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Low-dimensional yet rich dynamics often emerge in the brain. E@i‘i&djmlude oscillations and chaotic

P

dynamics during sleep, epilepsy, and voluntary movement. Howeger, a general mechanism for the emergence of
low dimensional dynamics remains elusive. Here, we consider Wil n—Cov&yn networks and demonstrate through
numerical and analytical work that homeostatic regulation 6f“the ork firing rates can paradoxically lead
to a rich dynamical repertoire. The dynamics include mixed@de cillations, mixed-mode chaos, and chaotic
synchronization when the homeostatic plasticity operates«on a 1;ilemtely slower time scale than the firing
rates.. This is true for a single recurrently coupled figde, pairs of reciprocally coupled nodes without self-
coupling, and networks coupled through experimentally determined weights derived from functional magnetic
resonance imaging data. In all cases, the stability of the.homeostatic set point is analytically determined or
approximated. The dynamics at the network leve Qﬁ'ﬂ'@ctly determined by the behavior of a single node
system through synchronization in both oscil bq&an hon-oscillatory states. Our results demonstrate that
a

rich dynamics can be preserved under hou&st egulation or even be caused by homeostatic regulation.

Lead Paragraph \
When recordings from the brai e analyzed, rich dynamics such as oscillations or low-dimensional

chaos are often present. Ho \l::,gageneral mechanism for how these dynamics emerge remains
unresolved. Here, we explore the potential that these dynamics are caused by an interaction
between synaptic homeostasis;, and the connectivity between distinct populations of neurons. Us-
ing both analytical and num I approaches, we analyze how data derived connection weights
interact with inhibitory synaptic homeostasis to create rich dynamics such chaos and oscilla-
tions operating on{multiple time scales. We demonstrate that these rich dynamical states are
present in simplé systéms such as single population of neurons with recurrent coupling. The
dynamics of thése simple;systems are directly inherited in large networks while properties of the
coupling ma rjse etgl‘mine when these rich dynamics emerge as a function of the parameters
of the neuronal populations. Indeed, we find that the removal of single nodes or connections
can substantially alter where these rich dynamics onset in the parameter space.

1 tro ctién

The hu>1 brain contains billions of neurons each receiving potentially thousands of connections from their
neighbours, Despite this complexity, low-dimensional dynamics often appear in the brain in different regions
and contexts. Examples include oscillations such as the theta and gamma oscillations in the hippocampus
[Buzsdki, 2002, Buzsdki and Wang, 2012, Buzsaki et al., 2012], low dimensional oscillatory dynamics during
grasping and other motions [Churchland et al., 2012], or even low dimensional chaotic dynamics during epileptic
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34
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seizures and different sleep phases [Babloyantz and Destexhe, 1986]. These dynamics are sometimes pathologi-
cal, such as during epileptic seizures while other times they are functional, such as during sleep states. Despite
41 1

the low-dimensionality, the dynamics these systems display are often complex [Babloyantz and Destexhe, 1986].
However, a general mechanism as to how these dynamical regimes might emerge remains elusive.

7 fimese dynamical reihBang IHEREGERLEH PH NPT el 651 IERE NS i
8 ALI( together is necessary. For many neural circuits, strong evidence exists for a form of homeostatic
gplfbgﬁg‘ﬁiitﬁ I'roemke et al., 2007, Frank et al., 2006, Bacci et al., 2001, Turrigiano and Nelson, 2004]. The
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unction of homeostatic plasticity is to prevent run-away excitation in the circuit and thus prevent pathological

states such as epileptic seizures. Additionally, homeostatic plasticity prevents a catastrophic loss of neuronal
activity which results in network quiescence. In other words, homeostatic plasticity serves to maintain a stable
background firing rate.

Recent modeling work has demonstrated a novel inhibitory homeostatic plasticity mechanism designed to
regulate activity [Vogels et al., 2011]. This mechanism works by applying slow variations in the synaptic weights
from the inhibitory neurons to the excitatory neurons [Vogels et al., 2011]. As tz citatory neurons start firing
in excess of their homeostatic set points, the synaptic weights from the inhibitery neugons increase in strength
to prevent run-away excitation. If the excitation in the network is too 1 “1336 inhibitory weights decrease
in strength to disinhibit the excitatory neurons. The homeostatic mechamism ean drive initially synchronized
activity into the asynchronous irregular regime defined by variable spi 'A:Nm h a constant time averaged
firing rate [Vogels et al., 2011, Brunel, 2000]. k’s

These homeostatic mechanisms fundamentally exist to stabilize.net rmfnamics to an equilibrium point
[Turrigiano and Nelson, 2004]. Indeed, they exist as a countef mech to offset the often destabilizing
effects of Hebbian plasticity [Turrigiano and Nelson, 2004]. Elf:, is Sﬁprising to consider homeostasis to be

¢

is

the potential source of complex dynamical systems. However, recent work on different forms of homeostatic
plasticity demonstrate the rich dynamical repertoire that n or@ regulated by homeostatic plasticity can
display [Udeigwe et al., 2017, Zenke et al., 2013, Harpack et _al <2015, Hellyer et al., 2016]. For example, a
coupled Wilson-Cowan system with inhibitory homeaqstati¢ synaptic plasticity and excitatory weights estimated
from diffusion spectrum imaging data showed rich spouta s dynamics such as neural avalanches [Hellyer
et al., 2016]. However, it is difficult to determine 1thesource of the rich dynamical repertoire in the system
considered in [Hellyer et al., 2016] is as the underlyingwetworks contain neuronal noise, synaptic transmission
delays, non-smooth dynamics, and complex c Bylg\ Il four components may be the source of complex
dynamics.

In this work, we attempt to disent ngle\%\e ct of the homeostatic dynamics by analyzing a smooth
Wilson-Cowan ([Wilson and Cowan, system similar to the system numerically analyzed in [Hellyer
et al., 2016]. Here, we consider the syst without delays or noise as both conditions can increase the
complexity of otherwise simple n Wm%znamics. We show that the rich dynamics can arise from inhibitory

synaptic homeostasis alone. I , complex dynamics arise in a single node with recurrent excitation and
homeostatically regulated in or example, the single node system displays a period doubling cascade
to chaos, mixed-mode oscillat s,/ and,mixed-mode chaos. Furthermore, we demonstrate that these results also
occur in coupled dual nodesystems 4nd in large coupled node systems. The coupling in the large network is
identical to the connecti 'tMered in [Hellyer et al., 2016] and derived from functional magnetic resonance
imaging data from [Hagmann et“al., 2008, Honey et al., 2009]. For both cases, we find that the complex
dynamics of the single node carry over to higher dimensions. Finally, we consider node and connection deletion
in simulations using the daba derived coupling matrices. We find that the homeostatic effect on firing rate
stability is substanti béosted by the deletion of very specific nodes or connections in the network.

2 ThefWilson=Cowan System With Homeostatic Regulation

The gystenqf eqﬁations we consider model the average activity of a population of neurons phenomenologically
}? Cowan, 1972]. The population consists of subpopulations of excitatory neurons, E, and inhibitory

neurons)yJ. FEach population corresponds to a single equation. For example, a single recurrently coupled

populatiomyof excitatory and inhibitory neurons are governed by the following dynamical system:

5B = —E+¢(WFFE-WH ) (1)
nl' = —I+¢(W'PE) (2)

The coupling terms WEE WFEL WIF are all assumed to be positive scalars while the self-inhibition term is
assumed to be zero, for simplicity. The function ¢(z) is a sigmoidal transfer function that transforms the
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net current arriving at a population into the population activity. The time constants 7 and 7; denote time
scales of the excitatory and inhibitory populations, respectively. The equations (1)-(2) are more commonly
~L ~Ad 4

referred to as the Wilson-Cowan system [Wilson and Cowan, 1972]. Here, we also consider the homeostatic
modification from [Vogels et al., 2011, Hellyer et al., 2016]:

W™ =1(E = p) (3)

! I P This manuscript was accepted by, Chaos. Click here to see the version of record. |

splﬁbﬂligh(i)ﬁg ) alters the dynamics of the inhibitory synaptic weight in order to drive the excitatory population
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toward p, the homeostatic set point of the network. Equations (1)-(3) together define the dynamics of a
single, recurrently coupled node. As we will see in Section 3, analyzing the single node system is vital towards
understanding the dynamics of the large network.

