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Abstract. We consider a network of three identical neurons with multi-
ple signal transmission delays. The model for such a network is a system
of delay differential equations. With the aid of the symbolic computa-
tion language MAPLE, we derive the corresponding system of ordinary
differential equations describing the semiflow on the centre manifold. It
is shown that two cases of a single Hopf bifurcation may occur at the
trivial fixed point of the full nonlinear system of delay equations, pri-
marily as a consequence of the structure of the associated characteristic
equation. These are () the simple root Hopf, and (4i) the double root
Hopf. This paper focusses on the first case, paying particular attention
to possible change of the criticality of the bifurcations.
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1 Introduction

It is well-known (see [1, 2, 10, 11, 15] and references therein) that a coupled sys-
tem of multiple-delayed differential equations exhibits some interesting bifurcation
phenomena as linear stability is lost. For example, in [1], a scalar multiple-delayed
differential equation of the form

i(t) = fi(z(t —=Th)) + fo(a(t = T2)) ,
where f;(u) = —A; tanh(u), i = 1,2 (A; are positive constants) is considered. The
bifurcations occurring as linear stability is lost are studied via the construction of
a centre manifold. In particular, the nature of Hopf and more degenerate, higher
codimension bifurcations are explicitly determined.
n [15], Wu et al. studied a coupled system of three multiple-delayed identical
neurons of the general form

zi(t) = —zi(t) + af(zi(t — 7)) + Blf (wia (t = 7)) + f(@iga(t — 7)), (1.1)
where i (mod 3), f : R — R is a sufficiently smooth sigmoid amplification func-
tion, normalised so that f(0) = 0 and f'(0) = 1, @ and 8 measure respectively the
normalised synaptic strength of self-connection and nearest-neighbour connection.
It was assumed that the nearest-neighbour and self connection transmission delays
are identical. Wu et al. [15] showed that, in a certain region of the space (o, 3),
each solution of the network is convergent to the set of synchronous states in the
phase space. Furthermore, it was shown that this synchronisation is independent
of the size of the delay. Also, a bifurcation surface was obtained, as the graph of a
continuous function of 7 = 7(a, B) in some region of («, 3), where Hopf bifurcation
of periodic solutions occurs.

In this paper we study a generalisation of (1.1) in which there are different time
delays in the self connections and the nearest-neighbour interactions. This network
is shown schematically in Fig. 1, and modelled by the system of nonlinear delay

(Ts A)

-

T B)
(TsA) QTA

(Tnv B)

Figure 1 Architecture of a network of three identical neurons with multi-
ple time delays. The parameters Ts and T, denote, respectively, the self-
connection and nearest-neighbour connection signal transmission delays, while
A and B are, respectively, the synaptic strengths of self- and nearest-neighbour
connections.

differential equations
#i(t) = —pxi(t) + Af(@i(t — Ts)) + Blf(xi-1(t = Tn)) + f(zira(t —Tn))], (1.2)
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where i (mod 3), f : R — R and T and T, are, respectively, the signal transmis-
sion delays for self- and nearest-neighbour connections. Throughout this paper, we
assume an activation function of the form f(z) = tanh(yz). Note that equation
(1.2) has D3 symmetry since the vector field is invariant under permutation of the
coordinates, i.e. the transformation (z1,z2,23) — (22,z3,2;) and under reflec-
tions such as (z1,z2,23) — (21,%3,22) and its permutations. The symmetries of
the equation lead to various invariant subspaces for the flow of the delay differential
equation (DDE). The permutation leads to the invariant lines x; = zo = 3, and
the reflections to the invariant planes z; = z;41, j mod 3.

