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Nonsmooth Bifurcations of Mean Field Systems of Two-Dimensional Integrate
and Fire Neurons∗

Wilten Nicola† and Sue Ann Campbell†

Abstract. Mean field systems have recently been derived that adequately predict the behaviors of large networks
of coupled integrate-and-fire neurons [W. Nicola and S.A. Campbell, J. Comput. Neurosci., 35 (2013),
pp. 87–108]. The mean field system for a network of neurons with spike frequency adaptation is
typically a pair of differential equations for the mean adaptation and synaptic gating variable of
the network. These differential equations are nonsmooth, and, in particular, are piecewise smooth
continuous (PWSC). Here, we analyze the smooth and nonsmooth bifurcation structure of these
equations and show that the system is organized around a pair of co-dimension-two bifurcations that
involve, respectively, the collision between a Hopf equilibrium point and a switching manifold, and
a saddle-node equilibrium point and a switching manifold. These two co-dimension-two bifurcations
can coalesce into a co-dimension-three nonsmooth bifurcation. As the mean field system we study is
a nongeneric piecewise smooth continuous system, we discuss possible regularizations of this system
and how the bifurcations which occur are related to nonsmooth bifurcations displayed by generic
PWSC systems.

Key words. nonsmooth dynamical systems, bifurcation theory, computational neuroscience, mean field systems,
population density methods
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1. Introduction. Recently, a class of two-dimensional integrate and fire type models have
been developed which can be fit to properties of real neurons. This class of models includes the
Izhikevich model [19], the quartic integrate and fire model [27], and the adaptive exponential
(AdEx) integrate and fire model [2, 21]. The models in this class are far simpler to fit and
simulate than traditional conductance based models. Nevertheless, these models still replicate
the more complex behaviors observed in real neurons [19]. These models have been fit to
several different neuron types so that the behavior of large networks of these neuron models
may be studied through numerical exploration of the parameter space. For example, this
approach has been used to determine the role of various parameters in the generation of
adaptation induced bursting in networks of hippocampal pyramidal neurons [17, 23, 16]. While
the numerical simulation of integrate and fire networks is far simpler and faster than that
of conductance based models, numerical exploration of the parameter space is still a time-
consuming process. Furthermore, one cannot easily perform direct bifurcation analysis on
large networks.

A system of mean field equations has been derived for these large networks of two-
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392 WILTEN NICOLA AND SUE ANN CAMPBELL

dimensional integrate and fire neurons [23]. This derivation assumes that the networks are
all-to-all coupled and the neuronal parameters are homogeneous within the network. The
resulting mean field system is a set of nonsmooth differential equations governing the first
moments of the adaptation variable and the synaptic coupling variable. The mean field sys-
tem of equations is analytically derived from the original network, without any further fitting.
Thus, one can conduct bifurcation analysis (either analytically or numerically) on the mean
field system with confidence that the results are representative of the behavior of the original
network of model neurons.

However, analysis of the derived mean field system has an added level of difficulty as the
system of equations is nonsmooth. Both classical bifurcation theory and the newer field of
nonsmooth bifurcation theory must be used to adequately understand the behavior of the
mean field system, and thus the full network. To further complicate the situation, the vast
majority of work done in nonsmooth systems is primarily concerned with Filippov systems
where the differential equations are completely discontinuous in specific subsets of the phase
space [4, 12, 15, 20]. The mean field system, while nonsmooth, is still continuous across the
phase space, and is thus a piecewise smooth continuous system, which is a significantly less
studied class of systems [5, 13, 14].

Here we explore, both analytically and numerically, many of the nonsmooth bifurcations
and phenomena that occur in the mean field system of equations from [23]. The primary
mean field system we use is that of the Izhikevich model, with the neuronal models fit to
hippocampal area CA3 pyramidal neuron data [7]. We modify the parameters slightly as
the neuronal model used in [7] was an alteration of the default Izhikevich model to better fit
the action potential half-width observed in the data. We use this model primarily for two
reasons: it is the most analytically tractable and the parameters have been fit to neuronal
data. However, as we will see, many of the nonsmooth bifurcations are present in the other
models in the general class of two-dimensional adapting integrate and fire neurons. Whenever
possible we present our results in terms of this general class.

2. The mean field system.

2.1. The full network. We consider two-dimensional integrate and fire models of the form

v̇ = F (v)− w + I,(1)

ẇ = a(bv − w),(2)

where v represents the nondimensionalized membrane potential, and w serves as an adapta-
tion variable. Time has also been nondimensionalized. The dynamical equations (1)–(2) are
supplemented by the following discontinuities:

(3) v(t−spike) = vpeak → v(t+spike) = vreset,

w(t+spike) = w(t−spike) + ŵ.

This particular notation was formally introduced in [27], along with a full bifurcation analysis
of this general family of adapting integrate and fire neurons. Members of this family include
the Izhikevich model, the adaptive exponential (AdEx) integrate and fire model, and theD
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NONSMOOTH BIFURCATIONS OF MEAN FIELD SYSTEMS 393

quartic integrate and fire model [27]. The class of models is constrained to those that satisfy
F ′′(v) > 0 and limv→−∞ F ′(v) < 0, limv→∞ F ′(v) > 0.

These neurons can be coupled together via a synaptic gating variable, s(t). The gating
variable typically takes the form

(4) sij(t) =
∑
tj,k<t

E(t− tj,k),

where tj,k is the time that the jth neuron fires its kth spike, j is the index of the presynaptic
neuron, and i is the index of the postsynaptic neuron. The function E(t) varies depending
on which synaptic pulse function is used. For simplicity we restrict our attention to the
exponential synapse; however, the analysis can be extended to the other synaptic types without
much difficulty. For the exponential synapse, E(t) is given by

E(t) = λs exp

(
− t

τs

)
.

Given the form for E(t), one can derive a differential equation for si(t) =
∑N

j=1 sij(t), the
total synaptic input to the ith neuron [9, 23]. For example, for the exponential synapse the
differential equation for si(t) is

dsi(t)

dt
= − si

τs
+

λs

τsN

N∑
j=1

∑
tj,k<t

δ(t− tj,k).(5)

For all-to-all coupling, the function si(t) becomes identical for all the neurons, and can be
replaced by a single variable s(t), the global synaptic coupling function. In this case, the
equations for the entire network are

v̇i = F (vi)− w + I + gs(t)(er − vi),(6)

ẇi =
1

τw
(bvi − wi),(7)

ṡ = − s

τs
+

λs

τsN

N∑
j=1

∑
tj,k<t

δ(t − tj,k),(8)

vi(t
−
spike) = vpeak → vi(t

+
spike) = vreset,

wi(t
+
spike) = wi(t

−
spike) + ŵ.

(9)

The specific forms of F (v) we consider are

F (v) = v(v − α) (Izhikevich model),

F (v) = ev − v (AdEx model),

F (v) = v4 − 2v

τw
(quartic model).

These forms can be arrived at through a suitable nondimensionalization of the original equa-
tions for these models [27]. Note that the nondimensionalization for the Izhikevich model
differs from the one used by [27] and is from [23].D
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394 WILTEN NICOLA AND SUE ANN CAMPBELL

Table 1
Parameters for various network types and the mean field systems. Note that the parameters below are

dimensionless, while in some of the cited sources they are in dimensional form only. The nondimensionalization
for the AdEx and quartic neurons can be found in [27] while the nondimensionalization for the Izhikevich model
can be found in [23].

Parameter Izhikevich network (from [7]) AdEx network (from [2]) QIF network (from [27])

g 0–4 0–1000 0–40

I 0–0.4 -1–12 0–40

τs 2.6 2.06 2

τw 130 3.63 50

ŝ 0.8 0.5 1

ŵ 0.0189 21.92 0.36

er 1 5 2

α 0.62 N/A N/A

vpeak 1.46 65 10

vreset 0.15 -1.25 0

These networks often display bursting, a oscillatory behavior where the individual neurons
alternate between firing and quiescence [7, 23]. The other common behavior is tonic firing,
where the neurons all fire at a constant rate. The transition between these two behaviors is
a bifurcation of the full network. Examples of this transition for networks of 1000 neurons
with all-to-all coupling and parameters as in Table 1 are shown in Figure 1. In Figure 1(a)
and 1(c) the neurons in the network fire spikes, and the mean-adaptation variable, w, and the
synaptic coupling variable, s, both converge to a stable steady state. In Figure 1(b) and 1(d)
the neurons fire synchronized bursts, and the pair of variables (w, s) converges to a steady
state limit cycle, representing the oscillation between firing and quiescence that the individual
neurons undergo. This occurs as the current I is decreased.

As seen in Figure 1, the network variables s and w can capture a great deal of information
about the behavior of the entire network. Further, their steady state behavior undergoes a
qualitative change as the parameter I is decreased. Thus, it would be advantageous to have a
closed set of differential equations for these variables, as any qualitative change in the behavior
of the full network should manifest itself as a bifurcation of the dynamical system for (s,w).
In the following subsection, we present the mean field system for these networks. A detailed
derivation can be found in [23].

2.2. The mean field system. To derive the mean field system one begins by defining
the population density function, ρ(v,w, t), which is a probability density function for the
location of of the variables v,w in the phase space. That is, the probability of finding a
neuron in the region Ω of phase space is given by integrating ρ over Ω. Starting from the
full network model, one can derive (in the limit that N → ∞) a partial differential equation
that governs the evolution of the probability density function ρ(v,w, t) and predicts the large
network dynamics of the original model [24, 25]. This partial differential equation, called the
population density equation, takes the form

∂ρ(v,w, t)

∂t
= −∇ · J(v,w, t),
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(a) Izhikevich, Tonic Firing, I = 0.33, g = 0.61 (dimen-
sionless).
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(b) Izhikevich, Bursting, I = 0.24, g = 0.61 (dimen-
sionless).
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(c) AdEx, Tonic Firing, I = 4.25, g = 930 (dimension-
less).
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(d) AdEx, Bursting, I = 4.25, g = 465 (dimensionless).

Figure 1. Network simulations consisting of 1000 neurons (black) versus the mean field system of equations
(18)–(20) (red), the system of equations with the asymptotically simplified firing rate (24) (green) for a network
of Izhikevich neurons (a),(b) and AdEx network of neurons (c),(d). The asymptotic firing rate, 〈Ri(t)〉 ∼√

I − I∗(s, w)
√

F ′′(v∗(s)), is a good approximation for the network of AdEx integrate and fire neuron away
from the switching manifold I−I∗(s, w) = 0. This is not the case for the network of Izhikevich neuron, which is
better approximated when a global approximation, k

√
I − I∗(s, w)

√
F ′′(v∗(s)), to the firing rate is used (green).

The parameter k in this global approximation is fitted to approximate the full firing rate for a large set of (s, w).

J(v,w, t) =

(
JV (v,w, t)
JW (v,w, t)

)
= ρ(v,w, t)

(
F (v) − w + I + gs(er − v)

a(bv − w)

)
,

where the term J(v,w, t) is referred to as the flux. The discontinuities and discrete jumps in
the model neurons impose a boundary condition on the flux:

JV (vpeak, w, t) = JV (vreset, w + ŵ, t).D
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396 WILTEN NICOLA AND SUE ANN CAMPBELL

This PDE is coupled to an ODE for s, given by

(10) s′ = − s

τs
+

λs

τs

∫
W

JV (vpeak, w, t) dw.

In order to reduce this system to a small, closed set of ordinary differential equations, one
has to apply a series of approximations. The derivation is somewhat lengthy; thus we refer
the reader to [23] for the exact details. The primary steps are a first order moment closure
assumption which yields the system

∂ρV (v, t)

∂t
= − ∂

∂v
[G(v, s, 〈w〉)ρV (v, t)] ,(11)

〈w〉′ = 1

τw
(b〈v〉 − 〈w〉) + λw

τw
G(vpeak, s, 〈w〉)ρV (vpeak, t),(12)

s′ = − s

τs
+

λs

τs
G(vpeak, s, 〈w〉)ρV (vpeak, t),(13)

where λw = τwŵ and

(14) G(v, s, w)
def
= F (v)− w + I + gs(er − v).

Defining ε = 1/τw, and γ = τs/τw, one can use the new time variable t̂ = εt to derive the
“slow” system

ε
∂ρV (v, t̂)

∂t̂
= − ∂

∂v

[
G(v, s, 〈w〉)ρV (v, t̂)

]
,(15)

d〈w〉
dt̂

= b〈v〉 − 〈w〉 + λwG(vpeak, s, 〈w〉)ρV (vpeak, t̂),(16)

ds

dt̂
= γ−1

(−s+ λsG(vpeak, s, 〈w〉)ρV (vpeak, t̂)
)
.(17)

Solving the O(1) problem and using the fact that ρV (v, t) is a density (and hence normalized
to 1) gives the mean field equations (in the original time scale)

s′ = − s

τs
+

λs

τs
〈Ri(t)〉,(18)

w′ = − w

τw
+

λw

τw
〈Ri(t)〉,(19)

〈Ri(t)〉 =
⎧⎨
⎩
[∫

V
dv

F (v)−w+I+gs(er−v)

]−1
if H(w, s) > 0,

0 if H(w, s) ≤ 0.
(20)

Here s and w correspond to the mean network adaptation and global synaptic coupling variable
and we have used (14). Note that we have omitted the 〈〉 brackets denoting the average value
of w present in [23] for simplicity and clarity. Additionally, we have set b = 0 as one can show
with suitable nondimensionalization that it is small [23] and has been found to be unimportant
with regards to the dynamics in standard parameter regimes in [8]. The function 〈Ri(t)〉 isD
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the instantaneous network averaged firing rate, as a function of s and w. The function H
determines when the integral in (20) is well-defined. It defines switching manifold of the
nonsmooth system (18)–(20).

