The overwhelming features of these diagrams are the union and
intersection of individual regions.

2.1 The two-ring diagram

Consider diagram (a) of Figure The simple interlocking rings have been used
symbolically to represent the intimate union of two as in the marriage of two indi-
viduals, or the union of heaven and earth, or of any two worlds (e.g. see Liungman,
1991, Mann 1993). The intersection symbolizes where the two become one. This
symbolism is of ancient, possibly prehistoric, origin.

The intersection set, or vesica piscis (i.e. fish-shaped container) of Figure |5, has
been used by many cultures (the term vesica piscis is also sometimes used for the

’ @ ’ Q

Figure 5: Vesica Piscis.

whole diagram as in Figure 5| (a)). For example, the cover of the famous chalice

Figure 6: Iron work of well cover at Glastonbury Abbey.

well (shown in Figure E[) at Glastonbury Abbey in Somerset England, whose spring
waters have been thought of as sacred since earliest times, is decorated with the
vesica piscis as in Figure |5 (¢). The figure is formed by two circles of equal radius,



each having its centre located on the perimeter of the other. Glastonbury and its
reddish spring waters are associated with much mythology — pagan and Christian —
including England’s legendary King Arthur and the story of the “Holy Grail”.

The mystical interpretation might have been amplified by the practical use of
the vesica piscis in determining the location and orientation of sacred structures.
According to William Stukely’s geometric analysis of Stonehenge in 1726, the stones
in the inner horseshoe rings seem to be aligned along the curves formed by vesica

Figure 7: Stukely’s drawing of a restored Stonehenge.

pisces as in Figure 5|(b) (see Figure[f]and Mann, 1993, p. 44). Whether Stonehenge’s
designers had this in mind or not, that Stukely would consider this possibility indi-
cates at least the mystical import accorded the vesica piscis in 1726, well before both
Euler’s and Venn’s use of these diagrams.

Orientation according to the cardinal axes of the compass were determined via
the vesica piscis as follows. The path of the shadow cast by the tip of an upright
post or pillar from morning to night determines a west to east line from A to B of
Figure 4 (c). The perpendicular line CD is determined by drawing two circles of
radius AB, one centred at A, the other at B - a vesica piscis. A rectangular structure
with this orientation (or any other significant orientation, e.g. along a sunrise line)
and these proportions is easily formed as in Figure 4 (d). Should a square structure
be desired (e.g. Hindu temples for the god Purusha, Mann 1993, p. 72) a second
vesica piscis can be formed perpendicular to the first (after first drawing a circle of
diameter AB centred at the intersection of the lines AB and CD so as to determine a
vertical line of length AB to fix the location of the second vesica piscis — the square
is then inscribed by the intersection points of the two vesica pisces).

According to Burkhardt (1967, pp. 23-24) (see also Mann, 1993, pp. 71-75) this
means of orientation was universal, used in ancient China and Japan and by the
ancient Romans to determine the cardinal axes of their cities. The Lady Chapel
of Glastonbury Abbey (1184 C.E.) has both its exterior and interior proportions



described exactly by rectangles containing a vesica piscis as in Figure 4 (d) (see
Mann. 1993, p. 152) and many of the great cathedrals of Europe were oriented
using much the same process.

The mathematical structure of the vesica piscis would have been well known and
might itself have contributed something to its mystery. The very first geometrical
figure appearing in Euclid’s Elements is that of Figure [§] Proposition 1 of the first

Figure 8: First Figure of Euclid’s Elements.

book asserts that an equilateral triangle ABC can be constructed from the line AB,
essentially by constructing the vesica piscis (see Heath 1908, p. 241).

Interestingly, the equilateral triangle itself has long had a mystical interpreta-
tion. According to Liungman (1991), the equilateral triangle is “first and foremost
associated with the holy, divine number of 3. It is through the tension of opposites
that the new is created, the third” (his italics). Xenocrates, a student of Plato,
regarded the triangle as a symbol for God. Three appears again in the form of the
irrational number /3 as the ratio of the length of CD to that of AB in Figure (b).
Whether this fact in any way enhanced the mystical significance of the vesica piscis
is unknown, although it does seem a plausible speculation — especially for Christian
thinkers.

The vesica piscis was adopted as an important symbol in Christianity and appears
frequently in Christian art and architecture. Besides the obvious connection with the
fish symbol of Figure (b) used by early Christians, it came to represent the purity
of Christ (possibly through allusion to a stylized womb and so to the virgin birth of
Christian scripture). Often the vesica piscis has appeared with a figure of Christ or
the Virgin Mary within it (e.g. see Mann, 1993, pp. 24 and 52 for examples from
the middle ages). The strength of this symbolism in the Christian faith no doubt
significantly contributed to the adoption of the pointed arch (see Figure as a
dominant feature in Gothic architecture (e.g. notably in windows and vaults). The
vesica piscis continues to be a popular symbol in Christian publications, art, and
architecture to the present day.



(c) St. Andrews seal front, 13th century (d) Back of St. Andrews seal

Figure 9: Christian seals based on the Vesica Piscis.

2.2 The three-ring diagram

The three intersecting circles of Venn’s diagram in Figure (b) is itself an ancient
diagram representing a “high spiritual dignity” (Liungman, 1991). As mentioned
earlier, the number 3 has long been considered divine. Xenocrates, for example, held
the view that human beings had a threefold existence: mind, body, and soul. One
can see how, as in the case for two intersecting rings, the union of three different
but equal entities each having some attributes in common with another and possibly
with all others simultaneously could have a deep mystical or religious appeal.
Certainly, once the holy trinity of the “Father, Son, and Holy Spirit” became
established as a fundamental tenet of the Christian faith, the symbols were adopted
with the obvious interpretation. The three intersecting rings have long appeared in
Christian art and architecture and continue to do so to the present day. Figure
shows some variations on the three intersecting rings used in Christian symbolism to
represent the holy trinity. The last one, interestingly, superimposes the equilateral
triangle over the three circles thus making use of two ancient spiritual symbols. This
symbol is still commonplace on Christian vestments and altar decorations.
Mathematically, if the circles are drawn (as with the vesica piscis) so that their
centres are at the three corners of the intersection set, then the intersection set shares
a curious geometric property with a circle — the figure, called a Reuleaux triangle (e.g.
see Santalo, 1976, p 8 ff), has constant width through its centre. That is, parallel
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(a) Gothic design (b) Gothic door
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Figure 10: The Gothic arch.
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Figure 11: Symbols of the Christian Trinity.

tangent lines have the same distance between them, wherever they are positioned on
the boundary.

2.3 The logic diagrams of Euler

Over the course of one year from 1760 to 1761, the natural scientist and mathe-
matician Leonhard Euler wrote a series of letters to a German princess in which he
presented his thoughts on a variety of scientific and philosophical topics with such
clarity and generality that the letters were to sweep Europe as “a treasury of sci-
ence” (Condorcet, p. 12, 1823 preface to Euler) accessible to the reader without
much previous knowledge of the subjects addressed.

In the 1823 preface to the third English edition, Euler is regarded as “a philoso-
pher who devote[d] himself to the task of perspicuous illustration.” When Euler
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comes to explain Aristotelian logic to the princess, he makes use of a series of dia-
grams, diagrams which were to become known in logic as “Eulerian diagrams”.
Euler was educated in mathematics as a child by his father, himself a Protes-
tant minister educated in theology and a friend of the great mathematician Johann
Bernoulli (e.g. see O’Connor and Robertson, 2001). The plan had been for the
younger Euler to study theology at university and this he did, until Bernoulli con-
vinced the father of the young man’s formidable mathematical talents. A devout
Christian all his life and one-time student of theology, it is hard to imagine that
Euler would not have been well aware of the pervasive Christian symbols.
Whatever the source, the diagrams he presented the princess to better explicate
Aristotelian logic would be familiar to someone both trained in mathematics and
aware of Christian symbolism. The four basic propositions of Aristotle as shown
by Euler appear in Figure [[2 The diagrams make the points by the intersection

(&) Affirmative universal. Every Ak B (b Megative universal. Ho Ak B
() Affirmative paricular Some A B (d) Hegative padicular. Some A5 not B

Figure 12: Basic Euler diagrams for the four Aristotelian propositions.

(or not) of the circular areas, by containment (or not) of circular areas, and by
containment of the letters A and B — the letter placement allowed Euler to indicate
the two “particular” propositions of Figure [12] (¢) and (d).

Euler went on to show how all of the Aristotelian syllogisms might be demon-
strated in the same way. For example, Figure [13|shows how these diagrams illustrate
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Figure 13: Euler diagram for the syllogism: No B is C; All A is B; .. no A is C.

a relatively simple syllogism.
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Some syllogisms might need more than one diagram. Figure [L4]shows all possible
configurations for one such syllogism. Each diagram is itself consistent with the

Figure 14: Euler diagrams which are each consistent with the syllogism: No A is B; Some
Cis A; .. some C is not B.

whole of the information contained in the propositions and hence in the conclusion
of the syllogism. While any one would explain the syllogism, it might be misleading
in other respects. Consequently, Euler would completely enumerate the different
cases which generate a given syllogism and present them all — nowhere in his letters
to the German princess does Euler make use of the three ring diagram of Figure [I[(b).

Unfortunately, not all syllogisms can be represented this way. As Venn (1881,
pp. 523-4) pointed out even a fairly straightforward proposition such as “All A is
either B or C only (i.e. not both)” cannot be expressed with the circles of an Euler
diagram. One might attempt to do so via a collection of diagrams as we have done in
Figure [15] but individually these do not contain the complete information available
in the syllogism and seemingly contradict one another as to what that information
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Figure 15: Euler diagrams which collectively express the single proposition: A is either B
or C only.