We shall rescale (1.2) using the following change of variables: #; = yx;, t = ut.
Introducing the parameters o = %A, 8= %B, 7s = pls, 7 = uTy, equation (1.2)
becomes

%;(t) = —z;(t)+atanh(z;(t—75))+L[tanh (z;—1 (t—75))+tanh(zi41 (t—7))] , (1.3)

where ¢ mod 3 and we have dropped the tilde’s on ¢ and z; for simplicity. Our
goal is to describe all possible spatio-temporal patterns in system (1.3) with four
parameters (a, B, 7s, 7,) and we hope, eventually, we may exhibit all reported
stable patterns in a dynamical system with D3 symmetry through a single model by
choosing suitable parameters. Our focus in this preliminary work is to show, with
the aid of the symbolic computation language MAPLE [13], that when 75 # 75,
the criticality of one Hopf bifurcation of periodic solutions may be changed as
(o, B) are varied. This change of criticality may then lead to a secondary and
more complicated bifurcations. The rest of this paper is organised as follows. In
section 2, we discuss some aspects of the stability of fixed points of (1.3). Section
3 gives a brief review of centre manifold theory for delay differential equations and
section 4 applies this theory to determine the criticality of the Hopf bifurcation
of synchronous periodic solutions of (1.3). Section 5 describes and illustrates the
surfaces in the (o, 3,7,) parameter space along which this bifurcation occurs. In
section 6 we make some concluding remarks.

2 Fixed points and bifurcations

Fixed points of equation (1.3) may be symmetric or non-symmetric. Those that
are permutation symmetric will have the form (z*,z*, z*), where

" = af(z*) +26f(z7) .
Reflection symmetric fixed points will have the form (y*,z*,z*) (or a permutation
thereof) with

et = (a+p)f(")+Bf(y")
y* af(y*) +28f(z") -
Non symmetric fixed points will have the form (z7, z}, z}), where
oy = af(ef) + Bf(zj_1) + Bf(2]11) , jmod3.
The linearisation of (1.3) about (0,0,0) is given by
aj(t) = —u;j(t) + ou;(t — 75) + Bluj-1(t =) +ujna(t —m)],  (21)

where j mod 3. To study the linearised stability of (0,0,0) we consider solutions of
(2.1) of the form

uj(t) = cjer j=1,...,3, (2.2)
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where A €C, ¢; € R. The ¢; will be nontrivial if and only if

SO A (VA2 =0, (2.3)
where
Ar(A) = A+1—ae ™ —28e 2
As(N) = A+1—ae ™ 4 Be P,

Equation (2.3) is the characteristic equation for (2.1). It follows from standard
results [9, 12] that the trivial fixed point of (1.3) will be locally asymptotically
stable if all the roots, A, of the characteristic equation (2.3) have negative real parts
and unstable if at least one root has positive real part. A complete description of
the stability region of the trivial fixed point of (1.3) is beyond the scope of this
paper, however, we give the following two delay independent results.

Theorem 2.1 If the parameters satisfy |B] < 3(1 — |a|) the trivial solution of
(1.3) is locally asymptotically stable for all 7, > 0 and 7, > 0.

Proof Let A = v+iw, v,w € IR in the two factors of the characteristic equation
and separate into real and imaginary parts to obtain A;(A\) = R;(v,w) +il;(v,w),
where

Ri(v,w) = v+1—ae ¥ cos(wrs) —208e Y™ cos(wty),

L(v,w) = w4 ae Vs sin(wTs) + 28e Y™ sin(wTy,). (2.4)
and

Ry(v,w) = v+1-—ae "™ cos(wts) + Be "™ cos(wy), (2.5)

L(v,w) = w4+ ae " sin(wrs) — Be "™ sin(wt,), )

From equation (2.4), we see that
Ri(v,w)>v+1—|ale™™ —|Ble™"™. (2.6)
Denote the right-hand side of (2.6) by Rq(v). Clearly,
R1(0) =1—|af = 8] >0,
under the assumptions of the theorem. Furthermore,
Ri(w) =1+ |a|rse ¥ + 1,|8le ™ .

Hence, R1(v) > 0 for all v > 0 and Ry (v,w) >0 for all v > 0,w € R. In a similar
manner, it may be shown that Ra(v,w) > 0 for all v > 0.