One can derive an expression for the switching manifold equation by determining when
the denominator in (20) first becomes zero somewhere in the s,w phase space. Recalling (14),
we must find the minimum of G(v, s, w), for v ∈ [vreset, vpeak], regarding s and w as fixed
parameters. For the general class of models studied in [27], the function F (v) is assumed to
be strictly convex; that is, F ′′(v) > 0. It follows that G(v, s, w) is also strictly convex as a
function of v, and hence its minimum on [vreset, vpeak] occurs at a critical point. The critical
points (as a function of v) are given by solving

∂G

∂v
= F ′(v) − gs = 0 ⇒,

F ′(v∗(s)) = gs.(21)

Thus v∗(s) is the value of v at which G has a minimum. It may be the case that v∗ /∈
[vreset, vpeak]. We will primarily ignore this particular case as typical parameter values usually
ensure that v∗ ∈ [vreset, vpeak].

The minimum value defines the function H,

(22) H(s,w) = G(v∗(s), s, w) = F (v∗(s))− w + gs(er − v∗(s)) + I,

and the switching manifold equation

0 = H(s,w) = I − w + F (v∗(s)) + gs(er − v∗(s)) = I − I∗(s,w).

This latter expression is useful as we can think of I∗ as an s- and w-dependent rheobase
current. Anywhere in the phase space where I − I∗(s,w) > 0 the network is firing with mean
firing rate given by

(23) 〈Ri(t)〉 =
[∫

V

dv

F (v) − w + I + gs(er − v)

]−1

.

Anywhere that I − I∗(s,w) ≤ 0 the network is quiescent and the mean firing rate is 0.
There are a couple of important facts to note before we proceed further. First of all,

I∗(0, 0) = Irh, the rheobase current for the uncoupled, nonadapting neuron, which is governed
by the equation

v̇ = F (v) + I.

Based on the assumptions made on F (v) in [27], this model neuron has a type-I firing profile.
Additionally, given that I∗(0, 0) = −F (v∗(0)), we have the following:

F (v∗(0)) = −Irh.

These two facts will prove important for our later analysis.D
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To conclude we display some expressions for specific models. The rheobase currents are
given by

I∗(s,w) = w − gser +
(α+ gs)2

4
(Izhikevich),

I∗(s,w) = w − gser + (1 + gs)(log(1 + gs)− 1) (AdEx),

I∗(s,w) = w − gser + 3

(
gs+ 2a

4

) 4
3

(quartic),

with corresponding minimum values of G:

v∗(s) =
α+ gs

2
,

v∗(s) = log(1 + gs),

v∗(s) =
(
gs + 2a

4

)1/3

.

For the Izhikevich model, the mean firing rate can be evaluated analytically:

〈Ri(t)〉 =
√
I − I∗(s,w)

arctan

(
vpeak− 1

2
(α+gs)√

I−I∗(s,w)

)
− arctan

(
vreset− 1

2
(α+gs)√

I−I∗(s,w)

) (Izhikevich mean firing rate).

For the other models, the firing rate must be evaluated numerically. This can be done by
integrating (23) over [vreset, vpeak] treating w, and s as fixed parameters at each time step. This
approach can be used to numerically analyze the bifurcation types of these equations using
numerical bifurcation software, such as MATCONT [6]. However, the numerical integration
method should be of high enough order accuracy for the numerical continuation results to be
trusted.

Given the mean field system described above, one should consider whether numerical
bifurcation or analytical approaches should be taken. Numerical bifurcation analysis can
yield results which are accurate throughout the phase space, but require choosing a particular
model and determining which parameters to fix and which to vary. Analytical methods can
yield model independent results and give insight into the role of various parameters in system
behavior; however, they are often restricted to particular regions of the parameter space
and/or phase space, as we shall see.

3. Analytical results. In order to proceed analytically, we need to sacrifice some of the
complexity of the original mean field system. In particular, as the usual formulas of 〈Ri(t)〉
are difficult to deal with analytically, we need to approximate the firing rate with a simpler
alternative. The approximation will be provided by the following theorem.

Theorem 1. Suppose that F ′′(v) > 0 and F (v) has a unique minimum, v∗. If v∗ ∈
[vreset, vpeak], and M = max{|vpeak − v∗|, |vreset − v∗|} is sufficiently small, then 〈Ri(t)〉 has
the leading order behavior

(24) 〈Ri(t)〉 ∼ 1√
2π

√
F ′′(v∗(s))

√
I − I∗(s,w), I − I∗(s,w) → 0.
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This basic result follows from what is effectively Laplace’s method for integrals. The proof
can be found in Appendix A. This reduction is valid when I − I∗(s,w) is small, that is, when
the dynamics are near the region in the (s,w) plane where they become nonsmooth. We note
that a similar approximation appears in [9, 10]. However, to the best of our knowledge the
nonsmooth nature of those equations has not been explored. For example, (3.6)–(3.7) in [10]
are similar to ours; however, the interpretation for those particular equations was for the firing
rate of an E/I coupled pair of neurons.

For example, for the Izhikevich neuron, we have the following:

(25) 〈Ri(t)〉 ∼ 1

π

√
I − I∗(s,w) as I − I∗(s,w) → 0

while for the AdEx, we have

(26) 〈Ri(t)〉 ∼ 1

π

√
1 + gs

2

√
I − I∗(s,w) as I − I∗(s,w) → 0,

where the switching manifolds differ from neuron to neuron. One can see the validity of the
approximations in Figure 1 which compares the behavior of full network simulations with that
of the mean field model using the true firing rate and asymptotic approximation. The validity
is further studied in Figure 2 which demonstrates that the difference between (23) and (24) is
o(
√

I − I∗(s,w)) pointwise in (s,w) for the AdEX and Izhikevich systems.
The approximation (24) turns out to yield a system that is tractable to analysis of both the

smooth and nonsmooth bifurcations, and shows considerable accuracy when compared with
both the actual network and the original mean field system in the vicinity of the switching
manifold (see Figure 1). Additionally, when the system is not near the switching manifold,
one can use an ad-hoc global approximation that still preserves the bifurcation structure near
the switching manifold. For example, one can use

(27) 〈Ri(t)〉 = k
√

F ′′(v∗(s))
√

I − I∗(s,w),

where k is fit to globally approximate the original firing rate. This can be done, for example, by
plotting 〈Ri(t)〉 versus

√
I − I∗(s(t), w(t)) for a small number of trajectories in the parameter

plane and performing a linear fit. This is done for the Izhikevich network in Figure 1 with
k = 1/2. One could use this approximation, for example, to conduct a rapid parameter search
that is more global than the local analysis we present below. Alternative approaches for a
global fit are also possible. The advantage of the approximation (27) is that it preserves the
location of the co-dimension-two nonsmooth bifurcation points we describe in section 4.

With the simplification (24), the approximate mean field system that we analyze is given
by

ṡ = f(s,w) = − s

τs
+

λs

τs
〈Ri(t)〉,(28)

ẇ = g(s,w) = − w

τw
+

λw

τw
〈Ri(t)〉,(29)

〈Ri(t)〉 =
{√

F ′′(v∗(s))
√
I − I∗(s,w), I − I∗(s,w) > 0,

0, I − I∗(s,w) ≤ 0,
(30)
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(a) Izhikevich Firing Rate, I = Irh. (b) Izhikevich Firing Rate, I > Irh.

(c) AdEx Firing Rate, I = Irh. (d) AdEx Firing Rate, I > Irh.

Figure 2. Variation with (s, w) of the relative error in using the leading order asymptotic expansion,
〈Ri(t)〉 ∼ √

F ′′(v∗(s))
√

I − I∗(s, w), for the firing rate. There is always a neighborhood in the vicinity of
the switching manifold, I − I∗(s,w) = 0 (magenta curve), where the firing rate is well approximated by the
asymptotic expansion. This is the neighborhood where the nonsmooth bifurcations occur and to which we restrict
our analysis.

where the switching manifold varies depending on which neuron model is used and we have
absorbed any constant terms into λs and λw. In the following, we will refer to (28)–(30) as the
reduced mean field system. The system is smooth and has derivatives of all orders everywhere
except on the switching manifold, i.e., when I − I∗(s,w) = 0. On the switching manifold,
the system is continuous but not differentiable. Thus, this is a piecewise-smooth continuous
(PWSC) system. Equivalently, it has a uniform order of discontinuity of 1 [5]. Note that
the derivatives of the vector field diverge at the switching manifold. Thus one cannot simply
unfold the system around a boundary equilibrium bifurcation points as is often done in the
literature [13], at least not without including the relevant square-root terms.

In the following sections we will carry out a detailed bifurcation study of the mean field
system (28)–(29). Before proceeding we consider when our results will give information aboutD
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the coupled PDE-ODE system (11)–(13) and hence about the original large network model.
It is straightforward to see that an equilibrium point of the mean field system is a leading
order approximation (as I−I∗(s,w) → 0) of an equilibrium point of the full mean field system
(18)–(20). Further, any equilibrium point of the full mean field system corresponds to an O(1)
(w.r.t. ε) approximation of a steady state solution of the PDE-ODE system.

To study how the stability of the steady states of the two systems corresponds we apply
a procedure originally developed in [1]. We linearize the coupled PDE-ODE system around
the asynchronous steady state with steady state firing rate 〈R〉 and determine the spectral
equation for the linear operator of the linearized system. Analysis of this spectral equation
leads to the following theorem.

Theorem 2. Consider the coupled PDE-ODE system given by (11)–(13). The spectral equa-
tion of the linearization of this system about the asynchronous steady state is given by
(31)(

eμ/〈R〉 − 1
)(

μ+
1

τs

)(
μ+

1

τw

)
−
(
μ+

1

τs

)(
λw

τw
μB̂(μ)

)
−
(
μ+

1

τw

)(
λs

τs
μÂ(μ)

)
= 0,

where

Â(μ) =

∫ 1

0
eμy/〈R〉 g(er − η−1(y))

G(η−1(y), λs〈R〉, λw〈R〉) dy,(32)

B̂(μ) =

∫ 1

0
eμy/〈R〉 −1

G(η−1(y), λs〈R〉, λw〈R〉) dy,(33)

y = η(v) =

∫ v

vreset

〈R〉 dv′
G(v′, λs〈R〉, λw〈R〉) .(34)

Equation (31) has a countable set of solutions, μn. Furthermore, �(μn) < 0 for ε and I −
I∗(λs〈R〉, λw〈R〉) sufficiently small with gλs(er−v∗(0))−λwγ > 0. There is also another pair
of solutions which are given to leading order in ε by the solution to
(35)

0 = (μ1+γ−1)(μ1+1)−λw(μ1+γ−1)
∂〈Ri(t)〉

∂w

∣∣∣∣
(λs〈R〉,λw〈R〉)

−γ−1λs(μ1+1)
∂〈Ri(t)〉

∂s

∣∣∣∣
(λs〈R〉,λw〈R〉)

,

which is the eigenvalue equation for the mean field system when one back substitutes for μ1 =
μ/ε+O(ε) to leading order (28)–(29) when I − I∗(s,w) > 0.

The proof of Theorem 2, while lengthy, is fairly standard and is contained in Appendix B.
Plainly speaking, if τs = γτw, and ε = 1/τw and I − I∗(λs〈R〉, λw〈R〉) are sufficiently small,
then the stability properties of the asynchronous steady state(s) of (11)–(13) are identical
to the stability properties of the corresponding equilibrium point(s) of (28)–(30). Thus, a
bifurcation analysis of (28)–(30) determines the bifurcations of the steady states of (11)–(13)
provided that the requirements of Theorems 1 and 2 hold. Of course, a full bifurcation analysis
of (11)–(13) would require the infinite-dimensional center manifold theorem. In this paper we
only concern ourselves with the mean field system (28)–(30).

3.1. Existence and linear stability of equilibria. The equilibria of the mean field equations
(28)–(29) depend on the sign of I − I∗(s,w).D
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If I−I∗(s,w) ≤ 0, then the only equilibrium point is the trivial solution, e0 = (0, 0), which
is a stable node. This equilibrium corresponds to all the neurons being quiescent, 〈Ri(t)〉 = 0,
and thus we will refer to it as the nonfiring solution. It will only exist when the origin of
the phase space lies in the region where I − I∗(0, 0) ≤ 0, which corresponds to I ≤ Irh.
Alternatively, in the language of nonsmooth dynamical systems theory, e0 is virtual if I > Irh
and real if I ≤ Irh [5].

