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RESONANT CODIMENSION TWO BIFURCATION
IN THE HARMONIC OSCILLATOR
WITH DELAYED FORCING

SUE ANN CAMPBELL AND JACQUES BELAIR

ABSTRACT. We study a delay differential equation model-
ing the harmonic oscillator with forcing which depends on the
state and the derivative of the state at some time in the past.
We perform a linearized stability analysis of the equation and
describe the location of Hopf and steady state bifurcations in
the parameter space. A complete description of the location
of points in parameter space where the characteristic equation
possesses two pairs of pure imaginary roots, tiwy, iwy with
w1 :iwy=m:n, mn€ Zt, is given.

1. Introduction. Consider the harmonic oscillator with forcing
which depends on the state and/or derivative of the state. In real
physical systems such forcing terms are often time delayed, especially
when they represent feedback. This gives rise to the delay differential
equation

1) £(t) + b2(t) + az(t) = f(2(t — 1), 2(t - 72)),

where f may be nonlinear. By analogy with a mass spring system,
we will refer to z(t), £(t) as, respectively, the position and velocity at
time ¢, b as the damping constant and a as the spring constant. In
most physical systems a > 0 and b > 0; however, we won’t make such
restrictions. 7 and 75 are the time delays, assumed to be nonnegative.
This equation and its variants have been used to model a number of
systems, (1, 4, 12, 23, 24, 25]; see also [9 and references therein].
While there is no physical reason to assume the delays in = and & are
the same, this is usually done to simplify the analysis. We will follow
this practice and take 71 = 7 = 7. (For an exception see [6].)

Equation (1) has a fixed point (equilibrium) solution z(t) = z*, found
by solving az* = f(z*,0). In a similar manner to that for ordinary
differential equations, the equation may be linearized around this fixed
point leading to

(2) Z(t) + b2 (t) + az(t) = de(t — 7) + gz(t — 1),
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where d = D, f(z*,0), g = Daf(z*,0). To study the stability of the
fixed point, we look for solutions of (2) of the form z(¢) = exp(At),
which leads to the characteristic equation

(3) M 4br+a=de M 4+ gre” .

For clarity we review some terminology. The roots of the characteris-
tic equation are commonly called the eigenvalues of the fixed point. It
can be shown [15, 17] that the fixed point is (linearly) stable if all of
its eigenvalues have zero real parts, and (linearly) unstable if at least
one of its eigenvalues has positive real part. Thus changes of stability
of the fixed point may occur when an eigenvalue has zero real part, i.e.,
when there is real, zero eigenvalue or a pure imaginary pair. The former
indicates the presence of a steady state bifurcation which, depending
on the nonlinearity f, may be a pitchfork, transcritical or saddle node
bifurcation. Under suitable conditions on f, see, e.g., {15, Chapter 10]
the latter indicates the presence of a Hopf bifurcation.

The characteristic equation (3) has been studied by many authors
2, 3, 4,5, 7,9, 11, 13, 18, 23, 27], who have shown the presence
of both steady state and Hopf bifurcations under various conditions
on the parameters. In certain cases, [9] it is also possible to show the
presence of points where the characteristic equation has fwo pairs of
pure imaginary roots, +iw;, *tiws. As such points commonly occur
where two curves of Hopf bifurcation cross, we refer to them as points
of double Hopf bifurcation.

Here we are primarily concerned with the situation when the forcing
depends only on the position or the velocity, but not both (this
corresponds to taking ¢ = 0 or d = 0 in (2)). These two cases
possess points of double Hopf bifurcation that are resonant, that
is, the imaginary parts (frequencies of the Hopf bifurcations) obey
w1 :we = m: n for some m,n € Z.

