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Large Networks of Neurons

•We consider large networks of coupled,
two-dimensional, integrate-and-fire networks

•The networks are given by:
v̇i = F (vi)− wi + I + gs(er − vi) = G(vi, wi, s)
ẇi = 1

τw
(bvi − wi)

ṡ = − s
τs

+ λs
τsN

N∑

i=1

∑

t<ti,k

δ(t− ti,k)

v(t−) = vpeak,→ v(t+) = vreset, w(t+) = w(t−) + λw
τw

where w is the adaptation variable, and v is the
voltage.

• In the large network limit, one obtains the first
order moment-closure simplified population
density equation:

∂ρV (v, t)
∂t

= − ∂
∂t

(G(v, 〈w〉, s)ρV (v, t)) (1)

s′ = − s
τs

+ λs
τs
J(vpeak, t) (2)

〈w〉′ = −〈w〉
τw

+ λw
τw
J(vpeak, t) (3)

•The steady state to this system is given by:
s̄ = λsR̄, w̄ = λwR̄

R̄ =


∫ vpeak
vreset

dv′

G(v, s̄, w̄)



−1

•After applying the general approach in [2] to
linearize the system of equations, one arrives at
the eigenvalue equation:

0 =
(
eµ/R − 1

) 
µ + 1

τs




µ + 1

τw


 (4)

+

µ + 1

τs




λw
τw
µB̂(µ)


 (5)

−

µ + 1

τw




λs
τs
µÂ(µ)


 (6)

where

Â(µ) =
∫ 1

0
eµy/R

g(er − η−1(y′))
G1(η−1(y′)λsR, λwR)

dy′ (7)

B̂(µ) =
∫ 1

0
eµy/〈R〉

−1
G1(η−1(y′), λsR, λwR)

dy′(8)

and y = η(v) is the Abbott-Vreeswijk transform.
•The spectral has a countable solution set µi,
i = 1, 2, . . . where <(µi) < 0 ∀i, and for small ε
in addition to two eigenvalues given by the
equation

0 = (µ1 + γ)(µ1 + 1) + λw(µ1 + γ)∂〈Ri(t)〉
∂w

− γλs(µ1 + 1)∂〈Ri(t)〉
∂s

(9)
to lowest order in ε.

•Equation (9) is the eigenvalue equation for the
mean-field system

ṡ = − s
τs

+ λs
τs
〈Ri(t)〉

ẇ = −w
τw

+ λw
τw
〈Ri(t)〉

〈Ri(t)〉 =





(∫ vpeak
vreset

dv
G(v,s,w)

)−1
H(s, w) ≥ 0

0 H(s, w) < 0
H(s, w) = min

v∈[vreset,vpeak]
G(v, s, w) = G(v∗(s), s, w)

Large Networks Continued

•For small H(s, w), one can prove that

〈Ri(t)〉 ∼
√√√√F ′′(v∗(s))

2

√
H(s, w)
π

•Thus, we consider the system

ṡ = − s
τs

+ λs
τs
〈Ri(t)〉 (10)

ẇ = −w
τw

+ λw
τw
〈Ri(t)〉 (11)

〈Ri(t)〉 =





√
F ′′(v∗(s))

2

√
H(s,w)
π H(s, w) ≥ 0

0 H(s, w) < 0
(12)

for analysis.
•This system is the slow system of (1)-(3) when
τs, τw � 1 and 0 ≤ H(s, w)� 1. The stability
and existence of the asynchronous state(s) of
(1)-(3) is determined by the stability of the
steady state(s) of (10)-(12)
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〈Ri(t)〉

〈Ri(t)〉 =
√

F ′′(v∗(s)(I − I∗(s, 〈w〉)) /(π
√
2)

AdEx Network, 1000 Neurons

a: Bursting AdEx Network
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b: Tonic Firing AdEx Network

Figure 2: Shown above is a network of 1000 AdEx neurons
(gren) in comparison to the mean-field system with (〈R〉 =
∫ vpeak
vreset

dv
G(v,s,w))

−1 (blue) and the system with 〈R〉 from equation
(12)(red)

Existence and Steady States

•By expanding in small s (which based on the
steady state conditions of (10)-(12) is equivalent
to 0 ≤ H(s, w)� 1, one can show that there are
up to two equilibria, e± = (s±, w±):

s± = M(g)(g − g∗)±
√
M(g)2(g − g∗)2 ± Ĩ

w± = τwwjump
τssjump

s± = ηs±

•A third solution is the non-firing solution,
s = 〈w〉 = 0

•The equilibria (s±, ηs±) undergo a saddle-node
bifurcation when

Ĩ = −M(g)(g − g∗)2 + O((g − g∗)3)

Non-Smooth Bifurcations

•The saddle-node bifurcation is generic for g > g∗

• (s+, ηs+) undergoes a Hopf bifurcation when
Ĩ = −2M(g)N(g)(g − g∗)(g − ḡ) + O((g − ḡ)2)

•The Hopf bifurcation is generic for g > ḡ with
first Lyapunov coefficient given by:

l1(0) = 3
8

λ2
w

2(er − v∗(0))6λ2
s(g − ḡ)2ε

3 + O(ε2)

as l1(0) > 0 for g > ḡ, τw, τs� 1, the Hopf
bifurcation is subcritical

•Bifurcation curves are valid for g > g∗

(saddle-node) and g > ḡ (Hopf). The points
(Irh, g∗) and (Irh, ḡ) are cp-dimension 2
non-smooth bifrucation points.
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Figure 3: The saddle-node (black) and Hopf bifurcation curves
(red) for the full mean-field system (dashed) and the reduced
mean-field system (dotted) for a network of Izhikevich neurons.
The full mean field system’s bifurcation curves are determined
via continuation in MATCONT. The points ḡ and g∗ at Ĩ = 0
correspond to non-smooth co-dimension 2 bifurcation points.
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Figure 5: Shown above are the four branches of boundary
equilibrium bifurcations. In all figures, the equilibria are (0, 0)
(in black), (s+, ηs+) (blue) and (s−, ηs−) (green). The limit
cycle is shown in magenta and is determined through direct
integration of the reduced mean-field system.

•These co-dimension 2 non-smooth bifurcations
appear to be non-generic versions of those that
appear for regular PWSC systems [3].
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Figure 6: Hopf-BEB Point

Figure 7: Shown above is the collision of the Hopf bifurcation
curve with the the non-smooth bifurcation branches.

Conclusions

•A system of PWSC ODE’s is derived in the limit
that τs, τw � 1, H(s, w)� 1 from the moment
closure reduced population density equation for a
network of Type-I neurons.

•The system of ODE’s has saddle-node and hopf
bifurcation branches, and two non-smooth
co-dimension 2 bifurcation points. The bursting
behavior of a full network fo neurons is organized
by these points.
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