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Abstract: We consider a general model for a network of all-to-all coupled oscillators with time
delayed connections. We reduce the system of delay differential equations to a phase model where
the time delay enters as a phase shift. By analyzing the phase model, we study the existence
and stability of cluster solutions. These are solutions where the oscillators divide into groups;
oscillators within a group are synchronized, while oscillators in different groups are phase-locked
with a fixed phase difference. We show that the time delay can lead to the multistability between
different cluster states. Analytical results are compared with numerical studies of the full system

of delay differential equations.
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1. INTRODUCTION

Many biological and physical systems can be studied using
coupled oscillator models, for example neural networks
(Hansel et al., 1993), laser arrays (Winful and Wang,
1988), flashing of fireflies (Mirollo and Strogatz, 1990),
and movement of a slime mold (Takamatsu et al., 2000).
A fundamental question about these systems is whether
the elements will phase-lock, i.e., oscillate with some
fixed phase difference, and how the physical parameters
affect the answer to this question. Clustering is a type of
phase locking behavior where the oscillators in a network
separate into subgroups. Each subgroup consists of fully
synchronized oscillators, and different subgroups oscillate
with a fixed phase difference. Symmetric clustering refers
to the situation when all the subgroups are the same size
while non-symmetric clustering means the subgroups have
different sizes.

Phase models have been used to study the behaviour of
networks of coupled oscillators beginning with the work of
Kuramoto (1984). While they have been used to study
a variety of phenomena, especially in neural networks
(Ermentrout and Kopell, 1984, 1991; Ermentrout, 1996;
Galédn, 2009; Hansel et al., 1993), Okuda (1993) was the
first to study clustering behaviour using this tool. Con-
sidering a phase model for a network of arbitrary size
with all-to-all coupling, Okuda (1993) established general
criteral for the stability of all possible symmetric cluster
solutions as well as some non-symmetric cluster solutions.
He showed that these results gave a good prediction of
stability for a variety of model networks. Recently, similar
results have been obtained for networks with nearest-
neighbour coupling (Miller et al., 2015). Phase model
analysis has been extensively used to study phase-locking
in pairs of model (Kopell and Ermentrout, 2002; Saraga
et al., 2006) and experimental (Mancilla et al., 2007)
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neurons. More recently it has been used to study clus-
tering in model (Kilpatrick and Ermentrout, 2011) and
experimental (Galdn et al., 2006) neural networks.

In many systems there are time delays in the connections
between the oscillators due to the time for a signal to prop-
agate from one element to the other. In neural networks
there is a delay due to conduction of electrical activity
along an axon or a dendrite and due to processing time at
the synapse(Crook et al., 1997; Kopell and Ermentrout,
2002). While much work has been devoted to the study of
the effect of time delays in neural networks, the majority
of this work has focussed on systems where the neurons
are excitatory not oscillatory, (e.g., Buri¢ et al. (2005);
Dahlem et al. (2009); Panchuk et al. (2013)), pairs of
oscillators (e.g., Campbell and Kobelevskiy (2012); Kopell
and Ermentrout (2002); Schuster and Wagner (1989)) or
synchronization (e.g., Crook et al. (1997); Orosz (2012,
2014a)). We note that extensive work has been done on
networks of Stuart-Landau oscillators with delayed cou-
pling (e.g., Choe et al. (2010); Dahms et al. (2012)) where
the model for the individual oscillators is the normal
form for a Hopf bifurcation and thus the system is often
amenable to direct analysis. Recent work has developed
new approaches to determine the Floquet multipliers, and
hence stability, of cluster solutions in delayed neural os-
cillator networks Orosz (2014a,b). There is also a vast
literature on time delays in artificial neural networks which
we do not attempt to cite here.

In this paper, we investigate the effect of time delays in
the coupling on the clustering behavior of networks of all-
to-all coupled identical oscillators, using the phase model
approach. The advantage of this approach over Floquet
analysis is that one can often draw conclusions which are
independent of the particular oscillator model and the size
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of the network. The disadvantage is that phase model
analysis requires weak coupling.