The outline of the paper is as follows. In Section 2 we consider the
stability analysis of (2) under the restrictions mentioned. In Section 3
we show explicitly where the points of resonant double Hopf bifurcation
for the equation are located in parameter space. In Section 4 we
discuss the implications of these results for the full equation (1) and
the physical systems it models.
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2. Linearized stability analysis. Some aspects of the stability
analysis of (2) under the restrictions

Case 1. Position feedback (b= g = 0),
Case 2. Velocity feedback (b =d =0),

have been studied by Bhatt and Hsu [3, 18]. Here we present a different
proof of stability, following the method of Cooke and Grossman [13],
and consider the parameter space of the delay, 7, and the gain, d or g.
This parameter space is relevant to physical systems where the forcing
represents feedback and the delay and/or gain may be adjustable by
the experimenter.

Our stability results will rely upon the following facts which may be
found in many books on delay differential equations, for example, [21].

F1. The roots of the characteristic equation (3) are continuous
functions of the parameters d, g.

F2. The number of roots of the characteristic equation (3) with
positive real parts may change with the variation of the parameters
d, g only by the passage of a root through the imaginary axis.

2.1. Case 1. Position feedback. This situation can be modeled by
the following restriction of (1)

(4) E(t) + ax(t) = fi(z(t - 7)),

which has a fixed point, z(t) = z*, determined by solving az* = fi(z*).
The linearization about this fixed point is

(5) Z(t) + az(t) = dz(t — 1),

leading to the characteristic equation

(6) M4 a=de™™, whered=f|(z%).

As previously mentioned, changes in stability may occur when the
system has a zero eigenvalue or a pure imaginary pair. The former

occurs when A = 0 in (6) or

(7 a=d.
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The latter occurs when A = Ziw in (6) or (separating real and
imaginary parts)

(8a) a-w?=dcoswr

(8b) 0= —dsinwr.

Solving these equations for 7 and w as functions of the other param-
eters, we find that there are two families of surfaces (or curves if we
think of the physical parameter a as fixed) in the parameter space along
which the fixed point has a pair of purely imaginary eigenvalues:

o

(9a) w=+Va+d, sz%’ —a<d
a

(9b) w=va—d r=-2"_ 4<q

va—d

for  =0,1,2,.... This leads to the following

Theorem 2.1. For a > 0 the fized point is linearly stable only in the
following regions:

(i) d <0,
(25 — )mr 257
<r< . j=1,2,
Jatd = “Va-d '’
(i) 0<d<a,
2j 2% +1
LS k2 ) LT

Vva-—d va+d ’

Proof. Let S(d) be the supremum of the real parts of the roots of
the characteristic equation (6). We begin by noting that for d = 0 the
roots are A = +4/ai so S(0) = 0. Consideration of the rate of change
of the real part of the eigenvalues with respect to d along d = 0 gives

dRe (X) _ _sinyar
dd |40  2Va
27—1 29
>0 fOI‘M<T<-ﬂ, ji=1,2,
Va va
<0 for 2T, AT oy

Ve va '
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Thus by F1 we have

) _ (25 — 1)m 25w .
= for ~———— —_— =1,2,...
dhr(x)1_ S(d)=0 or 7 <7< Ve’ j=12,...,
and
. — 25 (24 1) .
— 0 for 2T I 520,1,2,. ...
thB1+ S5(dy=0" for Ve <T< Ja 7=90,1,2,

By F2 all the real parts will remain negative until the parameters
cross one of the curves given by (7) or (9a)—(9b). Noting that the
A = iw curves (9a)—(9b) intersect the d = 0 axis at

(27 -1)m 2jm
— o T=—F0,
va Va
for j =1,2,..., we see that the fixed point is linearly stable in regions

(i) and (ii) above. Consideration of the rate of change with respect to
d of the real part of the eigenvalues along the curves (7)

dR; 1
e (X) =1 oo
dd |,., oar
or (9a)—(9b)
dRe (1)) _ dr
dd |\_i T d2r? 4 42
>0 ford>0
<0 ford<0,
shows that the fixed point cannot restabilize outside this region. a

This region is illustrated (for a = 1) with shading in Figure 1. As can
be seen in the figure, for fixed a (9a)—(9b) define curves in 7, d space.
It is straightforward to show that for f sufficiently smooth, (4) satisfies
the conditions of the Hopf bifurcation theorem for delay differential
equations, [15, Chapter 10] almost everywhere! along these curves; we
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FIGURE 1. Region of linearized stability (shading) of the fixed point of (4),
illustrated in the parameter space of the delay (7) and gain (d = f{(z*)). Here
a = 1, but the picture remains qualitatively the same for any a > 0. Ratios of
frequencies (w; : w2) at double Hopf points are as indicated for any a > 0.

