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ABSTRACT

We consider an experimental system consisting of a pendulum
which is free to rotate 360 degrees, attached to a cart wiainh ¢
move in one dimension. There is stick slip friction betwelea t
cart and the track on which it moves. Using two different mod-
els for this friction we design feedback controllers to giab

the pendulum in the upright position. We show that contrelle
based on either friction model give better performance thaa
based on a simple viscous friction model. We then study the ef
fect of time delay in this controller, by calculating thetial
time delay where the system loses stability and compariag th
calculated value with experimental data. Both models lead t
controllers with similar robustness with respect to deldging
numerical simulations, we show that the effective crititale
delay of the experimentis much less than the calculatedétieo
cal value because the basin of attraction of the stableibguih
point is very small.

1 Introduction

We study the experimental system depicted schematicaffigin
ure 1. In this system, a pendulum is attached to the side afta ca
by means of a pivot which allows the pendulum to swing in the
xy-plane. A forceF (t) is applied to the cart in the direction,
with the purpose of keeping the pendulum balanced upright.

The equations of motion of the cart and pendulum from Figure 1
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Figure 1. Inverted Pendulum System

can be found using Hamilton’s Principle, e.g. [1]. They are:

(M +m)(t) — mlsinB(t)82(t) + mlcosB(t)8(t) = F(t) + Fric
mlcosB(t)X(t) — mglsin(t) + 2ml?B(t) = 0

1)
wherex is the position of the carf is the pendulum angle, mea-
sured in degrees away from the upright positibnis the force
applied to the cart anigic is the force of friction. The definitions
of the parameters are given in Table 1.

In our experimental system, supplied by Quanser Limited, th



1 INTRODUCTION
Table 1. Parameter Values
Param. Description Value
M mass of the cart 0.8150 Kg
m mass of the pendulum 0.210Kg
I pivot to pendulum c.o.m. distance | 0.3050 m
g gravity constant 9.8 m/s
a voltage/force conversion 1.7189
B electrical resistance/force conversior’.682

applied force is due to a motor in the cart and is given by

F(t) = aVv(t) —Bx(t), (2)

whereV is the voltage supplied to the engine, and the second
term represents electrical resistance in the cart mota.values

of the constantst andf3 for the motor used in our experimental
apparatus are given in Table 1.

If there is no applied forcek: (t) = 0, then the system has an
(orbitally) asymptotically stable steady state with thag&um
hanging straight down, and the cart in any position on thektra
A classical control problem is to design a feedback law which
will stabilize the pendulum in the upright position. A stand
approach to this problem is to design a law of the form

V(t)=K-[x,0,%0], (3)

where the feedback gai = [ki, ko, ks, ka], is chosen so that
the linearization of the system about the equilibrium pdias
all eigenvalues with negative real parts. To deternknfer our
system, we use an optimal linear quadratic controller, [@]g.
with weightsQ = diag(5000 300Q 20,20) andr = 1.

The control of the inverted pendulum is a well-studied peatl
which has application to both biological and mechanicahbed

ing tasks. As such there have been many papers written on the
subject. Here we briefly review the ones most directly relate

our work, i.e., those that involve time-delayed feedbackhe®
references can be found within the papers cited. In contriéist
model (1) and choice of feedback (3), all other papers we are
aware of eliminate the cart dynamics from the problem by ne-
glecting the friction (and resistance in the cart motor) asel

ing feedback which only depends érand6. Stability analysis

of the resulting second-order equation can be found in thé& wo
of Stépan and collaborators [3, 4]. Stépan and Kol@rfpr-
mulate conditions on the delay such that stabilizing cdiere
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Figure 2. Experiment with controller based on a simple viscous friction
model.

can and cannot exist. Atay [6] does a similar analysis employ
ing position feedback only, but with multiple delays. Siebe
and Krauskopf [7] show there is a codimension three bifimoat
pointin the model and use centre manifold and normal fornkana
ysis to show that this point acts as an organizing centrehfer t
dynamics of the system. The emphasis of these studies igen th
oretical analysis of the model for arbitrary parametersneas
we focus on understanding the model with the parameters dic-
tated by our experimental setup. Finally, we note the work of
Cabrera and Milton [8, 9] who study, theoretically and exper
mentally, an inverted pendulum where the control is prodiole

a person (the “stick balancing problem”). The emphasis isf th
work is on the interplay between the time delay and the naise i
the system.