The network equations are given by the following:

N

8B, = —Ep+¢ (Z WP E; — W;fffk)/ (4)
=1

ml, = —Ix+ o(WEEE) 5\ (5)

WP = L(E,—p) (6)

The excitatory activity of population k is given by Ej while the iphibitorysactivity is given by I for k =
1,2,...N. These nodes are coupled by the potentially long range we bnm\ctlon matrix WEF while a node
1nh1b1ts itself through the diagonal weight matrix W1, We assufine. thatno long-range inhibition is possible,
hence the diagonal nature of W, Furthermore, we will assume that a 13 can only excite its own inhibitory
population, and thus W!F is also diagonal. gs

P

The time constants for the excitatory and inhibitory ulation activities, and inhibitory homeostatic
synaptic weight are given by 7, 77, and Ty, respective this svork, we will primarily consider the case
where Ty > 1, 7w > 71 with 7w = b1, TR = T = 1fer the majority of numerical simulations. The
excitation and inhibition operate on the same tim M e the homeostasis operates on a slower time
scale. Here, we consider the case where the plastigity rates'on a slower time scale, however the separation
of time scales is moderate. This smaller separation,_is due.io the Wilson-Cowan system phenomenologically
representing the activity or average firing of ulation of neurons, and firing rates can have significantly
slower dynamics than the neuronal dyna constitute a network. This can be caused for example
96, Stevens and Wang, 1995]), spike-frequency adaptation
([Benda and Herz, 2003]), or clustered ¢ u ling, en the individual neurons that constitute a node ([Litwin-
Kumar and Doiron, 2012]). However, ze the system more generally when we consider the origin
of Canards and mixed- mode oscillations in“gection 3 and consider stronger separations of the time scales
numerically to determine if the uTFhﬁletwork dynamics are robust.

The transfer function ¢(z smooth sigmoid function which we will constrain to satisfy the following
properties:
¢'(x) > 0,V (7)
xl;ngo ox) = 1 (8)
lim ¢(z) = 0 (9)
T—>—00

Doy Y@ =@ - 6w), 67 ) = log (y) (10)
for numerical apblications. The parameter a determines the steepness of the sigmoid. While ¢(x) is a smooth
sigm ‘d\ﬂinc , other transfer functions are also possible. In particular, non-smooth variants of ¢(z) can
also be'gomisidered which impact the final dynamics of the network [Harris and Ermentrout, 2015, Nicola and
Campbell§2016]. We leave this for future work.

To simplify the notation further, we will rescale time with ¢ = 7;t. For the single node, this yields the
following system:

nE = —E+¢WFE-WT) (11)
I' = —I+¢(0E) (12)
Wl = I(E-p). (13)
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w2 with 7 = 7g/77, 7@ = T /77. For simplicity, we will relabel the scalar parameters in the single and dual
122 node cases with W and W' for EE and EI synaptic weights and 6 for the I E synaptic weight. Finally, the

17s—coupling matrix for the large network, W ¥ is derived from functional neural imaging data (see [Hellyer et al.,

14 2016, Hagnann et al., 2008, Honey et al., 2009] for further details). Th e data-derived coupling matrices have
0 gelepuy ling betweenT Risdpanuppribtinas gyceptredby, Ghros Lelisk beir 9182 the ersiop o Btk singlk system driven

1%6 dlfCoupling given by equations (1)-(3) will not help in understandlng the dynamics of the full network

1 7Puw6qﬁ§h‘ﬁ-§f = 0, Vi. However, as we will see the symmetric double-node system without self-coupling:

nE, = —E +¢WFE,—WwlI) (14)
I = —L+¢(0F) (15)
Wi = L(E -Dp) (16)
nE), = —Ey+¢(WFE, —Wil) (17)
I, = —Ih+¢(0Fs) / (18)
Wy = (B -p) (19)

128 has largely identical dynamics to the single-node system and in fact synchronizes to solutlons of the single-node
129 system.

130 We structure the paper as follows: In Section 3 we analyze the -10 ystem and demonstrate that
131 the majority of the rich dynamics we see for both the dual node and ullmetwork are present for the single
132 node. In Section 4 we numerically demonstrate that the dual ndde System without self-coupling synchronizes
133 to the single node system analyzed in Section 4. Finally, in Section 5, we'simulate and analyze the full network
134 equations demonstrating a direct inheritance of their dynamiics fro e single node system. The parameter
135 values we consider for all systems are shown in Table 1, un&oth‘j'wise specified as a bifurcation parameter
16 (see figure captions). -

= 3 Single Node Analysis \\
s 3.1  Local Analysis $-
(

139 Due to the homeostatic mechanism in equatio ,“enly one equilibrium exists and is determined by the
1o following equations: q\\

ey i WP o7 (p)
W W)

which is valid for p € (0,1). Q equently refer to this equilibrium as & = (E, T W) As W1 >0 we
require:

Fp> ¢~ (p).
141 This sets a range on the issa \/lues of WE allowed as a function of p, in addition to the constraint that
12 WF > 0. Note that if 0, then we can consider all W¥ > 0. For our sigmoid (10), this implies that

143 we require p < 0.5.
144 After some simplific

'on the Jacobian of this system is given by

/ _L_|_¢/(¢_1(P))WE Wi e) 167 (p)

_— T1 T1 T1 T1
= ¢'(6p)o -1 0
Tf—2 0 0

ﬁ
145 Which ylkthe ollowing characteristic polynomial for the single node system:

CSNSENE\, Y 1—WE¢'<¢> L(p)) +1) H(1—WE¢’<¢>—1<p>> L W67 ()¢ (6p)6 +12¢'<¢—1<p>>)
I
+

T T 1 TIT2
20/(¢ I"¢'(97"(p)
TIT2 '

us The determinant of the Jacobian is given by

Gt ) = Ay — LT R) 0PI (67 W) _

172 172
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147 As the determinant is always negative, this limits the dynamical repertoire of this system due to the homeostatic
s variable. Indeed, due to the dynamics of W/, aside from (E,I, W), no other equilibria exist and thus local
19 bifurcations that create or destroy equlhbrla via )\ = 0 crossings are not possible. This implies that no bistability
10 in equilibrin is po o look for Hopf
ifyr gers Furthermdrd$ BeYerify WahiCECRIGHRY sid0¥ite e tEr it et VREIOR | il he eigenvalues is
A\»Flg?eg tive. ThlS corresponds to the existence of a stable manlfold for the equlhbrlum globally in the

1 3PlfB|F§H1 ipace. The other eigenvalues must both be real and of the same sign, or complex. Further, using
the Ro * Turwitz criterion, one can show that all roots of the characteristic equation have negative real part

s if 1 — WE¢I(¢71(]))) > 0.

156 To determine the potential loss of stability due to Hopf-bifurcations, substitution of the Hopf-bifurcation
157 condition A = iw into the characteristic polynomial yields the following:
1 - WE (1 1 - WEH (61 1/_ &0 72/—1
0 — —iw3—w2< W' (¢ (p))+1>+iw WE(¢7 (p) . W1 (@ ()¢ (Op)0  I'¢'(67" (p))
71 T [ Gl TIT2
=2
T /( 4h—1 \
. L0 e) D
172

158 which after equating real and imaginary parts yields

0 wg_w<1—WE¢’<¢1<p>>+

71

0 — w2<1—WE¢’(¢>‘1(p))+1>

1

159 Solving for w as a function of the network parameters yields: 4

o \/1—WE¢'<¢—1<p>> LM D)) | T/ (07 ()
Ty \Tl T1T2

160 The Hopf bifurcation curve is implicitly defin

. (1—WE¢>’(¢—1(p>>

Wi,

©p)6

_l’_

1 T1

oo™\ () (Lo, )
T2

I¢’

T17T2

161 Defining the following quantitie x

_ 1-WPH (o7 (p)
71
_ 17l )¢ (07 ()
1
p¢’(0p)0

6low)
ey — L)

T2
162 then the ;mn condition can be written as a quadratic equation in p. Solving for y yields

) +1—r(0)) £/ (F )+ D(0)+1— k()2 —4k(0)F(0)(1 — x(0)
2(1 — /-@(0)) ’

Ty
153 Only thé\positive branch of u yields a Hopf-bifurcation as we require w? > 0, which after rearranging the Hopf
164 bifurcationicondition (20) yields:

o _ DO
* st +1
P —(D(8) + F(0)x(6) — (1 — (6))) = /(D(0) + F(0)x(0) — (1 — £(6))* +4D(0)(1 — x(6)))

2(1 - x(0))
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165

166

which implies that pu— < 0 is thus an inadmissable solution for a Hopf-bifurcation while p4 is an admissable
under the sufficient condition

() — P9 (6p)0

<1 (21)
| This manuscript was accepted by CH&83) Click here to see the version of record. |
AL nsidering the properties of the sigmoid function ¢(x), a routine derivation shows that the inequality (21)
1P tholdshihg afp < (1 — ¢(0p)) ™" which is always valid as:
1
afp < ———— =1+ exp(abp
1 —¢(6p) (aop)
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and z < 1+ exp(z) for all z. The final Hopf bifurcation curve is given by:

WE, (0) = M (1= rajus (9)). / (22)

in the (6, W¥) parameter space. )\

Given the fact that we can explicitly solve for the Hopf-bifurcation €urveygve can simulate in its vicinity
to determine the resulting behavior of the single-node system. Dir ct}qqlg simulation in addition to
numerical continuation using XPPAUT (not shown) indicate that the %pf bifurcation is likely supercritical,
as stable limit cycles emerge for W¥ > W Opf(é’) (Figure 1, 1A). Co {iting“the first Lyapunov coefficient is
cumbersome for the full-3D system as it requires a center mani old rednétion. However, for § = 0 case, one
can prove that the Lyapunov coefficient is strictly negative (see A end1§ A). Thus, we should expect that the
first Lyapunov exponent is negative for small § which suggﬁa supereritical Hopf bifurcation.
Finally, taking the limits 8 — 0 or 8 — oo yields

Wgo f(o) = Wgo &(\i 1
? 8 ¢' (o~ (p))

with Wgopf(e) > Wgopf(O). The inequality can b¢ preven by considering that F(0) > 0, p4(6) < 0 where
equality only occurs in the asymptotic limit
after which synaptic homeostasis can no 1 ng
depending on the strength of the excitatory
bifurcation. This is however not a catastrophig
are still confined to a neighbourhood aro

(23)

nsidered in (23). The value Wgopf(O) is the critical value

e%aﬁaptee stability of the equilibrium &. After this value,

hibitory coupling 6, stability is lost through a supercritical Hopf

ifurcation, and thus near the onset of the Hopf bifurcation we
. . . E _ 1

ote that for the sigmoid (10) we consider, W, (0) = PTICEE

which implies that smoother sigmoids (sma yield a larger parameter region of homeostatic control.