will thus refer to them as Hopf bifurcation curves. Note that for a fixed
value of d increasing the delay, 7, causes the fixed point to destabilize
and restabilize a finite number of times, ultimately remaining unstable.
A similar phenomenon was observed for the damped system by Cooke
and Grossman [13]. Also, for d < 0, the fixed point in the undelayed
system is unstable but introduction of a large enough delay restabilizes
it.

Theorem 2.2. For a < 0, the fized point is linearly unstable for all
values of d and 7, except at a = d = 0 where it is linearly neutrally
stable.

Proof. a <0, a < d. Consider the function h; : R — R, defined by

hi(a) =a® +a —de™ 7.

Note that lim, ,o hi{@) = +oo; thus, for each fixed a,d,7 and M
there is a K such that hy(a@) > M for ¢ > K. Pick M > 0; then
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hi(K + 1) > 0. Further, h;(0) = a — d < 0. Since h; is a continuous
function of o there must be 0 < ap < K + 1 such that h;{ag) = 0.
Thus the characteristic equation (6) has a real, positive root and the
fixed point is unstable.

d = a < 0. Consider again the real-valued function h;(a). In this
case for 0 < a < 1 we have
2

1
— a4

1
hi(a)=a’+a—-a 1—a'r+§a27' g

~ aQxT.

Thus for « small enough, h;(a) < 0. As before, lim,_, o h1(a) = +00,
so continuing as in the previous case, it is easily shown that there is
0 < ag < K +1 such that hy(ag) = 0. As before, we conclude that the
fixed point is linearly unstable.

d = a = 0. In this case the characteristic equation (6) becomes
A% = 0, which obviously has the zero as a double root. Hence the fixed
point is linearly neutrally stable.

d < a < 0. For 7 = 0 characteristic equation has roots A =
4iva —d. Consideration of the rate of change of the real parts of
the eigenvalues as 7 increases across this line yields

dRe () d

4 |, "2

=0

Since the roots of the characteristic equation (6) are continuous func-
tions of 7 [14] the real parts of these roots of the characteristic equation
must be positive as 7 becomes positive. We conclude that the fixed
point is linearly unstable for small, positive 7. Now as 7 increases, the
fixed point can only regain stability if the eigenvalues pass through the
imaginary axis [13], that is, if the parameters cross one of the curves
given by (7) or (9a)—(9b). The curves described by (7) and (9a) do not
lie in the region we are considering. Consideration of the rate of change
with respect to 7 of the real parts of the eigenvalues along (9b) yields

2
9 Re () 2dw

= >0
dr r=(2jn/va—d) d2r2 + 4w?

Since this quantity is positive, the fixed points cannot restabilize along
these curves. u|
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2.2. Case 2. Velocity feedback. This situation can be modeled by
the following restriction of (1)

(10) £(t) + ax(t) = f2(2(t — 7)),

which has a fixed point, z(t) = z*, given by z* = f2(0)/a. The
linearization about this fixed point is

(11) E(t) + ax(t) = gz(t — 1),

leading to the characteristic equation

(12) M +a=gle™™", where g = f3(0).

Again, changes of stability will occur at points in parameter space
where the real part(s) of the eigenvalue(s) are zero. Substituting A =0
in (12) gives

(13) a=0.

Substituting A = iw in (12) gives

(14a) a—w? = gwsinwr
(14b) 0 =gcoswT.

Solving for 7 and w in the case a > 0 shows that there exist two families
of surfaces (or curves for a fixed) along which the fixed point has a pair
of pure imaginary eigenvalues:

(15a) w= %[\/m_g], o _4j-3)m

9°+4a—g

1 {4 - =
15b w==[v/g?+4a+g], I
sb) 3 | NrEi

where j = 1,2,... . This leads to

Theorem 2.3. For a > 0, the fired point is linearly stable in the
following regions:
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(i) g <0,

T
9?+4da—g

(45 - D <7< 45+ Dm

O0<r<

— — " j=12....
Vg*t+datg 9 +4da~g
(i) 0< g,
45 — 45 -1
G ) Wi-Ur 1.