2.4 The logic diagrams of Venn

John Venn graduated from Cambridge University in 1857, was ordained as a Chris-
tian priest two years later, and returned to Cambridge in 1862 as a lecturer in “Moral
Science” where he studied and taught logic and probability (O’Connor and Robert-
son, 2001).

Venn was keenly interested in developing a symbolic logic and wanted a dia-
grammatic representation to go with it. Euler’s diagrams were well known and had
widespread appeal by the time of his writing in 1881:
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“Until I came to look somewhat closely into the matter I had not realized
how prevalent such an appeal as this had become. Thus of the first sixty
logical treatises, published in the last century or so, which were consulted
for this purpose:- somewhat at random, as they happened to be most
accessible:- it appeared that thirty-four appealed to the aid of diagrams,
nearly all making use of the Eulerian Scheme.”

John Venn, Symbolic Logic, 1881 (page 110 of the 2nd Edition, 1894).

Venn’s logic, like Boole’s, was mathematical in nature. For example, zyz = 0
indicates that the simultaneous condition x and y and not z cannot occur. The
mathematics allowed propositions such as this to accumulate and inferences to be
drawn as the information became available. Venn’s diagrams had to serve in the
same way. In his words:

“Of course we must positively insist that our diagrammatic scheme and
our purely symbolic scheme shall be in complete correspondence and
harmony with each other. The main objection of the common or Eulerian
diagrams is that such correspondence is not secured. ... But symbolic
and diagrammatic systems are to some extent artificial, and they ought
therefore to be so constructed as to work in perfect harmony together.”
John Venn, Symbolic Logic, 1881 (page 139 of the 2nd Edition, 1894).
Italic emphasis is added.

Besides the failings alluded to in the previous section, Euler’s diagrams required
considerable thought in the construction — all possibilities needed to be followed as
the diagrams were constructed. If you know the answer, as is the case for simple
syllogisms, the diagrams are easy to construct; if you don’t they can be considerable
work.

Euler diagrams were designed to demonstrate the known content of a syllogism;
Venn’s diagrams were designed to derive the content. Remarkably, this profound
distinction between the two diagrams can be missed by some mathematical pop-
ularizers, notably Dunham (1994 p. 262) who imagines Venn’s innovation being
discovered by any “child with a crayon”.

Given his religious training, it would be surprising if Venn were unaware of the
Christian symbolism of at least the three ring diagram he was to introduce to the
study of logic. This three-ring diagram was to be employed to record the logical
content of each proposition as it became available.

Figure [16] illustrates this use for a simple syllogism — one shades out the regions
which correspond to impossible conditions as they become known. In this way,
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Figure 16: No B is C; All A is B; therefore no A is C.

information accumulates by being added to the diagram as it becomes available.
At any point one can see the consequences of the information to date — only the
unshaded regions (including the region outside all three circles: not A not B not C)
are possible.

Figure [17|illustrates a more complicated syllogism which requires Venn’s diagram
of Figure [Ifc) (which seems to be original to Venn) in order to render the logic
diagrammatically. Left to right the diagrams show the effect of adding each new

Figure 17: A complex syllogism — the information of each statement is added to the
diagram by progressively shading those regions which the statement excludes. From left
to right the cumulative effect of the following statements can be read from the diagrams:
i. All A is either B and C, or not B; ii. If any A and B is C, then it is D; and iii. No A
and D is B and C. From the last figure we see that together these statements imply that
no A is B.

piece of information to what is known. Carrying out the logic via Euler diagrams
would be considerably more difficult.

Besides their active use in the analysis of logical structure, Venn’s diagrams differ
from Euler’s in another important respect. Each region represents a class; unshaded
it remains possible, shaded it becomes impossible. There is no provision for indicating
the particular “Some A is B” — it remains indistinguishable from “A and B has not
been ruled out”. Venn sees no need to explicitly distinguish these possibilities; they
remain only because of the historical dominance of Aristotelian logic.

15



2.5 The essence of Venn diagrams

Throughout their long history, Venn-like diagrams seem to be put to similar use,
albeit in different contexts. The diagrams compel one to think in terms of identi-
fying different entities, what they have in common, and how they differ from one
another and possibly from everything else. As formal set theory developed, the same
figures were used to naturally embody the properties of sets — intersection, union,
complement. However, just as some ideas can be given meaning only by a diagram,
a diagram can be incapable of easily producing anything but these ideas.

3 Criticism of Introducing Probability via Venn
Diagrams

Venn diagrams (and Euler diagrams) are a useful tool in logic where conditions are
either possible or impossible, can occur together or cannot; consequently they are
also useful in set theory to illustrate relations between sets. Since Kolmogorov’s ax-
ioms are now routinely used and are based on events as sets, Venn diagrams would
seem to be well suited to use in developing and illustrating probability concepts.
Indeed, as indicated in the Introduction and in the Appendix, their use has now
come to dominate introductory treatments of probability over the past two decades
or so. While successfully grounding the nature of interrelationships between prede-
termined events, Venn diagrams fare less well on grounding the probability calculus
itself. The principal shortcoming of their uncritical use lies in this distinction — their
semantic coincidence with set relations will always weight the balance of discussion
of probability toward events, especially as sets, and away from the probability values
themselves. This can have subtle and undesirable side effects.

3.1 Inability to quantify probabilities

Venn’s symbolic logic uses the numerical values one and zero to represent possi-
bility and impossibility, respectively; multiplication of the values of different states
correctly determine the possibility or not of their simultaneous occurence. While
the extension to the certain probabilities of one and zero seems short, it is in fact
substantive.

Venn criticised De Morgan, LaPlace and others for regarding probability as an
extension of formal logic (Venn 1888, VI, Sect. 4 ff). One of the innovations of Venn’s
logic diagrams over those of Euler was the disposal of the Aristotelian particular
propositions of Figure [12[c) and (d) which Venn viewed to be the concern of the
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‘science of Probability” and not of formal logic (Venn 1888, I, Sect. 2 ff) — that Venn
did not then use his diagrams for explicating probability is not surprising. Venn
diagrams are not intended to quantify uncertainty between zero and one.

Yet it is clearly desirable to have a diagram which does — if one looks in some
texts (or worse, searches on the internet) Venn diagrams can be seen to appear with
counts or probability values attached to the different regions. Unfortunately, because
the semantic content of these diagrams is not up to the task of showing probabilities,
the diagram becomes no more than a visual key with which to record and to extract
these numbers. Few probabilistic insights are thus had visually, no more than would
be available from Venn diagrams unadorned. Instead, further insight (e.g. proba-
bilistic independence) must depend on calculations using the numerically labelled
Venn diagrams as a convenient lookup table for probabilities of various events and
their intersections.

We seem to be missing a diagram designed for the calculus of probability. This
is the purpose of eikosograms — developed and explored in Section 4.

3.2 Disjoint versus independent events

Intuition for the development of probability via Kolmogorov’s axioms is based en-
tirely on how well one understands sets (and, added for mathematical convenience,
such abstractions as countable infinity and limits). Disjoint events are critically im-
portant in this development and are well served by the Venn diagram of Figures (a).
The primary purpose of disjoint sets is to set up the additivity axiom which every
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(a) Two very dependent events A and B (b Possibly independent events A and B

Figure 18: A mixed visual message: (a) represents disjoint but dependent events, (b)
overlapping but possibly independent events

measure must satisfy. Aside from being a finite and particularly normed measure,
probability is distinguished from other measures by capturing such concepts as prob-
abilistic independence and conditional probability. Not being part of Kolmogorov’s
axioms these concepts require separate and subsequent definition.

When independence is introduced to students, the Venn diagrams of Figures
are typically revisited to carefully explain the difference between disjoint and
independent events. Even so, some students continue to occasionally confuse the two
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concepts. This, and the fact that the revisit and careful explication are necessary at
all, seems indicative of a problem.

The difficulty is that the semantic content of the diagram of Figure [L§|(a) is one
of separation which could easily be associated with either ‘disjoint’ or “independent’.
Tradition, via sets, has the separation associated with disjointness and denied to
independence; tradition offers no similar picture for independence. Revisiting Figure
18|(a) after independence is introduced seems necessary because despite the immedi-
ate visual message to the contrary the events of Figure|18(a) are highly dependent —
if one occurs the other cannot. Similarly, the diagram of Figure (b) visually shows
connectedness, matching perfectly the sense of overlapping events but consequently
mismatching a potential visual association with the dependence of events — the events
of Figure [1§(b) could very well be independent.

Having traditionally associated Figures[18|(a) and (b) with disjoint and intersect-
ing events (concepts related to sets, regardless of their measure), we have no diagram
for the independence and dependence of events (concepts related to probability). We
seem to be in the curious position of providing no visual aid for the concepts most
peculiar to probability. The dilemma is resolved via eikosograms which dramatically
show independence and visually distinguishes disjoint from independent events.

3.3 Independence again: events and random variables

Probability developed from Venn diagrams is essentially confined to events and so
most introductory treatments now introduce probabilistic independence by way of
only two events, A and B which are said to be independent when Pr(AB) =
Pr(A)Pr(B). This is not how Kolmogorov chose to define the independence of
events, with good reason.

Instead, Kolmogorov (1933, pp. 8-12) first defined independence for random vari-
ablesﬂ having finitely many distinct values and only afterwards defined independence
of events in terms of this definition. The random variables X and Y are defined to be
independent if Pr(X =z;,Y =y;) = Pr(X = 2;)Pr(Y = y;) for all ¢ and j which
index the possible values of X and Y. Events A and B are said to independent if
two binary random variables, each corresponding to that event’s occurrence or not,
are detemined to be independent.