In our previous work [10] we studied system (1), when only vis
cous friction is included in the model, i.65ic = —ex. Using
this model, we designed a feedback controller for the system
the manner described above. However, when the controller wa
implemented in the experimental system, small amplitudd-os
lations resulted, an example is shown in Figure 2. Thesdl@sci
tion do not appear in simulations of the model. We also stlidie
the effect of time delay on this feedback, showing that, tdgfis
ciently large delay oscillations will occur due to a delayhiced
Hopf bifurcation.

In this paper, we focus on including a stick slip friction tmet
model (1). In [11] a detailed study of two stick slip frictiomod-
els for system (1) is carried out, including estimation & thle-
vant parameters. The important aspects of these modelsrare s
marized in Section 2. We then show that controllers desigised
ing the two friction models both stabilize the pendulum ia tip-
right position when implemented in the experimental system
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Section 3, we consider the effect of time delays on these e ¢ Exponential Friction Mode
trollers. In Section 4 we summarize our results and draw some ‘ ‘
conclusions.

2 Friction Models and Controller Design

An accurate model of the friction between the cart and thektra
in our experimental system must include static and Coulomb
(sliding) friction as well as viscous friction. Static ftien is

the friction that must be overcome to start an object moviirig;
only present when the object is not moving. Coulomb and vis- L i
cous friction are both present only when the object is maoving
the following subsections, we consider two models whictetak -3f ]
into account these effects and allow for smooth transitioss

tween the resting and moving states. We then show that the con A4 o5 o 05 1
trollers designed using the two friction models both stabithe velocity (m/sec)

pendulum in the upright position.
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Figure 3. Exponential friction model.

2.1 Exponential Friction Model
) ) ) _ the best fit of simulations to experimental data showing rtie-t

els for static, viscous and coulomb friction with an expaf#n  foynd in [11]. The resulting values are given in Table 2. With
term to smooth the transition between the resting and moving these parameter values, the dependence of the frictioa torE

states. Recall the standard model for static friction is illustrated in Figure 3.
—Fapplied if |F li d <|.ISFN
Fstatic = { — PN SS?EE\pplied) if |FZEE|::J > UsFn (4) Table 2. Parameters for Exponential Friction Model
Param. Description Value
whereys is the coefficient of static friction anBy is the mag- . .
nitude of the normal force. In our model, the object is moving Ms coefficient of static friction 0.08610
horizontally, sofy = (M 4+ m)g. The exponential friction model He coefficient of Coulomb friction| 0.04287
of Hauschild [12] is given by — - —
€ coefficient of viscous friction | 3
_ Fetatic if x—0 ] Y form factor 2
fric = —(Me+ (Ms— uc)e*(v—xy")p,\, sgnx) —ex if Xx#£0 ) Vs Stribeck velocity 0.105

where andJ, € are the coefficients Coulomb (sliding) and vis-

cous friction, respectivelys is called the Stribeck velocity and ~ To design a feedback control for a system as described in the
y the form factor. introduction, one needs to linearize the system about thialtr

_ ) solution. However, our friction model (5) is not differegttie.
The appropriate parameters for our system were estimated by Thys to calculate the linearization of our system, we approx

performing various tests on the experimental apparatusci8p  mated the nondifferentiable functions in (5) by smooth fiors.
cally, us was estimated by slowing ramping up the applied volt-  gpecifically, rewriting (5) as

age in the motor (and hence the applied force) and measuring

the minimum applied force needed to start the cart moving. To .
estimateyc ande we applied two different constant forces and  Fric = Fstatic( 1—Sgrf (X)) — (uc+(us—pc)e‘(v_xs)y)FN sSgNn(X) — &X,
measured the associated steady state constant velocitys Fo (6)

we used the value given in [13], whilewas chosen so to give  a smooth approximation may be made by replacing>sghy
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Figure 4. Implementation of the controller based on the exponential fric-

tion model in the experiment (solid line) and in a numerical simulation of
the system with initial condition (X, 8,X, 8) = (0,0.06 rad 0, 0) (dashed
line).