T< ——— j
g2 +tda—g Vo2 +4a+g

Proof. Proceeding analogously to Theorem 2.1 we define S(g) to be
the supremum of the real parts of the roots of (12), and note that for
g = 0 the roots are A = +y/ai so S(0) = 0. Consideration of the rate
of change of the real part of the eigenvalues with respect to g along the
line g = 0 gives

dfze;)\) o = %cos Var
>0 for0<r< 2%
>0 for ——(41'2\_/51)7" T< —(43;\}51)#,
<0 for —————(4].2:/;:” <T< ——(41.2:/—5)72
j=12,.... Thus, by F1, we have
glir(r)l_ S(g)=0" for0<7< %,
or -{% <7< (4];2—;_%1:,

and

. — (4] - 3)71' (47 - 1)71
1 = _— -
1m S(g) 0 for \/_ <T<L \/_ y
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3 =1,2,.... By F2 all the real parts will remain negative until the
parameters cross one of the curves given by (15a)-(15b). Noting that
the intersections of these curves with the g = 0 axis are given by

4i_ -
_W-vr o (-3r
2\/a 2v/a
for j =1,2,..., we see that the fixed point is linearly stable in regions

(i) and (ii) above. Consideration of the rate of change with respect to
g of the real part of the eigenvalues along the curves (15a) and (15b),

dRe () _ gwiT
49 |resiw 4d0+g2(1+wir?)
>0 forg>0
<0 for g <0,
shows that the fixed point cannot restabilize along these curves. o

This region is illustrated with shading in Figure 2. As in the case
of position feedback, it can be shown that for f in (10) sufficiently
smooth, the curves defined by (15a)-(15b) and illustrated in the figure
are indeed curves of Hopf bifurcation. In this case for fixed g and
increasing 7 the fixed point alternates between stability and instability
a finite number of times, finally becoming unstable.

Theorem 2.4. For a < 0, the fized point is linearly unstable for all
gandT.

Proof. Consider the real valued function h; : R — R defined by

ha(a) = o’ +a— gae .

Note that lim, o ha{@) = +o0; thus, for each fixed a,g,7 and M
there is a K such that hy(a) > M for a > K. Pick M > 0; then
ho(K + 1) > 0. Further, h2(0) = a < 0. Since hy is a continuous
function of «, there must be a 0 < ag < K + 1 such that hy(ap) = 0.
Thus the characteristic equation (12) has a real, positive root and the
fixed point is unstable. ]
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_2'. T ..0 3 g

FIGURE 2. Region of linearized stability (shading) of the fixed point of (10),
illustrated in the parameter space of the delay () and gain (g = f}(0)). Here
a = 1, but the picture remains qualitatively the same for any a > 0. Ratios of
frequencies (w; : w2) at double Hopf points are as indicated for any a > 0.

Theorem 2.5. For a = 0, the fized point is linearly unstable for
g>0,7>0and g < —(n/27) < 0 and linearly neutrally stable for
g=0,7>0and —(n/2r) < g < 0.

Proof. We begin by noting that when a = 0 the characteristic
equation (12) reduces to A2 = Age~*". Thus one root is A = 0 for
all values of g, 7 and the other roots must satisfy A = ge=*".

g = 0. In this case the characteristic equation (12) becomes \? = 0,
which obviously has zero as a double root. Hence the fixed point is
linearly neutrally stable.

