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ABSTRACT

We consider an experimental system consisting of a pendulum,
which is free to rotate 360 degrees, attached to a cart which can
move in one dimension. There is stick slip friction between the
cart and the track on which it moves. Using two different mod-
els for this friction we design feedback controllers to stabilize
the pendulum in the upright position. We show that controllers
based on either friction model give better performance thanone
based on a simple viscous friction model. We then study the ef-
fect of time delay in this controller, by calculating the critical
time delay where the system loses stability and comparing the
calculated value with experimental data. Both models lead to
controllers with similar robustness with respect to delay.Using
numerical simulations, we show that the effective criticaltime
delay of the experiment is much less than the calculated theoreti-
cal value because the basin of attraction of the stable equilibrium
point is very small.

1 Introduction

We study the experimental system depicted schematically inFig-
ure 1. In this system, a pendulum is attached to the side of a cart
by means of a pivot which allows the pendulum to swing in the
xy-plane. A forceF(t) is applied to the cart in thex direction,
with the purpose of keeping the pendulum balanced upright.

The equations of motion of the cart and pendulum from Figure 1
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Figure 1. Inverted Pendulum System

can be found using Hamilton’s Principle, e.g. [1]. They are:

(M +m)ẍ(t)−mlsinθ(t)θ̇2(t)+mlcosθ(t)θ̈(t) = F(t)+Ffric

mlcosθ(t)ẍ(t)−mglsinθ(t)+ 4
3ml2θ̈(t) = 0

(1)
wherex is the position of the cart,θ is the pendulum angle, mea-
sured in degrees away from the upright position,F is the force
applied to the cart andFfric is the force of friction. The definitions
of the parameters are given in Table 1.

In our experimental system, supplied by Quanser Limited, the
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Table 1. Parameter Values

Param. Description Value

M mass of the cart 0.8150 Kg

m mass of the pendulum 0.210 Kg

l pivot to pendulum c.o.m. distance 0.3050 m

g gravity constant 9.8 m/s

α voltage/force conversion 1.7189

β electrical resistance/force conversion7.682

applied force is due to a motor in the cart and is given by

F(t) = αV(t)−βẋ(t), (2)

whereV is the voltage supplied to the engine, and the second
term represents electrical resistance in the cart motor. The values
of the constantsα andβ for the motor used in our experimental
apparatus are given in Table 1.

If there is no applied force,F(t) = 0, then the system has an
(orbitally) asymptotically stable steady state with the pendulum
hanging straight down, and the cart in any position on the track.
A classical control problem is to design a feedback law which
will stabilize the pendulum in the upright position. A standard
approach to this problem is to design a law of the form

V(t) = K · [x,θ, ẋ, θ̇]T , (3)

where the feedback gain,K = [k1,k2,k3,k4], is chosen so that
the linearization of the system about the equilibrium pointhas
all eigenvalues with negative real parts. To determineK for our
system, we use an optimal linear quadratic controller, e.g.[2],
with weightsQ = diag(5000,3000,20,20) andr = 1.

The control of the inverted pendulum is a well-studied problem
which has application to both biological and mechanical balanc-
ing tasks. As such there have been many papers written on the
subject. Here we briefly review the ones most directly related to
our work, i.e., those that involve time-delayed feedback. Other
references can be found within the papers cited. In contrastwith
model (1) and choice of feedback (3), all other papers we are
aware of eliminate the cart dynamics from the problem by ne-
glecting the friction (and resistance in the cart motor) andus-
ing feedback which only depends onθ andθ̇. Stability analysis
of the resulting second-order equation can be found in the work
of Stépán and collaborators [3, 4]. Stépán and Kollár [5] for-
mulate conditions on the delay such that stabilizing controllers
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Figure 2. Experiment with controller based on a simple viscous friction

model.

can and cannot exist. Atay [6] does a similar analysis employ-
ing position feedback only, but with multiple delays. Sieber
and Krauskopf [7] show there is a codimension three bifurcation
point in the model and use centre manifold and normal form anal-
ysis to show that this point acts as an organizing centre for the
dynamics of the system. The emphasis of these studies is on the-
oretical analysis of the model for arbitrary parameters whereas
we focus on understanding the model with the parameters dic-
tated by our experimental setup. Finally, we note the work of
Cabrera and Milton [8, 9] who study, theoretically and experi-
mentally, an inverted pendulum where the control is provided by
a person (the “stick balancing problem”). The emphasis of this
work is on the interplay between the time delay and the noise in
the system.