tanh(dx) whered > 0 is large. Usingd = 100 leads to the feed-
back gain [11]

K =[70.7107,304.9273 1433152 61.0833. @)

We implemented this controller in our experimental system a
found that it did stabilize the system. An example experitalen
run is shown, together with a numerical simulation, in Feydr
The performance of the controlled system is improved camsid
ably over that obtained with the controller designed usecdim-

ple viscous friction model. Note that there remains somsenivi

the system. This can been shown to be due to quantization erro
in the angle sensor [11].

2.2 Dynamic Friction Model

This model is due to Canudas de Wit and Lipschinsky [13]. It
attempts to represent friction more physically by thinkafgwo
surfaces making contact through elastic bristles. The idamis
that when a force is applied, the bristles will deflect likeilsgs,
which gives rise to the friction force. The friction forcergerated

by the bristles is

dz .
Fric = —00Z— 01 - — €X,

wherez is the average deflection of the bristles, ando; are
the stiffness and damping coefficient. Our expression agpea

have the opposite sign for the friction force from that presd
in [13] as they incorporate the sign of the force into theinatipn
of motion (see equation (7) of [13]), whereas we incorpoitate
into the expression for the force. In either case, the vianaif z

is modelled via:

3—: = co%z (8)
where
90 = (o + (s — Ho)e™ &R,
This leads to a dynamic friction force
Firic = —(01+s)>'<—ooz(1—olﬁ>, 9)
9(%)

wherez satisfies (8). Note that when this model is used, the di-
mension of the system will be increased by one due to the-intro
duction of the variable. The standard friction parameters are as
in the exponential model and are given in Table 2. The remain-
ing parameters, as determined in [11], are given in Tabld@sé
were chosen so that simulations of the transition foom 0 to

x # 0 gave the best fit of the experimental data.

Table 3. Parameters for Dynamic Friction Model

Parameter Description Value
ao stiffness 121
o1 damping coefficient 70

Whenx is constant, the bristle stateand hencéic, approach
constant values:

2= —g(¥)sgr(y),
0
Fric = —9(X) sgn(x) — ex .
= (Mo + (Ms— Ho)e™ (%)) Py sgn(x) — ex.

Thus, the steady state friction force is the same as thangive
by the exponential friction model (5) and illustrated in tig 3.
The dynamic nature of this friction model can be seen whisn
a periodic function of time. This is illustrated in Figure 5.
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model in the experiment (solid line) apd in a numerical simulation of the
system with initial condition (X, 8,%,8) = (0,0.02 rad0,0) (dashed
line).

Figure 5. Dynamic friction model when X(t) = 0.8 sin(0.5t).

Once again, to design a feedback control for our system Wwéh t
friction model (9) requires that we make a smooth approxionat

to the nondifferentiable absolute value function. Howeiteran

be shown that any smooth approximation of the absolute value
function will have zero derivative at zero, so the approxiora

. . o . We assume that there is a time delay; 0, between when the
plays no role in the linearization or the controller design.

variables used in the feedback law (3) are measured and when
A further complication in this case is that the linearizedteyn the voltageV (t) is applied. Adding this delay to the model, the

is not stabilizable, due to the introduction of the new stafehis force applied by the carf(t) in (1)) now becomes

may be dealt with by an appropriate transformation of théesgs

[11]. Finally, one obtains the feedback gain

K — [85.0828 2904957 1360180581005  (10) (1) =Xt =D+ 0B —T)+dx(t—1) 4+ dab(t — 1) - B’E(lt)l’)
whered; = ak;.