g > 0. Consideration of the real valued function
hs(a)=a—ge™ ", a€R
in a similar manner to that of Theorem 2.4 shows that hs (and hence

the characteristic equation) possesses a real, positive root, so the fixed
point is unstable.
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g < 0. Note that if 7 = 0 the fixed point is neutrally stable (it has
eigenvalues A = 0, g < 0). Now, as stated in Theorem 2.2, the stability
of the fixed point can only change, as T is varied, if an eigenvalue passes
through the imaginary axis. Thus, as 7 increases, the fixed point must
remain neutrally stable until reaching a point where A = 0 or A = tiw.
Only the latter exist in this region and are given by + = —((45-3)7/2g),

ji=1,2,.... Consideration of the rate of change of the real part of the
eigenvalues with respect to 7 along these curves yields
dRe (A 44°
dRe (A) S Y
I R MR G Ak i

Hence the fixed point is linearly neutrally stable for —(7/27) < g < 0
and linearly unstable for g < —(7/27) <0. O

3. Double Hopf bifurcation. Recall that a double Hopf bifur-
cation point occurs where two curves of Hopf bifurcation intersect. It
can be readily seen in Figures 1 and 2 that there are many such points
in the system being studied. What is noteworthy about the particular
parameter restrictions we are considering is that all the double Hopf
points that occur are resonant, that is, the imaginary parts (frequencies
of the Hopf bifurcations) obey w; : wy = n : m for some n,m € Z.

3.1. Case 1. Position feedback.

Theorem 3.1. Fora > 0, every double Hopf point of (6) is resonant.
More specifically, when d = d;es as defined by (17), (6) possesses two
pairs of pure imaginary roots tiw, tiws with frequencies in the ratio
wytwe=(2k—1):2] forall k,l € Z%.

Proof. The curves of Hopf bifurcation in this case are given by
{9a)—(9b). Points of intersection of these curves (double Hopf points)
occur when 7 has the same value on the two curves, i.e.,

2k -1 2l

va+d Vae-d
for some k,l € Z*. Rearranging this equation shows that the frequen-
cies are in the ratiow; : wo = Va +d: va — d = (2k—1) : 2L. Squaring
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both sides of (16) and solving for d shows that the intersections occur
when

12 2
(212 - (2 qer,

(17) 4= Gk 1)+ ()

The first few resonant double Hopf points are illustrated in Figure 1.
Note that some of these points occur on the boundary of the region
of stability of the fixed point, hence they may influence the observed
behavior of the system. We discuss this further in Section 4.

For a < 0, there is only a single value of w for each value of d, T,
namely,

(18a) w=vVa+d, 0<-a<d
(18b) w=va—d, d<a<0.

Thus there can be no double Hopf points.
3.2. Case 2. Velocity feedback.

Theorem 3.2. Fora > 0 every double Hopf point of (12) is resonant.
More specifically, when g = gres as defined by (20), (12) possesses two
pairs of pure imaginary roots tiw;, tiwg with frequencies in the ratio
wyiwyg =4k —3:4l -1, forallk,l c Z7.

Proof. The curves of Hopf bifurcation in this case are given by
(15a)—(15b). Points of intersection of these curves (double Hopf points)
occur when 7 has the same value on two curves, i.e.,

(4k - 3)m _ (4 —D)m
(Vda+¢>—g) (Via+g2+g)

for some k,l € Z*. Rearranging this equation shows that the frequen-
cies are in the ratio wy : we = v/a+ (92/4) — (9/2) : Va+ (¢?/4) +
(9/2) = (4k — 3) : (4l — 1). Rearranging, and squaring both sides of
(19) and solving for g shows that these intersections occur when

2(20 — 2k + 1) def
= = Qres- o
g \/16kl—4k—121+3\/a g

(19)

(20)
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The first few resonant double Hopf points are illustrated in Figure 2.
Note that some of these points occur on the boundary of the region
of stability of the fixed point, hence they may influence the observed
behavior of the system. We discuss this further in Section 4.

For a < 0, g < 0, the curves of pure imaginary eigenvalues are given
by

ﬁ

(10)  w=i-VP@Tha-g, =S

—vgt+4a—yg

45 —
(21b)  w= %[\/92 +t4a-g, 1= __(27 L
g +4a—g

where 7 = 1,2,... . This leads to

Theorem 3.3. Fora < 0, g < 0, every double Hopf point of (12)
is resonant. More specifically, when g = gres— as defined by (22), (12)
possesses two pairs of pure imaginary roots tiw;, tiwy with frequencies
in the ratio wy : we = 4k — 3 : 4l — 3, for all k #€ Z7.