2Kolmogorov actually used the word experiment whose outcomes constitute a finite partition of
the basic set, or sample space. This is equivalent to a finitely many valued random variable for
which all values are possible and at least one must occur. Kolmogorov’s definition is also for the
mutual independence of n variables rather than just two.
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For two events A and B to be independent, only one of

Pr(AB) = Pr(A)Pr(B), Pr(AB°) = Pr(A)Pr(B°)
Pr(A°B) = Pr(A°)Pr(B),  Pr(A°B¢) = Pr(A°)Pr(B°)

need be demonstrated as the others will follow mathematically. So the first could
be, and often has been, taken as the definition of independence of events.

This Venn diagram based approach reverses Kolmogorov’s order, beginning with
the independence of events as defined by the first equation above and then later
introducing independence of random variables. The transfer of this idea from events
on a Venn diagram to random variables requires some care. It is not unheard of for
a student to have found Pr(X = z;,Y =y;) = Pr(X = z;)Pr(Y = y;) hold for one
1, j pair and then to mistakenly declare the independence of the random variables X
and Y (particularly if, as here, the equality has been expressed entirely symbolically).
The problem becomes more pronounced when conditional independence is considered
and the condition as well as the random quantities can be an event or a variable.

We note also that we find independence to be more naturally understood and
so better defined in terms of conditional probability rather than as above. So too,
perhaps, did Kolmogorov (1933, p. 11) who wrote:

“In introducing the concept of independence, no use was made of con-
ditional probability. Our aim was to explain as clearly as possible, in a
purely mathematical manner, the meaning of this concept. Its applica-
tions, however, generally depend upon the properties of certain condi-
tional probabilities.”

Even though Kolmogorov had already defined conditional probability (p. 6) prior to
independence (p. 9), a set-theoretic (or Venn diagram) starting point seems to have
encouraged the less natural definition.

3.4 Almost mute on the nature of relationships

One of the most important uses of probability is to describe the relationships between
different events or random variables. The conditional probability of one event or
random variable given another summarizes that relationship in a way which matches
intuition and experience. Although helpful for explaining conditioning of events,
the direction and strength of the conditional probability relation is beyond helpful
illustration via Venn diagrams.
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3.5 Effect on axiomatic treatment and interpretation of events
and probability

There are other axioms for probability than Kolmogorov’s; there are other applica-
tions of the probability calculus than those of Venn’s experiential relative frequency.
Venn diagrams seem to carry baggage that is seen by some writers to be inappropriate
for either the axioms or the interpretation of probability.

For example, Shafer (2001) criticises the timelessness associated with events in
the usual Kolmogorov set-up. In Shafer (1996) a theory of probability and causality
is built which depends critically on the temporal ordering of situations. These are
presented in trees whose nodes are situations arrived at over time and where branch-
ing indicates different possibilities which follow. Events must be situated in time.
To quote Shafer (2001, p. 11): “An event in this new dynamic theory is a partial
slice across the tree, formed by one or more nodes”. In this theory, an event is not
naturally taken to be a subset of a sample space and Venn diagrams have little to
offer.

Contrary to Venn, Jaynes (1996) develops probability as a normative extension
of formal logic. Also contrary to Venn, Jaynes (1996, pp. 221-222) declares that
Venn’s diagrams actively mislead when applied to propositions. Because regions
of intersection suggest subregions and because probability is additive on disjoint
regions, Venn diagrams lead to a viewpoint that logical propositions can always be
refined to a “disjunction of mutually exclusive sub-propositions.” The points in the
diagram “must represent some ultimate elementary propositions w; into which A can
be resolved.” So tied to sets are the diagrams that they quickly lead us

“...to the conclusion that the propositions to which we assign probabili-
ties correspond to sets of points in some space, that the logical disjunction
A + B stands for the union of sets, the conjunction AB for their inter-
section, that the probabilities are an additive measure over those sets.
But the general theory we are developing has no such structure; all these
things are properties only of the Venn diagram.”

Jaynes’ point here is that looking at Venn diagrams in relation to a normative theory
of logic can easily lead to absurdity, particularly in the notion that there will exist
some elementary sub-propositions into which the propositions of interest can be
meaningfully resolved | This criticism is more properly directed at using sets to

3The problem of refinement and resolution is one that has concerned many writers (e.g. Savage
(1954, pp. 82-91), Fine (1973, pp. 60-1)) and does not go away by developing events by way of
trees (e.g. Shafer (1996, pp. 275-297)).
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provide the intuitive basis for probability; the Venn diagram unavoidably suggests
relations between abstract sets and so becomes the target.

Fine (1973, 61-4) criticises the Venn diagram as a basis for probability (actually,
the o-field on which Kolmogorov’s axioms are based) because it suggests that if
events A and B are of interest, then so too must be their individual complements,
their union and their intersection (all closure properties of o-fields). For example,
when A is a logical proposition then its complement is of interest because it represents
not A; however, when A is the event that an experiment (or random variable) has a
particular outcome (or value) then each alternative individual outcome is of interest
— rarely would the complement be of any intrinsic interest. Similarly, it can happen
that events A (e.g. grainy photograph) and B (e.g. dark photograph) might be of
interest and that probabilities of these events could be reasonably determined, yet
that neither their intersection nor their union be of any intrinsic interest and that
these probabilities could not be reasonably determined. Fine (1973) takes these cases
to show that the Venn diagram (or o-field) imposes more structure on probability
than is needed or is reasonable for some applications.

A number of authors have developed axioms for entirely different concepts, based
on the relevant intuition, which are then shown to produce a quantitative concept
which obeys Kolmogorov’s rules of probability (when applied to sets). None of these
axiomatic approaches were based on the set theoretic intuition contained in a Venn
diagram, yet all ultimately produced a quantitative concept which obeyed the rules,
or calculus, of probability.

For example, Whittle (1970) develops axioms for the expectation of a random
variable based on intution about averages; in a reversal of Kolmogorov, probabil-
ity is then defined as expectation applied to indicator variables. Somewhat farther
removed is the approach of Savage (1954) where reasonable postulates for personal
preference are developed to produce what might be described as a theory for ra-
tional personal judgement; as the rules developed for preference ultimately coincide
with those of probability, Savage (1954) calls this preference “personal” probability.
De Finetti (1937, 1974) asserts that probability does not exist and instead develops
postulates for prices based on rational bets; again a quantity which follows Kol-
mogorov’s rules results, although this too is interpreted as a personal probability
(alternatively, de Finetti’s “prevision” mathematically , if not conceptually, matches
Whittle’s “expectation”). Jaynes (1996, A-5) eschewed this personalistic approach
as “belonging to the field of psychology rather than probability theory” and instead
developed a normative extension of formal logic on “desiderata of rationality and
consistency” for the notion of the plausibility of logical propositions; again the quan-
titative plausibility so produced obeys Kolmogorov’s axioms when sets are used in
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place of propositions.

Because a quantitative concept resulted which followed the rules of probability,
most of these authors took their postulates (for different concepts) to give meaning
to probability — some suggesting theirs is the only meaning; others that theirs is one
of many. This produced much fodder for polemical argument.

For our purposes, it is sufficient to notice two things. First, all agree on the
rules of probability if not on the objects to which they apply — there is a common
calculus. Second, when first developed Kolmogorov’s (1933) set-based axioms (and
through them, the Venn diagram) were meant to provide this common basis, but
subsequently were found to be unnecessary and/or unappealing with respect to some
later developments.

3.6 Potential for meaningless probability examples

The concerns of the previous section can show themselves in the teaching of intro-
ductory probability. Venn diagrams can skew the teaching towards what are funda-
mentally problems in set theory or logic which only involve probability incidentally.

As Fine (1973) pointed out, Venn diagrams suggest that all regions are of interest
and consequently that so too must be the associated probabilities. Immediate from
a Venn diagram is the set-theoretic (or logical) result AUB = A+ B — AN B,
now relating events. Immediately following Kolmogorov’s axioms, the probabilistic
version, Pr(AU B) = Pr(A) + Pr(B) — Pr(AN B), is thus given a prominence in
introductory treatments it might not otherwise enjoy — sometimes even elevated to
being called a principle (the “inclusion-exclusion principle”).

Teachers can be hard-pressed to produce meaningful concrete illustrations of this
‘principle’ of probability and often fall unwaryingly into the trap which Fine (1973)
discussed. It is not unusual to see examples and problems where the intersection and
union of events are either intrinsically uninteresting or are such that their probabil-
ities could not be reasonably determined in practice. Two typical examples taken
from published sources are:

Mlustration 1: Paul and Sarah both apply for jobs at a local shopping centre; the
probability Paul gets a job is 0.4, the probability Sarah gets a job is 0.45 and the
probability they both get jobs is 0.1.

What is the probability at least one of them is employed?

Mlustration 2: Suppose that 75% of all homeowners fertilize their lawns, 60% apply
herbicides and 35% apply insecticides. In addition, suppose that 20% apply none
of these, 30% apply all three, 56% apply herbicides and fertilizer, and 33% apply
insecticides and fertilizer.
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What percentage apply (a) herbicides and insecticides; (b) herbicides and insecticides
but not fertilizer?

In the first illustration, it is not at all clear what the probabilities mean, if
anything. Are they personal probabilities? And if so whose? Are they measures
of the plausibility of logical propositions? If so, how were they arrived at? Are
they experiential relative frequencies? If so, based on what data? And how are the
characteristics of Paul and Sarah related to those of the data so as to permit the
different probabilities and their application here? In particular, how would the joint
probability of 0.1 (no independence) have been produced?