3.2 Period Doubling Cascadg' to %Followed by a Pinching of the Tent Map

For larger values of W¥, the stbm dis lays chaotic activity which was verified by computing the maximum
Lyapunov exponent nu ally (Eigure 2). This chaotic attractor contains small excursions from . Again,
in this region the ho eostNec anism is still operating within some degree of tolerance as the chaotic
attractor is contained{within small neighbourhood of the equilibrium. Mixed mode oscillations are also present
(Figure 1C). Surprisingly, for large enough values of W¥, the chaotic attractor can
t operate on two separate time scales (Figure 1D). This is referred to as “mixed
es et al., 2012, Koper, 1995]

Given thelexotic nature of the mixed mode-chaos in this system, we investigated how chaos emerges in this
i fixed 6 and steadily increased W and observed a classical period doubling cascade (Figure
merically computing the maximal Lyapunov exponent ([Sprott and Sprott, 2003]) over
- (6, WF) region reveals a contiguous region of chaotic solutions above the Hopf bifurcation

aller values of W¥¢ > W}f;o > the chaotic solutions are classical in nature (2D). For example, by
plotting the kth maxima of the E variable, £} as a function of E;_;, we find a stereotypical unimodal peak-
to-peak or tent map [Lorenz, 1963, Strogatz, 2014| (Figure 2E). However, as we increase WE further, a
pseudo-singularity or “pinch” emerges in the tent map at the location of the former maximum. This is not a
true singularity of this map as the set E € (0,1) is invariant. The emergence of this singularity in the tent
map corresponds to the emergence of mixed-mode chaos. However, mixed mode chaos occurs over a narrow
parameter regime for the single node. For larger values of W¥ > W Opf(ﬁ), the system only displays large

relaxation limit cycle solutions.
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208

209

210

Finally, we remark that period doubling cascades and mixed mode behaviors are preserved under larger
separations of time scales, up to approximately 7w = 2007g, 7p = 77 (Figure 2F). Thus, even for signifi-
PRV E PN

cantly larger separations of time scales, the Hopf bifurcation induced by the homeostatic coupling leads to the
emergence of complex, yvet low dimensional dynamics.

I Q | This manuscript was accepted by Chaos. Click here to see the version of record. |
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ards and Mixed Mode Oscillations

2 zP%uﬁhmgi westigated how mixed-mode oscillations emerge in the three-dimensional, single-node case. In
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particular, recent analytical work has demonstrated several cases through which mixed-mode oscillations can
emerge in a three-dimensional system exhibiting different separations of time scales. Examples include folded
singularities involving one fast variable and two slow variables, or the “tourbillon” case involving two fast
variables and one slow dynamical variable, singular-Hopf bifurcations, and systems exhibiting three different
time scales. [Wechselberger, 2005, Krupa and Wechselberger, 2010, Vo and Wechselberger, 2015, Desroches
et al., 2012]. These systems can give rise to mixed-mode oscillations through different mechanisms.

As our system has two fast variables and one slow variable, we hypothesized t‘}&\%most likely mechanism
for the emergence of mixed-mode oscillations for our network equation w%‘che so* called tourbillon case
[Desroches et al., 2012]. This is due to the presence of two fast variables{( ¥, in addition to the slow weight
W!. However, the mixed-mode oscillations cannot arise from the tourbillom casésn our system. Indeed, this
requires that the fast variables, given by:

T—
nE = —-E+¢(WFE£WI) (24)

I' = —I+¢(0E) ) (25)

undergo a Hopf bifurcation [Desroches et al., 2012]. While g@f bi'ercations are possible in this system, they
do not seem to be linked to MMOs, at least for the parameters we consider. The Hopf bifurcations occur far
from the region in parameter space where MMOs occtiz_and were never observed to be associated with stable

several other possibilities explored in the literature: include the folded singularities, three time-scale
systems, or singular-Hopf bifurcations ([Desro 2012]. The time scales in our network are given by
/7 = 1, 7w /71 = 5. Unfortunately, all ogher pagsibilities that are currently explored in the literature require
either two slow time scales, or three separa \bi%e:v cales [Desroches et al., 2012]. For the nominal parameter
values we have considered, our system fas.onéslow variable and two identically fast variables.

However, an alternate possibility is th mﬁnixed—mode oscillations are born in alternate time scale limits,
yet persist as the time-scale conditiens are relaxed. For example, these mixed-mode oscillations may be due to
folded-nodes or folded-saddles fof Ty =%¢7 > 7p or singular Hopf bifurcations in the same limit, or the three
time-scale limit i > 71 > f which have been recently summarized in [Desroches et al., 2012]. As
771 = O(7g), the mixed modé solutionshorn in the limit that 77 > 75 persist past this limit.

First, we considered ?{ded i gulJrities as these cases were the most promising. Mixed mode oscillations
arising from a folded sin utheBso ither folded saddles or folded nodes) occur when the system has one fast
variable and two slow ar?les. th folded node and folded saddles can have canard solutions [Desroches et al.,
2012]. These systems axe éften generalizations of the canard solutions one observes in simple two-dimensional
systems such as the Van der Pol system.

We note that capards gxist over a exponentially small parameter regime in two-dimensional reductions of
the recurrentl§f coupledssifigle node system. For example, the £, W/ system with I either set to ¢(AE) (Figure
3A) or I = 3, the ?init that § = 0 (not shown) both have canard solutions. Further, we prove in Appendix

that the two-dimensional system:

limit cycles. \
With the tourbillon case likely removed as oa%ause of mixed-mode oscillations, we are left with
The

B for thef0 =0

5 E = —E+¢WFPE-Wh (26)
\ W = e(E—-p) (27)

analytically has a canard point. This is due to the cubic-like nature of the critical manifold of (26), which is
preserved as a folded surface in 3D. The system (26)-(27) is arrived by a suitable rescaling of time and space,
after setting 6 = 0 thereby uncoupling the inhibition from the other dynamics and rendering the dynamics of
the inhibitory variable a stable manifold.

Further, if we consider the full 3D single-recurrently coupled node system, the null-surfaces for the excitatory
fast variable are indeed folded and contain two attracting regions and a repelling region. The dynamics for large
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254 amplitude oscillations follow the attracting components of the null-surface. This numerical analysis suggest
255 that the mixed-mode oscillations might arise from folded singularities in a relaxed parameter regime.
256 Thus, we conducted the folded singularity analys1s in [Desroches et al 2012 Wechselberger 2005] and
2:7  determined where in the g 1ld exy led ] Appendix B) and
ulting nat VS TSHHRETIRG YR SfataeR] {3308 Folefed - SatPdRe P VSHRONOIIGER nterestingly, we
259 A[ Iy found these regions to be separated by the Hopf blfurcatlon curve. Furthermore we ran numerical
2 OPlTbllltghti]ﬁg for 7y = 71 = 1007 and automatically classified solutions as having mixed-mode elements (Figure
}oHere we found that over a large region in the analytically predicted folded-saddle space, mixed mode
262 oscﬂlatlons existed (Figure 3D,E). We also remark here that the critical manifold for the single node system
263 has some pathological properties that might render local analysis less useful. In particular, the folded surface
264 is parameterized by

S = {(E,I, wh): (B, I) € (0,1) x (0,1), W = WeE I¢_/1,£E }

25 where ¢ 1(F) = log ( ) Thus, the critical manifold diverges at £ =

266 Thus, Canards analyt1cally exist (through a Canard point) for the 2D systern under the limit that

267 0 — 0, while the 3D system in the limit that 77 = 7 > 78 exhlblts‘%charactenstlcs of a potential
ras

,_-

268 folded-singularity. We numerically found the the Hopf-bifurcation cur ood predictor for the boundary
260  between the folded-node and folded-saddle regions. This might catlv of the folded saddle-node of
270 type II/singular Hopf bifurcation where Hopf-bifurcations of the S| stenl exist near the transition of a
on folded-saddle to a folded-node due to an equilibrium collision wi h a fOI% the critical manifold.

a2 4 The Dual-Node Case: Synchronous Solution@ ths ingle Node

a74 - single-node analysis that we have conducted is not ne¢essagily informative of the large network dynamics. Thus,
275 analysis must be conducted on the simplest possible s ithout self-coupling, the dual-node reciprocally
2% coupled system given by equations (14)-(19). In this System, the local homeostatic mechanism attempts to
a7 stabilize the excitatory activity while the oppdsing node functions to stimulate their neighbour.