The plan for our article is as follows. In section 2, we
review how to reduce the differential equation model for
our network to a phase model. In section 3, we analyze the
phase model to investigate the existence and stability of
symmetric cluster states and draw some conclusions which
depend only on the connectivity structure of the network.
In section 4, we apply our results to a specific example:
a network of all-to-all coupled Morris-Lecar oscillators
with delayed synaptic coupling. A comparison of numerical
results for the full model and the phase model analysis is
given. In section 5, we discuss some biological implications
of our results and directions for further investigation.

2. REDUCTION TO PHASE MODEL

In this section, we review how to reduce a general model for
a network of all-to-all coupled oscillators with time-delayed
connections to a phase model. We begin by considering the
model for a single oscillator. This is a system of ordinary
differential equations

dX

o = FX(), (1)

which admits an exponentially asymptotically stable pe-

riodic orbit, denoted by X(t), with period T' = %’T Lin-

earizing the model (1) about the periodic solution X (t) we
obtain

W~ pr)x, 2)
and its adjoint system
4z .
o —[DF(X(1)"Z. (3)

Here DF(X(t)) represents the Jacobian matrix of F with
respect to X, evaluated at X(t). Denote by Z = Z(t)
the unique periodic solution of the adjoint system (3)
satisfying the normalization condition:

T
%/0 Z(t)- F(X(t))dt = 1.

Now, consider the following network of identical oscillators
with all-to-all, time-delayed coupling
dX; a
di J=1,j#i

(4)
Here G describes the coupling behavior and e is referred
to as the coupling strength. When e is sufficiently small,
we can apply the theory of weakly coupled oscillators to
reduce (4) to a phase model (Ermentrout and Terman,
2010; Hoppensteadt and Izhikevich, 1997). While there are
no general results on how small e should be, it can been
quantified for particular models. See section 4.2.

How the time delay enters into the phase model depends on
the size of the delay relative to other time constants in the
model. It has been shown (Ermentrout, 1994; Izhikevich,
1998; Kopell and Ermentrout, 2002) that if the delay is
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= F(Xi(t)+e Y G(Xi(t), X;(t-7)), i=1,--- ,N.

such that Q7 = O(1) with respect to the coupling strength
€ then the appropriate model is

do; al
J=Lj#i
where n = Qr. That is, the delay enters as a phase lag.
The interaction function H is a 2m-periodic function which
satisfies

1

T ~ ~
H(S) = 7 / 2(5)G(X (s + ¢))ds.

with Z, X as defined above.
We have focussed on the case with no self-coupling, which

leads to the j # i condition in the sum above. However,
the model (5) is included in the more general model

N
=Q+ed) H(¢pj—¢i—n), i=12-- N. (6)

For the model with no self-coupling, Q@ = Q — H(—n),
while for the model with self-coupling 2 = Q. We will
work with (6) in the following. Note that this model has
Sy symmetry, that is, one can make any permutation of
the indices of phases and the equations are left unchanged.

Finally, we note that when the delay is long enough
(n ~ O(1/e€)), the delay enters into the model not as phase
shift, but in the argument of the oscillators, ¢;(t)—¢;(t—7)
(Izhikevich, 1998). This type of model has been the subject
of several studies (Kim et al., 1997; Niebur et al., 1991;
Schuster and Wagner, 1989; Sethia et al., 2011; Yeung and
Strogatz, 1999).

2.1 Phase difference model

Noting that the right hand side of (6) depends only on
the differences between the phases, we define the variables
0, = ¢z — ¢i+17 t=1,2,...,N — 1. Assuming e > 0 and
introducing the slow time u = et, then gives rise to the
following equations

-

=D (H(9; = ¢ —n) = H(@; — dix1 ). (7)
j=1

Now when j < %, we have

¢j _¢i:9j+9j+l+"'+9ifla
while, when j > i, we have

G5 —pi=—(0i +0ip1+---+0;_1).
Thus, we can write (7) in the following form

do; i —1 i—1 N-1 J
dul =Y HO Os—n)+ Y H(=> 6—n)
=1 k=j j=i k=i

(8)

i i N-1 J
ILOSUSUED SEICD SR
j=1 k=j j=i+1 k=i+1

The phase difference model (8) reduces the dimension of
the model from N to N — 1. However, it also has less
symmetry than the phase model system. We will find that
both models are useful in our study of cluster states.
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3. EXISTENCE AND STABILITY OF SYMMETRIC
CLUSTER STATES

To begin let us consider any arbitrary phase-locked solu-
tion of the full model (4). This corresponds to a solution
of the phase model (6) where any two phase variables
maintain a fixed difference. Any such solution can be
written as

¢]_¢j+1zejaj:1727N_1ﬂ (9)
for some constants 9} Note that such solutions are one
dimensional lines in the N dimensional phase space of the
phase model (6), while they are just equilibrium points of
the phase difference model (8). From the symmetry of the
model (6), if the system admits a phase-locked solution of
the form (9) then any permutation of the constant phase
differences is also a phase-locked solution of the system
and it has the same stability.