The second illustration at least has numbers which have self-evident meaning.
They are characteristics of the population of homeowners and we can imagine them
having been produced by census or survey. As relative frequencies, they have the
appearance of probability but need not be interpreted as probability; measures of
total acreage subjected to each of the possibilities could have served the same purpose
and arguably would have been more interesting. Part (a) of the question is typical of
such illustrations. It is constructed by revealing only part of the information which
would have been contained in the background data; it is hard to imagine background
information which would have captured “herbicides and fertilizer” and “insecticides
and fertilizer” without also having captured “herbicides and insecticides”. It is only
the artificial selective revelation of data characteristics that allow the problem to be
posed. Part (b) is a logical and calculational exercise, and that for an event of no
obvious intrinsic interest.

An inherently meaninglessness context obscures the concept of probability and
irrelevance trivializes its statistical application. That such illustrations can be easily
(and are regularly) produced seems, again, indicative of a problem.

4 Eikosograms

In developing his system for symbolic logic Venn promoted and followed the dictum
that “...symbolic and diagrammatic systems ... be so constructed as to work in per-
fect harmony together” (Venn, 1881, p.139). The result was his system of diagrams
tightly coupled with a symbolic representation for logic. That these same diagrams
then fall short of satisfying this dictum for probability should come as no surprise.
A diagram tailored to probability and one which arguably fulfills Wittgenstein’s
notion of an “ostensive definition” for probability (especially for conditional proba-
bility) is the eikosogram — a wordﬁ constructed to evoke ‘probability picture’ from

4This construction was kindly suggested by our colleague Prof. G.W. Bennett.
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classical Greek words for probability (eikos) and drawing or writing (gramma).

In an eikosogram, rectangular regions match events and areas match probabilities.
All eikosgrams are built on a unit square whose unit area represents the probability
1, or certainty. The region is divided horizontally into non-overlapping strips, one
for each distinct value that a random variable can take. In the case of a single event
which either occurs or does not, i.e. a binary random variable, there will be only two
horizontal strips. Figure[19(a) shows an example (throughout, values of y and n will

Y=n

2/3
Y=n

13 v
= 29

Y=y
X=y X=n

(a) Eikosogram for Y (b) Eikosogram for Y given X

Figure 19: Eikosograms with binary random variables Y and X each taking two values:
y and n for “yes” and “no” and having Pr(Y =y) = 1/3, the area of the shaded regions
in either (a) or (b). Pr(X =y)=1/4, Pr(Y =y|X =y) =2/3.

indicate the binary values “yes” and “no” ); shading or colouring helps distinguish
variable values. When a conditioning variable (or event) is introduced, the square is
first divided into vertical strips of width equal to the probability of each distinct value
of the conditioning variable. Then, within each vertical strip, horizontal strips are
introduced so as the height of each matches the corresponding conditional probability.
All resulting rectangular blocks have areas equal to the probabilities involved.

Just as the ring diagrams were not new to Venn, so too this diagram has seen use
before — variants of it have been used to describe observed frequencies for centuries
(at least as early as 1693 by Halley; see Friendly 2002 for some history on these
variants). Recently Michael Friendly has developed and promoted a variant he calls
“mosaic plots” to display observed frequencies upon which fitted model residuals
are layered using colour (Friendly, 1994). The earliest use of an eikosogram (i.e.
displaying probabilities) of which we are aware is by Edwards (1972, p. 47) where a
single diagram appears with the unfortunate label of ‘Venn diagram’ (an example of
how far the sense of a Venn diagram has been stretched). That such diagrams have
been used and developed independently by many authors over time speaks to their
naturalness and consequent value in describing and understanding probability.
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4.1 Grounding probability.

From the eikosograms of Figure [19] it is clear that probability is a proportion — the
probability that Y = y is the ratio of the shaded area to the whole area in Figure
19(a) and similarly in Figure[19(b). Taking the area of the square to be one yields a
meaningful labelling of the axes which allows some probabilities to be read directly
from them — e.g. in Figure [19(a) Pr(Y = y) = 1/3 can be read directly off the
vertical axis.

A meaningful physical analogy is had by imagining the eikosogram of Figure (a)
lying flat on the ground in the rain. Figure 20| shows the same eikosogram, now with

Figure 20: The raindrop metaphor.

a dark background and coloured dots appearing where raindrops might strike (in the
electronic version of this paper, this raindrop pattern is animated; alternatively see
Oldford, 2001b| for a similar example).

Watching raindrops strike a horizontal surface is a universal human experience
and serves well to anchor the notion of probability. Polya (1968), makes this his lead
exemplar of what he calls a natural random mass phenomena (Polya, 1968, pp. 55,
56, 60). To quote Polya (1968, p. 56),

There is no regularity in this succession of the raindrops. In fact, having
observed a certain number of drops, we cannot reasonably predict which
way the next drop will fall. ...On the other hand, there is some sort
of regularity in the succession of the raindrops. ... We can foresee what
will happen in the long run, but we cannot foresee the details. The rain-
fall is a typical random mass phenomenon, unpredictable in certain de-
tails, predictable in certain numerical proportions of the whole. <Polya’s
emphasis>

As raindrops hit the square, the proportion of these which strike the bottom (orange
coloured) region where Y = y will be about 1/3, being the ratio of the area of the
bottom region to that of the whole square. of those raindrops which hit the square,
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the proportion which strike the shaded region corresponds to the probability that
Y =y as shown in Figure 20](also as an animated movie in the electronic version of
this paper, or see . Figure [19(a) shows this proportion, and hence the probability,
to be one third.

4.1.1 Conditional and joint probability

Conditional probability is introduced via Figure [L9(b) by considering each vertical
strip in turn. The leftmost strip fixes the condition X = y. When we ask the
question ‘Of those raindrops which strike the leftmost strip, what proportion lands
on the shaded area?’, then we are asking for the probability that ¥ = y conditional
on, or given that, X = y, or symbolically for Pr(Y = y|X = y). The raindrop
metaphor makes it clear that this conditional probability is the ratio of the area of
the left shaded rectangle to the area of the entire leftmost strip. Again, the actual
area of the leftmost strip does not matter; the ratio of the areas determine the
proportion we call the conditional probability.

The horizontal axis allows easy determination of the probability for the various
values of the conditioning variable — e.g. Pr(X = y) = 1/4. The purpose of the
vertical axis is now more clearly seen to be the determination of conditional probabil-
ities — e.g. Pr(Y =y|X =y) =2/3 and Pr(Y = y|X =n) = 2/9. In Figure [19a),
it is only because the background conditions are certain (i.e. having probability one)
that the vertical axis determines the values of Pr(Y).

In this way, all probabilities can be thought of as being conditional. Setting the
total area to one, when the condition holds, shows focus and simplifies calculation.
In the opposite direction, when each distinct condition is specified as a distinct value
of a random variable, eikosograms can be combined according to the probabilities
of that random variable. For example, Figure (a) shows the eikosogram for the
probabilities of the values of the random variable Y when the condition that X =y
holds, Figure 2I|(b) when X = n — each eikosogram provides a different focus. The
two eikosograms are combined by adjusting each one’s width to be proportional to
the probability of its condition and aligning them side by side as in Figure RIjc). In
this way, joint distributions can be built up as a mixture of conditional distributions,
all the while preserving proportional areas and hence probability.

4.1.2 Joint and marginal probability

This particular picture, Figure [L9(b) (or equivalently Figure 2Ifc)), of the joint
distribution of Y and X is especially useful for understanding the transition between
marginal and joint distributions, i.e. between Figure [L9(a) and Figure [19(b).
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Y=n Y=n

Y=y Y=y

Y=y

X=y X=n

(a) When X =y holds (b) When X = n holds (¢) Combined

Figure 21: The two conditional eikosograms of (a) and (b) combine, or mix, according to
the probabilities 1/4 and 3/4, associated with X =y and X = n, to produce the combined
eikosogram for both Y and X.

A different water analogy helps ground the concept. Think of the eikosogram of
Figure (b) as a water container with the shaded areas corresponding to the level of
water in each of two separate chambers: one being the left vertical strip with water
filling 2/3 of the chamber, the other being the right vertical strip with water filling
only 2/9 of this chamber. Imagine further that the line making the vertical division at
1/4 is actually a removable barrier which has created the separate chambers. Finding
the marginal distribution of Y amounts to removing this barrier, i.e. removing the
separate conditions, and having the water settle to some new level in the whole
container as in Figure [19|(a). This level determines the marginal probabilities for V.

In the opposite direction, adding new conditions amounts to beginning with Fig-
ure [19(a), adding the barriers and redistributing the fixed amount of water to the
separate sub-containers. In either direction, the probability (i.e. amount of water or
area) is preserved.

4.1.3 Symmetry between variables

The assignment of one random variable to the vertical axis and another to the hor-
izontal, or conditioning, axis will be natural in many contexts. However, in the
grounding of probability it is important to realize that this assignment is arbi-
trary. Probability treats all variables symmetrically and distinguishes them only
as to whether they are presently conditioned upon or not. A fuller understanding
of the probabilistic underpinnings of two random variables is had by interchanging
these roles for the variables in an eikosogram.

The various eikosograms of Figure 22| provide different insights about the prob-
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Y=n X=n
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X=y
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X=y X=n Y=y Y=n

1/4

(a) Marginal Y (b) Joint via Y given X (c) Joint via X given Y (d) Marginal X

Figure 22: Different perspectives on the probability for Y and X. Probability is preserved
under change of perspective.

ability relating two random variables. All probability information is contained in
either Figure [22[ (b) or (c); each simply provides a different perspective on the com-
bined probabilities. Applying the water container metaphor to Figure (b) yields
the marginal of Y in Figure 22|(a); applying it to Figure 2|c) yields the marginal of
Y in Figure 22|d).