278 First, we conducted numerical simulations o %dﬁ@l—node system to determine what dynamical behaviors
279 are possible. Surprisingly, we found that o 1l parameter regimes tested, the dual-node system without self-
250 coupling synchronizes to solutions of the single-nede; recurrently coupled system (Figure 4A,B). For example,
281 the dual-node system asymptotically ten ds the same chaotic attractors, limit cycles, and mixed mode
22 solutions as the single node system (Figure ) For oscillatory solutions, this is not surprising as a simple
283 derivation shows that any stable ﬁl\ﬁg@f the single-node system potentially corresponds to a synchronous

213 As the large network equations contain no self couplﬂgin\ve WEE weight matrix (diag(WEE) = 0), the
em

28« solution in the dual-node system. Eor chaotic attractors, the dual-node system exhibits a case of synchronized

255 chaos when the parameters r b(} s are identical [Pecora and Carroll, 1990].

6 4.1 Local Stability An of |I|br|a

287 Again, due to the hoineo atlc ture of the dual-node system, the only equilibrium that exists is given by
288 equation

. _ WP —¢7'(p)
¢(0p)

280 Furthermore, using tse Jacobian to solve for the characteristic polynomial yields the following:

Q(A)

1 1 T1 T1T2

—2 .
¢~ (p)
nr
200 Thus, instability in Csy(A) implies instability in the dual-node system for any equilibria. Furthermore, by the
201 Routh-Hurwitz criterion [Wiggins, 2003], all roots of Q(A) lie in the left complex plane if:

(1+WE¢'<¢1<p>> +1) (1+WE¢'<¢1<p>> L W6 )9 6)0 12¢'<¢1<p>>> )

1 1 71 T1T2 T1T2

2% (1 +WEY (67 w) 1) ) (1 +WEY (6 ) | W6 () (0p)0 I%/W@)))
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For all physical solutions, the inequality is satisfied as the term w can be subtracted from both sides
of (30) with all the remaining terms on the right hand side being strictly positive. However, roots on the
right-complex plane may occur for non—physmal values of these coefﬁments for example when the weights are
negative. This ana he dual node system

oupled systems,

=8y inherited ‘ ‘ i b il L HET R Y : 3
AI th( meostasis rule loses no robustness in regulating network dynamics up to the Hopf-bifurcation and
2 spljbfhsehtpn]g 1t inhibition can counteract non-local excitation just as well as local excitation.
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4.2 Stability Analysis of Limit Cycles

If we consider any limit cycle for the single node-system x(t) = (E(t), I(t), W!(t)) such that x(t) = (t + T)
for some T > 0, V¢, then the following is an admissable limit cycle solution to the dual-node system:

_ (=) &
0= (20) \
with an identical period T, for all ¢ > 0. Furthermore, if we consider the &m atrix system

e = A(x( (30)

derived by linearizing equations (1)-(3) around x(¢) then linearization f £Qua ions - can be written
—

— A@®)e+gle Q) § (31)

v o= A(m(t))w@,x(t . (32)

where ‘)
-
gelet), (1) = (WEg(W %Iu n(t) - (1)), 0,0)"
(e1(2)

gule),v(t) = WEW —v1(1)),0,0]"
In order to analyze the stability of limit cycle We r ulre a fundamental solution set to equations (31)-(32).
First, if we consider the fundamental Solutlo uation ( Y(t) = [e1(t), e2(t), €3(t)], then three
fundamental solutions of (31)-(32) are 1m glven by er(t )] for k = 1,2,3. This implies that if
the limit cycle is unstable in the single nod ), then 1t is unstable in the dual node system. We

leave the stability analysis of these li d other traJectorles for future work. We remark however
that the recent work in [Coombes et al., ] a alyzmg the stability of limit cycles in piecewise neural mass
models may be pertinent to resolvi the stability of these limit cycles through Floquet analysis, under the
assumption that the slope of the'sigmoidyis sharp (a — o).

5 The Fully Couple;/&ySystem

As we have previously ons ted the dual-node system without self coupling has identical dynamics to the
single-node, self cou tem and even exhibits chaotic synchronization to identical attractors as the single-
node. Thus, the de is largely predictive of the qualitative dynamics of the coupled system despite
the removal of s * Thus, we investigated if a similar result would apply to the large uncoupled
system given by-equ (4)-(6). First we analyzed a pair of analytically resolvable cases for matrices that
satisfied specific assu{slp ions. Then, we numerically explored the system (4)-(6) coupled by the weight matrix
consideredrin [Hellyer/et al., 2016].

5.1 [Exactly Resolvable Cases
First, %nsidered a pair of analytically resolvable cases. If we consider the all-to-all coupled matrix:

wE . .
WfE:{NEl s (33)

then there exist steady states (Ej, I}, le) = (p,I,WI), j = 1,2,... N given by the steady state formulas for
the single and dual node systems. The characteristic polynomial reduces to:

Cne(\) = Q)M Can (V)
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2 where Q(\) and Cgy()\) are the polynomials resolved in the dual node (equation (29)) and single node case

327 (See Appendix C). The polynomial Q( ) however has WE = ]I\/]V—El in place of W¥. Our previous analysis
3o imm cdiately applies and shows that with the coupling matrix (33), the system (4)-(6) has identical local

350 stablhty to the S]hD“]P node. We refer to equation (‘2?\ as the “mean-field” assumption Self-con p]ing need not

ed in this case m pWW‘“M%?Q%HW%WM%&“?I?JH% %§CQ1W§]X%WLQ$@MHHHH g is considered.
AFQ ly, we remark that there is at least one other case where the stability of the system can be determined
32P 1§ WS’"H@@ , when the row sum of the coupling weight matrix is constant:

ZWEE i=1,2,...Ng

333 We decompose the weight matrix WEF = WF. LEE where the row sum of LY¥ is equal to one. The scalar
134 term WF scales the magnitude of the components of the weight matrix, smul?/to WE in the single and dual
333 node cases. For this case, one can resolve the eigenvalue spectrum explicitly characteristic polynomial
336 factors readily:

e p)
co = T[(aw -

i=1

s where each r; is an eigenvalue of the weight matrix L¥¥. Each

IS a
Q) = N4 (1 . 1) ) < L, W0~ (p))e6p) ¢>’ ) Lo )
T1 T1T2

blC polynomial given by:

T1 N ‘) T1T2
- (34)
a3 The steady states W1 and T are given by 1dentlcal as in the single and dual node cases. Given the

a0 in the single node case. The curve will be of t

330 structure of the polynomial @Q()), this yields a Eﬂxf-h.ﬁkcatlon immediately through an identical derivation
e for

E _ 7
WHopf, \ /((b_l(p)) (1 M+(9)) (35)

sar - where 114 (0) is redefined and r; is an eige L (see Appendix C). As WF is increased, the first intersection
s of WE = WH opf.i determines the Hopf bifuréation curve. For § > 1 and 0 < 1, this is readily seen to be the

a3 curve corresponding to the large pos1 ive eigenvalue of LEF.
344 Additionally, if the row-s trix WFEF is non-constant, but narrowly distributed, one can still

35 approximate the Hopf-bifur thIy cur y using the mean-row sum (see Appendix C). We validate this ap-
346 proximation in the subseg/ent c‘rlop/ as applied to the weight matrix considered in [Hellyer et al., 2016].

sz 5.2 Numerical Expl

ﬁsme Experimentally Coupled System

= WFEE. LFE is derived from functional neuroimaging data and is described
[Hellye et al., 2016, Honey et al., 2009, Hagmann et al., 2008]. The matrix LZF is
50 shown in Fig re..\5A. he matrix couples 66 homeostatically regulated Wilson-Cowan nodes. Furthermore,
31 LEF =0 for &ll i and thus the nodes contain no self-coupling. As our single and dual node analyses indicate
32 a branch of Hopf bifufcations, we numerically computed the eigenvalues over the two parameter (W, 0) space
353 and seardhed for ghe first eigenvalue \; crossing Re(\;) = 0 as a function of  for each value of W. This yielded
354 a similar petential Hopf-bifurcation curve as the single and dual node cases. The curve was again unimodal
355 with ca, mptotes as § — 0 and § — co. We conducted large scale numerical simulations to determine
36 if the (;eﬂ?e ‘indeed indicated a transition from steady state dynamics to oscillations. For W < Wiep(6),
37 we observe decay to a steady state equilibrium and oscillations or chaos for W > Wg,¢(0) (Figure 5B,5C).
358 Finally, we applied the analytical approximation derived in section 5.1 for comparison. The approximation
350 has the greatest accuracy near the asymptotes § — 0 and § — oo and indicates that the common asymptotic
30 behavior for Wi, is:

ss  The connectivity
39 in greater detailQ

1
Wiiopy(0) ~ ST 0 — 00,0 = 0

10
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mar is the largest positive eigenvalue of LEE. As in our analysis of the single node, this asymptotic