In our previous work [10] we studied system (1), when only vis-
cous friction is included in the model, i.e.,Ffric = −εẋ. Using
this model, we designed a feedback controller for the systemin
the manner described above. However, when the controller was
implemented in the experimental system, small amplitude oscil-
lations resulted, an example is shown in Figure 2. These oscilla-
tion do not appear in simulations of the model. We also studied
the effect of time delay on this feedback, showing that, for suffi-
ciently large delay oscillations will occur due to a delay-induced
Hopf bifurcation.

In this paper, we focus on including a stick slip friction in the
model (1). In [11] a detailed study of two stick slip frictionmod-
els for system (1) is carried out, including estimation of the rele-
vant parameters. The important aspects of these models are sum-
marized in Section 2. We then show that controllers designedus-
ing the two friction models both stabilize the pendulum in the up-
right position when implemented in the experimental system. In
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Section 3, we consider the effect of time delays on these two con-
trollers. In Section 4 we summarize our results and draw some
conclusions.

2 Friction Models and Controller Design

An accurate model of the friction between the cart and the track
in our experimental system must include static and Coulomb
(sliding) friction as well as viscous friction. Static friction is
the friction that must be overcome to start an object moving;it is
only present when the object is not moving. Coulomb and vis-
cous friction are both present only when the object is moving. In
the following subsections, we consider two models which take
into account these effects and allow for smooth transitionsbe-
tween the resting and moving states. We then show that the con-
trollers designed using the two friction models both stabilize the
pendulum in the upright position.

2.1 Exponential Friction Model

This model is due to Hauschild [12] and combines standard mod-
els for static, viscous and coulomb friction with an exponential
term to smooth the transition between the resting and moving
states. Recall the standard model for static friction

Fstatic=

{

−Fapplied if |Fapplied| < µsFN

−µsFN sgn(Fapplied) if |Fapplied| ≥ µsFN
, (4)

whereµs is the coefficient of static friction andFN is the mag-
nitude of the normal force. In our model, the object is moving
horizontally, soFN = (M +m)g. The exponential friction model
of Hauschild [12] is given by

Ffric =

{

Fstatic if ẋ = 0

−(µc +(µs−µc)e
−( ẋ

vs
)γ
)FN sgn(ẋ)− εẋ if ẋ 6= 0

(5)

where andµc,ε are the coefficients Coulomb (sliding) and vis-
cous friction, respectively,vs is called the Stribeck velocity and
γ the form factor.

The appropriate parameters for our system were estimated by
performing various tests on the experimental apparatus. Specifi-
cally, µs was estimated by slowing ramping up the applied volt-
age in the motor (and hence the applied force) and measuring
the minimum applied force needed to start the cart moving. To
estimateµc andε we applied two different constant forces and
measured the associated steady state constant velocity. For νs

we used the value given in [13], whileγ was chosen so to give
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Figure 3. Exponential friction model.

the best fit of simulations to experimental data showing the tran-
sition from ẋ = 0 to ẋ 6= 0. Details of these estimations can be
found in [11]. The resulting values are given in Table 2. With
these parameter values, the dependence of the friction force onẋ
is illustrated in Figure 3.