It is important to realize that Figures22(b) and (c) differ only in perspective and
that probability is preserved under change in perspective. Each rectangular region in
Figure 22(b) matches one in Figure 22fc) — e.g. the lower right rectangle in Figure
22[(b) matches the top left one in Figure 2|c), both having ¥ = y and X = n .
Because the probability is preserved, the areas of matched regions must be equal.
This consequence is called Bayes’” Theorem.

4.1.4 Probabilistic independence

Probabilistic independence is readily apparent in, and naturally grounded by, eikoso-
grams. Consider the eikosogram of Figure (b) Applying the raindrop metaphor
we see that whether one focuses on the left side where X = y or on the right side
where X = n, the proportion of the drops striking the shaded part where ¥ =y
remains the same. That is, the conditional probability for each value of Y does
not change when the value of the conditioning variable X changes — the conditional
probability Y is independent of the value X.

Alternatively, applying the water container metaphor we see that the presence
or absence of the vertical barrier at 1/4 in Figure [23| (b) has no effect on the water
level anywhere — Figure [23|(a) is essentially the same as Figure 23|(b). Probabilities
associated with the random variable Y remain the same whether one conditions on
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(a) Marginal Y (b) Joint via Y given X (c) Joint via X given Y (d) Marginal X

Figure 23: Independent random variables Y and X.

those of X or not.

Either of these approaches could be used to define probabilistic independence,
both, unlike Kolmogorov, being in terms of conditional probability. The overwhelm-
ing visual characteristic identified with the independence of two random variables
is that of the eikosogram’s flatness across all values of the conditioning variable.
That the joint probability is, under these conditions, the product of the marginal
probabilities is an artefact of this flatness; because of the flatness, the side of every
rectangle in a row of Figure (b) has the same length and is easily read off the
vertical axis, facilitating calculation of its area. Kolmogorov’s definition of prob-
abilistic independence corresponds to saying that the rectangles in the eikosogram
align themselves in a checkerboard of rows and columns. Again, this seems more an
artefact of independence than a natural starting point for its definition.

When more than two variables are involved, independence can exist between some
variables and not others, between all pairs but not triples, between some variables
conditional on the values of others, etc. Most of these possibilities are beyond the
scope of this paper, although some will be explored later in Section 4.3; see Oldford
(2003a) for an in-depth treatment of the case of three variables (or equivalently, three
groups of variables). In every case, however, eikosograms which display flatness indi-
cate some kind of independence and every kind of independence of random variables
will exhibit itself as flatness in an eikosogram.

Finally, the symmetric nature of probability forces symmetry in probabilistic
independence so that the eikosograms of Figures 23|c) and (d) would work as well to
define independence. Indeed, under independence, the eikosograms of Figures (b)
and (c) are essentially identical, being simple rigid transformations of one another —
Kolmogorov’s independence checkerboard.
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4.1.5 More than two values per random variable

The intuition used throughout the preceding prevails however many distinct values
the random variable Y can take, or, however many distinct conditions are consid-
ered. Figure [24] shows an example where Y takes three distinct values and X four.

(a) Marginal probabilities for YV’ (b) Y given X

Figure 24: Eikosograms with multi-category random variables Y and X: Y taking three
distinct values, X four.

As before, probabilities correspond directly to areas, or ratios of areas in the case
of conditional probabilities. For example, in Figure (b), numbering the possible
values in left to right order for X and vertically for Y, the middle square of the
leftmost strip has Pr(Y = yo, X = 1) as its area, Pr(Y = yo|X = x1) as its height,
and Pr(X = z) as its width. Both the raindrop and water container (though now
with liquids of different density) metaphors continue to apply.

4.2 Harmony with symbolic representation.

Eikosograms visually ground probability and are semantically consistent with its
rules. The connection between the picture and a formal symbolic representation is
as straightforward as that between Venn’s diagrams and his symbolic logic.
Consider again the eikosogram of Figure [L9(b) (for multiple values of X and Y,
consider that of Figure 24(b)). Marginal probabilities of the conditioning variable
determine the width of the strips, e.g. Pr(X = y) = 1/4, and can be read off the
horizontal axis — clearly these must sum to one. Conditional probabilities give the
height of each rectangle within each strip, e.g. Pr(Y = y|X =y) = 2/3, and again
must sum to one within each strip (i.e. ), Pr(Y|X) = 1); the location of the axis
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on the right even simplifies reading the conditional probability, as both picture and
symbols follow a left to right order.

The joint probability Pr(Y =y, X =y), being the area of a rectangle, is seen to
be height x width or Pr(Y = y|X =y) x Pr(X =y). That this holds whatever the

value of Y or X is expressed more compactly as
Pr(Y,X) = Pr(Y|X) x Pr(X)

and leads directly to Bayes theorem — expressed visually by the area equivalence of
matching regions in Figures 22|(b) and (c), and expressed symbolically as

Pr(X|Y)x Pr(Y)= Pr(Y|X) x Pr(X).

That the total area an eikosogram is one expresses the formal relation ) °, > Pr(Y, X) =
1; similarly the water container metaphor which produces marginal probabilities is
simply Pr(Y) =) Pr(Y, X).

The concept of probabilistic independence of variables is expressed visually by
the flat of Figure [23] and symbolically as

Pr(Y|X)=Pr(Y).

The symbo]ﬂ ‘1" will denote independence as in Y 1L X for the independence of two
random variables Y and X and 1L (Y, X, Z) for the mutual or complete independence
of two or more random variables; an absence of independence will be indicated using
the same symbol but with a stroke through it as in Y L X.

Finally the inclusion-exclusion rule which appears so early in development via
Venn diagrams is seen here to be a straightforward relation about overlapping areas
of an eikosogram; from Figure [L9(b) we have that

PriY=yor X=y)=Pr(Y=y)+Pr(X=y)—Pr(Y =y, X =y)

which is easily extended. Similar rules about other overlapping regions could be
developed as well.

All of the above rules for probability are semantically coincident with visual
features of eikosograms. More are explored in Section 4.3.

5This symbol used as a binary operator is often mistakenly attributed to Dawid (1979), e.g.
Whittaker (1990) page 31. However, Fine (1973, pp. 32-37) makes earlier use of the notation
including as an n—ary operator and even develops axioms for independence which the usual prob-
abilistic independence is seen to satisfy.
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4.2.1 Axioms for probability

Eikosograms can also be used to motivate formal axioms for probability. Here we
consider two different approaches: the first is based on intuition about marginal
probabilities as shown for example in the eikosogram of Figure (a), the second
based on intuition about conditional probabilities as shown for example in Figure
2A(b).

Implicit in either case is the concept of a variable which takes on distinct values.
We start with at least one such variable in hand and possibly many more. From these,
other variables can be derived as make sense and we require probability axioms to
hold for all such derived variables. Two such derivations are of particular interest.

First, a new variable could be defined such that each of its values matches one or
more of another variable’s values — a many to one mapping from the old variable’s
values onto the new variable’s values. For example, suppose Y takes three values
Y1, Y2, y3; we now define Z to take value z; whenever Y takes either value y; or
y» and to take value z, when Y takes value y;. In the eikosogram of Figure 24fa),
this amounts to combining the shaded regions to produce the single value z;; the
unshaded correspond to z5. Note that a many to many mapping is prohibited because
the values of the derived variable would no longer be distinct; the lightly shaded
portions of Figure 24|a) cannot be combined with both the unshaded portions and
with the darkly shaded portions at once in the same variable — although each such
combination could be a value for different variables.

Second, given any pair of variables, Y and X, a new variable, Z, can always
be constructed from the cross product Y x X. That is each distinct value z;; of
Z corresponds to the pair (y;,x;) of values from the cross-product Y x X. In the
eikosogram of Figure (b), this amounts to forming Z by assigning a distinct value
to each tile in the eikosogram.

Axioms for marginal probability, essentially the same as Kolmogorov’s, can be
motivated by considering eikosograms involving only a single variable. These are
shown in Figure [25] and are motivated visually via Figure (a). That they match
Kolmogorov’s is seen by noticing that an event in Kolmogorov’s system is simply the
realization of a value of a binary random variable — i.e. [Y = y|] would be such an
event. Of course just as with Kolmogorov, conditional probability will need to be
defined separately. Eikosograms with two variables will be helpful in this definition
and also in that of independence.

Alternatively, the structure of an eikosogram for two variables suggests axioms
for conditional probability such as those shown in Figure[26] Here, a random variable
without specified value indicates any possible value for that variable provided it is
the same wherever the variable appears. Axioms very much like these, but based
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M1 For every value y which a variable Y can take
Pr(Y=9)>0

M2 If Y has only a single value ¢, then
Pr(Y=c¢) =1

M3 If y; # y; represent two distinct values of a variable ¥ then
PrlY =y, or Y =y;) = Pr(Y =y;) + Pr(Y =vy;)

Figure 25: Kolomogorov like axioms based on marginal probability are motivated by
single variable eikosograms.

C1 Pr(Y|Z) >0

C2 PriYlY)=1

C3 If Y takes on only two distinct values y and n, then
Pr(Y =y|Z)+ Pr(Y =n|Z) =1

C4 Pr(Y,X|Z)=Pr(Y|X,Z)Pr(X|Z)

Figure 26: Jaynes-Renyi like axioms based on conditional probability are motivated
by two or more variable eikosograms.

on sets, were suggested by Renyi (1970, p. 38) (see also Fine, 1973, pp. 76-79).
Jaynes (1996, Chapter 2) develops essentially these characteristics of probability as
a consequence of reasonable postulates for a theory of plausibility; there, rather than
sets, the variables represent logical propositions.