Cluster states are special phase-locked solutions, where
oscillators in the same group/cluster are phase-locked with
zero phase difference (i.e., they are synchronized) while
those in different clusters have non-zero phase-difference.
We focus on symmetric cluster states, where there are the
same number of oscillators in each cluster.

Let n be an integer that divides N. Then there exist sym-
metric cluster states with n clusters and N/n oscillators
per cluster. To see this, let ®; be the phase of cluster k,
k=0,1,...,n—1. As discussed above, the symmetry of the
equations implies that if one such a solution exists, there
is a whole family: the oscillators can be arranged in any
way such that N/n distinct oscillators are in each cluster.
Without loss of generality, we will focus on the solution
where the oscillators cluster in order of their indices, i.e.,
i =P, i=k-Y+1,.. . (k+1)- X k=0,...,n—1
From the phase equation (6), the cluster phase differences
satisfy the following equations

(10)

Assume that

~ 2rk
o), = (Q+ w4+ 22, (11)
n
which means that the n clusters are equally separated in
phase. Substituting (11) into (10), and using the fact that
H is a 27w-periodic function, shows that such a solution
exists with w(™ given by

(12)

n

n—1
N 2
wm =e— E H(—ﬂ-m —n).
n
m=0

The symmetric cluster state (11) of (6) corresponds to the
equilibrium, 6*, of (8), where 8* = (07,05,...,05_,) with

0; =0,if i # 2N and 95y = 25, for k=1,2,...,n— L.

To analyze the stability of 8%, we consider the linearization
of system (8) at 6*:

o

du 9 (13)
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where A is the Jacobian matrix. Moving the (k2)t (k =
1,2,...,n—1) rows of A to be the last n — 1 rows, results
in the following matrix which is equivalent to A

A— (M N-mx(N-n) ON-n)x(n-1))
(n—1)x(N—n) (n—1)x(n—1)

Here I n_p)x(N—n) is the (N —n) x (N — n) identity ma-
trix, and

py—{ et =
Y Y(i—j)mod n — Vi lfl#j

with a = Y2720 45 where

N __, 27k
’yk:—H’(L—n), k=0,1,...
n n

From the expression for A, N — n eigenvalues of A are:
(14)
The other n — 1 eigenvalues are just the eigenvalues of B:

)\én) = —q, multiplicity N — n.

n—1
)\](Dn):_O[_’_z:,ykei%ﬁfp/n7 p=1,---,n—1. (15)
k=0

We note that, when 1 = 0, the eigenvalues found above for
the phase difference model are exactly the same as those
found by Okuda (1993) using the phase model (6), except
that Okuda had an additional eigenvalue which was always
zero. Recall that a phase-locked solution is a line in the
phase model. It is easy to check that the zero eigenvalue
corresponds to motion along this line. It follows that the
cluster solution of the phase model is asymptotically stable
when the equilibrium solution * of the phase difference
model is asymptotically stable. Thus when the N — 1
eigenvalues described above have negative real parts, the
symmetric cluster state is asymptotically stable.

Based on this analysis we can make the following general
conclusions about symmetric cluster solutions. If n < N
and n is an integer that divides N then symmetric cluster
solutions with n clusters exist. Their stability is deter-
mined by n eigenvalues and depends on number of clusters
and phase differences, not on the size of the network. In
particular, for any N, the 1-cluster (synchronized) solution
always exists and is asymptotically stable if H'(—n) > 0.
If N > 2 is even, 2-cluster solutions always exists and
are asymptotically stable if H'(x —n) > 0 and H'(7 —
n) + H'(—n) > 0. The presence of self-coupling does not
influence the stability, only the frequency of the solution.

We assumed € > 0. If € < 0 then the stability of asymptot-
ically stable solutions and totally unstable solutions will
be reversed, while saddle type solutions remain of saddle
type.