If I− I∗(s,w) > 0, nontrivial equilibria (s,w) may exist. If they do, then s,w must satisfy

s = λs

√
F ′′(v∗(s))

√
I − I∗(s,w),(36)

w = λw

√
F ′′(v∗(s))

√
I − I∗(s,w).(37)

Equations (36) and (37) yield the following relationship:

(38) w =
λw

λs
s = ηs.

Thus the equilibria are given by (s, ηs) where s satisfies the nonlinear equation

(39)
s√

F ′′(v∗(s))
= λs

√
I − I∗(s, ηs).

We will label solutions to (39) as s̄, and the full steady states as e = (s̄(g, I), ηs̄(g, I)). Note
that (36) implies that s̄ = λs

√
I − I∗(s̄, ηs̄)

√
F ′′(v∗(s̄)) ≥ 0. Thus for an equilibrium to be a

valid, it must satisfy s ≥ 0 (which implies w ≥ 0).
The equilibrium condition (39) for the quartic and AdEx models yields nonlinear equations

without analytic closed form solutions. However, one can apply a power series (assuming that
s̄ is small) to come up with an approximation to the steady solutions. This series is justified
by the fact that when one considers the steady state conditions on s̄ and w̄, s̄ being small is
equivalent to the equilibrium point being in the vicinity of the switching manifold. Note that
v∗ is actually a function of gs, as opposed to just s, as it is given by solving the algebraic
equation (21). Thus, we can write down the following expansions for v∗(s) and F (v∗(s)):

v∗(s) = v∗(0) + v∗′(0)gs +O((gs)2),(40)

F (v∗(s)) = F (v∗(0)) + v∗′(0)
(gs)2

2
+O((gs)3)

= −Irh + v∗′(0)
(gs)2

2
+O((gs)3),(41)

where (41) can be derived using the relationship (21). Using these expansions in (39), we
arrive at the following equation for the equilibria:

s2

λ2
sF

′′(v∗(0))
= I − Irh − v∗′(0)

(gs)2

2
+ gs(er − v∗(0)) − ηs,

0 = s2
(

1

F ′′(v∗(0))λ2
s

+
g2

2F ′′(v∗(0))

)
+ s (η − g(er − v∗(0))) + Irh − I +O(s3),

0 = A2(g)s
2 +A1(g)s +A0 +O(s3).D
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Neglecting the higher order terms, this equation yields two solution branches:

s̄± = − A1(g)

2A2(g)
±
√

A1(g)2

4A2(g)2
− A0

A2(g)
.

We will denote the corresponding equilibria as ē± = (s̄±, w̄±) = (s̄±, ηs̄±). Defining the new
parameters

Ĩ = − A0

A2(g)
=

I − Irh
A2(g)

,(42)

β = − A1(g)

2A2(g)
=

g(er − v∗(0)) − η

2A2(g)
,(43)

=
(er − v∗(0))

2A2(g)

(
g − η

er − v∗(0)

)
= M(g)(g − g∗),(44)

the s variable of the solution branches may be written as

(45) s̄±(β, Ĩ) = β ±
√

β2 + Ĩ .

Note that A2(g) > 0. Further, since v∗(0) is the minimum of F (v) and the reversal potential
for an excitatory synapse is above the resting membrane potential, vr, we have er > vr > v∗(0).
It follows that M(g) is a strictly positive function.

The expressions above give the simplest approximation for the nontrivial equilibria of the
two dimensional integrate and fire models. In fact, the approximation is exact in the case of
the Izhikevich model as all higher order terms in the expansions (40)–(41) vanish. The exact
expressions for the Izhikevich model are given by

s̄±(g, I) =
−(η − g(er − α

2 ))±
√

(η − g(er − α
2 ))

2 + 4(I − α2

4 )( 1
λ2
s
+ g2

4 )

1
λ2
s
+ g2

4

.

Introducing the parameters

Ĩ =
(I − α2

4 )
1
λ2
s
+ g2

4

,(46)

β = −(η − g(er − α
2 ))

2( 1
λ2
s
+ g2

4 )
,(47)

the steady states can again be written in the form (45). Note, as a check of consistency, that

Irh = α2

4 , and v∗(0) = α
2 for the Izhikevich model.

Based on the form (45) and the fact that A2(g) > 0, it is straightforward to show the signs
of s± are as shown in Figure 3(a). Since we require the equilibrium solutions to be positive,
e± will have different regions of existence depending on the values of β and Ĩ. In particular,
both equilibrium points exist when I < Irh and g > η

er−v∗(0) in a wedge-shaped region givenD
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s+ > 0s+ > 0
s− < 0s− < 0

s− < 0
s+ < 0

s− > 0
s+ > 0

s± D.N.E.Ĩ = −β2

Ĩ

β

(a) (β, Ĩ) plane.

e+(g, I) e+(g, I)

e0 = 0 e0 = 0
e±(g, I)

e0 = 0

g = g∗

I = Irh

(b) (g, I) plane.

Figure 3. The existence of equilibria for the mean field system. (a) The sign of the s component of the
nontrivial equilibria, in the (β, Ĩ) parameter plane. s+ is positive in the first two quadrants and in a narrow
wedge-shaped region in the fourth quadrant. s− is also positive in this wedge-shaped region. (b) The existence
of the trivial and nontrivial equilibria for the Izhikevich model in the g, I parameter space. The nontrivial
equilibrium e+(g, I) only exists in the region I > α2/4, and for I < α2/4 in the wedge-shaped region of the
fourth quadrant indicated. The nontrivial equilibrium e−(g, I) only exists in this wedge-shaped region. The
trivial (nonfiring) equilibrium e0 only exists for I ≤ α2/4.
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by β2 + Ĩ > 0. Only e+ exists when I > Irh. Neither solution exists in other parts of the
parameter space. The regions of existence of e± and the nonfiring solution are shown for the
Izhikevich model in Figure 3(b).

Away from the switching manifold, we can analyze the smooth bifurcations of the equilibria
via linearization. The nonfiring solution does not undergo any smooth bifurcations, as when
it exists it lies in the region of phase space governed by the equations

s′ = − s

τs
,

w′ = − w

τw
.

Thus the nonfiring solution is asymptotically stable when it exists and does not lie on the
switching manifold, i.e., for I < Irh. The nontrivial equilibria e± exist in the region of the
phase space corresponding to I − I∗(s,w) > 0. In this case the Jacobian of the reduced mean
field system becomes

J(s) =

(
− 1

τs
+ λs

τs

(gλs(er−v∗(s))F ′′(v∗(s))
2s + s

2F ′′(v∗(s))λs
F ′′′(v∗(s))v∗′(s)

) − λ2
sF

′′(v∗(s))
2sτs

λw
τw

(gλs(er−v∗(s))F ′′(v∗(s))
2s + s

2F ′′(v∗(s))λs
F ′′′(v∗(s))v∗′(s)

) − 1
τw

− λwλsF ′′(v∗(s))
2sτw

)

after one takes into account the steady state condition sF ′′(v∗(s))/λs =
√

I − I∗(s, ηs). The
trace and determinant are given by the following:

Tr(J) = − F ′′(v∗(s))
s

[(
1

τs
+

1

τw

)
s

F ′′(v∗(s))

− λ2
s

2τs

(
g(er − v∗(s)) +

s2v∗′(s)F ′′′(v∗(s)))
λ2
sF

′′(v∗(s))2
− η

τs
τw

)]
,

Det(J) =
F ′′(v∗(s))
sτsτw

[
s

F ′′′(v∗(s))
+

λwλs

2
− λ2

s

2
(g(er − v∗(s))− s2v∗′(s)F ′′′(v∗(s)))

2F ′′(v∗(s))2

]
.

We can now discuss the stability of each equilibrium in its region of existence. To begin
we use the expansions (40)–(41) in the determinant:

Det(J) =
F ′′(v∗(s))
sτsτw

[
s

F ′′(v∗(s))
+

λwλs

2
− λ2

s

2
(g(er − v∗(s))− s2v∗′(s)F ′′′(v∗(s)))

λ2
sF

′′(v∗(s))2

]

=
F ′′(v∗(s))
sτsτw

(
1

F ′′(v∗(0))
+

g2λ2
s

2F ′′(v∗(0))

)(
s−M(g)(g − g∗) +O(s2)

)
,

M(g) =
er − v∗(0)
2A2(g)

,

g∗ =
η

er − v∗(0)
.

Substituting the equilibrium values of s and using the definition (43) of β, we obtain

(48) det(J)|s̄± =
F ′′(v∗(s̄))A2(g)λ

2
s

s̄τsτw

(
±
√

β2 + Ĩ +O(s̄2)

)
.
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Since the sign of A2(g)λ2
sF

′′(v∗(s))
τsτw

is strictly positive, and the equilibria are only defined when

s̄ = β ±
√

β2 + Ĩ ≥ 0, we can immediately conclude that

det(J)|s+ ≥ 0,

det(J)|s− ≤ 0

for small s±. This implies that the equilibrium ē− is always an unstable saddle. The equilib-
rium ē+, however, can be a node or a focus and its stability is determined by the trace. We
will discuss this further in section 3.3. Note that these results are only valid when s̄± is small
for the QIF and AdEx models, but are globally valid for the Izhikevich model.

We can use the equations for the trace and determinant to formulate necessary conditions
for the equilibria to display certain smooth bifurcations. In particular, det(J) = 0 and tr(J) �=
0 are necessary conditions for an equilibrium to undergo a saddle-node bifurcation, while
det(J) > 0 and tr(J) = 0 are necessary conditions for a Hopf bifurcation. Having both
det(J) = 0 and tr(J) = 0 is a necessary condition for a Bogdanov–Takens bifurcation. Of
course, to determine whether these bifurcations actually occur requires checking additional
genericity conditions. In the following section, we check these conditions where possible.

3.2. The saddle-node bifurcation condition. As described above, necessary conditions
for a saddle-node bifurcation are det(J) = 0 and tr(J) �= 0. It is easy to see from (48) that
the first condition is satisfied for both e± when β2 + Ĩ = 0. It can be shown that the second
condition is satisfied except at isolated points in the (g, I) parameter space as determined in
section 3.3. In the following we will assume that we exclude these points.

To pursue this further, we study the existence of the equilibria. From the previous sub-
section, we know that e± both exist if β2 + Ĩ > 0 and neither exists if β2 + Ĩ < 0. When
β2+ Ĩ = 0, the two equilibria collapse into a single equilibrium, with s = β. We thus conclude
that Ĩ = −β2 corresponds to a two-parameter curve of saddle-node bifurcation. Rewriting
this in terms of the original parameters yields the two-parameter bifurcation curve in terms
of (g, I):

(49) I = Irh −A2(g)M(g)2(g − g∗)2 +O((g − g∗)2) def
= ISN (g).

Thus, for fixed g, ISN (g) is the value of the current that corresponds to a saddle-node bifur-
cation point.

There are a few things to note about ISN . First, since A2(g) is a strictly positive function,
ISN(g) ≤ Irh with ISN (g) = Irh only if g = g∗. Also, this curve is only defined for g ≥ g∗

for g − g∗ not too large. To see this, note that the saddle-node equilibrium, given by sSN =
β = M(g)(g − g∗), only exists if β > 0. Since M(g) > 0, sSN only exists if g ≥ g∗. We
shall see later that g = g∗ actually corresponds to a nonsmooth co-dimension-two bifurcation
point. Finally, as A2(g) is a strictly positive function, one can show by using Sotomayor’s
theorem [26] that the saddle-node bifurcation is generic provided that g > g∗. This is shown
in the supplementary material (98584 01.pdf [local/web 152KB]). This immediately implies
the following theorem.

Theorem 3. The system of equations (28)–(30) undergoes a saddle-node bifurcation when

I = Irh −A2(g)M(g)2(g − g∗), g > g∗,D
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which is exact and generic for the Izhikevich model and approximate to O((g − g∗))2 for all
other models. Provided that the conditions of Theorems 1 and 2 are met, this corresponds
to the asynchronous steady state of the population density system (11)–(13) having a zero
eigenvalue.