Marginal probability is now merely a notational convenience. One could take it
to be the case that probabilities are always conditional and so a variable Z is always
present. This is arguably more realistic in practice and complements the discussion
surrounding Figure 21 When Z = ¢ represents the background condition common
to all probability statements under consideration, it can be dropped to simplify
notation. Alternatively, if the probability of Y is conditional on a random variable
which takes only one value (such a variable can always be constructed) then it would
be simpler to drop the condition rather than continually carry it around. With
this notational simplification, it follows from axiom C3, for example, that without
confusion we can write

Pr(Y,X) = Pr(Y|X)Pr(X)

as a matter of convenience.
If we consider the eikosograms first introduced in Figure as describing the
relevant probabilities given Z has taken some value, then the axioms of Figure
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are straightforward observations. C1 asserts the non-negative nature of area, C2 a
consistency axiom that given a condition holds, the probability that it is realized is
1, C3 a sum rule for the two regions in Figure (a), and C4 the product rule for the
area of rectangular regions in Figure [L9|(b).

The Kolmogorov-like axioms of Figure [25| can be derived from these conditional
axioms. The least obvious of these is M3 for which it is sufficient that the more
general rule for inclusion-exclusion be derived. Obvious from an eikosogram, it is
formally achieved from the axioms by repeated application of C3 and C4 as follows:

Pr(Y=yorX=y|Z) = 1-Pr(Y=n,X=n|Z) = 1-Pr(Y=n|Z)Pr(X=nl|Y =n,2)
= 1-Pr(Y=n|Z)1-Pr(X=y|Y =n,2%))
= Pr(Y=y|Z)+Pr(Y =n,X=y|2)
Pr(Y=y|Z2)+Pr(X=y|Z2)—Pr(Y=y,X =y |2).

The step from the third line to the fourth is a repetition of the steps from the first
to the third, except focussed on changing the value of Y from n to y (this derivation
essentially follows Jaynes, 1996, p. 210).

There are two other interesting features of the conditional axioms. First, C2’:
Pr(Y|Y) > 0 could replace C2, which would then follow as a consequence of the
axioms. Second, it would seem then that probability is bounded by 1 only because of
C3. This seemingly arbitrary choice has been criticised in the past (e.g. Fine, 1973).
Yet if a different bound in C3 were proposed, say 10, and eikosograms constructed
with sides from 0 to 10, then joint probabilities would no longer be the areas of
the rectangles for these areas could exceed the bound for probability. Instead, the
eikosograms suggest that axiom C4 would have to become

10 x Pr(Y,X|Z) = Pr(Y|X, Z)Pr(X|2)

for the joint probability to remain properly bounded by 10. Far from being arbitrary,
a maximum of one is the only value which makes eikosograms work in the sense of
having probabilities directly determinable (marginal and conditional from axes, joint
from areas). Moreover, the eikosograms show that changing the bound would require
C3 and C4 to change in concert (a point made by Jaynes, 1996, p. A-2, as well); C2
would follow with the correct bound, were C2’ to be adopted instead.

All the usual rules of probability follow from either set of axioms. To be math-
ematically complete, however, an additional continuity axiom needs to be added in
order to deal with variables that take on an infinite number of distinct values. The
following matches Kolmogorov’s (1933, p. 14) but first requires some notation. Let
X be a variable which takes on a possibly infinite number of distinct values: xg, x1,
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X2, .... Now, define a sequence of variables Xy, X, ...each composed from the one
before where X; takes distinct values y;, x;11, ©;10, ... with y; being “y;_; or x;” and
Yo = xo. In this way, the first value of X; gathers up more and more of the values as
¢ increases. Kolmogorov’s continuity axiom amounts to

M4 For the above sequence of variables Xy, X1, ..., X;, ...
Ch For the above sequence of variables Xy, X1, ..., X;, ...

If there are only a finite number of distinct values, then the limit follows from the
previous axioms and this one is unnecessary. As Kolmogorov (1933, p. 15) pointed
out

“...the new axiom is essential for infinite fields of probability only, it is
almost impossible to elucidate its empirical meaning, as has been done,
for example, in the case of the ... [previous axioms] ... For, in describing
any observable random process we can obtain only finite fields of proba-
bility. Infinite fields of probability occur only as idealized models of real
random processes.”

The new axiom extends probability to the case where an eikosogram is chopped
into infinitesimally small slices and, as such, leaves behind intuition based on direct
experience. The semantics of probability depend on the earlier axioms. The last
reminds us, as Jaynes (1996, chapter 15) was at pains to point out, that passage to a
mathematical limit occurs only from probability determined first for the finite case.

4.2.2 Agnostic on other interpretation

The axioms just presented depend on random variables and need not make any use of
the word event. They do not appeal to sets for their development nor to plausibility
of propositions nor to personal preferences or decisions. They neither support nor
discount any theory developed for other purposes which might happen to coincide
with these rules. In this sense, the eikosograms and the axioms we derive from
them are independent of their applicability in any other context. The semantics of
probability need only be grounded visually.
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4.3 Further explorations
4.3.1 Association between variables

Because eikosograms are constructed from conditional probabilities, association be-
tween two variables is automatically displayed by them. Figure 27] shows different

' YU YU Yu YH Ym Y_
X X X X X X

X

Figure 27: Binary associations left to right. (a) Perfect positive association: ¥ = X; (b)
Part perfect positive association: 1 = Pr(Y = y|X =y) > Pr(Y = y|X = n); (c) Positive
association: Pr(Y = y|X =y) > Pr(Y = y|X = n); (d) Independence; (e) Negative
association: Pr(Y =y|X =y) < Pr(Y = y|X =n); (f) Part perfect negative association;
(g) Perfect negative association: Y and X are complementary.

levels of association between the two binary variables Y and X. Across these dia-
grams the marginal distribution of X is held fixed, that of Y is not. While association
is easily seen in the pictures, providing a measure of association is not obvious; even
the most commonly recommended one, the odds ratio, fails to distinguish ‘Perfect’
association (Figure 27h) from ‘Part Perfect’ association (Figure 27b) (or “Absolute”
from “Complete” association as in Fienberg, 1977, pp. 18-19).

4.3.2 Events and variables

Events can be introduced in two ways if desired. First for any event, there is a
corresponding binary random variable having value y when the event holds and
value n when it does not. As a consequence, probability rules for events (e.g. as
with Kolmogorov’s for independence of events) follow from rules for binary random
variables. Secondly, a random variable taking a particular value, say Y = y;, can
be thought of as an event [Y = y;] , the construction of the corresponding binary
variable being obvious. Square brackets are used to identify this interpretation as an
event.

Figure [28 shows how eikosograms help distinguish the difference between inde-
pendence of events and of random variables. Supposing X to take on more than two
values, say X = a, X =D, or X = c, then although the random variables ¥ and X
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0 14 34 | 0 14 |

(a) Dependent random variables Y and X (b) Independent events [Y = y| and [X = a]

Figure 28: Some events of dependent random variables can themselves be independent.

are not independent, certain events defined by their values can be. Here, [Y = y|
and [X = a] are independent events even though Y and X are dependent random
variables. Symbolically, it is possible to have [Y = y|IL[X = a] yet Y )L X.

4.3.3 Disjoint, complementary, coincident, and independent events

One consequence of using Venn diagrams to introduce probability was the need to
carefully distinguish disjoint from independent events. This need, to a large extent,
disappears when probability is introduced via eikosograms. Disjoint events now
appear simply as different distinct values of a single random variable as illustrated
for example by the values of Y in Figure (a); there three disjoint events appear,
namely [Y = y], [Y = yo] and [Y = y3]. Nevertheless, should it be desirable to
distinguish disjoint from independent events, the point is easily made via eikosograms
as in Figure [29]

X=y X=n X=y X=n X=y X=n X=y X=n

(a) Coincident (b) Complementary (c) Exclusive (d) Independent

Figure 29: Important possibilities for events [Y = y] and [X =y].

The first two of these appeared in Figure 27| to illustrate the two extremes of
dependence relations. We now consider what they say about the nature of the events
[V =y] and [X = y]. The first, Figure 29|(a), shows two events which are coincident
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— when [X = y| occurs then [V = y] must occur; when [X = y| does not occur then
Y = y| cannot occur. The second, Figure (b), shows the opposite, two events
which are complementary — when [X = y] occurs then [Y" = y] cannot; when [X = y|
does not occur then [Y = y| must occur. This is the most extreme case of disjoint
events; more typical are the disjoint events seen in Figure (c) There, again, the
occurrence of one event excludes the possibility that the other can occur. However,
unlike complementary events, one event not occurring need not ensure that the other
must occur; it may be that neither event occurs. The final eikosogram, Figure 29(d),
is the now familiar flat pattern which is the mark of independence.

The adjective ‘disjoint’, so strongly tied to non-overlapping rings in a Venn dia-
gram, now seems out of place from the perspective of an eikosogram; the adjective
‘exclusive’ or ‘mutually exclusive’ seems better fitting. Even with many binary vari-
ables, or events, the mark of mutually exclusive events will be eikosograms with
unshaded vertical strips everywhere except where all conditioning variables have
value ‘n’ (i.e. the conditioning events do not occur); there the shading will occupy a
portion of the vertical strip, all of it if the events are also complementary.

Confusing this visual pattern with that of independence is unlikely.