Table 2. Parameters for Exponential Friction Model

Param. Description Value

µs coefficient of static friction 0.08610

µc coefficient of Coulomb friction 0.04287

ε coefficient of viscous friction 3

γ form factor 2

vs Stribeck velocity 0.105

To design a feedback control for a system as described in the
introduction, one needs to linearize the system about the trivial
solution. However, our friction model (5) is not differentiable.
Thus to calculate the linearization of our system, we approxi-
mated the nondifferentiable functions in (5) by smooth functions.
Specifically, rewriting (5) as

Ffric = Fstatic(1−sgn2(ẋ))−(µc+(µs−µc)e
−( ẋ

vs
)γ
)FN sgn(ẋ)−εẋ,

(6)
a smooth approximation may be made by replacing sgn(ẋ) by
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Figure 4. Implementation of the controller based on the exponential fric-

tion model in the experiment (solid line) and in a numerical simulation of

the system with initial condition (x,θ, ẋ, θ̇) = (0,0.06 rad,0,0) (dashed

line).

tanh(δẋ) whereδ > 0 is large. Usingδ = 100 leads to the feed-
back gain [11]

K = [70.7107, 304.9273, 143.3152, 61.0833]. (7)

We implemented this controller in our experimental system and
found that it did stabilize the system. An example experimental
run is shown, together with a numerical simulation, in Figure 4.
The performance of the controlled system is improved consider-
ably over that obtained with the controller designed used the sim-
ple viscous friction model. Note that there remains some noise in
the system. This can been shown to be due to quantization error
in the angle sensor [11].

2.2 Dynamic Friction Model

This model is due to Canudas de Wit and Lipschinsky [13]. It
attempts to represent friction more physically by thinkingof two
surfaces making contact through elastic bristles. The mainidea is
that when a force is applied, the bristles will deflect like springs,
which gives rise to the friction force. The friction force generated
by the bristles is

Ffric = −σ0z−σ1
dz
dt

− εẋ,

wherez is the average deflection of the bristles, andσ0,σ1 are
the stiffness and damping coefficient. Our expression appears to

have the opposite sign for the friction force from that presented
in [13] as they incorporate the sign of the force into their equation
of motion (see equation (7) of [13]), whereas we incorporateit
into the expression for the force. In either case, the variation of z
is modelled via:

dz
dt

= ẋ−σ0
|ẋ|

g(ẋ)
z (8)

where

g(ẋ) = (µc +(µs−µc)e
−( ẋ

vs
)γ
)FN.

This leads to a dynamic friction force

Ffric = −(σ1 + ε)ẋ−σ0z

(

1−σ1
|ẋ|

g(ẋ)

)

, (9)

wherez satisfies (8). Note that when this model is used, the di-
mension of the system will be increased by one due to the intro-
duction of the variablez. The standard friction parameters are as
in the exponential model and are given in Table 2. The remain-
ing parameters, as determined in [11], are given in Table 3. These
were chosen so that simulations of the transition from ˙x = 0 to
ẋ 6= 0 gave the best fit of the experimental data.

Table 3. Parameters for Dynamic Friction Model

Parameter Description Value

σ0 stiffness 121

σ1 damping coefficient 70

Whenẋ is constant, the bristle statez, and henceFfric , approach
constant values:

z =
1

σ0
g(ẋ)sgn(ẋ),

Ffric = −g(ẋ)sgn(ẋ)− εẋ

= −(µc +(µs−µc)e
−( ẋ

vs
)γ
)FN sgn(ẋ)− εẋ.

Thus, the steady state friction force is the same as that given
by the exponential friction model (5) and illustrated in Figure 3.
The dynamic nature of this friction model can be seen when ˙x is
a periodic function of time. This is illustrated in Figure 5.
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Figure 5. Dynamic friction model when ẋ(t) = 0.8sin(0.5t).

Once again, to design a feedback control for our system with the
friction model (9) requires that we make a smooth approximation
to the nondifferentiable absolute value function. However, it can
be shown that any smooth approximation of the absolute value
function will have zero derivative at zero, so the approximation
plays no role in the linearization or the controller design.