3.3. The Andronov–Hopf bifurcation condition. From the analysis of subsection 3.1, we
know that only e+ may undergo a Hopf bifurcation and that det(J)|s+ > 0 if β2 + Ĩ �= 0. We
thus conclude that the determinant condition for the Hopf bifurcation is given by I �= ISN (g).
To determine a necessary condition for the Hopf bifurcation, we begin by using the expansions
(40)–(41),

Tr(J)

= −
(

1

τs
+

1

τw

)
+

λ2
sF

′′(v∗(s))
2sτs

(
g(er − v∗(s)) +

s2v∗′(s)F ′′′(v∗(s)))
λ2
sF

′′(v∗(s))2
− η

τs
τw

)
(50)

= −F ′′(v∗(s))
τss

(
1

F ′′(v∗(0))
+

γ

F ′′(v∗(0))
+

g2λ2
s

2F ′′(v∗(0))

)[
s−N(g)(g − ḡ) +O(s2)

]
,(51)

N(g)

=
λ2
s(er − v∗(0))

2

(
1

F ′′(v∗(0))
+

γ

F ′′(v∗(0))
+

g2λ2
s

2F ′′(v∗(0))

)−1

,(52)

ḡ =
η

er − v∗(0)
τs
τw

.(53)

Note that the first term is strictly negative and N(g) is a strictly positive function. Setting
the trace to zero and using (42)–(45), which define Ĩ , β, and s̄+, yields

s̄+ = N(g)(g − ḡ) +O((g − ḡ)2)

⇒ M(g)2(g − g∗)2 +
I − Irh
A2(g)

= (N(g)(g − ḡ)−M(g)(g − g∗))2

to lowest order in s̄. Solving for I gives

(54) I = Irh +A2(g)
[
N(g)2(g − ḡ)2 − 2M(g)N(g)(g − ḡ)(g − g∗)

]
+O((g− ḡ)2)

def
= IAH(g).

We thus conclude that if I = IAH(g) and I �= ISN (g), then the equilibrium s̄+ has a pair of
pure imaginary eigenvalues.

Recall that N(g), M(g), and A2(g) are positive functions. Further, it is easy to check
that N(g) < M(g). This leads to several observations. First, since the third equation in the
sequence above can only be satisfied if N(g)(g − ḡ) > M(g)(g − g∗), it follows that if g∗ ≤ ḡ,
then no Hopf bifurcation occurs. Second, from the first equation in the sequence above we
must have g ≥ ḡ in order for the equilibrium s+ to exist at the Hopf bifurcation. When g = ḡ,
s+ = 0 and IAH = Irh. We shall see later that the point I = Irh, g = ḡ is a co-dimension-two
nonsmooth bifurcation point. Finally, if ḡ ≤ g ≤ g∗, then IAH ≥ Irh with IAH = Irh only if
g = ḡ. If g > g∗, then it is possible for I = IAH(g) to intersect I = Irh. We denote by ĝ the
value of g at the intersection point, if it exists.

We can now determine the stability of the equilibrium e+ by studying the trace equation
(51). Since the first term in this equation is strictly negative wherever it is defined (whenD

ow
nl

oa
de

d 
03

/2
8/

16
 to

 1
29

.9
7.

87
.1

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

408 WILTEN NICOLA AND SUE ANN CAMPBELL

ē+ exists), the sign of the trace is determined by s̄+ − N(g)(g − ḡ). Since s̄+ and N(g) are
positive, it follows from the discussion above that when g∗ ≤ ḡ the trace is negative, and hence
ē+ is asymptotically stable, wherever it exists. If ḡ ≤ g∗, then the trace is negative (and ē+
is asymptotically stable) if g < ḡ or g > ḡ and I > IAH(g). The trace is positive (and ē+ is
unstable) if g > ḡ and I < IAH . Note that if I is sufficiently close to IAH , then ē+ will have
a pair of complex conjugate eigenvalues.

In summary, for fixed g with g > ḡ and ḡ < g∗, the equilibrium e+ undergoes a Hopf
bifurcation at I = IAH(g) if I �= ISN (g). Further, we can now state completely the conditions
for the saddle-node bifurcation: for fixed g with g > g∗, the equilibria e+ and e− undergo a
saddle-node bifurcation when I = ISN(g) if I �= IAH(g).

One can compute the first Lyapunov coefficient for the Izhikevich model in the asymptotic
regimes γ � 1, γ � 1. The results are

l1(0) =

√
2

16

(z2 + λ2
s + 2)5/2(z2λsλw + zλs(er − v∗(0)) + λw)

λs

√
(er − v∗(0))z

3
λ
3/2
w

1

γ5/2

+
3

16

(z2/2 + λ2
s + 2)3

λ2
sz

2(er − v∗(0))λ2
w

1

γ2
, γ → 0,

l1(0) =
3

16

λ2
w

(er − v∗(0))6λ2
sz

2
γ3

+
3

2

(4(er − v∗(0))2 + λ2
w/2 + 2zλsλw(er − v∗(0)))

(er − v∗(0))6z2λ2
s

γ2 +O(γ), γ → ∞,

where z = g−ḡ. One can immediately conclude that if g > ḡ, and er−v∗(0) > 0, the Lyapunov
coefficient is positive to both leading orders in both asymptotic regimes. Thus, under fairly
general conditions, the bifurcation will be a subcritical bifurcation. The derivation of the
Lyapunov can be found in the supplementary material (98584 01.pdf [local/web 152KB]).

From the work done in this section, we immediately have the following theorem.
Theorem 4. The system of equations (28)–(30) undergoes an Andronov–Hopf bifurcation

when

I = Irh +A2(g)
[
N(g)2(g − ḡ)2 − 2M(g)N(g)(g − ḡ)(g − g∗)

]
+O((g − ḡ)2).

For the Izhikevich model, this bifurcation is subcritical assuming that er > v∗(0) and τw, τs � 1.
If τs, τw � 1 and the conditions of Theorems 1 and 2 are satisfied, this bifurcation corresponds
to the asynchronous steady state of the population density system (11)–(13) having a pair of
pure complex conjugate eigenvalues.

3.4. The Bogdanov–Takens bifurcation condition. Recall that necessary conditions for
a Bogdanov–Takens bifurcation are det(J) = 0 and tr(J) = 0. Thus, from the analysis of the
last two subsections, Bogdanov–Takens bifurcations (if they exist) will occur at intersection
point of the curves of saddle node and Hopf bifurcations in the g, I parameter space, i.e., at
values of g such that IAH(g) = ISN (g), with g > max(g∗, ḡ). Using the expressions for theseD
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curves gives

Irh −A2(g)M(g)2(g − g∗)2 = Irh +A2(g)
[
N(g)2(g − ḡ)2 − 2M(g)N(g)(g − ḡ)](g − g∗)

]
,

0 = A2(g) (N(g)(g − ḡ)−M(g)(g − g∗))2

�
0 = N(g)(g − ḡ)−M(g)(g − g∗).

This latter equation may be simplified to a quadratic in g:

g2g∗(γ − 1)
λ2
s

2
+ gγ − g∗.

Immediately one can see that a potential solution is γ = 1, g = g∗ = ḡ. However, this is a
single root which lies on the switching manifold. For γ �= 1, we have the following two pairs
of Bogdanov–Takens points:

gBT± =
2g∗

γ ∓√γ2 − 2g∗λ2
s(1− γ)

(55)

which yields the following leading order asymptotics provided that 1 � 1− γ ≥ 0:

gBT+ =
2

λ2
s(1− γ)

+O(1),(56)

gBT− = g∗ +O(1− γ).(57)

Note that gBT+ diverges as 1−γ → 0+ while gBT− → g∗, which given the previous work implies
a collision of the Bogdanov–Takens equilibrium point with the switching manifold. However,
we note that these are only valid provided that γ2 − 2g∗λ2

s(1 − γ) > 0. For the parameter
sets we have looked at, we have not found a Bogdanov–Takens point as this quantity is
negative. Thus, we leave the analysis of the Bogdanov–Takens point and its interaction with
the switching manifold for future work.

Figure 4(a) shows the smooth bifurcations for the mean field system corresponding to
a network of Izhikevich neurons with the parameter values from [7]. Note that the Hopf
bifurcation for both the full and reduced mean field systems corresponds closely to the onset
of bursting in the actual network, as noted in [23]. For these parameter values, τw � τs and
no Bogdanov–Takens’ points are observed. Figure 4(b) shows the smooth bifurcations for the
mean field systems corresponding to a network of AdEx neurons. In all figures the bifurcation
curves derived from the small s expansions, i.e., (49) and (54), are compared with curves for
the full mean field model generated numerically in MATCONT [6].

4. Nonsmooth bifurcations. To study the nonsmooth bifurcations for the mean field
system (18)–(20), we will use the terminology and bifurcation classification for piecewise
smooth continuous systems proposed in [5]. We note that some care must be used when
applying these ideas to our system. Letting x = [s,w]T and recalling the definition (22) of
the switching manifold, our system may be written in the general form used by [5]:

ẋ =

{
F1(x, I) if H(x, I) < 0,
F2(x, I) if H(x, I) > 0,D
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(a) Two parameter bifurcation curves, Izhikevich mean field system(s).
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(b) Two parameter bifurcation curves, AdEx integrate and fire mean field sys-
tem(s).

Figure 4. Comparison of various approximations of the two parameter bifurcation curves for the mean field
equations of the Izhikevich model (a) and the AdEx model (b). Shown are Hopf bifurcation curves (dashed lines),
saddle-node bifurcation curves (dotted lines) computed for the full mean field system (red), the asymptotic mean
field system (green), the lowest order approximation solution to the asymptotic mean-field system (purple), and,
for the Izhikevich model, the global approximation to the mean field system (blue). For the Izhikevich model,
the numerically determined bursting boundary for a network of 1000 neurons with the same parameters is
also shown (black). The bifurcation curves for the saddle-node and Hopf bifurcations are computed using the
MATLAB function fsolve on the determinant and trace equations of the Jacobian of the linearization. The red
line corresponds to I = Irh.
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where

F1(x, I) =

( − s
τs

− w
τw

,

)
,

F2(x, I) = F1(x, I) +
√

H(x, I)

(
λs
τs
λw
τw

)
.

However, F2 is only defined for H(x, I) > 0. In contrast, the work of [5] assumes that both
F1 and F2 are defined throughout the phase space. Nevertheless, we are able to classify a
number of bifurcations in our system by analogy with the results in [5]. Additionally, due to
the presence of the square root, the Jacobian diverges in the vicinity of boundary equilibrium
bifurcations. This means one cannot simply unfold the system, for example, by reducing it to
observer canonical form [13].

We will supplement our analysis with numerical studies of our example systems. In par-
ticular, we will perform a detailed study of the mean field system corresponding to a network
of Izhikevich neurons with parameters given in Table 1.

4.1. Boundary equilibrium bifurcations (I = Irh). Recall that all the models we are
considering have an equilibrium e0 = (0, 0) which exists (and is a stable node) if I < I∗(0, 0) =
Irh. When I = Irh, this equilibrium lies on the switching manifold I − I∗(s,w) = 0. When
I > Irh, this equilibrium no longer exists as the origin is not an equilibrium of the part of
the mean field system corresponding to I − I∗(w, s) > 0. In the terminology of nonsmooth
systems, the origin is a virtual equilibrium of the system for I > Irh and undergoes a boundary
equilibrium bifurcation (BEB) when I = Irh. The exact nature of this bifurcation depends on
the value of g, in particular, its relationship to g∗, ḡ, and ĝ.

To determine the nature of the BEB, we begin by studying the nontrivial equilibria e± =
(s±, ηs±) when I = Irh. Recalling the form (45) for s± and noting that Ĩ = 0 when I = Irh,
we find

s+(β, 0) =

{
0, β < 0,

2β, β ≥ 0,

s−(β, 0) =

{
2β, β < 0,

0, β ≥ 0.

Thus for g < g∗, e+ collides with e0 at I = Irh, and for g > g∗, e− collides with e0.
Consider first the case g∗ < ḡ (which corresponds to τw < τs). In this case there is no

Hopf bifurcation, so the results are straightforward. When g < g∗, e+ is a sink which exists
for I > Irh. It collides with e0 when I = Irh and ceases to exist when I < Irh. Putting
this together with the description of the existence and stability results for e0, we conclude
that, for this range of g values, the system undergoes a persistence BEB at I = Irh. This will
be either a focus/node or node/node persistence BEB depending on the classification of e+.
When g > g∗, recall that the equilibrium e− is a saddle when it exists (for ISN < I < Irh).
Since e0 also exists for I < Irh and is a stable node, we conclude that for g > g∗ there is a
nonsmooth saddle node BEB at I = Irh.D
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I
s

w

Persistence BEB

I = Irh

(a) g < ḡ

I
s

w

Homoclinic Persistence BEB

I = Irh

(b) ḡ < g < g∗

I

s

w

Saddle−Node Bifurcation

SNIC BEB
I = Irh

(c) g∗ < g < ĝ

I
s

w
Saddle−Node Bifurcation

Non−smooth Fold

I = Irh

(d) g � ĝ

Figure 5. The four branches of boundary equilibrium bifurcation (BEB) that have been found in the mean
field system for the Izhikevich network. In all figures, the equilibria are e0 (black), e+ (blue), and e− (green),
and solid lines indicate real equilibria, while dashed lines indicate virtual ones. The magenta lines are the
nonsmooth limit cycles determined via direct numerical integration. (a) The equilibrium e+ collides with e0 at

I = α2

4
. This results in the disappearance of e+ for I < α2

4
, while e0 persists as a stable node. The situation is

similar for (b), except that here the nonsmooth limit cycle collides with the BEB equilibrium point in a kind of

nonsmooth homoclinic bifurcation. (d) The equilibrium e− exists and is an unstable saddle for I < α2

4
, as does

the stable node e0. These equilibria collide in a BEB at I = α2

4
, and e− is destroyed while e0 becomes virtual.