4.3.4 Three and more variables and conditional independence

In Figure the eikosograms of one variable for each of the separate values of
another were combined into a single eikosogram to display their joint distribution.
In a similar fashion, in Figure [30] the eikosograms of Y given X for each value of a

X=y X=n X=y X=n
Z=y Z=n

(a) When Z =y holds (b) When Z =n holds  (c¢) Combine

Figure 30: The two joint eikosograms under conditions of (a) and (b) combine, or mix,
according to the probabilities associated with Z = y and Z = n, to produce (c) a combined
eikosogram for Y given X and Z. In this example, the mixing probabilities are equal at
1/2.

third variable Z are combined to give the eikosogram of all three variables in the form
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of Y given (X, Z). In this example, each value of Z has the same probability of 1/2.
As before, the width of individual strips gives the probability of each condition and
the heights the corresponding conditional probabilities. This construction is general
in that eikosograms for Y given the cross product of arbitrarly many conditioning
variables can similarly be formed.

Figure 30c) now provides a visual means to explore the joint distribution of Y,
X, and Z. Those visual characteristics which were of interest in considering only two
variables remain of interest conditionally when considering three random variables.
For example, we notice that there seems to be a consistent, though not identical,
positive association between Y and X conditional on either 7 =y or Z = n. The
water container metaphor applies as before so that removing the barrier separating
X =y from X = n for each value of Z will produce the eikosogram for Y given Z
marginalized over X. Flat regions now indicate conditional independence of some
sort.

Eikosograms displaying different sorts of conditional independence relations are
shown in Figure Note that a completely flat region as in both Figures c) and

0 1/4 3/8 5/8

Y=n Y=n

(a) YAX|Z (b)) YUAX |[Z=y]but Y] X |[Z=n]

0 1/4 338 58 1 0 1/4 38 19/24 1

Y=n Y=n

13 13
Y=y Y=y
0 0

X=y X=n X=y X=n X=y X=n X=y X=n
Z=y Z=n Z=y Z=n

() YAX|Z and YL Z|X, but XU Z (d) Complete independence: IL(Y, X, 7).

Figure 31: Some of the conditional independencies possible for Y given X and Z.

(d) does not imply complete independence of all three variables. Complete indepen-
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dence between three variables occurs if and only if the eikosogram is completely flat
whatever variable appears on the vertical axis; that X L Z in Figure[31j(c) but X 1. Z
in Figure [31)(d) would require calculation or be made immediately apparent from an
eikosogram having either X or Z on its vertical axis. Note, however, that from either
Figure 31fc) or (d), application of the water container metaphor gives visual proof
to the following ‘flat water’ result (see Oldford, 2003a, for others):

YIX|Zand YUZ|X = YUIXandYIZ

The three way eikosograms explored here are each but one of nine possible ar-
rangements of the joint probabilities of Y, X, and Z. Not all nine are always required;
for example in Figure[30|(c) the common level when X = n indicates Y 1L.Z | [X =n].
Exploring the other arrangements gives much insight into the relationships between
three variables but is beyond the scope of the present paper. Oldford (2003a) ex-
plores these in detail including their value in interpreting graphical and log-linear
models.

5 Grounding events

Like probability, eikosograms presume that random variables have already been pro-
vided. In many instances, this will be true — categorical variates (e.g. sex, education
level, programme of study, colour, etc.) arise immediately from many statistical con-
texts and are meaningfully grounded within that context. In other contexts, however,
variables may not be immediately available but will need to be derived from what-
ever fundamental outcomes are possible and of interest. Events can be defined in
terms of these outcomes and binary variables defined to indicate whether the event
occurs or not.

One might think that this would be the proper place to use Venn diagrams, to
define the events on which probability operates. However, Venn diagrams are ideally
suited to describe logical relationships between existing events; what is needed are
diagrams which help define events in the first place.

As is often the case, turning to historical sources where concepts were first cor-
rectly formulated can provide insight into how best to teach those concepts. After
all, those earlier struggles are akin to those of students and, like students, those
first formulating the concepts look for aids, diagrammatic and otherwise, which help
naturally to clarify the concept itself.
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5.1 QOutcome trees.

Trees are perhaps the earliest diagrams used in probability dating back to at least
Christiaan Huygen’s use in 1676 (see Shafer, 1996). They are natural when the
outcomes lead one to another in time. Figure [32(a) shows a simple tree describing

head head

head

tail tail

[a) Outcome tree for two coin tosses {b) The event one head, one tail

Figure 32: Defining events on an outcome tree.

two tosses of a coin. Branches at a point in the tree represent the mutually exclusive
and exhaustive outcomes which could follow from that point.

While some notion of time is generally associated with movement from left to
right across the tree, this is not strictly required. For some situations, the ordering
of the tree branches might rather be one of convenience. For example, the tree of
Figure could also be used to provide a description for the simultaneous toss of
two coins, with left and right components being labelled as “Coin 17 and “Coin 2”.

Either way, the diagram provides a complete description of the situation under
consideration in terms of all possible outcomes at each step — hence the name out-
come treeff] If the branching probabilities were attached we would have the familiar
probability tree. However, determining the probabilities is a separate stage in the
probability modelling, and so it is best to spend some time with the outcome tree
before moving on to this next stage!l]

60ther authors, notably Edwards(1983) and following him Shafer (1996), prefer the name event
tree for this diagram.

"Huygens’s (1676) tree was not a probability tree in the modern sense. Huygens was interested
in solving an early version of the gambler’s ruin problem and labelled his branches with the ‘hope’
of winning (essentially the odds of winning at each stage) and the return due the gambler if the
game were ended at that point. According to Shafer (1996, p.4) “[i]t was only after Jacob Bernoulli
introduced the idea of mathematical probability in Ars Conjectandi that Huygens’s methods became
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Events can now be defined by reference to the outcome tree. For example, the
thick branches of Figure [32(b) show the event ‘one head and one tail” without speci-
fying which toss produced which. Similarly, if we were considering the event ‘a head
followed by a tail’ only the topmost of the two thickly shaded paths would define
the event; the bottommost of the two defines the event ‘a tail followed by a head’.
These two events combine to produce the first event of ‘one head, one tail’ﬁ The
notion of outcome space (or more traditionally the sample space, a term we find to
be less clear) could now be introduced as the set of all individual paths through the
tree. An event, being a collection of paths, is simply a subset of the outcome space.

Outcome trees describe what can happen, step by step. The probability model
is built on this structure by attaching conditional probabilities to each branch. The
resulting probability tree will visually emphasize the conditional branching structure
of the probability model whereas the corresponding eikosogram will visually empha-
size the probability structure itself. One is easily constructed from the other since
they contain the same information. The important difference is the different spatial
priority each gives to the components of that information.

5.2 Outcome diagrams.

While outcome trees are often the most natural way to show how outcomes are
possible, in some problems it is simpler just to show what outcomes are possible.

A notable early example of this approach is De Moivre’s 1718 Doctrine of Chances
in which he developed probability theory by addressing one problem after another.
Although postdating Huygens (1676), no probability trees appear there. De Moivre
did, however, find it convenient to completely enumerate all possible outcomes for

N

methods for finding ‘the probability of winning’.” (Ars Conjectandi was published posthumously
in 1713.)

There are many interconnections between the players in this story. Jacob was the brother, teacher,
and ultimately the mathematical rival of the Johann Bernoulli under whom Euler studied. Euler’s
father had attended Jacob’s lectures and had lived with Johann at Jacob’s house.

8 This is the usual probabilistic use of the word event. Recently, in the development of a general
theory for causal conjecture (one that depends heavily on the outcome tree description), Shafer has
proposed calling such events Moivrean events. This then permits him to introduce what he calls
Humean events to capture what common usage might consider to be a causal event in the tree
structure. For example, the taking of a given branch might be considered the ‘event’ which ‘caused’
all that followed to be possible. The branch would be a Humean event whereas a Moivrean event
must be one or more complete paths through the tree. With the introduction of Humean events
for each branch, one can see why Shafer (1996) would choose to call these diagrams ‘event trees’.

Since probability theory depends only on so-called ‘Moivrean’ events, we prefer ‘outcome trees’
to ‘event trees’.
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some problems and, occasionally, to arrange these spatially in a table (e.g. De
Moivre, 1756, p. 185). To each outcome, the number of ‘chances’ or frequency with
which it can occur was attached and provided the information needed to determine
the probability of any event composed from the listed outcomes.

In more modern times (dating to at least Fraser (1958) and predating standard
use of Venn diagrams in probability books), it has been useful for teaching purposes
to show all possible outcomes as spatially distinct points in a rectangular field as in
Figure 33| (a). The spatial locations are arbitrary and so may be chosen so the events

(a) Outcome diagram (k) Mutualy excluzive and () Two intersecting events
exhaustive events,

Figure 33: Defining events on an outcome diagram.

of interest easily display as regions encompassing those outcomes which make up the
event. In Figure (b) there are three non-overlapping regions which cover the entire
field illustrating three mutually exclusive and exhaustive events. In Figure (c)
two overlapping regions are drawn indicating two different events which have some
outcomes in common/’| In this figure, the unenclosed outcomes seem to constitute
an event of no intrinsic interest; if they were of interest they would be best enclosed
in a separate third region.

As with outcome trees, probabilities are missing from the outcome diagram. It
is necessary to add them (usually to each individual outcome) in order to complete
the probability model. Once outcome probabilities and events are in hand, any
eikosogram for the events can be determined, although with more work than from a
probability tree. Note however that, unlike probability trees, it will not generally be
possible to construct an outcome diagram (and possibilities) from an eikosogram; at
best only the construction of a Venn diagram (and attendant probabilities) will be
possible.

9Figure|33(c) is also a diagram which would be useful to ground Venn’s diagrams in an application
and is often used for that purpose. It is a mistake, however common, to call Figure ¢) a Venn
diagram.
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6 Concluding remarks

Diagrams convey meaning. Throughout their history, ring diagrams have consistently
been used to make concrete the concepts that abstract entities can be distinct from
one another, have parts in common, or one necessarily entailing another. It seems
unlikely, especially given their religious training and backgrounds, that either Euler
or Venn would be unaware of this use of ringed diagrams in other contexts. Moreover,
this knowledge would have preceded either man’s original contribution to their use
in logic: Euler to describe logical statements, Venn to derive them. Indeed, the
relationship between the contributions of the background of ringed diagrams which
prevailed at the time, Euler’s use in explaining logic, and Venn’s use in developing
logic could be captured diagrammatically by three mutually intersecting rings.