A further complication in this case is that the linearized system
is not stabilizable, due to the introduction of the new statez. This
may be dealt with by an appropriate transformation of the system
[11]. Finally, one obtains the feedback gain

K = [85.0828, 290.4957, 136.0180, 58.1005]. (10)

We implemented this controller in our experimental system and
found that it did stabilize the system. An example experimental
run is shown, together with a numerical simulation, in Figure 6.
The performance of the controlled system is improved consid-
erably over that obtained with the controller designed usedthe
simple viscous friction model (Figure 2). Note that there remains
some noise in the system. This can been shown to be due to quan-
tization error in the angle sensor [11].

3 Effect of Time Delay

As illustrated in the last section, the controllers designed with
either friction model achieve stability of the upright equilibrium
point. We would now like to compare their robustness with re-
spect to time delay in the feedback loop.
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Figure 6. Implementation of the controller based on the dynamic friction

model in the experiment (solid line) and in a numerical simulation of the

system with initial condition (x,θ, ẋ, θ̇) = (0,0.02 rad,0,0) (dashed

line).

We assume that there is a time delay,τ > 0, between when the
variables used in the feedback law (3) are measured and when
the voltageV(t) is applied. Adding this delay to the model, the
force applied by the cart (F(t) in (1)) now becomes

F(t) = d1x(t − τ)+d2θ(t − τ)+d3ẋ(t − τ)+d4θ̇(t − τ)−βẋ(t),
(11)

wheredi = αki .

We wish to find the smallest timeτc > 0 that makes the upright
equilibrium point of this system unstable. Rewriting the model as
a first order system and linearizing about the upright equilibrium
point yields the system [11]

ẏ = Ay(t)+Ey(t− τ) (12)

wherey andA andE depend on which friction model is used.
We find the critical time delay,τc, by assuming that equation
(12) has a solution of the formy(t) = veλt , substitutingy(t) back
into the equation and solving for the smallest value ofτ such that
the system has an eigenvalueλ with Re(λ) = 0.
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3.1 Time Delay with the Exponential Model

For the exponential model,y = [x,θ, ẋ, θ̇], andA andE in (12)
are:

A =











0 0 1 0
0 0 0 1

0 −3mg
4M+m

−(β+ε+δµs(M+m)g)
4M+m 0

0 3(M+m)g
(4M+m)l

3(β+ε+δµs(M+m)g)
(4M+m)l 0











, (13)

E =









0 0 0 0
0 0 0 0

4d1
4M+m

4d2
4M+m

4d3
4M+m

4d4
4M+m

−3d1
(4M+m)l

−3d2
4M+m

−3d3
4M+m

−3d4
4M+m









. (14)

Using the parameters in Tables 1–3 andδ = 100, we find that the
critical time delay isτc ≈ 0.1069 seconds.

To study this experimentally, we implemented the feedback con-
trol based on the exponential friction model, i.e., (11) with gain
given by (7), in our experimental system. The actual time delay
of the experimental system is insignificant, however, we canar-
tificially vary it using the computer system which implements
the feedback control. We did this and observed that the up-
right equilibrium point was asymptotically stable untilτ = 0.01.
For 0.01 < τ < 0.025 the experimental system exhibited oscil-
lations about the upright equilibrium point, with amplitude that
increased withτ. For τ ≥ 0.025, the pendulum fell down. Our
initial conditions for the experiment are set manually, by hold-
ing the pendulum “close” to the upright position. Thus they are
given by

x(t) = 0, θ(t) = θ0, ẋ(t) = 0, θ̇(t) = 0, −τ ≤ t ≤ 0. (15)

The range of initial angles that we used was approximately 1≤
θ0 ≤ 5 degrees.