Now let A = v 4 iw be an arbitrary root of the characteristic equation. Then v
and w must satisfy Ri(v,w) =0 and I; (v,w) = 0 or Ra(v,w) = 0 and Ir(v,w) = 0.
But from the discussion above it follows that v < 0. Thus all the roots of the
characteristic equation have negative real parts. O

Theorem 2.2 If 1 < a, then the trivial fized point of (1.3) is unstable for all
values of B, 7, > 0 and 1, > 0.

Proof Recall from the characteristic equation, that Ay () = (A4+1—ae ™ +
Be~*™). Then, under the assumption of the theorem, with 3 < 0

A2(0)=(1—-a+p) <0
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and, for A € R,
lim Ay(A\) = lim [A4+1—ae ™ 4 Be ] = +o0.

A——+o0 A—+o0
for all 8 <0, 7, >0, and 7, > 0. Hence, as A, : IR — R is a continuous function,
there exists a A* > 0 such that Ay(A*) = 0 for any fixed values of 7, > 0, 7, > 0,
B<0and 1< a.
Now consider A;(A) = (A+ 1 — ae ™ —28e~*™»). For 8 > 0, under the
conditions of the theorem

A0)=1-a-28<0

and, for A € R,
lim A;(A\) = lim [A+1—ae *™ —28e *™] = +o0.
A—+o0 A—+0o0

Hence, as Ay : R — IR is a continuous function, there exists a A* > 0 such that
A1 (A*) =0 for any fixed values of 75, > 0,7, >0, 8>0and 1 < a.

Thus, the characteristic equation has a positive real root for all 8 and all 75 > 0,
T > 0and 1 < a. O

As the parameters are varied, stability may be lost by a real root of the char-
acteristic equation passing through zero, or by a pair of complex conjugate roots
passing through the imaginary axis. The former occurs when 3 = 1(1 — @), where
the characteristic equation has a simple zero root, and when 8 = a — 1, where the
characteristic equation has a double zero root. The latter happens if at least one
of the following two situations occurs:

1. The characteristic equation has a simple pair of pure imaginary roots +iw
for parameter values such that A, (+iw) = 0.
2. The characteristic equation has a repeated pair of pure imaginary roots +iw
for parameter values such that Ay(+iw) = 0.
In this paper, we focus on the first case, showing that a Hopf bifurcation occurs un-
der generic conditions and analysing the criticality of this bifurcation to determine
the stability of the resulting periodic solutions.
Consider the factor (of the characteristic equation)

AN =A+1—ae e —28e A =0,

and let A = jw. This gives the two relationships between parameters o, 3, 75, and
Tn
w+ asin(wr,) = —28sin(wr,), (2.7)
1—acos(wrs) = 2Bcos(wry),
which determine parameter values for which (2.3) has a pair of pure imaginary
roots. We will consider two cases, namely:
(i) 7 = 7s = 7, for a constant 7 > 0;
(ii) 7s =7, 7, =T + ¢, where 7 > 0 and € are given constants.
Case (i):
Applying Theorem 1.1 on page 332 of [8], we proceed as follows. In (2.3), suppose

that A = A(7). Then
dS 90S  90Sdx _

& or T ondr
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which gives
dx 9§ /oS

L2/ 2= 2.
dr or/ oX’ (28)
where as oA oA
22 = A20) =t +2A (VA (VN2
= AN+ 28N A
Recalling that, for the simple root case, A (iw) = 0, we then have that
oS N2/AN
- = A2 -
or A=iw Z(ZW) or A=iw
From the above, we get that
R oA _ —w(a+28)[K; sin(wT) — K cos(wT)]
“Nor|,_..) ~ K2 + K2 ’

where K; = 1+ 7(a + 20) cos(wt) and Ky = 7(a + 283) sin(wT). Hence, the usual
transversality condition is met if and only if

w(a + 20)[K; sin(wr) — Ky cos(wT)] #0.. (2.9)
Case(ii):
Similarly, it may be shown that
Re <% )
AT |\=iw