Diagrams are important in learning any material, provided the diagram is well
matched to that material. The eikosogram is just such a diagram for the introduc-
tion, definition, and exploration of probability and its attendant concepts such as
conditional, marginal, and joint distributions as well as the more subtle concepts of
probabilistic dependence and independence both unconditionally and conditionally.

Eikosograms obey Venn’s dictum to match features of the diagram directly to the
symbolic expression of the ideas. They fulfill Wittgenstein’s notion of an ‘ostensive
definition’ in that they can be used directly to define what is meant by these proba-
bility concepts. What eikosograms do not do is say how to use probability to model
the real world.

This focus entirely on the mathematical abstraction of probability is a strength.
Eikosograms permit a fundamental understanding of probability concepts to be had
unclouded by the inherent difficulty of probability modelling. They do so by pro-
viding a definitive diagrammatic grounding for the symbolic expressions rather than
one which appeals to some putatively natural application. Not only is the simul-
taneous introduction of probability and its application (often a source of confusion
to many students) easily avoided but the important distinction between probability
and model can be made early and more easily maintained thereafter.

If Venn’s diagrams are to play a role in teaching probability it must be one
considerably diminished from their present role. Outcome trees and probability trees
have greater value for understanding events and the structure of a probability model.
Eikosograms are coincident with probability. And outcome diagrams do much of the
rest. Because of their inherent weaknesses for teaching probablity, it might be best
at this time to avoid Venn diagrams altogether.

It is true that the intersecting ring diagrams are not original to Venn. But neither
are they to Euler. The history of the diagrams, particularly in Christian symbolism,
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has shown them to be long associated with the demonstration of things separate
and common to one another. This association is ostensibly inseparable from the
diagrams. Given the religious training of both Euler and Venn, as well as the time
periods in which these men lived, it seems likely that both men would have been
aware of the vesica piscis and of the Christian symbolism associated with the two
and three ring diagrams.

Euler’s innovation was to use two-ring diagrams to demonstrate Aristotle’s four
fundamental propositions and to use more rings to illustrate the known outcomes of
the syllogisms of Aristotelian logic. Venn, well aware of Euler’s use, took the idea of
intersecting rings (and of intersecting ellipses) to build a diagram which could be used
to derive the consequence of possibly complex syllogisms as the logical information
became available[l” Each was an important and innovative use in its own right.

Historically and conceptually, eikosograms are direct descendants from Venn di-
agrams (e.g. Edwards, 1972). Their information content is that of probability and
is easily organized and conveyed. Eikosograms should play a central role in teaching
probability. Venn diagrams can be safely set aside, their value replaced by outcome
trees and outcome diagrams.
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Appendix: Use of Venn diagrams in probability

texts

Judging by today’s texts, one might have thought that Venn diagrams had been
used in expositions of probability for well over 100 years since Venn first wrote about
them, or at least dating back to the beginnings of the use of an axiomatic set theoretic
approach to probability. But this doesn’t seem to be the case.

We conducted an exhaustive search of the University of Waterloo library holdings
of books on probability and statistics as well as consulting other local university
libraries. Table [1] below shows early works up to about the middle of the twentieth

Author Date Title Use of Venn Diagrams
LaPlace 1812  Théorie Analytique des Probabilités None
Venn, J. 1876  Logic of Chance None
1881  Symbolic Logic Extensive use
1888  Logic of Chance 3rd Edition None
1889  The Principles of Empirical or Inductive Logic None
Woodward, R.S. 1906  Probability and the Theory of Errors None
Venn, J. 1907  The Principles of Empirical or Inductive Logic ~ None
2nd Edition
Poincaré , H. 1912 Calcul des Probabilités None
Keynes, J.M. 1921 A Treatise on Probability None
Burnside, W. 1928 Theory of Probability None
von Mises, R. 1928  Probability, Statistics and Truth None. Though this observa-
tion is based on the 1957 En-
glish translation of the defini-
tive 1951 3rd German edition.
Kolmogorov, A.N. 1933  Grundbegriffe der Wahrscheinlichkeitrechnung; None
Jeffreys, H. 1939  Theory of Probability (and 3rd Edition, 1960) None
Carnap, R. 1950  Logical Foundations of Probability (and 2nd Edi-  None
tion, 1962)
Kolmogorov, A.N. 1950  Foundations of the Theory of Probability(1st En-  None
glish edition)
Feller, W. 1950  An introduction to probability theory and its ap- Yes

plication

Table 1: First use of Venn diagrams in probability.

century. As far as we were able to determine, credit for the first use of Venn diagrams
to introduce probability lies not with Venn, nor with Kolmogorov, but rather with
Feller in his classic, much admired and much read first volume of the Theory of
Probability.

Venn wrote on probability, logic and inductive inference, yet never used his di-
agrams for the The first table shows early works up to about the middle of the
twentieth century. As far as we were able to determine, credit for the first use of
Venn diagrams to introduce probability lies not with Venn, nor with Kolmogorov,
but rather with Feller in his classic and much read first volume on the Theory of
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Probability. Venn wrote on probability, logic and inductive inference, yet never used
his diagrams for the The table summarizes the presence or absence of Venn diagrams
for several books. Many authors used no diagrams or used their own diagrams. Some,
like Gnedenko (a student of Kolmogorov) used Venn diagrams without calling them
such. In any case use of the diagrams in probability seems to have been rare and
certainly not popular until about a 100 years after Venn promoted them for symbolic
logic.
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Author Date Title Use of Venn Diagrams
Lévy, P. 1954 Théorie de L’Addition des Variables None

Aléatoire
Polya, G.. 1954 Patterns of Plausible Inference(and  None

2nd Edition 1968)

Savage, L.J. 1954 The Foundations of Statistics Yes. Savage also remarks (p. 11) that
the set theoretic approach is “not ordi-
narily taught except in connection with
logic or relatively advanced mathemat-
ics.”

Loeve, M.M. 1955 Probability Theory: Foundations, ran- None

dom sequences

Cramér, H. 1955 The Elements of Probability Theory None

and Some of its Applications

Kolmogorov, A.N. 1956 Foundations of the Theory of Probabil- None

ity(2nd English edition)

Rényi, A. 1957 Calcul des Probabilités None, but uses his own series of con-
centric circle diagrams to illustrate sets,
their intersection and union

Fraser, D.A.S. 1957 Nonparametric Methods in Statistics None

Fraser, D.A.S. 1958 Statistics: An Introduction No. Instead he uses what we call out-
come diagrams though he doesn’t name
them.

Dugue, D. 1958 Ensembles Mesurables et Probabilis- None, but shows a (noncircular) set B

ables nested within a larger (noncircular) set
A
Derman, C. 1959 Probability and Statistical Inference for ~ None, even though it begins with a set
Engineers theoretic approach
Jeffreys, H. 1960 Theory of Probability (3rd Ed.) None
Mosteller, F. 1961 Probability with statistical applications  Yes, but only for events, after probabil-
(3rd Ed.) ity has been introduced and explored
empirically.
David, F.N. and D.E. Barton 1962 Combinatorial Chance None
Lindley, D. V. 1965 Introduction to Probability and Statis- Not really, uses overlapping (in a T)
tics from a Bayesian Viewpoint rectangular boxes for motivating ax-
ioms but curiously not for his condi-
tional probability axiom

Hodges, J.L. Jr. and E.L. Lehmann 1964+  Basic Concepts of Probability and  Uses outcome diagrams and a Venn-like

Statistics diagram
Hodges, J.L. Jr. and E.L. Lehmann 1965 Elements of Finite Probability Identical to above
Gnedenko, B.V. 1966 Theory of Probability (3rd Ed.) Yes, but doesn’t name them
1968 Theory of Probability (4th Ed.) Yes, but now introduced with quotes as:
“so-called Venn diagrams”

Johnston, J.B., G.B. Price, and F.S. 1968 Sets, Functions, and Probability Extensive use. Also uses non-

Van Kleck overlapping rectangular regions for par-
titions because they “afford a more re-
alistic picture of this situation.”

Lipshutz, S. 1968 Schaum’s outline of Theory and Prob- Yes. Starts with Venn diagrams for

lems of Probability sets (2 and 3 ring), Euler like diagrams.
Also uses tree diagrams. All diagrams
figure prominently throughout.

Ewart, P.J., J.S. Ford, and C-Y. Lin 1974 Probability for Statistical Decision  Uses stylized outcome diagrams calling

Making

them “Venn-Euler“ diagrams.

Table 2: Uptake of Venn diagrams in probability texts.
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Author Date Title Use of Venn Diagrams
Kyburg, H.E., P. 1969  Probability Theory Yes, though only 3 ring and Venn’s 4
ring (ellipses) diagrams. Logic moti-
vated.
De Finetti, B. 1970 Teoria Delle Probabilita Yes.
1974  English: Theory of Probability: A crit-
ical introductory treatment
Whittle, P. 1970  Probability None
De Finetti, B. 1972  Probability, Induction and Statistics: No use, but a related diagram is used
The Art of Guessing to discuss limiting properties
Fine, T.L. 1973  Theories of Probability: An Examina- None
tion of Foundations
Shafer, G. 1976 A Mathematical Theory of Fvidence None
Billingsley, P. 1976  Probability and Measure None

Table 3:

Some later books.
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