32 behavior corresponds to the region of guaranteed stability of the steady state for W¥ < Wgop f (0)
A~ 2 41,

363 As in the single and dual node cases, the large network also displays mixed mode oscillations and mixed
3.4 mode chaos (Figure i ing i i

61 where r

35 Motpa arsition ) AU REBHSGHIPE W #H ASEERRGRY AN A0S HEK (Figify8ee e, VerRinial gecqttke the [connectivity in
306 Alnmor]. only being moderately sparse (probability of connection is 0.2635). For example, some nodes can
3 7Puiliﬂ[i»§amﬁ§t naller attractor without mixed mode elements, other nodes contain larger amplitude components
s while others are essentially still stabilized around their equilibrium point with minimal interference from the
360 rest of the network. Also note that the attractors in Figure 5F occupy a similar region of the reduced phase
50 space (E,I, W) as the single and dual node cases when we plot every node (Ey, Iy, Wk{ ) in the same reduced
371 phase space.
372 Given the heterogeneity in the chaotic dynamics of the individual nodes in the coupled networks, we
33 investigated whether node deletion (Figure 5G) or connection deletion (Figure 5H) might enhance the stability
374 of the homeostatic mechanism. Indeed, the homeostatic mechanism is inheren{’x local for a node and trying
375 to stabilize the dynamics of that node despite receiving external, potentiallysdestabilizing inputs. To that end,
376 we deleted a node and recomputed our Hopf bifurcation curves for each“npde/deletion yielding 66 different
sz systems with 65 nodes. In every system, the deletion either had minimaleffection the Hopf-bifurcation curve
increase the stability of the

shift upwards (as measured from the
in the weight matrix, W¥ yielded at

rgest shift in the Hopf-bifurcation
sures of centrality for the nodes that
33 were deleted. These included the row and column sums, authority; hub'score, in degree, out degree, page rank,
s8¢ out closeness, in closesness, and betweeness and the reciprocalof the maximum eigenvalue. The reciprocal of
35 the maximum eigenvalue of the weight matrix after node tion-had the largest correlation coefficient with
sss  the stability increase (0.999), as expected from ourganalysis. JAll other computed metrics displayed weaker
ss7  correlation coefficients typically falling in the range 0.14, — 0s

~

<
ss9  Through a combination of numerical and lytieal work, we studied a homeostatically regulated Wilson-
300 Cowan system in three separate cases: igolatedssingle-nodes, reciprocally coupled dual-nodes, and large coupled
301 networks where the connection strength was ived from functional neuroimaging data [Hellyer et al., 2016,
52 Honey et al., 2009, Hagmann et al., 2008]. und that the isolated single node displays a plethora of complex
303 dynamics such as mixed mode ogCillations, chaos via a period-doubling cascade, and mixed-mode chaos. The
304 source of these rich dynamics ig'a cembination of the Hopf-bifurcation induced by the homeostatic mechanism,
305 and the cubic-like critical m excitatory dynamics. Two nodes with no self coupling and symmetric
306 reciprocal excitatory cougfng ted %sentially as a single, self-coupled node and synchronized to the steady
307 state attractors in the si node*ease. We demonstrated analytically that the stability of steady states in
308 the single node case i d'isﬁ(;tly igherited in the dual node case. Furthermore, any unstable limit cycle in the
300 single node is unstablein fhe dual node case. Finally, we numerically explored the large coupled network and
200 showed a similar tFfansitiongto oscillatory behavior for strong enough excitatory coupling. The individual nodes
s01 in the large netw isplayed similar dynamics to isolated recurrently coupled nodes in different parameter
a2 regimes. Interestinglywndde deletion and connection deletion yielded non-trivial increases in the stability of
403 the homeostatic set peint for all values of excitatory to inhibitory coupling.
404 Past the-Hopfbifurcation, the network exhibits a rich dynamical repertoire consisting of oscillatory activity,
405 chaos, and mixed-mode elements of both. Whether these dynamical states are potentially functional or patho-
a6 logical remains té be seen. Indeed, even for the experimentally determined chaotic attractors in [Babloyantz
Re?he, 1986], some correspond to functional states such as stages of sleep while others correspond to
108 pathological states such as epileptic seizures. In the former case, we have demonstrated that synaptic home-
100 ostasis camysupport the emergence of complex dynamics. If however, these states are pathological, then they
410 represent a failure of homeostasis in regulating network dynamics. Our node-deletion and connection deletion
a1 experiments demonstrate that the deletion of even single nodes or connections can increase the stability of the
412 entire network through a shift in the Hopf-bifurcation curve upwards.
413 Homeostasis is widely regarded as a mechanism for the maintenance of network dynamics, and more
ais specifically the maintenance of a steady-state average firing rate [Macleod and Zinsmaier, 2006, Frank et al.,

378
379
380
381

382

s 6 Discussion
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a5 2006, Bacci et al., 2001] and is regarded as a stabilizing force in network dynamics [Turrigiano and Nelson,
a6 2004]. This steady-state is regulated at slow time scales on the order of minutes [Frank et al., 2006] or hours

arr[Turrigiano et al., 1998]. For example, the homeostatic model in [Vogels et al., 2011] was shown to maintain
415 the asynchronous_irregular regime wh ] i larl ] ge rate. It is thus

49 RUTPIIEMC 1 1im ei$i BIRANSCEPL WA a35qRIEH PO AOR- HdlGh {%Ed 19866 e HAS9R YtiS¢fors emerge under the
400 € of homeostasis.

4 1Pub|i@ﬁ1i rfgs ults complement recent work on alternative forms of homeostatic regulation. For example, in
anUdeigwe 2t al., 2017], the authors consider the Bienenstock-Cooper-Monroe (BCM, [Bienenstock et al., 1982])
423 Rule which also can act as a homeostatic regulator. Here, the authors also find chaos and complex dynamics.
a4 In [Zenke et al., 2013], the authors consider a metaplastic tripled-based STDP rule (from [Pfister and Gerstner,
a5 2006]) and derive a mean-field system demonstrating BCM like dynamics. The authors find a critical transition
426 time constant for the stability of the BCM rule. This time constant controls the dynamics of the rate detector
a7 of the network. The rule results in runaway potentiation if the time constant is téo fast. However, In [Harnack
as et al., 2015], the authors consider a different homeostatic mechanism not based}o6 the BCM rule but based on
429 intrinsic homeostasis. There, they demonstrate that the time constants for ostabig control should increase
430 for increased network stability. In all cases, homeostasis can be the sour (l)?f&;ch dynamical states and our
431 results corroborate and extend this to inhibitory synaptic homeostasis.

432 While mixed-mode chaos is an understudied phenomenon, it has previously documented in the litera-
33 ture [Desroches et al., 2012, Koper, 1995, Krupa et al., 2008, Hauser d4ud Olsen, 1996]. For example, the authors
s analyze an enzymatic reaction scheme in [Hauser and Olsen, 1996].an

cmonstrate similar pinched/singular
435 tent-maps for the mixed-mode chaotic attractors they observe. Interestingly, the authors suggest a homoclinic
436 limit cycle as their return mechanism through a version of t:g_ clagsical Shilnikov bifurcation resulting in ho-

a3 moclinic chaos [Kuznetsov, 2013]. Indeed, a Shilnikov bifurcatien also appears in other Wilson-Cowan type
a3 models with more complicated dynamics in the individual nodes [@n Veen and Liley, 2006].

439 Our results demonstrate that the rich dynamical states age @n-intrinsic property of synaptic homeostasis,
40 which is capable of more than stabilizing the avera w s across a network. With inhibitory synaptic
41 homeostasis, stability can only be guaranteed up tom i the parameter space. This point is analytically
w2 determined and is related to the properties of the tuyitftg-euryes, the homeostatic set point, and the connectivity
43 between excitatory populations. The resulting dynamics past this point display a rich dynamical repertoire
a4 including oscillations and chaos, both of whiclican ogcur on two different time scales. This is an intrinsic
45 consequence of the inhibitory synaptic ho stasig rule as the two-dimensional Wilson-Cowan node that we
a6 consider is incapable of oscillating without inhibitory*synaptic homeostasis. These dynamical repertoires might
447 have functional or pathological consequ populations of neurons.
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Table 1: The parameter values for the system of equations (1)-(3) (single node), (14)-(19) (dual node), and
(4)-(6) (full network). Note that for the full network equations, W!F = 0Iy, where Iy is the N dimensional
identity matrix, and N consists of the number of nodes.
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Figure Captions

Fiocure 1
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manuscript was acc
Ah”le 1 withmumericsdemonstrates—that—trie brturcationr s—a supercritcat L)l urcatiom—As we vary the
p

arameters, different behaviors emerge corresponding to (A) stability of the target activity, (B) chaotic

+Pudkshinglity (C) mixed mode oscillations, and (D) mixed mode chaos. The parameters were p = 0.2, 7 = 1,
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= b with (0, WFE): (1,1.9), (1.6,2.1), (1.5,2.14), (1,2.115) for (A)-(D), respectively. All simulations were
conducted in MATLAB using the ode45 integration suite to implement a Runge-Kutta 4th order integration
scheme.

