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Large Networks of Neurons

« We consider large networks of coupled,
two-dimensional, integrate-and-fire networks

« The networks are given by:
v; = F(v;) —w; + I + gs(er —v;) = G(v;, wy, s)
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where w is the adaptation variable, and v is the

voltage.

In the large network limit, one obtains the first
order moment-closure simplified population
density equation:
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The steady state to this system is given by:
S= AR, wW=MR
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After applying the general approach in |2] to

linearize the system of equations, one arrives at
the eigenvalue equation:
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and y = n(v) is the Abbott-Vreeswijk transform.
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I'he spectral has a countable solution set p;,

i =1,2,... where R(u;) < 0 Ve, and for small €
in addition to two eigenvalues given by the
equation
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to lowest order in e.

Equation (9) is the eigenvalue equation for the
mean-field system
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Large Networks Continued

= For small H(s,w), one can prove that
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« Thus, we consider the system
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for analysis.

« This system is the slow system of (1)-(3) when
Ts, Tw > 1 and 0 < H(s,w) < 1. The stability
and existence of the asynchronous state(s) of
(1)-(3) is determined by the stability of the
steady state(s) of (10)-(12)

b: Tonic Firing AdEx Network

Figure 2: Shown above is a network of 1000 AdEx neurons
(gren) in comparison to the mean-field system with ((R) =
[[Vpeak __dv ))_1 (blue) and the system with (R) from equation
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(12)(red)

Existence and Steady States

« By expanding in small s (which based on the
steady state conditions of (10)-(12) is equivalent
to 0 < H(s,w) < 1, one can show that there are
up to two equilibria, e4 = (sS4, w4 ):
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« A third solution is the non-firing solution,
s = (w) =0

« The equilibria (s4,ns+) undergo a saddle-node
bifurcation when
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Non-Smooth Bifurcations
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« The saddle-node biturcation is generic for g > g~

= (s4,1ns,) undergoes a Hopf bifurcation when

I =—2M(g)N(g)(g—9")(g—g)+O((g—9))

« The Hopf bifurcation is generic for g > ¢ with
first Lyapunov coefficient given by:
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as [1(0) > 0 for g > g, T, 7s > 1, the Hopt
bifurcation is subcritical

« Bifurcation curves are valid for g > ¢g*
(saddle-node) and g > g (Hopf). The points
(I, 9%) and (I, g) are cp-dimension 2
non-smooth bifrucation points.
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Figure 3: The saddle-node (black) and Hopf bifurcation curves
(red) for the full mean-field system (dashed) and the reduced
mean-field system (dotted) for a network of Izhikevich neurons.
The full mean field system’s bifurcation curves are determined
via continuation in MATCONT. The points g and g* at [ = 0

correspond to non-smooth co-dimension 2 bifurcation points.
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Figure 5: Shown above are the four branches of boundary
equilibrium bifurcations. In all figures, the equilibria are (0, 0)
(in black), (si,7ns.) (blue) and (s_,ns_) (green). The limit
cycle is shown in magenta and is determined through direct

integration of the reduced mean-field system.

» These co-dimension 2 non-smooth bifurcations
appear to be non-generic versions of those that
appear for regular PWSC systems [3].
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Figure 6: Hopf-BEB Point

Figure 7: Shown above is the collision of the Hopf bifurcation

curve with the the non-smooth bifurcation branches.

Conclusions

« A system of PWSC ODE’s is derived in the limit
that 74, 7, > 1, H(s,w) < 1 from the moment
closure reduced population density equation for a

network of Type-I neurons.

« The system of ODE’s has saddle-node and hopt
biturcation branches, and two non-smooth
co-dimension 2 biturcation points. The bursting
behavior of a full network fo neurons is organized
by these points.
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