= Di*[—{a sin(wt) 4+ 28 sin(w(r + €))}Q1 + {a cos(wT) + 28 cos(w(T + €))}Q-] ,

where Q1 = 1 + a7 cos(wT) + 28(7 + €) cos(w(T + €)), Q2 = arsin(wT) + 206(7 +
€)sin(w(T +¢€)), and D, = Q%+ Q3. Thus, the usual transversality condition is met
if and only if

wl{asin(wt) + 28 sin(w (T +¢€)) }Q1 — {a cos(wT) + 20 cos(w(T + €)) } Q2] # 0 (2.10)
Summarising the above discussions and applying Theorem 1.1 of [8, page 332], we
obtain the following;:

Theorem 2.3 System (1.3) undergoes a Hopf bifurcation on the surfaces de-
fined by (2.7) if condition (2.9) holds in case (i), and if condition (2.10) holds in
case (ii).

3 Centre manifold analysis

We consider the extended DDE expressed, in standard form (see [6, page 167]), as

{ o x¢(9)] , —r<6<0

S ldn(®)]x:(6) + £[x.(6)] , 6=0,

with x; = x(t +6), —r <6 <0, C = C([-r,0,R"), and f € C*(C,R"), k > 1.
In addition, it is usual to assume that 7 : [-7,0] = R ™ is a function of bounded
variation. It is assumed that any parameters in the model are such that the linear
part of the equation

%4(0) = (3.1)

4 1x(0)] , —r<0<0
%¢(0) = Loy = { (3.2)
[ [dn@)x:8) ., 6=0,
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where L : C — R ™ is a linear operator, has m eigenvalues with zero real parts, all
other eigenvalues having nonzero real parts. In such a situation, Hale and Lunel [8,
Chapter 10] have shown that there exists, in the state space C, an m-dimensional
centre manifold. Below, we outline the steps involved in computing this manifold,
and, in Section 4, we apply it to the system (1.3). Note that if all the eigenvalues
of L with nonzero real parts in fact have negative real parts, then this manifold is
attracting and that long term behaviour of solutions to the nonlinear equation is
well approximated by the flow on this manifold.

At a point in parameter space where (3.2) possesses m eigenvalues with zero
real parts, there exists a splitting of the space C = N @ U & S, where N is an m-
dimensional subspace spanned by the solutions to (3.2) corresponding to the m zero
real part eigenvalues, U is a finite dimensional subspace spanned by the solutions
to (3.2) corresponding to the eigenvalues with positive real part (if any exist), and
N,U and S are invariant under the flow associated with (3.2). Furthermore, the
centre manifold introduced above is given by

My;={¢peC|¢p=2Sz+h(z f), z in a neighbourhood of zero in R™} .
The flow on this centre manifold is
x¢(0) = ®(0)z(t) + h(6,z(t)) , (3.3)

where ®(6), § € [—r,0] is the basis for the invariant subspace, N, of the linear
problem. Substituting (3.3) into (3.1) gives

®(0)Bz(t) + 22 , —7<60<0
[2(0)+D:h(6,2())I2(t) = 4 5(0)Ba(t) + £[®(0)(t) + h(B, 2(1))]
+ [ ldn(6)]h(8, z(t)) , 6=0,
(3.4)

where B is an m X m matrix, whose eigenvalues have null real part. This coupled
system must be solved for z(t) and h(6,z(t)). Let

0 6
(w,8) =6(000) - [ [ vl - o)lano)ode (3.5)
—r JO
be the bilinear form associated with (3.2). Then the basis for the adjoint linear
problem, ¥(s), s € [0,r], satisfies
(¥(s),2(0) =1, (3.6)
where I is the m X m identity matrix.
Taking the scalar product of (3.4) with ¥(s), and using the fact that
(®(s),h(0,z(t))) = 0, gives a system of ODE’s for z(t), namely:
z(t) = Bz(t) + T(0)f[®(0)z(t) + h(d,z(t))] . (3.7
Using (3.7) in (3.4) then yields a system of partial differential equations (PDE’s)
for h(9,z), viz.
D,h(0,z) [Bz + T(0)f[®(0)z + h(,z)]] + B(6)T(0)f[®(0)z + h(6,2z)]
_ . g—g , —T<0<0 (3.8)
J_, [dn(0)]|h(6,z) + f[®(0)z + h(h,z)] 0=0.
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Thus, the evolution of solutions on the centre manifold is determined by solving
(3.8) for h(f,z) and then (3.7) for z(¢). To solve (3.8), one uses a standard approach
in centre manifold theory, namely, one assumes that h(f,z(t)) may be expanded
in power series in z. Equation (3.8) can then be reduced to a system of ODE’s
and boundary conditions for the coefficients of the power series. Note that the first
term in the power series for h(6,z) will correspond to the lowest order terms in the
power series of the nonlinearity, f, of (3.1). Thus, if only the lowest order terms of
the nonlinearity are needed to determine the evolution of z(t), in (3.7), and hence
the solutions on the centre manifold (3.3), then it is unnecessary to solve for h(6, z).