The bifurcation diagram in (c) is similar to that in (d) except for the emergence of a homoclinic limit cycle at
the bifurcation point in a kind of nonsmooth SNIC bifurcation.

Now consider the case ḡ < g∗. For g < ḡ, analysis similar to that above shows the system
undergoes a persistence BEB at I = Irh. Figure 5(a) shows this bifurcation for the mean field
system corresponding to the Izhikevich network with parameters as in Table 1.

The situation for ḡ < g < g∗ is similar, except that e+ is now an unstable focus for I > Irh.
Thus for this range of g values, there is a focus/node persistence BEB at I = Irh. Since e+
is a source and e0 is a sink, we may expect (by analogy with the results in [5]) that a stableD
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(a) Amplitude of the stable nonsmooth limit cycle.
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(b) Period of the stable nonsmooth limit cycle.
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(c) Amplitude of the stable nonsmooth limit cycle.
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(d) Period of the stable nonsmooth limit cycle.

Figure 6. The amplitude ( (a) and (c)) and period ( (b) and (d)) of the bursting limit cycle in the Izhikevich
system for fixed g with ḡ < g < g∗ (left column) and g > g∗ (right column), respectively, as I → Irh. These
two quantities are resolved via direct numerical simulation of the limit cycle. Note the period diverges as
I → Irh, while the amplitude is nonzero, indicative of a homoclinic limit cycle. The amplitude is computed as
the difference between the maximum and minimum w component in the steady state limit cycle.

nonsmooth limit cycle surrounding e+ will be created as I increases through Irh. Figure 5(b)
confirms this for the mean field system corresponding to the Izhikevich network. Note that
in this example, the amplitude of the limit cycle does not got to zero as I approaches Irh.
(See also in Figure 6(c).) Further, the period of the limit cycle diverges as I → I+rh. See
Figure 6(a). Thus the limit cycle appears to be created in homoclinic-like bifurcation as I
increases through Irh. We will thus refer to this as a homoclinic persistence BEB.

When g > g∗, analysis similar to that above shows that there is a nonsmooth saddle node
BEB at I = Irh. Based on the analysis of the equilibrium points, there is no reason to expect
anything more to occur with this bifurcation. However, our numerical examples show two
cases. Figure 5(d) shows that a simple nonsmooth saddle-node BEB occurs for the mean field
system corresponding to the Izhikevich network with g � ĝ. Figure 5(c) shows the bifurcationD
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for the same system with g∗ < g < ĝ. In this case there is a nonsmooth limit cycle for I > Irh
that appears to be destroyed when I = Irh. Thus this bifurcation appears to be a nonsmooth
version of the saddle-node on an invariant circle (SNIC) bifurcation. We will refer to it as
an SNIC BEB. The transition between the two types of BEBs that occur for g > g∗ will be
discussed in a later section.

Based on our numerical results we hypothesize that a nonsmooth limit cycle may be de-
stroyed in a homoclinic-like bifurcation as I decreases through Irh. We support this hypothesis
in two ways.

First, consider the vector field in the neighborhood of the origin. Recall that the origin
is always an attractor when it lies in the region where H(s,w) < 0. In the region where
H(s,w) > 0, setting I = Irh and retaining only the highest order terms in s and w gives

s′ = − s

τs
+

λs

√
F ′′(v∗(s))
τs

√
gs(er − v∗(0)) − v∗′(0)(gs)2/2 −w

≈ λs

√
F ′′(v∗(0))
τs

√
gs(er − v∗(0))− w,

w′ = − w

τw
+

λw

√
F ′′(v∗(s))
τw

√
gs(er − v∗(0))− v∗′(0)(gs)2/2− w

≈ λw

√
F ′′(v∗(0))
τw

√
gs(er − v∗(0))− w.

Thus, for 0 < s,w � 1, and I > I∗(s,w) the vector field points away from the origin and
the boundary equilibrium (0, 0) is a repeller in this region. Since the boundary equilibrium
point is as a repeller on one side of the switching manifold and an attractor on the other, it
is possible for a nonsmooth homoclinic orbit to this equilibrium point to exist when I = Irh.

Second, we show that under certain parameter conditions, if a nonsmooth limit cycle
surrounds the equilibrium e+, it must be destroyed when I = Irh. To do this we show that
trajectories that cross the switching manifold when I = Irh lie within the basin of attraction of
the origin. Thus any nonsmooth limit cycle must become homoclinic to the origin at I = Irh.
Note that if I − I∗(s,w) < 0, then

dw

ds
=

τs
τw

w

s
= γ

w

s
,

and thus w = Csγ for some constant C. Assuming that the trajectory starts with (s0, w0) on

the switching manifold, then w = w0

(
s
s0

)γ
, where w0 = gs0(er − v∗(0)) − v∗′(0) (gs)

2

2 . Now
suppose this trajectory crosses the switching manifold again at (s,w). Then

w0

(
s

s0

)γ

= gs(er − v∗(0))− 1

F ′′(v∗(0))
(gs)2

2
.

Clearly two solutions of this equation are (s0, w0) and (0, 0). Dividing through by s and
simplifying one obtains

(58) (1− ks0)
sγ−1

sγ−1
0

= 1− ks,
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where k = g
F ′′(v∗(0))2(er−v∗(0)) .

If γ > 1, the left-hand side of (58) is monotonically increasing while the right-hand side is
a line with negative slope. Hence (s0, w0) is the unique intersection point. This means every
trajectory that enters the region I − I∗(s,w) < 0 when I = Irh is attracted to the origin. If
γ < 1, the left-hand side of (58) is now monotonically decreasing. Unless the line is tangent
the curve at (s0, 1) there will always be another intersection point. Rearranging the equation
shows that this intersection point will occur for s < s0 if gs0 is sufficiently small. For fixed
g, this means that any trajectory that starts on the switching manifold at (w0, s0) with s0
sufficiently small will be attracted to the origin. Thus all nonsmooth limit cycles that are
close enough to the origin for I > Irh will become homoclinic to the origin when I = Irh.

Given how g = ḡ and g = g∗ delimit the different types of BEB bifurcations, it should be
clear that these special points represent higher co-dimension bifurcations along the I = Irh line.
We shall explore these bifurcations further below, in addition to determining the geometrical
meaning of these points.

4.2. Saddle-node boundary equilibrium bifurcation (I = Irh, g = g∗). From the results
of the previous section, we can conclude that the point I = Irh, g = g∗ is a special co-dimension-
two bifurcation point where the boundary equilibrium bifurcation (BEB) changes from a
persistence BEB to a nonsmooth saddle-node. Note that the smooth branch of saddle-node
bifurcations found earlier actually emanates out from the co-dimension-two point (g∗, Irh). We
will show here that it does so in a highly nongeneric way as the saddle-node equilibrium hits
switching manifold tangentially at the BEB, and is the only equilibrium point that interacts
with the switching manifold in this way.

We have seen that regardless of the parameter values, all the nontrivial equilibria lie on
the curve w = ηs. Thus as any parameter is varied the nontrivial equilibrium will follow this
curve, which has slope

(59) w′(s) = η.

Further, the only equilibrium that can be a boundary equilibrium point is e0 = (0, 0), the
nonfiring solution. Now the switching manifold can be written as

w(s) = I + F (v∗(s)) + gs(er − v∗(s)).

Thus, the slope of the switching manifold at the BEB is

(60) w′(0) = g(er − v∗(0)).

Equating (59) and (60) shows that the nontrivial equilibrium undergoing the BEB will hit
the switching manifold tangentially only if g = g∗ = η

er−v∗(0) . From this it is straightforward

to show that with g = g∗ fixed, the nontrivial equilibrium e+ hits the switching manifold
tangentially as I → Irh and s+ → 0. More interesting is to consider what happens when g
is varied. From our previous analysis we know that at the saddle-node bifurcation point, the
saddle-node equilibrium, eSN = (sSN(g), ηsSN(g)), is defined by

sSN(g) = M(g)(g − g∗) +O((g − g∗)2).D
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Thus, as g → g∗, sSN(g) → 0. This implies that the saddle-node equilibrium hits the switching
manifold tangentially at g = g∗, I = Irh.

In summary the point g = g∗, I = Irh is the collision between three branches of co-
dimension-1 bifurcations: a pair of nonsmooth boundary equilibrium bifurcations and a
smooth branch of saddle-node bifurcations. The details of the BEB involved depend on
the relationship between g∗ and ḡ. If g∗ < ḡ, the BEBs are simple: a simple node/focus or
focus/focus persistence BEB occurs for g < g∗ and a nonsmooth saddle-node BEB occurs for
g > g∗. The case ḡ < g∗ is more complex due to the possible presence of limit cycles associated
with the Hopf bifurcation. In the case we studied numerically and described in section 4.1, for
g < g∗ we observe a homoclinic persistence BEB, and for g > g∗ we observe an SNIC BEB.

While this bifurcation may be complicated, the bifurcation point can be determined an-
alytically for all the models. It is shown in detail in Figure 9(b). Of particular interest is
the fact that associated with this point is a region in the g > g∗, I < Irh quadrant of the
parameter space with bistability between firing and nonfiring solutions. For parameter values
in the region a brief stimulus could cause the network transition from quiescence to tonic
firing.

4.3. Limit cycle grazing bifurcation. The Andronov–Hopf bifurcation described in sec-
tion 3.3 leads to the creation of a limit cycle. As I moves away from the bifurcation point,
the amplitude of the limit cycle may increase enough that it hits the switching manifold tan-
gentially, resulting in a grazing bifurcation. It is difficult to say much in general about the
nature of this bifurcation; however, analysis similar to that in the last section shows that if
I < Irh, then once a trajectory enters the region I − I∗(s,w) < 0, it cannot leave, but will be
attracted to the origin. Thus we expect that if a grazing bifurcation occurs for I < Irh, it will
lead to the destruction of the limit cycle.

To gain more insight, we performed a numerical study of the mean field system corre-
sponding to the Izhikevich network with parameter values as in Table 1. We first confirmed
that the Hopf bifurcation is subcritical, using MATCONT and by numerically simulating the
time reversed system. Additionally, the analytically determined first Lyapunov coefficient is
positive to the first two orders in the ratio of the time constants for the Izhikevich model. We
then showed that the unstable limit cycle generated by the Hopf can undergo two different
types of grazing bifurcations, depending on the value I. For I > Irh, the grazing bifurcation
that occurs is a persistence type grazing, i.e., the unstable limit cycle generated via the sub-
critical Hopf bifurcation just becomes nonsmooth after the grazing bifurcation. This is shown
in Figure 7(a). Here, the limit cycle undergoes a grazing bifurcation at I = 0.2680, and it
persists past it. Its amplitude rapidly increases past the grazing bifurcation, and it almost
immediately undergoes a nonsmooth saddle-node of limit cycles with a stable nonsmooth limit
cycle. For I < Irh, the grazing bifurcation is a destruction type grazing as the limit cycle
ceases to exist after the grazing for the reason discussed above. This is shown in Figure 7(b).

If the Hopf were supercritical, we would expect to see the same two types of grazing
bifurcations. The only difference would be that the grazing bifurcation would occur for I <
IAH and we would not expect the saddle-node of limit cycles bifurcation to occur.

4.4. Hopf boundary equilibrium bifurcation (I = Irh, g = ḡ). The analysis of sec-
tion 4.1 showed that when ḡ < g∗ the point I = Irh, g = ḡ is a co-dimension-two bifurcationD
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e+(g, I)

w

s

I = 0.21203
I = 0.21160

I = 0.21017

(a) Persistence grazing bifurcation and nonsmooth saddle-node of limit cycles.

e+(g, I)

e0 = (0, 0)

s

w

I = −0.03018I=−0.030179

(b) Destruction grazing bifurcation.

Figure 7. Limit cycle grazing bifurcations for the Izhikevich system. (a) As I is increased above IAH(g),
for fixed g, the unstable limit cycle (shown in red) generated by the subcritical Hopf bifurcation increases in
amplitude. For large enough I, the limit cycle grazes the switching manifold (shown in blue). After the grazing,
the limit cycle becomes nonsmooth and subsequently collides with the nonsmooth stable limit cycle (shown in
pink). The two limit cycles annihilate each other in a nonsmooth saddle node of limit cycles. Note that as
I is varied, the switching manifold, the point e+, and the unstable limit cycle all vary. However, aside from
the unstable limit cycle, these other sets do not vary significantly. Thus, for clarity, we have only shown the
switching manifold and stable nonsmooth limit cycle for I = 0.2690, and e+ for I = 0.2604. (b) For I < Irh
the grazing bifurcation destroys the limit cycle.
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point where the boundary equilibrium changes from a simple focus/node persistence BEB to a
homoclinic persistence BEB. Recall that the two parameter Hopf bifurcation curve is given by
I = IAH(g) as defined in section 3.3. From the analysis in that section, the equilibrium point
on the Hopf curve is eAH = (sAH , ηsAH), where sAH(g) = N(g)(g − ḡ) +O((g − ḡ)2). Setting
I = IAH(g) we see that as g → ḡ, IAH → Irh and eAH → e0, that is, the Hopf equilibrium
point undergoes a BEB at I = Irh, g = ḡ. We thus refer to this point as a Hopf boundary
equilibrium bifurcation (Hopf BEB).