We implemented this controller in our experimental systemh a  We wish to find the smallest tire, > 0 that makes the upright
found that it did stabilize the system. An example experi@en  equilibrium point of this system unstable. Rewriting thedabas
run is shown, together with a numerical simulation, in Feyar a first order system and linearizing about the upright elopiiim
The performance of the controlled system is improved censid point yields the system [11]

erably over that obtained with the controller designed ubked

simple viscous friction model (Figure 2). Note that themaains

some noise in the system. This can been shown to be due to quan-

tization error in the angle sensor [11]. y=Ay(t)+Ey(t—1) (12)

3 FEffect of Time Delay wherey and A andE depend on which friction model is used.

As illustrated in the last section, the controllers destynéth We find the critical time delayyc, by assuming that equation
either friction model achieve stability of the upright eluium (12) has a solution of the fory(t) = veM, substitutingy(t) back
point. We would now like to compare their robustness with re- into the equation and solving for the smallest value sfich that
spect to time delay in the feedback loop. the system has an eigenvaluaiith RgA) = 0.
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3.1 Time Delay with the Exponential Model

For the exponential modey, = [x,8,%,6], andA andE in (12)
are:

0O O 1 0
0O O 0 1
A=| g -3mg —(Bretdus(Mimg) g |, (13)
4AM+m 4AM+m
0 3(M+m)g 3(B+&+06ps(M+m)g) 0
(4M+m)l (4M+m)l
0 0 0 0
0 0 0 0
E = 4d1 4d2 4d3 4d4 (14)
Mg M M M

(4M+m)l 4AM+m 4M+m 4M+m

Using the parameters in Tables 1-3 @nd 100, we find that the
critical time delay istc ~ 0.1069 seconds.

To study this experimentally, we implemented the feedback ¢
trol based on the exponential friction model, i.e., (11)wggin
given by (7), in our experimental system. The actual timaylel
of the experimental system is insignificant, however, wearan
tificially vary it using the computer system which implement
the feedback control. We did this and observed that the up-
right equilibrium point was asymptotically stable urtti= 0.01.
For 001 < 1 < 0.025 the experimental system exhibited oscil-
lations about the upright equilibrium point, with amplirithat
increased witht. Fort > 0.025, the pendulum fell down. Our
initial conditions for the experiment are set manually, toyda
ing the pendulum “close” to the upright position. Thus they a
given by

X(t) =0,6(t) =60, X(t)=0,6(t) =0, —-T1<t<0. (15)

The range of initial angles that we used was approximatety 1
Bp < 5 degrees.

To understand the discrepancy between our theoreticalpiced
and experimental results, we performed numerical sinarati
of the full model (1) with the delayed force (11) and exponen-
tial friction model (5). The simulations were performed et
Matlab Simulink tool box using the solvexde23t b, which is

a variable step size solver for stiff differential equatiposing
initial conditions (15) withBy < 10 deg. The results are sum-
marized in the top graph of Figure 7 (dashed lines) with a zoom
in shown in the bottom graph. For all initial conditions &kt
we found that the equilibrium point was stable fok 0.005.
With 0.06 < 6p < 6 degrees, the system exhibited oscillations for
0.005< 1 < 0.041 and the pendulum fell over for> 0.041. For

By > 6 degrees, the delay value at which the transition from-oscil
lations to instability occurred decreased with increasingThe
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Figure 7.
friction model and corresponding feedback gain (7). Dashed lines corre-
spond to using the friction model (5). Solid lines correspond to replacing
sgn(X) with tanh(100X). Initial conditions used are as in (15) for various
values B of the time delay, T. The bottom graph shows a zoom in of the
top graph.

Results of numerical simulations of (1) with the exponential

numerical integration routine had difficulty dealing withitial
conditions smaller than.06 degree due to the signum function.
Clearly, the simulation results match the experimentakokss
tions better than the theoretical prediction based on teatiza-
tion of the model with the smooth approximation to the signum
function. However, we still have no explanation for the dége
ancy between the destabilizing delay predicted by linatinn
and that observed in the experiment.

To investigate this discrepancy further, we performed stons
using the smooth approximation tgd00x) for sgnx) in (5).
The results of these simulations are summarized in the taphgr
of Figure 7 (solid lines) with a zoom in shown in the bottom
graph. For initial conditions witly > 0.1 degree, these sim-
ulations give very similar results to the model with the sign
function. For smaller initial conditions, however, the tiansi-
tion values of the delay increase and finally coalesce. Fatlsm
enough initial conditions the delay where stability is losttches
the theoretical prediction from the linearization, as slal.