More detail on this approach to the calculation of centre manifolds for delay
differential equations can be found in Hale [7] and Wischert et al. [14] for the scalar
(n = 1) case and in Faria and Magalhes [3, 4] for the vector case.

4 The single Hopf simple root case

We now return to the particular nonlinear system, (1.3). In the neighbourhood of
the equilibrium (0, 0,0), the hyperbolic tangent may be expanded in a Taylor series
(to third order), giving

z;(t) = —=zi(t)+azi(t —75) + Bxic1(t — Tn) + Tig1(t — )] (4.1)
—%[aw? (t =75) + Bad_y (t = ) + Badyy (t — 7)), i mod 3
= —2;4(0) + azit(—7s) + Bl@iz1 ¢(—Tn) + Tiy1 ¢(—Tn)]
—%[aw?t(—n) + B2}y (=Tn) + By (—)] , i mod 3
Y Liwi + fi(ws) , imod 3,

which defines our DDE. This can be written in the form (3.1) with n = 3, f =
[f1, f2, f3]T, r = maz{7s, 7} and

—6(0) + ad(0 + 75) B6(0 + 1) B6(0 + 1)
n(0) = B6(0 + 1) —6(0) + ad( + 5) B6(0 + 1) ,
B6(0 + 1) B6(6 + 1) —6(0) + ad(8 + 75)

where —r < 6 < 0 and §(z) is the Dirac distribution at the point z = 0.

Note that, since the lowest order nonlinear terms in f; are O(3), the lowest
order terms in h of equation (3.3) will also be O(3). Hence they will only affect the
terms of O(4) in (3.7). Since these are not necessary for determining the criticality
of the Hopf, we do not need to calculate h.

In the single Hopf simple root case, only two purely imaginary eigenvalues
exist. In this situation, the calculations are somewhat simplified by working with
a complex coordinate, z = x + iy, in which case the elements needed to write (3.7)
are

20) = 0.60) 5= ({7 ) adz=GaT, 42

where
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Therefore, the solutions (which are synchronous, in this case) to the linear system
(2.1) corresponding to the above eigenfunctions are given by

u;(t) = \/k? + k3 cos [wt+tan1 (Z—j)] ,j=1,...3,

where k1, ko € IR are arbitrary constants.

Given ®(6), the basis for the adjoint linear problem can be calculated us-
ing the ansatz ¥(s) = K®*(s), where K is an m x m matrix of constants and
M* = T"'. The condition (3.6) then yields K = (®*(s),®(0))~! or ¥(s) =
(®*(s), ®(0))"1®*(s). Using (3.5) and the relationships (2.7), the elements of
(®*(s), ®(0)) are computed as

(61(),10) = (63(s),6:00)) (4.3)
= 3+ 3ar, cos(wts) + 687, cos(wty,)
—i[3at, sin(wT,) + 647, sin(wt,)] ,

and
(¢1(s),02(0)) = (5(s),¢1(0)) (4.4)
= 3+ Sa sin(wts) + 66 sin(wy,)
w w
= 0.
Thus,
. 1 Al +14y Al +iAs Al +iA>
YO =Er ( A —idy Ai—ids A —id ) : (45)
where
A = 3+ 3arscos(wTs) + 667, cos(wTy,) (4.6)
Ay = 3arssin(wts) + 6087, sin(wTy,) .
In the present case, the function f in (3.7) is a vector, namely:
£(@2) =[fi f» fs]"(®2),
where
fi(®z) = —Cla(ze” ™™ + ze™7™)% 4 2B(ze” ™ 4 ze™)3], j=1,...,3

oWl -

= —g[a(x cos(wry) + ysin(wr,))? + 28(x cos(wr,) + ysin(wry,))?]. (4.7)