Proof. The proof is analogous to that of Theorem 3.2 with

def 2(2k + 21 - 3)
22 res— — — Vv —a. a}
(22) Jres Vi6kl — 12k — 121+ 9 ¢

For a < 0, g > 0, the curves of pure imaginary eigenvalues are given
by

1 (45 — Dm
23a w=z[-Vg +4a+g], T=-—t 1
(23a) 51 ] i

1 (4§ — )m
23b w==|vg*+4a+yg T ———,
(23b) v, ) S

where j = 1,2,... . This leads to

Theorem 3.4. For a < 0, g > 0, every double Hopf point of (12)
is resonant. More specifically, when g = gres+ as defined by (24), (12)
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possesses two pairs of pure imaginary roots Ltiwy, +iws with frequencies
in the ratio wy :wy =4k —1:41 -1, for all k #c ZT.

Proof. The proof is analogous to that of Theorem 3.2 with

def 2(2k + 21 — 1)
24 R V=a. o
(24) Jrest = ekl dk—dlr1

For a = 0, there is a single value of w for each value of g, 7, namely,

(253') w=-g, g< 0)
(25Db) w=g, ¢g>0.

Thus there can be no double Hopf points.

The resonances double Hopf points described in Theorems 3.3-3.4
can be illustrated as in Figures 1-2. These points are less interesting
as the fixed point is linearly unstable in the regions where they exist;
hence, they will have little effect on the observable dynamics of the
system.

3.3. Nonzero damping. So far we have shown that when there
is no damping and the feedback depends only on the position or the
velocity, all double Hopf points are resonant. Now let us consider
the general equation (1). By consideration of the existence of pure
imaginary eigenvalues for the fixed point of this equation, one can
derive the following necessary condition for the occurrence of a resonant
double Hopf point with frequencies in the ratio m : n:

2 2
(26) P=p 2+ T g
mn

Further, one can show that the frequencies are given by the simple
expressions:

(27) wlzﬁlr—rr;-\/az—dz, w2:’/%\/a2—d2.
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Sufficient conditions are obtained by appending to (26) an equation
defining the intersection points of the Hopf curves:

ad + (m/n)va? — d%(bg — d)
d? + g2(m/n)va? — d?
ad + (n/m)va? — d?(bg — d)

m
= — arccos ,
n

&2 + g2 (n/m)Va® - &

g defined by (26). The value of the delay at the resonant double Hopf
point is then given by:

(28) arccos

7 _ &2(bg —
n arceos ad + (m/n)va? — d?(bg d).

mva? — d? d? + g%(m/n)Va? — d?

Clearly, (28) cannot be solved closed in form, except when there are
certain restrictions on the parameter values. We have seen examples
of such restrictions in Theorems 3.1-3.4. One final example is given
below.

(29) T =

Consider (1) with nonzero damping, but forcing which depends only
on the velocity:

(30) E(t) + b (t) + ax(t) = fol2(t — 1)).

Proceeding as before, we can show that there is a fixed point and find
the characteristic equation of the linearization about this fixed point:

(31) AN 4+bA+a=gle ", where g= f3(0).

As this characteristic equation has been studied in detail by several
authors, e.g., [3, 13, 18], we only repeat here what is necessary for our
analysis. Putting A = dw in (31), we find possible Hopf bifurcations
will occur when

(32a) a—w?=gwsinwr
(32b) bw = gw cos wr.

If a > 0 and g2 > b? — 2a > 0, there exist two families of surfaces (or
curves if we think of the physical parameters a and b as fixed) satisfying
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these equations

(33a)

Y T [ P S
w—\/a+ 5 + ) + a(g? — b?), T = —arccos 7))’

(33b)

B gz—b2_\/(g2—b2)2 2 12 1 b
w—\/a+ 2 1 + a(g? — b?), T = — arccos )

See Cooke and Grossman [13] for details of the derivation. This leads
to the following

Theorem 3.5. For a > 0, (31) possesses double Hopf points with
frequencies having all possible ratios wy :wa =m:n, m <n € Zt.