Figure 2

(A) The maxima of limit cycles, (E*) are plotted as a function of the recurren couphng, WE for the single
node system. As W¥ increases past Wy Opf(ﬁ), a period doubling cascade to oc ) The limit cycles

and chaotic attractor plotted for increasing values of W¥. (C) The maximu punov exponent is computed
over the two parameter (6, W) region showing patches of chaos that orset after the Hopf bifurcation curve.
(D) The chaotic attractor for sub-threshold and mixed mode chaoti tions. (E) As WP is increased past
Wﬁopf(ﬁ), the period doubling cascade produces a tent map similag t tl&classical Lorenz tent map. For

ximum value. Note that this is not

)]

larger values of W¥ the tent map develops a pseudo-singularity At“the
strictly a singularity in the tent map as the dynamics of the F a restrie to E € (0,1). For all simulations
in (A),(B),(D) and (E), § = 1 was used. (F) The mixed-mode. osct s and mixed mode chaos persist for
larger separations of relative time scales between the synaptic.plasticity (WW/) and the node activities (E, I).
On the left, we recompute the limit cycle maxima for my =<507g, aEﬁere 7 = 1 while on the right, we consider
Tw = 2007g. However, mixed-mode solutlons are n longe bserved for sufficiently large Ty (not shown).
The parameter § = 1.5 was used for (

Figure 3

(A) Canard limit cycles for the dual node sys equations (24)-(25). The seven limit cycles show a
rapid increase in amplitude shortly after a 1cal Hopf bifurcation. The W¥ parameter for 6 limit cycles
agrees to four decimal places (W% = 7.5959): al limit cycle is a large relaxation limit cycle (W¥ = 7.6).

The limit cycles were computed with ula ion of the ordinary differential equations (24)-(25) using a

(4,5) order Runge-Kutta scheme. The 6 parameter was fixed at # = 1. (B) Shown above is the period doubled

limit cycle (teal) for the system )A(-iﬁiaddltlon to the E-nullcline (red). Under the assumption that both
mec

the inhibition and the homeostati anism are operating as slow variables, we can see the mixed-mode
oscillations potentially arising/from derlying geometry of the folded-node case. The (0, W¥) parameters
were (2,2.02) (C) A relax C§cle erges with increasing values of W¥. For all simulations, § = 1 was
fixed. The (8, WF) paral e'é 5,2). (D) The folded-singularity conditions were analyzed in the limit
that 71 = my > 7 yie Nlnuous folded-node below the Hopf bifurcation curve and a continuous folded
saddle region above the H f bifurcation curve (See Appendix B for further details)). Mixed mode oscillations
is limit in the folded-node region. The simulations were automatically classified as
tiods by“estimating the variance in their maximum return map of the E variable. Points
with high variange 'resp/ond to multiple discrete peaks in the return map with larger separation distances
in the peaks (and t ixed-mode solutions) corresponding to larger variance. (E) A simulation of one of
the mixe -0 solu ons is shown for 5000 time steps, fixed at the values § = 1,W¥ = 1.5 for 75 = 1,
W =TI

mixed-mode osci

Figu

(A) Sho above is the time series for the symmetrically coupled dual node system without self-coupling. The
nodes synchronize with each other to a solution state for the single node system at steady-state, independent
of where in the parameter region we are or the characteristics of the steady state. The first node is showed in
solid lines with the excitation (black), inhibition (red), and homeostatic weight (magenta). The second node is
plotted as a dashed line. The parameters in the (W, ) space are (1.6,2.1). (B) The steady state attractors for
the single node (left) and the dual node (right) are plotted in the (F, I') projection space. The parameters in the
(W, 0) are space (1.6,2.1) (top) which corresponds to a chaotic attractor, (1.5,2.14) (middle) which corresponds
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499

500

507

502

to a mixed-mode oscillation, and (1,2.115) (bottom) which corresponds to mixed-mode chaos. Note that in all
cases, the steady state attractors are identical for either the single recurrently coupled node or the dual-node
symmetrically coupled nodes. Only one node is plotted in the dual-node case, however due to synchrony, the
trajectory for the second node is identical.

l This manuscript was accepted by Chaos. Click here to see the version of record. |
5 3A IQ

5 4qul)lslt}1|eng( upling matrix used to connect the excitatory components of the nodes. Note that the matrix is

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

highly structured, and contains no elements on its diagonal (no self-coupling). The system consists of 66
nodes. (B) The Hopf bifurcation (blue) curve is determined manually by evaluating the eigenvalues over the
two parameter (6, W) space numerically and plotting the level set for the first eigenvalue crossing Re();) = 0.
This curve was verified by running a mesh of simulations over the (6, W) parameter space that consisted of
2 x 10* time units each. The final half of the simulation was used to compute the log of the variance of E(t)
to determine if the equilibrium was stable. Blacker values correspond to eite}C limit cycles or chaos and a
loss of stability as the dynamics no longer settle onto a steady state Ej(t) = p. ditionally, the analytical
approximation (in orange) which assumes that the row-sum of the matrix E% is approximately constant is

also plotted. The accuracy is highest at the asymptotes (6 > 1,6 < 1). %\Xr parameter points (i)-(iv) are

shown in (C) in addition to their relationship with the Hopf-Bifurcation cugve. Lhe parameter values in the
(W, 0) plane are (5,3),(5.5,3),(7.1,1.2), and (7.05,1.2) for (i)-(iv), re e@ely. ote that the Hopf-bifurcation
curve has a similar shape and qualitative behavior to the curve in_the Siggle-ttode/dual-node case. (C) For the
parameter values shown, the large network displays a decay to static equilibrium for W < Wi,,f(6), stable
oscillations for W' > Wi, ¢(6), mixed mode oscillations, and mi d—mo& chaos. (D) All nodes are plotted in
a 3D phase portrait for the parameter region (iv) demonst@ng t aotic attractor. (E) Three nodes are
plotted from the full 66-dimensional system in the same,phagé spage. Some nodes in the full system display
mixed-mode chaos while simultaneously other nodes display, _smaller chaotic deviations from the steady state

equilibrium. (F) The same figure (E) only projected n to the (E,I) phase space for comparison purposes
with Figure 2D. (G) Node deletion (red) and the resulging“changes to the numerically Hopf bifurcation curve.
The 66 red lines denote deletion of a node, resul in 66 separate networks containing 65 nodes. (H) As in

(G), only single connections are deleted rather thaispodes. In total, 1148 non-zero connections exist in the

coupling matrix for potential deletion.
\ h
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2 Appendices

67/

A -

Appendix A: First Lyapunov Coefficient for the # = 0 Case

o5 AVeyapmmconpute | the LThismanuserpfivasaecapled:by Qagsf Gitkisitarsesshavasiemopreeord. quite] easily without
629 AthIEPO

resort to the center-manifold theorem. By setting 8 = 0, we have the following system

Publishing nE = —E+¢(WFE-W)

630

631

632

633

634

635

636

I' = —I+¢(0)
W = I(E-p)

and in essence I(t) has become decoupled from the other equations and can be set to its equilibrium value of
¢(0). This reduction yields /
nE = -E+¢(WFE-W') \
Wi "= (E—p) 5

after rescaling 7 and W/ to absorb I = ¢(0). To proceed, we shift the eﬁ&% to the origin
E E—»p ‘)H
w o= wli-wkp4 ¢Q
nE = —E-p+o¢(W p+E)—(W +6@p‘7z>1<p>)
. /! —1 R .
= B WE (6T ) - '<¢\e3>v%“+ O g iy

¢" (¢~ (p)

+ T[WE o W]P’}@(( S — W)Y
s, ' \\_
W' = K S

If we now apply the bifurcation condition:

which yields the following

we obtain the following system

nE = —ap
+ O

W' =

This system can beftransformed with E =KE into a system of the form

4o me -1
T ¢ P) e rm vz, @) B 3 Ep o 1ir4
Jo— %—2! SRWEKE — WP+ S PRWEKE W O(WPKE ~ W)

Wy P(E,W)

\ <
K=, rwl-p  _ Jod—p)
1 T2T1

which is the standard form to compute the Lyapunov Coefficient for a two-dimensional function. The formula
for the Lypaunov coefficient can be found in [Guckenheimer and Holmes, 2013] The resulting computation
yields

wher:

WE

1(0) = —2f ¢" (67 (p))

((ngopf)2 + 1) <

B ¢”(¢‘1(p))2>
167‘1

Kwn
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which for the sigmoid we consider simplifies to:

WE ((ngopf>2+ 1)

Ho
11(0) = — 2] Tom (a3p2(1 —pz)) <0

the bifurcation is supercritical, always.
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656

657

?< B: Canards and Mixed Mode Oscillatons: Potential Sources of Origin

B L e

Existence of Canards in the 2D (£, W) System

Here, we will conisder the emergence of Canards in the two-dimensional system:

E = —E+4¢WEFE-W') (36)
Wl = ¢E—-p) /

which arises in the small # limit as I decays to its steady state ¢(0) = 17 Qendent of all other dynamics,
and upon suitably redefining the both time and space variables to absorb &) term into W' and 7. Here,
i o}
‘K

i Canard point (see [Krupa and
Szmolyan, 2001] for further details). For the fast-slow system given
—

T = f(z,y,\€) 5

which we include here for convenience: L.