An alternative way to characterize the Hopf BEB is to fix I = Irh and let g → ḡ+. On
I = Irh, the mean field system for the Izhikevich network may be approximated as follows:

s′ = − s

τs
+

λs

√
F ′′(v∗(s))
τs

√
gs
(
er − α

2

)
− (gs)2

4
− w ≈ λs

√
F ′′(v∗(0))
τs

√
gs
(
er − α

2

)
− w,

w′ = − w

τw
+

λw

√
F ′′(v∗(s))
τw

√
gs
(
er − α

2

)
− (gs)2

4
− w ≈ λw

√
F ′′(v∗(0))
τw

√
gs
(
er − α

2

)
− w

for (s,w) in the vicinity of the origin. Thus, we have

dw

ds
= ηγ +HOT

⇒ w = ηγs+HOT

for the trajectory of the homoclinic limit cycle. Additionally, linearizing the switching manifold
about the origin yields

w = gs
(
er − α

2

)
.

Now, using these two equations we can solve for grazing bifurcations of the homoclinic limit
cycle with the switching manifold at the origin. Solving the grazing condition w′(0) = ŵ

ŝ = ηγ
yields

g =
ηγ

(er − α/2)
= ḡ.

Thus, the Hopf BEB bifurcation can be seen as a grazing bifurcation which destroys the
nonsmooth homoclinic limit cycle to the origin.

Our analysis so far shows three branches of bifurcation emanating from this co-dimension-
two point: two nonsmooth BEB branches and a branch of Hopf bifurcation. As shown in
Figure 5, for g < ḡ there is a simple persistence BEB, while for ḡ < g < g∗ there is a
homoclinic persistence BEB. We have numerically studied the bifurcations that occur in a
neighborhood of this point for the Izhikevich model and find that that two more branches of
bifurcation appear to emanate from this point as we describe below.

Let g be fixed with g > ḡ and consider the sequence of bifurcations involving limit cycles.
At I = Irh a stable nonsmooth limit cycle is created in a homoclinic persistence BEB, and
at I = IAH > Irh an unstable smooth limit cycle is created in a subcritical Hopf bifurcation.
As I increases the smooth limit cycle becomes nonsmooth in a grazing bifurcation and then
is destroyed along with the stable nonsmooth limit cycle in a saddle-node of limit cycles. We
wish to determine how the grazing and saddle-node of limit cycles bifurcations behave near
g = ḡ.D
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To do this we followed the stable nonsmooth limit cycle along the Hopf bifurcation curve.
Specifically, we numerically computed the amplitude and period of the limit cycle along the
curve (g, IAH(g)) in the (g, I) parameter space with g → ḡ. The results are shown in Fig-
ure 8, specifically Figure 8(a). The stable nonsmooth limit cycle is computed using direct
simulations of the ODE system, where the system is initialized exterior to the limit cycle in
the phase plane which ensures convergence. From this figure, we can see that the amplitude
of the stable nonsmooth limit cycles goes to 0 as g → ḡ. This implies that this limit cycle
collapses to the origin (0, 0). But as this bursting limit cycle is one part of the saddle-node
of limit cycles bifurcation, then this bifurcation must also emerge from Hopf BEB. Since the
grazing bifurcation lies between the saddle-node of limit cycles and the Hopf bifurcation, the
persistence grazing bifurcation must also emerge from the point g = ḡ, I = Irh. The entire
sequence of bifurcations near the Hopf BEB is shown in Figures 9(a) and 9(d).

4.5. A co-dimension-three nonsmooth bifurcation. We briefly note that if τw = τs, then
we have

(61) ḡ = g∗,

which means that the Hopf and saddle-node BEB points coincide in a nonsmooth co-dimension-
three bifurcation point. This bifurcation point may be thought of as a Bogdanov–Takens
equilibrium point lying on a switching manifold. However, we note that there is no Bogdanov–
Takens bifurcation (or for that matter saddle-node or Hopf bifurcations) at this point in the
classical sense, as the Jacobian of the system diverges, and hence the conditions associated
with these different smooth bifurcations cannot be satisfied.

This point appears to act as an organizing center for the bifurcation diagram, with all the
nonsmooth bifurcations emanating from it. Due to the complexity of this point, we will leave
its analysis for future work. However, it does illustrate how rich the nonsmooth bifurcation
sequence of this relatively simple PWSC system is.

4.6. A global co-dimension-two nonsmooth bifurcation. In addition to the two local
nonsmooth bifurcations that occur at g = ḡ, and g = g∗, there appears to be a global co-
dimension-two bifurcation that occurs for these mean field systems. Recall that there are
two different types of grazing bifurcations, a destruction type (which occurs for I < Irh) and
a persistence type (which occurs for I > Irh). These are shown in Figure 7. Thus there
is a co-dimension-two point when the grazing bifurcation crosses I = Irh. As for the other
co-dimension-two points, one may expect there would be a change in the BEB bifurcations
at this point. In the case we have studied numerically it appears that the BEB changes from
SNIC type before this transition to a regular nonsmooth fold after. This is shown in Figures
9(c) and 9(d). Note that this transition occurs for g > ĝ, i.e., after the second intersection of
the Hopf curve with I = Irh. It also appears that the saddle-node of nonsmooth limit cycles
bifurcation emanates from this point. Note that this does not imply that there is a second
impact with the Hopf equilibrium and the switching manifold, as sAH(g) = N(g)(g − ḡ) > 0.
This bifurcation results in the destruction of the homoclinic limit cycle that exists on I = Irh,
and it is very difficult to analyze, as it is a nonlocal co-dimension-two nonsmooth bifurcation.
Geometrically, however, it occurs when the unstable smooth limit cycle (generated via the
Hopf bifurcation) grazes the switching manifold at I = Irh. If the Hopf bifurcation wereD
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(a) Amplitude of the stable nonsmooth limit cycle.
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(b) Period of the stable nonsmooth limit cycle.

Figure 8. The amplitude (a) and period (b) of the bursting limit cycle followed along the two-parameter
Hopf bifurcation curve in the Izhikevich system. The Hopf bifurcation curve is entirely parameterized by g, in
the (I, g) plane, and thus as we decrease g, we can compute the amplitude and period of the bursting limit cycle
via direct numerical simulations. As can be seen, the amplitude decreases towards 0 as g → ŵ

ŝ(er−α/2)
= ḡ, as

does the period. As the bursting limit cycle is the exterior limit cycle in a nonsmooth saddle-node bifurcation of
limit cycles, this bifurcation must also emanate from ḡ. Additionally, as the saddle-node of limit cycles occurs
subsequent to a persistent grazing bifurcation of the unstable Hopf limit cycle, the grazing bifurcation must also
emerge from this point. Also note that this is the only point in the parameter space where the homoclinic limit
cycle generated does not have a divergent period as I → Irh. This is due to the fact that the homoclinic limit
cycle has collapsed down to a point exactly at g = ḡ, and thus does not exist at this parameter value.
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(a) Hopf BEB point (bottom left corner)).
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(b) Saddle-node BEB (center).
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(c) Grazing alternation (bottom right corner).
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(d) Total bifurcation diagram.

Figure 9. The entire bifurcation sequence for the Izhikevich model, including all known nonsmooth and
smooth bifurcation points. Figure(d) is the entire diagram in the two-parameter space. Figures (a), (b), and
(c) are the bottom left, center, and bottom right regions, respectively. (a) The co-dimension-two bifurcation
point involving the collision of a branch of Hopf bifurcations with the switching manifold. This co-dimension-
two point also involves a collision with a branch of grazing bifurcations of the unstable limit cycle generated
by the subcritical Hopf, in addition to a branch of saddle-node of limit cycles (not shown for clarity). A
nonsmooth SNIC bifurcation and BEB persistence bifurcation also collide simultaneously at the co-dimension-

two point ( ŵ
ŝ(er−α/2)

, α2

4
). (b) The co-dimension-two saddle-node grazing point, which occurs when a saddle-node

bifurcation grazes a switching manifold. The saddle-node branch of bifurcations collides at the co-dimension-

two point ( η
er−α/2

, α2

4
) along with two branches of nonsmooth SNIC bifurcations. (c) A global co-dimension-two

point. This bifurcation point involves the switching of a grazing bifurcation in the unstable Hopf limit cycle
from a persistence case to a destruction case. The nonsmooth SNIC bifurcation also collides with a branch of
BEB persistence bifurcations for the equilibrium e−(g, I).

supercritical instead of subcritical, we would expect a similar co-dimension-two point to occur
(if a grazing bifurcation occurred). However, it would occur for g < ĝ.

Again, due to the complexity of this particular bifurcation, further analysis is beyond theD
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scope of this paper, and we leave it for future work.

5. Nonsmooth bifurcations demonstrated in the network simulations. While the pre-
ceding analysis revealed a great deal of novelty and nonsmooth bifurcations for the reduced
mean field system, in order for the nonsmooth analysis to be useful, it has to reflect the
phenomena displayed by the actual network. Here, we will demonstrate many of the non-
smooth bifurcations predicted in the analysis are present in a full network of neurons. We will
primarily consider a network of Izhikevich neurons.

A difficulty is that one cannot easily expose unstable equilibria and limit cycles in the
large network of neurons using numerical simulations. For example, the equilibrium point e−
is a saddle in the mean field, and short of somehow initializing the network of neurons on
the stable manifold of the saddle, it cannot be resolved via direct simulations. However, the
unstable node e+ can be resolved by modifying the network as follows. Using the separation
of time scales between the fast variable s, and the slow variable w, we replace the full network
(6)–(9) by the following:

v̇i = vi(vi − α)− wi + gs(er − vi),

ẇi = a(bvi −w),

s =
w̄

η
=

1

η

(
1

N

N∑
i=1

wi

)
,

vi(t
−
spike) = vpeak → vi(t

+
spike) = vreset,

wi(t
+
spike) = wi(t

−
spike) + ŵ

for i = 1, 2, . . . , N . Here the dynamics of s are replaced entirely by its steady state, large
network solution: λs〈R〉 ≈ w λs

λw
= w/η, with w replaced by the finite mean w̄. We will refer

to this network of neurons as the slow network.
The mean field system corresponding to the slow network is simply a one-dimensional

nonsmooth ODE, given by

ẇ = − w

τw
+

λw

τw
〈R〉,

〈R〉 =
{√

I − I∗(w/η,w), I ≥ I∗(w/η,w),
0, I < I∗(w/η,w).

The mean field system for the slow network has the same steady states as the mean field system
for the full network: the two firing solutions, w±, and the nonfiring solution, w0 = 0, with
regions of existence as for the full network (see Figure 3). However, being a one-dimensional
system, no Hopf bifurcations (and thus oscillations) are present in the mean field system for
the slow network. Clearly, the nonfiring solution w0 is always stable where it exists. The
stability of the firing solutions is determined by the eigenvalue

(62) λ(w±) = −λ2
w

τw
A2(g)

⎛
⎝1− M(g)(g − g∗)

M(g)(g − g∗)±
√

M(g)2(g − g∗)2 + Ĩ

⎞
⎠ ,
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(a) g = g∗ − 1.
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Increasing Ramp, Slow Net

(b) g = g∗ + 1.

Figure 10. Comparison of the predictions of the mean field analysis and numerical simulations of a 100-
neuron slow network with a slow current ramp for the Izhikevich system. The current is either descending (red)
or ascending (green). (a) When g < g∗, as I is decreased the steady state solution for the network collides with
the nonfiring solution, as predicted by the mean field analysis. (b) When g > g∗, the descending current results
in firing for I < Irh, until the steady state falls off sharply near I = ISN . The ascending current only results
in firing when I = Irh is reached. This behavior agrees with the mean field analysis which predicts there is
bistability between these two stable states, with an unstable steady state separating them.
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where the functions A2(g) andM(g) are identical to those for the mean field system for the full
network. It follows that w+ is always stable and w− is always unstable where they exist, and
that they undergo saddle-node bifurcation at I = ISN , as for the full network. In summary,
we should expect bistability between w+ and w0 for ISN < I < Irh, but at most one stable
state elsewhere in the parameter space. Indeed, if we simulate the slow network with a slowly
varying current that either decreases from current values greater than Irh or increases from
current values less than Irh, we get bistability for g > g∗ and none for g < g∗. This is shown
in Figure 10.