4. APPLICATION TO A NETWORK OF
MORRIS-LECAR OSCILLATORS

In this section, we apply our results to a specific network:
one with Morris-Lecar neurons (Morris and Lecar, 1981).
For convenience, we adopt the dimensionless Morris-Lecar
model formulated by Rinzel and Ermentrout (1989). Con-
sidering N identical Morris-Lecar oscillators with delayed
synaptic coupling, we have the following model
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Vi = Lupp — goaMoo (Vi) (Vi — vea) — grwi(v; — vk)  (16)
N
s
—gr(vi —vr) — ﬁ > st = 1) (wilt) = Esyn),
J=1,5

w; = pA(v;) (Woo (vi) — wi),
where i =1,..., N and

Moo (V) = %(1 + tanh((v — v1)/12)),
Woo (V) = %(1 + tanh((v — v3)/v4)),

Av) =cosh((v — v3)/2vy), s(v) = %(1 + tanh(10v)).

Using the parameter set I in (Campbell and Kobelevskiy,
2012, Table 1), when there is no coupling in the network
each oscillator has a unique exponentially asymptotically
stable limit cycle with period T ~ 23.87 corresponding to
Q) = 0.2632. We have used the common convention to scale
the input to each oscillator by the number of inputs, thus
we define € = %. If we did not do this scaling then we
would have € = gsyn.

Parameter Name value
VCa Calcium equilibrium potential 1
VK Potassium equilibrium potential -0.7
v, Leak equilibrium potential -0.5
9K Potassium ionic conductance 2
gL Leak ionic conductance 0.5

© Potassium rate constant %
V1 Calcium activation potential -0.01
2 Calcium reciprocal slope 0.15
V3 Potassium activation potential 0.1
V4 Potassium reciprocal slope 0.145
9Ca Calcium potential conductance 1
Tapp Applied current 0.09

Table 1. Parameters used in system (16).

4.1 Phase model analysis

We used the package XPPAUT (Ermentrout, 2002) to
calculate the interaction functions, H, for model (16) using
a numerical implementation of the method described in
section 2. This package can also be used to calculate a
finite number of coeflicients of the Fourier series for H.
This gives an explicit, closed form approximation for H:
K
H(¢) ~ ao+ ) _(ak cos(kg) + by sin(ke)),
k=1
(and hence H'(¢)) where the a; and by are known to
numerical accuracy. Figure 1 shows the plot of the nu-
merically computed interaction function (red solid), H,
together with the approximations using one (blue solid)
and twenty terms (green dashed) of Fourier Series. The
twenty term approximation is used in the stability calcu-
lations below as it gives a good balance of accuracy and
complexity.

Now, the phase model for (16) is

(17)

de; al

K3 .

o :Q—e. 1E-¢.H(¢j—¢i—n),z:l,...,N.(18)
j=1,j7#i
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Fig. 1. Interaction function for model (16) and the approx-
imations using 1 and 20 terms of Fourier Series

With the explicit expression for H, (17), we can determine
the asymptotic stability of any possible symmetric cluster
states for any N by studying the eigenvalues derived in
the previous section. We study the network with N = 6 in
more detail in the following. With N = 6, there are four
possible symmetric cluster states: 1-cluster (synchronous
oscillation), 2-clusters, 3-clusters, and 6-clusters. Following
equations (15) and (14), we can explicitly express the
eigenvalues for each case with respect to H.

Defining S = H ’(%77 — 1), we have the following expres-
sions for the eigenvalues:

e 1-cluster solution (all oscillators synchronized)
AV = —68,, multiplicity 5.
e 2-cluster solution
3
)\62) =-3 (ﬁo + 63), multiplicity 4,
AP = —6;.
e 3-cluster solution
AP = —2(Bo + B2 + 1), multiplicity 3
AP = =3(B2 + Ba) + iV3(B1 — fa)

OB
e G-cluster solution (splay state/travelling wave)
6 1
NI =2 = 285 — 5 (3(82 + Ba) + 1 + Bs)

+i§ (Ba+ Bs — B1— B2)
MO =XF = 2B+ B+ B+ )

+i? (B2 + Bs — 1 — Pa)

)\g,ﬁ) =—2(B1 + B3+ Bs)

Figure 2 shows a summary of the stable regions for all the
symmetric cluster solutions and indicates that there are
several regions of multistability. Note that the stability
result for the I1-cluster solution is valid for any size
of network, for the 2-cluster (3-cluster) solution for any
network with NV > 2 even (N = 3p, p > 1 ). The result for
the 6-cluster solution applies only for N = 6.