1. The critical manifold, given by f(x,y, A,0) is s-s \&
to a minimum. It can be written in the for\\ %)

2. Consider the following branches: 5

y=eg(z,y, A, eq
a series of conditions ([Krupa and Szmolyan, 2001]) have\:tis ed to guarantee the existence of Canards
edygi

one critical point at the origin corresponding

e

where X corresponds to £he maximum critical point. Then, Sy, and Sgi are attracting (% < 0) while
Shr is repelling (% > 0)ffor layér problem.

3. One of the folds byme /Ca

canard point is ge rts'qif\t
o

a 70)#07

rd point, ¢(0,0,0,0) = 0 while the other fold is non-degenerate. The
ollowing also hold:

of dg
5,(0.0.0,0) 0, =2(0,0,0,0) #0,

of 9
y

55, (0:0,0,0) #0

£
4. When A\ =0, then j/< 0 on Sk and and & > 0 on S U {0} USy;. This specifically concerns the flow on
the critical malsifo , given by:

- gl (@), 0)
) e

These he@essary conditions required for the Canard point to exist, and be generic. Here, we will limit our
analysis t@ the sigmoid given by (10) for simplicity. The critical manifold is given by

W' = ¢(E)=WFE - ¢ (E)

/ _ e d07N(E)
Y(E) = W7 - 4B
1
— E _
=W aBE(1 - E)
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ess  which yields the following two potential folds:

E(1-E)-(WFa) "t =0

I T
| This manuscript was accépted by Thybs; Clickizz to see the version of record. |

6 gPuTbéle! S(‘@]Cg ity of these points is given by " (E):

-1
Wi(E) = (1) (@) e ()

a?p(¢~(E))(1 — ¢(¢~(E)))(1 — 2¢(¢~ ' (E)))
a*¢(¢H(E))*(1 — ¢(¢7 1 (E)))?

 (1-2E)
 (aE(1 - E))? /\
VI(EL) = (WP -2By) = (WF)? (ﬂF }l %)

e0  which yields " (E_) > 0 and ¢"(E;) < 0. This, E_ is a minimu
661 1 is satisfied. Condition 2 concerns equilibria of the layer problem.
662 parameter, then: -

2

ile is a maximum, and condition
péeifigally, if we regard W as a fixed

E = —E+¢oWFE-Wh = f(EWw - 5
of

95 = 1+ WEYWPE-WhH = -1+ —-whHa —o(WEPE —w'))
— 1+ WFaE( - E) ‘&‘-—

o _ ~WEWE - E_)(E - E,) ‘\\

OE

\
663 which given that E_ < E., implies that for £ Nor E>FE,, g—g < 0 while for E_ < F < E4, g—}; >0
664 and condition 2 is satisfied. The primary anh ition is that one of the fold points becomes a Canard

665 point, ie. it coincides with an equilibrium Nhe\ w system: g(Ey,¢(F1),0,0) = 0. The Canard condition

666 yields the following potential Canard pgints
\\ 1 1

1
EE=r=p=55\ 1 awe

667 Further, the conditions g—% =+ and) are satisfied always. The next condition involves the second partial
es of f, evaluated at Fy, and AW E L — o Y Ey):
0% f
552 jM%(WEE ~WH(1 - ¢(WFE - W) (1 - 20(WFE - WT))
(aWP)26(67 (Bx)) (1 — ¢(¢7 (Bx))(1 — 26(¢7 " (Ex)))
A= (WP EL(1 - EL)(1 —2EL)

- 4 11
E E
W=(1—-2E1) =aW 2/ - — —=

5 a ( :E) a ( 4 (ZIVE)
eeo which implies th&t we require aW¥ # }1.
670 % ition is that % #+0

\
af / E 1
=—g(W"E-W
ow! 4 )

= —ap(WPE - W1 - ¢(WFE - w1
= —ad(¢™ (Bx))(1 — ¢~ (By)
= —aFi(1—EL)

- _wE!

26


http://dx.doi.org/10.1063/1.5026489

er1 which implies we only need W¥ to be bounded, or non-zero if the non-genericity condition is based on taking
672 a coordinate transform. Now, for the final condition, we have to consider the reduced flow with the A = 0
erz——condition-being p = F_:

| This panuscript wasfaccepbted by Chaos. CHek here ko)§de theKerdion of record. |
AI P T WP - i WE(E(E 1) - (aWP) 1)
Publishing _ __ EQ-E)E-E:)

WE(E — E1)(E — E-))
64 We'll consider the p = E_ case:

5 _ _ Ba-B)

WE(E - Ey)
ors First, note that 0 < B < E_ < Ey. This implies that for 0 < £ < E_, E 4\&%& for E_ < E < E,
e76  F_ > 0, as neither the numerator nor denominanator change sine. Further! %> 0 E = FE_. To proceed
677 further, we will need to transform the system into the following form: \

/

z = —yhl(az,y,)\,e)+x2h2(as,y,)\,€)-I-
y/ = €($h3(3§',y, )‘7 6) - >‘h5($7y7 )" 6) +

-

678 First, consider the transform: 5

F = F-FE_

wl o= wl-wl=w &f@rqbl(E)

p = p—E_ \X

679 to shift all variables to the origin. This yields theffollowing:

B = —E- _~$¢> EE—WI+¢>_1(E_)>

A ~
Wl = E(E\:)
6s0 Further, to transform the system into &@‘Oﬂ\:\%m, we use:

;) — WEh !
<;\\ W= i
ss1  which yields the following: %/
/ (-1 me 1—1 7 el
T A p? (0" (E)) £5¢" (07 (E)) 52 Z+W
i1/ i
W = —p
€ I/I7 P
_— ~
wl
= ¢ —p+ —%
~ E WE)
62 In o to 5the theorems from [Krupa and Szmolyan, 2001], we require another round of transforms to
683 put th&}em into proper canonical form. Consider the transform z = ZM and y=WIN
My ¢" (¢ (E-)) z ¢"(¢~N(E)) . My
r ¥ My T ¢ \¢ (L)) gL ¢ (¢ (L)) 2 MY o Eara
S N—i-M(W 51 +WM 3l +0(z%) ) +¢€ T+ W=Mp

y = € <% — (WENp) + y) (where &= ¢(WE)™)
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684 which yields the following functions:

My e =
|, This manuscript was accepted by(Ehads. Cligk he® tofked the Veksion of spcord. |
T Y75 € a4 M2 T2 31 )

AllP

N N
h4($ay7)‘a€) = M
h5(.’L‘, Y, )\7 g) - WEN
hﬁ(xa:%)\vg) =1

65 If we take N = M = WEW¢_2—1'(E—))>7

M
+ 5 wPMp

and absorb WEM into p with A J Mp,

)

N

we are in the correct

6ss normal form and arrive at the following: Q
0 = 0h3(052,0,0) _1
4 — 0h1(0,0,0,0) _0 )“""-\
ox ~
v = 0h2(0,0,0,0) 2!2!¢(’(¢_1(E)
° ox  WElYTe (B ))?
0 = 0h4(0,0,0,0) _
ox
as = hG(0,0,0,0)

687

Then consider the quantity:

A

68 Thus, A < 0 which implies that the H
generic Hopf bifurcation (

bifurcation vanishes to leading or

689

690

2

691

which we will now expre(

M= Firs ToE)
y _
=
N\ )
) 75 +O0(?)

2
&@v
as also demonstrated«by our Lypaunov coefficient analysis

in fact all
N 1+ as

4
aWE(1-2E.)

5 <0
n that coincides with the Canard point is a super-critical

). Further, the Hopf-
orders, see above) as for € > 0, the Hopf point occurs when

) E+0(?) = —e+ O(e7?)