To understand the discrepancy between our theoretical prediction
and experimental results, we performed numerical simulations
of the full model (1) with the delayed force (11) and exponen-
tial friction model (5). The simulations were performed in the
Matlab Simulink tool box using the solverode23tb, which is
a variable step size solver for stiff differential equations, using
initial conditions (15) withθ0 ≤ 10 deg. The results are sum-
marized in the top graph of Figure 7 (dashed lines) with a zoom
in shown in the bottom graph. For all initial conditions tested,
we found that the equilibrium point was stable forτ < 0.005.
With 0.06< θ0 < 6 degrees, the system exhibited oscillations for
0.005≤ τ < 0.041 and the pendulum fell over forτ ≥ 0.041. For
θ0 ≥ 6 degrees, the delay value at which the transition from oscil-
lations to instability occurred decreased with increasingθ0. The
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Figure 7. Results of numerical simulations of (1) with the exponential

friction model and corresponding feedback gain (7). Dashed lines corre-

spond to using the friction model (5). Solid lines correspond to replacing

sgn(ẋ) with tanh(100ẋ). Initial conditions used are as in (15) for various

values θ0 of the time delay, τ. The bottom graph shows a zoom in of the

top graph.

numerical integration routine had difficulty dealing with initial
conditions smaller than 0.06 degree due to the signum function.
Clearly, the simulation results match the experimental observa-
tions better than the theoretical prediction based on the lineariza-
tion of the model with the smooth approximation to the signum
function. However, we still have no explanation for the discrep-
ancy between the destabilizing delay predicted by linearization
and that observed in the experiment.

To investigate this discrepancy further, we performed simulations
using the smooth approximation tanh(100ẋ) for sgn(ẋ) in (5).
The results of these simulations are summarized in the top graph
of Figure 7 (solid lines) with a zoom in shown in the bottom
graph. For initial conditions withθ0 > 0.1 degree, these sim-
ulations give very similar results to the model with the signum
function. For smaller initial conditions, however, the twotransi-
tion values of the delay increase and finally coalesce. For small
enough initial conditions the delay where stability is lostmatches
the theoretical prediction from the linearization, as it should.

These results lead to two possible explanations for the discrep-
ancy between the theoretical prediction and the experimental ob-
servation. The simplest is that while the smooth approximation
is good enough to design a controller which will stabilize the sys-
tem, it is not good enough to use for quantitative predictions of
delay induced instability. Alternatively, we note that simulations
with the smooth approximation show that when 0.007< τ ≤ τc
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only for very small initial conditions will the system return to the
stable equilibrium point. This situation, where the equilibrium
point is asymptotically stable, but only for initial conditions suf-
ficiently close to the point is calledlocal asymptotic stability. Of
course, local stability is all that is guaranteed by the linear stabil-
ity analysis. We cannot verify this idea experimentally, since it is
impossible to get the pendulum sufficiently close to the equilib-
rium point. However, we can conclude from both sets of simula-
tions that theeffectivecritical delay (i.e. the delay where stability
will be lost with experimentally achievable initial conditions) is
considerably less than that predicted by the linear stability anal-
ysis.

3.2 Time Delay with the Dynamic Model

For the dynamic friction model,y = [x,θ, ẋ, θ̇,z], andA andE in
(12) are:

A =















0 0 1 0 0
0 0 0 1 0

0 −3mg
4M+m

−4(b+σ1+σ2)
4M+m 0 −4σ0

4M+m

0 3(M+m)g
(4M+m)l

3(b+σ1+σ2)
(4M+m)l 0 3σ0

(4M+m)l

0 0 1 0 0















, (16)

E =













0 0 0 0 0
0 0 0 0 0

4d1
4M+m

4d2
4M+m

4d3
4M+m

4d4
4M+m 0

−3d1
(4M+m)l

−3d2
4M+m

−3d3
4M+m

−3d4
4M+m 0

0 0 0 0 0













. (17)

Using the parameters in Tables 1–3, we find that the critical time
delay isτc ≈ 0.1169 seconds.

To study this experimentally, we implemented the feedback con-
trol based on the dynamic friction model, i.e., (11) with gain
given by (10), in our experimental system and varied the time
delay as described above. We observed that the upright equi-
librium point was asymptotically stable untilτ = 0.009. For
0.009< τ < 0.023 the experimental system exhibited oscilla-
tions about the upright equilibrium point, with amplitude that
increases withτ. Forτ > 0.023, the pendulum fell down.