4.2 Numerical study

We carried out a numerical continuation study of the full
delay differential equation model (16) using the package



TDS 2015
June 28-30, 2015. Ann Arbor, MI, USA

J
21.127 23.870

12.264
12.785

00.406  2.725 4.827 8.285
1.526 9.191

13.862 14.283
14.661

Fig. 2. Phase model prediction of 7 intervals where sym-
metric n-cluster solutions are asymptotically stable.

DDE-BIFTOOL(Engelborghs et al., 2001). With param-
eter values as given in Table 1, various values of gsyn
and using 7 € [0,23.9] as the continuation parameter,
we verified that the phase model stability predictions
found in the previous section hold for ¢ < 0.002. See
Table 2. To investigate the bistability further, we carried

Gsyn = 0.01 (€ = 0.002)
[0,1.6) U (13.4,23.9]

Gsyn = 0.1 (€ = 0.02)
[0,1.7) U (9.4, 23.9]

W N =3

(2.4,9.1) (1.9,8.0) U (20.2,23.9]
(0.6,4.9) U (8.5,12.8) (0.1,3.9) U (7.2,11.2) U (20.2,23.3)
(12.4,13.7) (0.2,1.0) U (11.0, 12.0)

Table 2. Numerical continuation results: 7 in-
tervals where symmetric n-cluster solutions are
asymptotically stable.

out numerical simulations of the model (16) using XP-
PAUT (Ermentrout, 2002). Constant initial conditions,
vi(t) = vip, w;(t) = wip, —7 < t < 0, were used and a
small perturbation was applied to the input current of one
or more neurons during the course of the simulation. The
perturbations could cause switching between two different
cluster types and between different realizations of the same
cluster type. Fig. 3 shows two examples. When 7 = 3 both
the 2-cluster solutions and 3-cluster solutions are stable.
A perturbation to neurons 3 and 4 for 600 < ¢t < 620
switches the network from a 3-cluster solution to a 2-
cluster solution. When 7 = 8 the 2-cluster solutions are
the only stable solutions. A perturbation to neurons 2 and
5 for 600 < ¢t < 620 switches the network from a 2-cluster
solution with clusters 1, 3,5 and 2,4, 6 to one with clusters
1,2,3 and 4, 5, 6.

5. DISCUSSION AND FUTURE WORK

One possible application of our work is to understand the
formation of neural assemblies. A neural assembly is a
group of neurons which transiently act together to achieve
a particular purpose. It has been proposed that neural
assemblies are formed not just due to external inputs
to the system, but also due to the intrinsic dynamics
of the network (Engel et al., 2001). Mathematically, the
intrinsic dynamics of the network should support solutions
with multiple different grouping of neurons, with different
neurons able to participate in multiple groupings. Further,
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il

1100’ (R — 1100’

Fig. 3. Numerical simulations showing bistability. A dark
bar indicates when a neuron has a spike. Left: Switch-
ing between 3-cluster solution and 2-cluster solution.
Right: Switching between two 2-cluster solutions.

switching between different groupings should be able to be
acheived by changing the input to the network. Clustering
behaviour seems a good candidate for this intrinsic dy-
namics and hence it has been linked to the formation of
neural assemblies (Galan et al., 2006).

Our work gives further support to this hypothesis. In
particular, the numerical simulations in the last section
show how small perturbations can be used to change the
clusters in the system, which would be akin to switching
the neural assemblies. We note that this change could be
switching between the same or different types of clusters.
In the former case the network averaged frequency would
be the same or similar. In the latter it could change.

There are many ways our work could be extended. We
have focussed on all-to-all coupling, but other types of
connectivity with symmetry could be analyzed in a similar
manner (e.g. Miller et al. (2015) studied nearest neighbour
coupling without delay). Our work is restricted to phase
locked solutions, symmetric clusters and weak coupling.
Relaxing these these restrictions will require other ap-
proaches, such as the use of equivariant bifurcation theory
Wu (1998) or matrix analysis Orosz (2014b).
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