From (4.5) and (4.7), we have that

T (0)f(Pz) = 3( g;ﬁg:; ) , (4.8)
where A +id
A1 T1tAy A
G = A2 4 A2 =02

Substituting (4.2) and (4.8) back in (3.7), and using z = z+1y, yields the dynamical
system on the centre manifold

& = —wy+ Fl2® 4+ Fl5’y + Flyzy® + Fapy® (4.9)
§ = wr+ Fh 58+ Flpr’y + Flhyry® + Fagy®
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where the parameter-dependent coefficients of 23, z2y, 2y?, and y> are computed
with the help of MAPLE [13]. However, these coefficients are complicated and,
for this reason, we omit them. The system in (4.9) may be simplified, using a
near-identity transformation [5], to the normal form (up to third order)

& = a(e®+y")z —[w+ba® +y*)y (4.10)
§ = w+ba®+y)z+al@®+y’)y.
In polar coordinates, this degenerate system reduces to
F=ar®, =w+br (4.11)
and its unfolding is [5]
F=Cr+ar®, §=w+br?, (4.12)

where ( is an unfolding parameter. Analysis of these equations reveals that there
are two distinct cases, depending on the sign of a. For a < 0, the Hopf bifurcation
gives rise to a stable limit cycle (supercritical). If a > 0, the bifurcation yields an
unstable limit cycle (subcritical). Employing the relationships (2.7), the parameter
a is given by

1
a = §[3F1111 + F1122 + F1212 + 3F2222] (4.13)

a(r, — 75)(wsin(wr,) — cos(wty)) + 1 + 7, (1 + w?)
(1 4+ 7, — a(r — 75) cos(wTs))2 + (T — 75) sin(wTs) + wrp)2”

Therefore, from (4.13), it is clear that the criticality of the bifurcation is determined
by considering only the sign of the expression

N = —a(r, — 7)) (wsin(wT,) — cos(wTs)) — 1 — 7, (1 + w?). (4.14)

The criticality of the Hopf bifurcation is studied, with the aid of a combination of
analytical and symbolic computation techniques, in Section 5.

5 Hopf bifurcation surfaces

We start off by recalling the relationships between the parameters at the Hopf
bifurcation, as given in (2.7):

w~+ asin(wrs) = —28sin(wr,)

1—acos(wrs) = 2Bcos(wry) -
In the analysis of (4.14) that follows, we shall primarily concern ourselves with two

cases, namely: (i) 74 = 7, = 7, and (ii) 75 = 7, 7, = 7 + €. The rest of the
parameters shall be considered fixed.

5.1 The case 7, = 7, = 7. For some given (a,f3), it is straightforward to
solve (2.7) to find the corresponding values of w and 7:

w=v(a+28)? -1 w(a,p), (5.1)

and

arctan [—w(a, 8) def ™(a, B) - (5.2)

1
w(a, B)
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Fig. 2 shows plots of the surface 7 = 7*(a, 3) for various values of (o, 8) € R 2.
Note that, for any given 2-tuple (a*, 3*), the corresponding point on the surface
gives a 7*(a*, 3*) value for which the factor (of equation (2.3))

Ai(N) = (A =14 ae ™ +28e ™) =0

has purely imaginary roots. Hence from Theorem 2.3, the system undergoes a Hopf
bifurcation at this point. We shall thus refer to 7*(«, 3) as the Hopf bifurcation
surface. Furthermore, for 75 = 7, = 7%, w = w*, (4.13) becomes

1+ 71+ (w*)?)
(14+7%)% 4 (w*r)?’
Clearly a < 0 for all parameter values and hence each point on the surface 7 =

