Switching Dynamics in the Aplysia Bag Cell Neuron
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Motivation

In endeavoring to understand the basis; -

of neural function, the field of theoreti-, 3 Figure1 b

cal neuroscience has gained traction in|
the last 20 years. This traction has been| .
largely due to the observation andj .
mathematical modeling of the electro-{
chemistry underlying neuron function
in the squid giant axon over 60 years

ago [1]. Today, there are three widely

used classifications of mathematical g
neuron model: threshold spiking, os- ’ C

cillatory, and bursting neurons (Fig-

ures la-c), but these prototypicall ;J#Mww
neuron models do not capture the di- \

versity of neuron dynamics as they o .

appear in nature and modifications are —
often necessary, particularly when second-messenger systems (governed by
molecular reaction kinetics) are involved in neuron function. One such ex-
ample is stimulus-dependent transient bursting.

Transient Bursting Cycle

In nature, transient bursting cycles in neurons serves a broad range of func-
tions, including working memory in humans, motor function in turtles, and
escape responses in lamprey [2] as well as lactation and birth in mammals
[3]. Aplysia has emerged as a model organism for this transient behavior, in
which tﬁe henomena is referred to as the afterdischarge [4,5,6]. As is
common of neurons that exhibit transient bursting, the persistent electrical
activity of the neuron in an active state is associated with the release of neu-
ropeptides that modulate function downstream [7], making them important
high-level signaling neurons.
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In the abdominal ganglia of the seaslug, Aplysia, bag cell neurons regulate
egg-laying behavior. Thought to be initiated by upstream acetylcholine in
nature [7], the afterdischarge is evoked by a pulse-like stimulus in the lab (Fig-
ure 2, Onset). Two varieties of calcium-dependent nonselective cation chan-
nel are indicated in the transition from the steady state to the limit cycle ruin.
The first is voltage-independent and acts to depolarize the resting potential
(Figure 2, Onset) as a function of calcium concentration [8], while the second
is voltage dependent [9] and contributes to the repetitive firing of the afterdis-
charge (Figure 2, Afterdischarge). During the afterdischarge, an additional
potassium current and a second-messenger systems are candidates for regula-
tors of a refractory period in the bag cell (Figure 2, Refractory). In addition to
afterdischarge behavior, the bag cell neuron also behaves as a typical neuron
for a standard brief stimulus (Figure 6, green region). To model these base
currents, the Hodgkin-Huxley model [1] is used as a framework. Unlike the
canonical Hodgkin-Huxley model (derived from the squid giant axon) the
Aplysia bag cell neuron relies on calcium for the upstroke of its action poten-
tial, which displays some use-dependence, and there are at least two channels
involved in the potassium current.

Mathematical Modeling

The task of deriving a system of the form in Figure 2 requires gradual con-
struction, beginning with the base currents that make up the action poten-
tial (green region). The key observable of electrical activity in the neuron is
the membrane potential and has the form of a leaky capacitor,

(1)

Where the change in membrane potential V is governed by the capacitance,
C, and the instantaneous value of the applied, calcium, and potassium cur-
rents are given, respectively, by the right hand side. With the exception of
the constant applied current, I, the current have the form,

(2)

That is, the xth current is a function of the maximal conductance g , the acti-
vation function, m(V), the inactivation function h(V), and the driving force,

(V-V ), where V _is the reversal potential of the ion current. Experimental-
ists observe kineétics by isolating currents and performing voltage clamp ex-
periments. We therefore construct each current model independently from
raw data provided by Neil Magoski [4,5,8,9, Acknowledgements].
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Calcium Channel

The primary component of the upstroke is a calcium channel that exhibits
use-dependence. A series of pulses to a channel with use-dependence will
return a successively lower peak current with each subsequent pulse (Figure
3, left). To model this phenomena, the calcium channel’s activation kinetics
are first fit to model, using the standard Hodgkin-Huxley framework,

- (3)

The functions, m_ and 7 , are function fit directly from experimental data.
To model the use-dependence, a differential equation is added to the system
to keep track of calcium concentration in a small intracellular domain near

the calcium channels:

. Meoa(1 = By)
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where s is the calcium concentration in the internal domain, I ., i the calci-
um current, P, is the probability of a single ion channel being bound to a
buffer (presumably calmodulin), F is Faraday’s constant, b is the rate of calci-
um dissipation, v 1s the volume of the internal calcium domain, D describes
the rate of diffusion of calcium out of the internal domain. The calcium-de-
pendent inactivation is then
Vi— Ve
(5)

1+ Ks

Together, Equations (3)-(5) describe the evolution of the calcium current as
a function of membrane potential and calcium concentration. For some pa-
rameters, the system exhibits use dependence (Figure 3, left) comparable to
the experimental result (Figure 3, right).
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In addition to reproducing use-dependence experiments in bagt cell neu-
rons, the same parameter regime can also reproduce the standard activation
experiments, at least over time courses relevant to the action potential (Fig-
ure 4). The model used here originated from a formulation of use depen-
dence in Aplysia abdominal ganglgion [10].

Potassium Channels

Little ground has been made in separating the kinetics of the two potassium
channels because ambiguities lie in fitting procedures. Four equations of the
form in Equation 3 must be fit to a summation of two equations of the defini-
tion of the current (Equation 2). The fitting program is applied to each volt-
age clamp trace independently, and therefore has no information about other
voltage-dependent traces. Often, the resulting kinetics are noisy (Figure 5,
bottom) despite a well-approximated fit (Figure 5, top). In order to gain
some controFover the result in the kinetics, paramater forcing is used. g[he
upper and lower bounds of the fit are determined as a deviation from the ex-
pected Botlzmann kinetics (Figure 6, bottom). The resulting fit loses some
specificity in favor of generality, but maintains the important qualitative
properties of current response.
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dvV=56,g=1,Vx=20,Vw =20 dT 0.21, to 0.25, Vx =50, Vw 50
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Whole Bag Cell Neuron Synthesis

Having derived parameters for potassium and calcium is not enough to con-
struct the action potential of a whole bag cell neuron. Variability between
neurons is significant enough that one bag cell’s calcium kinetics may not
produce an action potential with another bag cell’s potassium kinetics. Fur-
ther, the maximal conductances in Equa-
tion 2 for each current depends on prop-
erties that vary from experiment to exper-
iment (such as the patch size, amplifier

Genetic Algorithm
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Crossover

settings, and concentration of channels at

the detection electrode). To find a param- ——

eter space in a region consistent with ex- Selection LA
perimental results, a genetic algorithm i
will be employed (right), having yielded P

successful results in the past (right, inset).
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