To understand the discrepancy between our theoretical prediction
and experimental results, we performed numerical simulations of
the full model (1) with the delayed force (11) and the dynamic
friction model (9). The simulations were performed using the
same package as for the exponential friction model. The results
of these simulations are summarized in top graph of Figure 8
with a zoom in shown in the bottom graph. We find a similar
situation to that with the numerical simulations of the exponen-
tial model with the smooth approximation to the signum func-
tion. For initial conditions with 1< θ0 < 5 degrees, theeffective
critical delay is 0.022 and for larger initial conditions, the ef-
fective critical delay is even smaller. The simulations also show
that, for 1< θ0 < 5 degree, the system exhibits oscillations for
0.022≤ τ < 0.028 and the pendulum falls down forτ > 0.028.
These predictions are in reasonable agreement with the experi-
mental observations. The prediction of the destabilizing delay is
not as good as that using the exponential friction model, how-
ever the prediction of the delay when the pendulum falls overis
better. The simulations for initial conditions withθ0 < 1 show
that the effective critical delay increases asθ0 decreases, limit-
ing close to the theoretically predicted critical delay asθ0 goes
to zero. This gives an explanation for the discrepancy between
the experimental observations and the theoretical prediction of
the critical delay. Namely, the equilibrium point is only locally
asymptotically stable, and for large delays can only be observed
for initial angles smaller than can be achieved in the experiment.

4 Conclusions

We studied the feedback control of an experimental invertedpen-
dulum system which has stick slip friction. We showed that con-
trollers designed using either the exponential friction model of
[12] or the dynamic friction model of [13] achieve stabilityof the
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pendulum in the upright position. We compared the robustness
to time delay of the two controllers. Linear stability analysis pre-
dicts that the controller based on the dynamic model is slightly
better than that using the exponential model (critical delay of
0.1169 sec vs 0.1069 sec). Implementing the controllers based
on the two friction models in our experimental system we found
that the one based on the exponential model was marginally bet-
ter than the one based on the dynamic model (critical delay of
0.01 sec vs 0.009 sec).

The large discrepancy between the critical delays predicted by
the linear stability analysis and those observed in experiment was
explained by numerical simulations of the full nonlinear model.
These simulations indicate that the equilibrium point is asymp-
totically stable forτ < τc, whereτc is the critical delay value
predicted by the linear stability analysis. However, for a range
of delay values,̂τc ≤ τ < τc, the equilibrium point is onlylo-
cally asymptotically stable and the initial position of the pendu-
lum must be very close to the upright position in order for the
pendulum to asymptotically tend to the upright position. Inthe
language of dynamical systems, thebasin of attractionof the
equilibrium point corresponding to the upright position isvery
small. Since the initial position needed to see the asymptotic
stability of the upright position is smaller than what is experi-
mentally obtainable, theeffectivecritical delay isτ̂c. These re-
sults highlight the fact that linear stability analysis mayonly be
marginally useful for predicting the behaviour of nonlinear sys-
tems.

The main conclusion of this work is that when using a model
to design a feedback controller, it is important to include an ac-
curate friction model. For systems with stick slip friction, we
found that both the models of [12] and [13] are adequate. Con-
trollers based on either model achieve stability and both have
similar robustness to delay. Both models have drawbacks. Itis
more difficult to calculate the controller for the model of [13].
However, numerical simulations of using the model of [12] are
difficult, due to the discontinuities in the model. The valueof τ̂c

predicted by the simulations of the system with the exponential
friction model is closer to that observed in the corresponding ex-
periments than when the dynamic model is used. However, the
dynamical friction model gave a better prediction of the delay
value when the pendulum fell over. Simulations of the nonlinear
system with either friction model yield better prediction of the
stability than the linear analysis.
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