These results lead to two possible explanations for theafsc
ancy between the theoretical prediction and the experiahebt
servation. The simplest is that while the smooth approxnat
is good enough to design a controller which will stabilize $lys-
tem, it is not good enough to use for quantitative predicioh
delay induced instability. Alternatively, we note that silations
with the smooth approximation show that whef@@7 < T < t¢
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Figure 8. Results of numerical simulations of (1) with the dynamic fric-
tion model and corresponding feedback gain. Initial conditions used are
as in (15) for various values Bg of the time delay, T. The bottom graph
shows a zoom in of the top graph.

only for very small initial conditions will the system retuto the
stable equilibrium point. This situation, where the eduilim
point is asymptotically stable, but only for initial conidihs suf-
ficiently close to the point is callddcal asymptotic stability. Of
course, local stability is all that is guaranteed by thedirstabil-
ity analysis. We cannot verify this idea experimentallgcsi it is
impossible to get the pendulum sufficiently close to the ldgjui
rium point. However, we can conclude from both sets of simula
tions that theeffectivecritical delay (i.e. the delay where stability
will be lost with experimentally achievable initial conigdins) is
considerably less than that predicted by the linear stalaihal-
ysis.

3.2 Time Delay with the Dynamic Model

For the dynamic friction model; = [x, 6, %, é,z], andA andE in
(12) are:

0 0 1 0 0
0O O 0 1 0
_3mg —4(btor+ 4o
A=|0 (4M(erlm02) 0 mm |- (16)
0 3(M+m)g 3(b+01+07) 0 309
@MTm)l (@AMl @M+
0 1 0O 0

0 0 0 0

0 0 0 0 O
4d 4d,  4dg 4d
E=| Zvm vim 2Mom avom O (17)
3 —3dy 303 —3d4
(4dM+m)l 4AM+m 4M+m 4M+m
0 0 0 0 O

Using the parameters in Tables 1-3, we find that the critioa t
delay ist¢ =~ 0.1169 seconds.

To study this experimentally, we implemented the feedback c

trol based on the dynamic friction model, i.e., (11) withrgai
given by (10), in our experimental system and varied the time
delay as described above. We observed that the upright equi-
librium point was asymptotically stable until= 0.009. For
0.009< 1 < 0.023 the experimental system exhibited oscilla-
tions about the upright equilibrium point, with amplitudeat
increases with. Fort > 0.023, the pendulum fell down.

To understand the discrepancy between our theoreticailicad
and experimental results, we performed numerical simariatof
the full model (1) with the delayed force (11) and the dynamic
friction model (9). The simulations were performed using th
same package as for the exponential friction model. Thdteesu
of these simulations are summarized in top graph of Figure 8
with a zoom in shown in the bottom graph. We find a similar
situation to that with the numerical simulations of the exgo-

tial model with the smooth approximation to the signum func-
tion. For initial conditions with k 89 < 5 degrees, theffective
critical delay is 0022 and for larger initial conditions, the ef-
fective critical delay is even smaller. The simulation®ahow
that, for 1< 8y < 5 degree, the system exhibits oscillations for
0.022< 1 < 0.028 and the pendulum falls down for> 0.028.
These predictions are in reasonable agreement with theiexpe
mental observations. The prediction of the destabilizielggis
not as good as that using the exponential friction model,-how
ever the prediction of the delay when the pendulum falls @ver
better. The simulations for initial conditions wifly < 1 show
that the effective critical delay increases@sdecreases, limit-
ing close to the theoretically predicted critical delayBgggoes

to zero. This gives an explanation for the discrepancy betwe
the experimental observations and the theoretical piiedicif
the critical delay. Namely, the equilibrium point is onlychdly
asymptotically stable, and for large delays can only be nesk
for initial angles smaller than can be achieved in the expeni.

4 Conclusions

We studied the feedback control of an experimental inverésd
dulum system which has stick slip friction. We showed that-co
trollers designed using either the exponential frictiondeloof
[12] or the dynamic friction model of [13] achieve stabildfthe
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