Using the simulations of the slow network and the full network, we can piece together a
pseudobifurcation diagram for the full network. This is shown in Figure 11. The boundary
equilibrium bifurcations that occur near the vicinity of g∗ are also observed in the actual
network. Given the similarities between the bifurcation diagram for the actual network, and
that predicted by the nonsmooth mean field equations, it would appear that in order to
understand the bifurcations that occur in these networks, one has to consider nonsmooth
bifurcation theory.

6. Discussion. In this paper, we have made a thorough analysis of the smooth and non-
smooth bifurcations that occur in mean field systems for large networks of coupled integrate
and fire neurons with spike frequency adaptation. We have shown that these systems are very
rich, exhibiting global and higher co-dimension bifurcations.

Based on the analysis we have performed, there are several predictions we can make. For
example, it appears that the adaptation and synaptic time scales, τw and τs, are crucial for
determining the presence of bursting. If τw < τs, then no bursting can occur, while if τw > τs,
there is a bell shaped region of bursting for I > Irh, and g > ḡ. Thus, if the adaptation time
scale is smaller than the time scale of the synapses, adapting, recurrently coupled networks
would not burst. This can be the case, for example, for weakly adapting neurons coupled
together with NMDA synapses, which have a long time scale.

One might ask whether the nonsmooth nature of the mean field system we studied is a
direct result of the nonsmooth nature of the integrate and fire neural models. This is not the
case. The firing rate of any type I neuron in the vicinity of the saddle-node on an invariant
circle bifurcation is proportional to

√
I − Irh. Assuming that the dynamics of the neuron

voltage is much faster than the dynamics of the all the other intrinsic and synaptic currents,
the mean field model for such a type I neuron should also have a square-root nonlinearity.
For example, this is the case for the finite network model in the work of [10]. Thus, one has
to consider nonsmooth bifurcations and bifurcation analysis when working with mean field
systems for type I neurons. The same is true of type II neurons; however, the firing rate
for these neurons changes discontinuously at Irh, and thus it is likely that the mean field
systems for type II neurons would be completely nonsmooth, as opposed to piecewise smooth
continuous.

Through our analysis of the mean field systems for networks of integrate and fire neurons,
we have found a number of nonsmooth bifurcations that, to the best of our knowledge, have
not been previously seen in the literature. These include two co-dimension-one branches of
boundary equilibrium bifurcations that have homoclinic limit cycles at the bifurcation point,
and can be thought of as generating/destroying nonsmooth limit cycles. Additionally, a pairD
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(a) g = g∗ − 1.

(b) g = g∗ + 1.

Figure 11. Using simulations of the slow network (red) to converge to the nonbursting steady state, and
the full network (black) to converge to the stable bursting limit cycle, we can piece together a pseudobifurcation
diagram for the full network of Izhikevich neurons that very closely mirrors the bifurcation diagram predicted
from the nonsmooth mean field equations. Indeed, it appears that the transitions that occur at I = Irh are
well explained as nonsmooth boundary equilibrium bifurcations of the mean variables of the full network. This
suggests the existence of the co-dimension-two nonsmooth saddle-node BEB point for the mean variables of the
actual network as well. Note that the limit cycles have been smoothed out for clarity, and some of the high
frequency oscillations due to synchrony in the peaks have been removed.
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of co-dimension-two bifurcations have also been discovered that result from the collision of
classical smooth branches of bifurcations with nonsmooth bifurcations. These occur when
either a Hopf equilibrium point or a saddle-node equilibrium point collide with a switching
manifold. We have determined locally in a neighborhood of these bifurcation points the
resulting behavior of the system through analytical and numerical results. Finally, a global-
codimension-two bifurcation and a nonsmooth co-dimension-three point that emerged as the
collision of the two co-dimension-two points was also present.

Co-dimension-two nonsmooth bifurcations are comparatively rare in the literature for
both Filippov and PWSC systems; however, some recent work has been done on both classes
of systems. In particular, for PWSC systems, co-dimension-two bifurcations similar to the
Hopf BEB and saddle-node BEB have been analyzed in [13, 14] while in Filippov systems
co-dimension-two collisions have been analyzed in [15].

For PWSC systems, Theorems 3.1 and 3.2 in [13] analyze the collisions between saddle-
node and Hopf bifurcations with persistence/nonsmooth fold bifurcations. It appears that
the Hopf BEB and saddle-node BEB here correspond to nongeneric versions of the non-
smooth Hopf and nonsmooth saddle-node bifurcations in [13]. Indeed, the bifurcation se-
quence and properties are very similar to these other points in generic PWSC systems. The
nonsmooth saddle-node bifurcation involves the intersection of a saddle-node branch at a
persistence/nonsmooth fold transition. Furthermore, the branch intersects tangentially (see
Figure 3.2 in [13]). The nonsmooth Hopf bifurcation in [13] has two unfoldings, with one of
them being a subcritical Hopf bifurcation, followed by a limit cycle grazing and a saddle-node
of limit cycles (see Figure 3.4 b in [13]). Unfortunately, due to the square root at the switch-
ing manifold present in the system we have analyzed, one cannot resort to a straightforward
unfolding. The primary difference between the bifurcations present in our system and the
conventional PWSC systems analyzed in [13] appears to be the homoclinic limit cycles.

Square-root systems in general have a great deal of problems with regards to straightfor-
ward applications of the existing theory. Systems in the form

ṡ = f(s, u) = − s

τs
+

λs

τs
〈Ri(t)〉,(63)

ẇ = g(s, u) = − w

τw
+

λw

τw
〈Ri(t)〉,(64)

〈Ri(t)〉 =
{√

F ′′(v∗(s))
√

I − I∗(s,w), I ≥ I∗(s,w),
0, I < I∗(s,w)

(65)

are clearly piecewise smooth continuous. However, unlike the vast majority of PWSC systems
discussed in the literature, they fail to satisfy one critical constraint that these other systems
have. In normal piecewise smooth continuous systems, given by

ẋ =

{
f1(x) if H(x) ≥ 0,

f2(x) if H(x) < 0,

where f1(x) = f2(x) on H(x) = 0, it is assumed that both f1(x) and f2(x) exist everywhere,
and are smooth. In our system,

√
I − I∗(s,w) only exists when I ≥ I∗(s,w) and its firstD
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derivative only exists when I > I∗(s,w). This renders much of the analysis on PWSC systems
inapplicable. Indeed, this system cannot even be regularized via a Teixeira type regularization
scheme [3] due to the fact that

√
I − I∗(s,w) is undefined when I < I∗(s,w).

However, there are alternate ways to apply both center manifold theory and simultaneously
regularize this system. In particular, consider the three-dimensional system given by

ṡ = − s

τs
+

λs

τs
R,

ẇ = − w

τw
+

λw

τw
R,

εṘ = −R
(
R2 − F ′′(v∗(s))(I − I∗(s,w))

)
,

where ε is a small constant. In this singularly perturbed system, one can show that as ε → 0,
one recovers the nonsmooth system (63)–(65), as when ε is small, we can regard s and w
as fixed, and thus R rapidly converges to the steady states 0, or

√
I − I∗(s,w)

√
F ′′(v∗(s)),

depending on the sign of I − I∗(s,w). In particular, for ε sufficiently small the singularly
perturbed system retains the smooth bifurcations of the nonsmooth system. However, since
the singularly perturbed system is smooth, one can actually check the genericity conditions
of these bifurcations. This approach can be also be thought of as a way of regularizing the
nonsmooth system, by embedding it as the slow subsystem in a singular perturbation problem.
Analysis of the larger smooth system can show how the nonsmooth bifurcations discovered
are related to the general smooth bifurcation theory.

Using this approach, we have found that the Hopf BEB bifurcation corresponds to a Bautin
point under the regularization, and the saddle-node BEB bifurcation point corresponds to a
Bogdanov–Takens point under the regularization. These are both co-dimension-two smooth
bifurcation, and they also explain the emergence of the nonsmooth saddle-node of periodics
in the Hopf BEB, which has a smooth saddle-node of periodics. Additionally, the regularized
Bogdanov–Takens has (generically) a branch of homoclinic bifurcations, which also exists in a
nonsmooth form for the saddle-node BEB. However, as the singularly perturbed system and
its justification as a regularization are outside of the scope of this paper, we leave it for future
work.

In addition to the embedded regularization, this system is also unusual in the sense that
there is a natural regularization for the mean field system. Suppose we consider the voltage
equations to be perturbed by white noise:

(66) v̇i = vi(vi − α)− wi + gs(er − vi) + I + ηi,

where 〈ηi(t)〉 = 0 and 〈ηi(t)ηi(t′)〉 = σ2δ(t− t′). In this case one can rigorously derive a mean
field system for this network of equations which is identical to the original mean field system
given in (18)–(20) only the firing rate is now given by

〈R〉 =
[∫ vpeak

vreset

∫ vpeak

v′
exp

(
− 2

σ2
(M(v′, w, s)−M(v,w, s)

)
dv′dv

]−1

,(67)

where M(v,w, s) is an antiderivative (in v) of F (v) − w + gs(er − v) + I. As we shall do in
forthcoming work [22] one can rigorously show that this expression for 〈R〉 is smooth withD
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respect to s and w, and always defined, and converges to (20) as σ → 0. Thus, the mean field
system for a network with noise parameterized by σ2, the variance in the noise, converges to
the system (18)–(20) as the variance of the noise becomes negligible. But, since the mean
field system with noise is smooth, it can be thought of as a natural regularization for the
nonsmooth mean field system. We remark that this is unusual in the field of nonsmooth
theory as generally a regularization is chosen or suggested, and is typically of the Teixeira
form [3]. We leave the bifurcation analysis of the system with noise for future work.

Finally, one may ask whether the nonsmooth bifurcations we analyze here appear in other
nonsmooth systems or are generic in any way. To the best of our knowledge, the co-dimension-
two bifurcations are novel in the literature, according to a recent review [4]. However, a Hopf-
bifurcation occurring on a discontinuity boundary (a co-dimension-two nonsmooth bifurcation)
does occur in the example (in section 6) in [20] (see Figure 29). However, the system examined
in [20] is a Filippov system, and thus has a higher order of discontinuity.

Appendix A. Proof of Theorem 1. In this section, we will show that the firing rate

〈Ri(t)〉 =
(∫ vpeak

vreset

dv

F (v)− w + gs(er − v) + I

)−1

has a simple asymptotic expansion as I − I∗(s,w) → 0, where I∗ was defined by

I − I∗(s,w) = min
v

{F (v)− w + gs(er − v) + I} .
To prove this, we will effectively be applying Laplace’s method/the saddle-point approxima-
tion. However, as the reciprocal of the firing rate is not specifically a Laplace type integral, we
will have to proceed in a more direct and lengthy fashion. One can also prove this more com-
pactly by assuming the topological equivalence of the quadratic integrate and fire neuron and
a more general model in the vicinity of a saddle-node bifurcation with bifurcation parameter
I − I∗(s,w) [11].

Consider the reciprocal of the firing rate

1

〈Ri(t)〉 =

∫ vpeak

vreset

dv

F (v)− w + gs(er − v) + I

=

∫ vpeak

vreset

dv

I − I∗(s,w) + F ′′(v∗)
2 (v − v∗)2 +

∑∞
n=3

F (n)(v∗)
n! (v − v∗)n

.

To proceed further, we will make a very particular substitution. Let κ = I − I∗(s,w).
Then the substitution

z =
v − v∗√

κ
, dz =

dv√
κ

yields the following:

1

〈Ri(t)〉 =

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

√
κ

κ+ F ′′(v∗)
2 z2κ+

∑∞
n=1

Fn+2(v∗)
(n+2)! (z

√
κ)n+2

dz(68)

=
1√
κ

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

1

1 + F ′′(v∗)
2 z2

1(
1 +

∑∞
n=1

Fn+2(v∗)
(n+2)!

zn+2(
√
κ)n

1+F ′′(v∗)
2

z2

) dz.(69)
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Our next step will be to expand out the second term as a geometric series, but for that we
require ∣∣∣∣∣

∞∑
n=1

Fn+2(v∗)
(n+ 2)!

zn+2(
√
κ)n

∣∣∣∣∣ ≤ 1 +
F ′′(v∗)

2
z2.(70)

For this to be true, we have to restrict the size of |z|. The reason for this is that the domain
of integration is growing like 1/

√
κ. It is clear that if |z| � 1, the condition (70) holds by

default as the leading order term on the left-hand side is z3, while the right-hand side is O(1).
For large |z|, in particular for |z| = O(1/

√
κ), we have another requirement that must hold.

Let M = max{|vpeak − v∗|, |vreset − v∗|}, and 0 < ζ < 1, and assume ζM/
√
κ < |z| < M/

√
κ.

Then condition (70) is satisfied provided that

∞∑
n=1

|Fn+2(v∗)|
(n+ 2)!

(
M√
κ

)n+2

(
√
κ)n ≤ 1 + ζ2

F ′′(v∗)
2!

M2

κ
,(71)

1

κ

∞∑
n=1

|Fn+2(v∗)|
(n+ 2)!

Mn+2 ≤ 1 + ζ2
F ′′(v∗)

2!