WENp

(WE)%”Q(?‘I(E—))@ B
(WE)2¢”2(§b‘1(E—)) (p—E)
o, 4 )

s2 Note t}hf% expand out WF(e), then the O(1) problem yields the following

Wk =

693

v
~ ap(1—-p)

which is identical to the equation we derived before.
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soa Folded-Node Analysis for 77 > 75, 7w > 78, 71 = Tw
e0s Here, we will consider the 3D system:

S A ,L/H/EE_ 11(7[[\ — T TV]"/'I\
| This manuscript was accepted by Chaos. Click Herc b see’ the version of record. |

AIP T = —TTo0E) =g (B, 1, W)

I _ —p) = I

ss where we have absorbed the excitatory time-constant and assumed that I and W/ are two slow variables.
o7 First, from the analysis in [Desroches et al., 2012, Wechselberger, 2005] we have the following set of genericity
e0s conditions:

o

f(p*,0) =
9f(»*,0)
OF

9°f(p*,0) \
OE? 70
D wny f(p,0) has full rank one

690 The first condition yields: Q‘l\
o~
E=¢WEFE-W'I)

700 while the second condition yields:

14+ WEYWEE -WII) = -1+ WEMB:_)WII)(I —o(WEPE — W)
(1= 0

~ P

-

= —1+4+ F) =
701 which again yields EL as in the 2D, Canard case! d condition yields:
~(WEP2"(WPE-W') = —(WF)a W‘%? W1 - o(WFPE = Wh)(1 - 20(WPE — W'I))
~( ED)(1-2E-)

jam)

= wE N
= —-WFfa Q%&)
rm the 2D case. Finally, the last condition yields

= W gWEE - W), —1¢/(WEE — W)
w1 ]

702 where the last step is verified from ou

/ / WE> WE
703 which is always full rank. M ed to consider the dynamics restricted to the critical manifold:

0 )8]"

E = SS9 = ~ (-1 + 0EYW! ¢ (WEE = W'I) = I*(E = p)¢/(WEE = W)
I =g of g1 A (-1+ WP (WPE - W'I))(~I + ¢(0F))
WL K —pp0 = -1+ WESWEE - WID)(I(E - p))

704 and the d—poily becomes a folded singularity if:

borer ol = (T + 6O WIS (WEE ~ W) — (1(B ~ p) ¢ (WFE ~ W) =0
S (L4 BB )W — (IX(E - p) =0
705 which yields a fold point when:

I_ —12(E— - p)
- I+ ¢(0E_)
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706

Thus, the fold point is determined by the following equations:

—I*(E- —p)
E=FE_, W!i=—" " — (I E_
—I+¢(0E_) ( )
) | This manuscript was accepted by Chaos. Click here to see the version of record. |
707 Aﬁl} pe: ng determined by:
Publishing —E_ 4+ ¢WP E_ —w(I,E_)I) =0 (38)

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

As the following computations are quite tedious, we employed a computer algebra system (Maple) to resolve
them. We will consider the fold point as (E_,I_, W!). Evaluating the Jacobian yields the following:

_wleeE)e 12 Wl 2l (BE_—p) _—L_+(0F-)

- E WE WE WE wE
J=|WFa(l-2E_)(-1+¢(0E_)) al?>(E_- —p)(1-2E_) —a(1—-2E1_(—I_+ ¢(9E_))

a(1-2E_)I3 (E_—p)?
WEa(1 - 2B )I_(E_ — p) e —I2(E “p)a(l —2E_)

which yields the following characteristic polynomial after simplification:

0¢' (OE_YW!L + 12
e\ = A (A2+>\( o ) + (36(0E_) QDt E_)(E_ —p)) (39)
—
which yields the following possibilities depending on the two nonszero ré)ots of this equation, o1, o9:

folded saddle — o102 < 0,@ 6%
72 i
cIm

folded node — o109 >"0,01
folded focus — o103 0,07 (012) #0

These conditions were evaluated numerically using analytically determined roots of equation (39) over
the (9, WF) parameter plane (see Figure 3). The Nm-condition, given by (38) was resolved numerically
using the MATLAB numerical solver fsolve fo poing, [

.
Appendix C: Local Stability Ana ySiSQKQ ilibria in N-node Coupled System

The Mean-Field Solution \

W the NV node system without self-coupling is also analytically resolvable
ar, cansider the following conditions:

Here, we will consider a simple-ca,
for the Hopf-bifurcation. In parti

£ WE
E _ E _ _ 1wk
/ F=0, W= e =W

m mean-field of the Ng nodes. Note that the equilibria of the system (4)-(5)

These solutions corre oﬁj
ent of the conditions (40). However, under the mean-field conditions (40), the stability

TE (¢ h—1 TE 4 (4—1 il -1 T (A—1

SO LA UL M U ) PV ALTCRILOTS N CCS0))
L1y On On
T E E E
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e o I . T g
_ (%1 4 WP (6 l(p») Iy, + WEe (s HOE PRI P S b Ny, T (¢Tll(p)>INE
C()\) = det ¢’(ﬁp)[)IN e (1+ X) On
| This manuscript was acgepted by Chaos. Click here to see the versign of record. | “
IAI P n e YNE —In, A
1 WE / —1 WI / —1 0 0 / -1
Publish'rng<let<— <[+ ¢'(¢”'(p) +A] A(A+1)+A[ ¢'(¢~ (p))¢(0p) ] PSRy Xt (p)))INE
1 71 1 172
WE (p~ 1
1

726

727

728

729

730

731

732

733

734

735

736

737

738

= det (—Q(A)INE + AN+ 1)VW1NE>

1

where we have arrived at (40) by applying the matrix determinant identity: /\

A B -
det(c D>:det(A—BD 'C) det \

To proceed, we will note the following:

v,
~

—

)

-

= F =E, T
Wo1n, = W uu",

. ) ! -
which allows us to use the rank-1 update to the deterinant

det (A +uu’) = (l—i-\\T ) det(A)
\
yields the following;:

C()\) = (—1)NEQ()\)N B E?S_(f1(p)))\()\+1)Q()\)_1’u,Tu>
) ) o
— (—D)NEQ(N) () — Ny <N2V_1>¢(¢ (pj—z)\()\—|—1)>

= QDN Csn ()

where Cgn(A) is the charactéristic polyfiomial for the single, recurrently coupled node. Our analysis of the
dual-node case applies heré and the ftability of the Ng-node system under mean-field assumptions applies.
The Ng node system un el%n— d connectivity has identical solutions to the single node system.

faion

The Normalized E ry Weight Solution

1sidér an“arbitrary weight matrix, W with the only constraint being that

/
)

_— 7j=1
Note th e me)n—ﬁeld example previously considered is a special case of assumption (41). The assumption is
requi ?}Gzit stabilizes the equilibria for W} to Wl = W/ for all i = 1,2,... Ng where W/ is the single-node
C

Finally, we will

-

S LEF =1, WP =wFLPF.

equilibr solution. Using a similar derivation procedure as before, the characteristic polynomial simplifies
to:

at
0 = det (~QULy, + 20+ I yee) ()
1
OO = N4 N <1 N 1) o <1 WIS )9/ (6n)0 12¢/(¢1<p)>) LT )
T TIT2

71 ! T17T2
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739 This implies that

/(A1
C(\) = det <>\(>\ + 1)MWEE — Q(A)INE>
1
| This manusgript was accepted by Chaog. Click here to see the ver, thﬁirpgmd |
AI P = det \qo(/\)l_z““ Q(/\)INE) qQo(A) = A(A+ 1)7_71
Publishing — oO)VE det | LEE - QM) In,
q0(A)
QW)

=1 \
740 where 7; are the eigenvalues of LF¥. Undoing the substitutions resolves the ctorized characteristic polynomial:

Ng

c\) = H

71 This factorization of C(\) allows one to resolve the Hopf bifurgation cur
72 node case. In particular, if all the eigenvalues are real (for exa
743 the Hopf bifurcation curve occurs when a complex conjuga

74 cross Re(A;) = 0. For the experimentally derived elg we consider, all eigenvalues of W are real
75 due to the near symmetric nature of the matrlx , 2009, Hellyer et al., 2016, Hagmann et al.,
746 2008]). Thus, the potential Hopf-bifurcation

1
E —
WHOpf,i(e) - T@(ﬁ,(d) ( )) Tl/j/‘i‘

)+ D) + 1 — r(0))2 — 46(0)F(0)(1 — r(0)
2(1 - ,.f.-,(e))

77 This implies that€as wé increase W, the first transition through WZ opf Z(«9) yields a Hopf bifurcation. Due to
78 the form of ( )\th is lﬂ(ely to correspond to the eigenvalue of L, 7% with the largest positive real part.
740 Finally, we rdmark that<if the row sum of the weight matrix L% is not constant but narrowly distributed
750 around a ea alue&, than one can readily derive the following approximation:

E - 1 .
~ ) Whoil®) ~ s (L= e (0) (42)
o rt = max {ri} (43)
Fo) = (1-T5 e 66 o) (44)
_ p¢'(0p)0L
O = G )

751 which we apply to the coupling matrix from [Hellyer et al., 2016] where L = 0.2318 and r™% = (.3148.
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2.2

Bifurcation Diagram
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Period Doubling Cascade
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A Canards in the E/WI System
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Chaotic Synchronization in Dual Node System
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