7*(a, B) corresponds to a supercritical Hopf bifurcation point. This is consistent
with the result of Wu et al. [15].

a=-— (5.3)

5.2 The case 7, =7, 7, = 7+ €. Let 75 = 7 and 7, = 7 + € where € is
arbitrarily small. Then, (2.7) becomes

w+ [a + 28 cos(we)]sin(wr) = —20sin(we) cos(wT)
1 —[a+ 2B cos(we)] cos(wr) = —20sin(we)sin(wT) . (5.4)
The two expressions above may be rearranged to yield

—w(a + 28 cos(we)) — 206 sin(we)
a + 23 cos(we) — 2w sin(we) }

T(w,a, B,€) = %arctan{ (5.5)

where w = w(a, 3, €) satisfies
a? + 432 + 4ap cos(we) — (1 +w)? = 0. (5.6)

Given values of a and (3, one can solve (5.6) numerically for w, and substitute into
(5.5) to obtain the corresponding value for 7 on the Hopf bifurcation surface. This
is a daunting exercise. Instead, we now follow the procedure of [1] to gain some
insight into the geometry of the bifurcation surfaces and their criticality.

Using (2.7), it is straightforward to solve for 7,, and 8 in terms of the Hopf
frequency w and the parameters a and 7, giving

1 —w — asin(wTs) | def
Tn = ; arctan {Ws(i)/rs))} :f Tn(w, a, Ts) ) (57)
and
1 e
B = 5\/1 + w? + a2 + 20w sin(wTs) — 2a cos(wTs) e B (w,a,Ts) - (5.8)

For fixed 75 these equations parametrically define the Hopf bifurcation surface in
(a, B, 7) space. This surface is illustrated in Fig. 3 for the case 7, = 1.

To determine the criticality of the Hopf bifurcation on this surface, we substi-
tute (5.7) into (4.14), which gives an expression

N = N(o,w,Ts) .
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Figure 2 Geometry of the Hopf bifurcation surface T = 7* (e, ). Top: 8 < 0.
Bottom: g > 0.

For fixed 74, it is possible to visualise the surface N(a,w,7s) as shown in Fig. 4.
This figure illustrates the case 7, = 1, where the Hopf bifurcation is supercritical if
|a| < 1, and may be supercritical or subcritical if |a| > 1.
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Figure 3 Geometry of the Hopf bifurcation surface 7, = 7, (w,,7s), B =
B*(w, a,7s) for s = 1. Top: a < 0. Bottom: a > 0.

6 Conclusions and Remarks

The local stability of a scalar version of (1.1) has been studied in [1]. Following
this, Shayer and Campbell [11] considered a system of two coupled neurons with
multiple time delays and showed that the trivial fixed point may lose stability via
a pitchfork bifurcation, a Hopf bifurcation or one of three types of codimension
two bifurcations. Multistability near the latter bifurcations was predicted and con-
firmed using centre manifold theory and numerical simulations. Furthermore, for
the case 7, = 75, Wu et al. in [15] have conducted an insightful study of (1.1). Our
approach provides some interesting insight into the nature of simple root single
Hopf bifurcations of (1) when 75 # 7,. It should be emphasised that this study is a
preliminary attempt aimed at grappling with the case 75 # 7,, for the simple root
single Hopf bifurcation. The double root single Hopf case is even more irksome, vis
a vis symbolic computational issues, and remains the subject of ongoing and future
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Figure 4 The surface N(o,w,7s) for 7s = 1. Top: For -1 < a < 1, N is
always negative. Bottom: For —3 < a < 3, N takes on both negative and
positive values.

investigations. However, as demonstrated in Section 5.2, the case under consider-
ation already presents some serious symbolic computational challenges. This said,
we have provided some revealing insights into criticality of the Hopf for this case,
as can be seen in Fig. 4. This figure suggests that change of the criticality of the
Hopf bifurcation can be easily achieved by varying the parameter a. At the points
where such a change takes place, secondary and more complicated bifurcations may
occur.
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