Proof. Consideration of nw; = mws where wq,ws are defined by (33a)
and (33b), respectively, yields
2_g2_(n-m?

g
mn

Substituting this relation back into the equations for w; and ws in turn
yields

(34) wy = ‘lln—a, wo = Za
n Vm

Now at the double Hopf point (32b) must be satisfied for both w; and
wa; thus, cos(w1T) = cos(wy7) and we have

woT = Fuwn T + 27

for some [ € Z. This in turn implies that sinwy,T = £ sinw,7. However,
consideration of (32a) and (34) shows that sinwst and sinw;7 must
have opposite signs, eliminating the + sign in the expression above.

Thus, we find -
_ 22m /mn 2l_7r
T wi4ws m+nal




TABLE 1.

Parameter Values

w1 Wy wy : Wwe Parameter Values
b,d,g Wi, T b,d,g w1, T
1:2 0, Im. 0 V0.4, %M
50 /i | & iV
1:3 0, 0, w w“ V%s. 2:3 woodmﬁ 0, %omamﬁ ﬂwm. m,\mﬁ
Im, 1.03, 1.03 | V0.2, m,wmd 0.297, 0471, 0 0.767, 8.19
14 0, —0.882, 0 0.118, %
0, 0.311, 1.43 0.487, 2.36
1:5 0, 0.507, 1.584 0.415, 2.20 2:5 0, —0.225, 0.909 0.624, 3.12
%, 0, ,\Pulm %, %a —0.468, 0.789, 0 0.496, 12.7
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for some | € Z. It is a simple matter to derive from (32b)-(32a)
expressions giving b and g at the double Hopf point
b= (n—m)y/ — cot <2l7r i )
mn m+n

+
g=(n—m)’/%csc (2l1rm7_n'_n>. o

A similar theorem may be stated for a < 0. Note that, although all
resonances are possible, unlike the zero damping cases, not all double
Hopf points are resonant.

We conclude this section with the results of a numerical investigation
to find some low order resonant double Hopf points of (3), as shown in
Table 1. Note that some of these points could be predicted by Theorems
3.1, 3.2 and 3.5.

4. Discussion. We have shown that resonant double Hopf bifurca-
tion points with frequencies in all ratios m : n, m < n € Z occur in
the damped harmonic oscillator with delayed forcing. That such points
may be important sources of interesting behavior is clear from studies
of the normal forms for certain “strong” (w2/w; = 1,2, 3) resonances.
Studies of both the 1:2 and 1:3 resonances [19, 20, 22, 26] have shown
the presence of three or more families of periodic orbits. Further, near
1:2 resonant double Hopf points, other dynamics such as period dou-
bling bifurcations [22], phase locking and quasiperiodic dynamics [20]
have been shown to occur. The behavior of the “weak” resonances has
been shown to be similar to that of the nonresonant case by Iooss [19]
and Schmidt [26], i.e., there exist two families of periodic orbits and
quasiperiodic solutions. See [28] and [16] for thorough studies of the
nonresonant case.

These results for the dynamics of the normal form can be applied
to delay differential equations by using the center manifold projection
[15, 17]. This has been done for the 1:2 resonance in (4) by Campbell
and LeBlanc [10].

Although many of the resonances occur only if one or more of the pa-
rameters is zero, it is important to note that the results concerning the
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solutions of a normal form are valid for parameters in some neighbor-
hood of the double Hopf point. Thus it is conceivable that systems with
small nonzero parameters would be “close” to a resonant double Hopf
case and thus exhibit some of the same dynamics. Indeed, in a model
for the pupil light reflex Campbell et al. [8] observed period doubling
bifurcations near a point of nonresonant double Hopf bifurcation. The
frequencies in this case were close to 1:2 resonance as the parameters
were close to a 1:2 double Hopf point of (5), a =1, b = .07, d = —0.63.

Acknowledgments. This work has benefited from the support of
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ENDNOTES

1. The exceptional points are the points of resonant double Hopf bifurcation
discussed in Section 3.
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