M2

κ
.(72)

Now, the dominant terms in the inequality are O(κ−1) as κ � 1. This immediately implies
that we require the following to hold:

∞∑
n=1

|Fn+2(v∗)|
(n+ 2)!

Mn ≤ ζ2
F ′′(v∗)

2!
.(73)

Now, as the left-hand side is a function of M , it can be made sufficiently small to satisfy the
inequality. Additionally, the series on the left is convergent assuming that F (v) is analytic
at v∗. In summary, if the second derivative dominates in a suitably small neighborhood with
a width of M around v∗, the geometric series is convergent. For the neural models we are
considering, this translates to the condition that if vpeak and vreset are suitably close to v∗, the
threshold for firing, and if the second derivative of F is suitably dominant, then the asymptotic
expansion we will derive for the firing rate applies.

Returning to our original integral:

1

〈Ri(t)〉(74)

=
1√
κ

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

1

1 + F ′′(v∗)
2 z2

1(
1 +

∑∞
n=1

Fn+2(v∗)
(n+2)!

zn+2(
√
κ)n

1+F ′′(v∗)
2

z2

) dz
def
=

1

R(κ)

=
1√
κ

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

1

1 + F ′′(v∗)
2 z2

⎛
⎝1−

∑∞
n=1

Fn+2(v∗)
(n+2)! zn+2(

√
κ)n

(1 + F ′′(v∗)
2 z2)

+HOT

⎞
⎠ dz(75)

=
1√
κ

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

dz

1 + F ′′(v∗)
2 z2

− 1√
κ

∞∑
n=1

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

F (n+2)(v∗)zn+2(
√
κ)n

(n+ 2)!(1 + F ′′(v∗)
2 z2)2

dz

+ HOT,D
ow

nl
oa

de
d 

03
/2

8/
16

 to
 1

29
.9

7.
87

.1
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

430 WILTEN NICOLA AND SUE ANN CAMPBELL

where HOT denotes higher order terms. Note that both the first and second terms contain
integrals with divergent boundaries. We will denote the first term by 1/〈R0〉 = 1/φ0(κ),
where φ0(κ) will be used as a gauge function later on in our asymptotic analysis and is merely
the firing rate for a type I normal form. The second term, however, is the first term in the
asymptotic sequence and we need to show that it is O(1). If this is the case, then 1

R(κ) diverges

as κ → 0 as the first term diverges, and the next highest order term in the expansion is O(1).
More formally, if we show that the next highest order term is O(1), then we have

lim
κ→0

R(κ) = lim
κ→0

⎛
⎝ 1√

κ

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

dz

1 + F ′′(v∗)
2 z2 +

∑∞
n=1

Fn+2(v∗)
(n+2)! zn+2

√
κ
n

⎞
⎠

−1

= 0.

The sum of integrals contains integrands that are functions of the form

zm

(1 + az2)2
, m = 3 . . . ,

with a divergent boundary. Now, we’ll need to analyze two cases, m = 3 and m > 3. For
m = 3, we have the following:

∫
F ′′′(v∗)

3!

z3

(1 + F ′′(v∗)
2 z2)2

=
F ′′′(v∗)

3!

(
4

2F ′′(v∗)2(z2F ′′(v∗)2 + 4)
+

2

F ′′(v∗)
log

(
1 +

F ′′(v∗)
2

z2
))

,(76)

which yields the following when evaluated with the region of integration:

=
F ′′′(v∗)

3!

(
4κ

2F ′′(v∗)2((vpeak − v∗)2F ′′(v∗)2 + 4κ)
− 4κ

2F ′′(v∗)2((vreset − v∗)2F ′′(v∗)2 + 4κ)

)

+
F ′′′(v∗)

3!

(
2

F ′′(v∗)

[
log

(
1 +

F ′′(v∗)
2κ

(vpeak − v∗)2
)
− log

(
1 +

F ′′(v∗)
2κ

(vreset − v∗)2
)])

= O(κ) +
F ′′′(v∗)

3!

2

F ′′(v∗)
log

(
2κ+ F ′′(v∗)(vpeak − v∗)2

2κ+ F ′′(v∗)(vreset − v∗)2

)
= O(κ) +O(1).

Thus, the dominant term is O(1). For m > 3, we have

1√
κ

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

F (n+2)(v∗)zn+2(
√
κ)n

(n+ 2)!(1 + F ′′(v∗)
2 z2)2

dz, n > 2.(77)

The reason why we have a critical split is because for m ≥ 4, the numerator overpowers theD
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denominator on a region of integration that diverges. However, the integral is in fact bounded:∣∣∣∣∣ 1√
κ

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

F (n+2)(v∗)zn+2(
√
κ)n

(n+ 2)!(1 + F ′′(v∗)
2 z2)2

dz

∣∣∣∣∣
≤ 1√

κ

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

|F (n+2)(v∗)||z|n+2(
√
κ)n

(n+ 2)!(1 + F ′′(v∗)
2 z2)2

dz

≤ 2√
κ

∫ M/
√
κ

0

|F (n+2)(v∗)|zn+2(
√
κ)n

(n+ 2)!(1 + F ′′(v∗)
2 z2)2

dz

≤ 2√
κ

∫ M/
√
κ

0
4
|F (n+2)(v∗)|zn+2(

√
κ)n

(n+ 2)!(F ′′(v∗)z2)2
dz(78)

=
8√
κ

∫ M/
√
κ

0

|F (n+2)(v∗)|zn−2√κ
n

(n+ 2)!F ′′(v∗)2
dz(79)

=
8√
κ

F (n+2)(v∗)
√
κ
n

(n+ 2)!(n − 1)F ′′(v∗)2
Mn−1

√
κ
n−1(80)

= 8
F (n+2)(v∗)Mn−1

(n + 2)!(n − 1)F ′′(v∗)2
.(81)

Finally, putting it all together we have∣∣∣∣∣ 1√
κ

∞∑
n=1

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

F (n+2)(v∗)zn+2(
√
κ)n

(n+ 2)!(1 + F ′′(v∗)
2 z2)2

dz

∣∣∣∣∣
≤
∣∣∣∣2!F ′′′(v∗)
3!F ′′(v∗)

log

(
2κ+ F ′′(v∗)(vpeak − v∗)2

2κ+ F ′′(v∗)(vreset − v∗)2

)∣∣∣∣
+ O(κ) +

2

F ′′(v∗)2

∞∑
n=2

F (n+2)(v∗)Mn−1

(n+ 2)!(n − 1)
,(82)

which, under generic assumptions about the growth of the magnitude of F (n+2)(v∗), we know
the last term converges for sufficiently small M . Thus, we have

lim
κ→0

R(κ) = lim
I−I∗(s,w)→0+

〈Ri(t)〉 = 0.

To simplify the asymptotic argument, let

K =
2

F ′′(v∗)2

∞∑
n=2

F (n+2)(v∗)Mn−1

(n+ 2)!(n − 1)
+

∣∣∣∣2!F ′′′(v∗)
3!F ′′(v∗)

log

(
F ′′(v∗)(vpeak − v∗)2

F ′′(v∗)(vreset − v∗)2

)∣∣∣∣ ;
that is, K is all the O(1) components in (82) which is the leading order term. We define our
gauge function φ0(κ) as

φ0(κ) =

[
1√
κ

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

dz

1 + F ′′(v∗)
2 z2

]−1

=
√
κ

[∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

dz

1 + F ′′(v∗)
2 z2

]−1
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and recall R(κ) = 〈Ri(t)〉. Then we have

|R(κ) − φ0(κ)| = |R(κ)||φ0(κ)|

∣∣∣∣∣∣∣
1√
κ

∫ (vpeak−v∗)/
√
κ

(vreset−v∗)/
√
κ

∑∞
n=1

Fn+2(v∗)
(n+2)! (z

√
κ)ndz(

1 + F ′′(v∗)
2 z2

)2 +HOT

∣∣∣∣∣∣∣
≤ |R(κ)|φ0(κ)| |K +HOT | .(83)

From (83), we immediately have

lim
κ→0

|R(κ)− φ0(κ)|
|φ0(κ)| ≤ lim

κ→0
|R(κ)|(K +HOT ) = 0.(84)

But if we explicitly integrate our gauge function we have the following:

φ0(κ) =

√
F ′′(v∗)κ

2

1

arctan

(
(vpeak − v∗)

√
F ′′(v∗)

2κ

)
− arctan

(
(vreset − v∗)

√
F ′′(v∗)

2κ

)(85)

∼ 1√
2π

√
F ′′(v∗)κ+O(κ)(86)

and this concludes the proof that

〈Ri(t)〉 ∼ 1√
2π

√
F ′′(v∗(s))

√
I − I∗(s,w) as I − I∗(s,w) → 0.

Appendix B. Proof of Theorem 2. For the most part, the proof follows largely from the
derivation originally in [1] and is also similar to the large time scale limit taken in [18].

The system we are considering is

∂

∂t
ρV (v, t) = − ∂

∂v
[G(v, s, w)ρV (v, t)] ,(87)

s′ = − s

τs
+

λs

τs
G(vpeak, s, w)ρV (vpeak, t),(88)

w′ = − w

τw
+

λw

τw
G(vpeak, s, w)ρV (vpeak, t),(89)

where G(v, s, w) = F (v)−w+gs(er −v)+I and the assumptions on F (v) and v∗ are identical
to Theorem 1. The system has steady state(s) given by

ρV (v, t) =
〈R〉

G(v, s, w)
,(90)

s = λs〈R〉,(91)

w = λw〈R〉,(92)

1

〈R〉 =

∫ vpeak

vreset

dv

G(v, s, w)
.(93)
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The existence of solutions to (90)–(93) is dealt with in section 3. It is somewhat easier to
derive the spectral equation if we consider the PDE for the distribution function, instead of
the density function. The distribution function PDE is given by

∂P (v, t)

∂t
= −G(v, s, w)

∂P (v, t)

∂v
+G(vpeak, s, w)

∂P (v, t)

∂v

∣∣∣∣
v=vpeak

.(94)

Now, to simplify the steady state, we will apply the Abbott–Vreeswijk transform:

y =

∫ v

vreset

〈R〉
G(v′, λs〈R〉, λw〈R〉) dv

′ = η(v).(95)

This transformation is invertible provided that G(v, λs〈R〉, λw〈R〉) > 0 for all v ∈ [vreset, vpeak].
That is, we are assuming we are in the tonic firing region of the parameter space. The resulting
system is

∂P (y, t)

∂t
= − 〈R〉G(η−1(y), s, w)

G(η−1(y), λs〈R〉, λw〈R〉)
∂P (y, t)

∂y
+

〈R〉G(vpeak, s, w)

G(vpeak, λs〈R〉, λw〈R〉)
∂P (y, t)

∂y

∣∣∣∣
y=1

,

s′ = − s

τs
+

λs

τs

〈R〉G(vpeak, s, w)

G(vpeak, λs〈R〉, λw〈R〉)
∂P (y, t)

∂y

∣∣∣∣
y=1

,

w′ = − w

τw
+

λw

τw

〈R〉G(vpeak, s, w)

G(vpeak, λs〈R〉, λw〈R〉)
∂P (y, t)

∂y

∣∣∣∣
y=1

.

Note that the steady state distribution function after performing the Abbott–Vreeswijk trans-
form is merely P (y) = y. Now let P (y, t) = y+εy(y, t), s(t) = λs〈R〉+εs(t), w = λw〈R〉+εw(t).
Then ε(1, t) = ε(0, t) = 0 for all t > 0 to satisfy the boundary conditions. Substituting this
expansion into the equations gives

∂εy(y, t)

∂t
= −〈R〉G(η−1(y), λs〈R〉+ εs(t), λw〈R〉+ εw(t))

G(η−1(y), λs〈R〉, λw〈R〉)

(
∂εy(y, t)

∂y
+ 1

)
(96)

+
〈R〉G(vpeak, λs〈R〉+ εs(t), εw(t) + λw〈R〉)

G(vpeak, λs〈R〉, λw〈R〉)

(
∂εy(y, t)

∂y
+ 1

) ∣∣∣∣
y=1

= L1(εy(y, t), εs(t), εw(t)),

ε′s(t) = −εs(t)

τs
+

〈R〉λs

τs

(
gεs(t)(er − vpeak)− εw(t)

G(vpeak, λs〈R〉, λw〈R〉)

)(
1 +

∂εy(y, t)

∂y

∣∣∣∣
y=1

)
(97)

+
〈R〉λs

τs

∂εy(y, t)

∂y

∣∣∣∣
y=1

= L2(εy(y, t), εs(t), εw(t)),

ε′w(t) = −εw(t)

τw
+

〈R〉λw

τw

(
gεs(t)(er − vpeak)− εw(t)

G(vpeak, λs〈R〉, λw〈R〉)

)(
1 +

∂εy(y, t)

∂y

∣∣∣∣
y=1

)
(98)

+
〈R〉λw

τw

∂εy(y, t)

∂y

∣∣∣∣
y=1

= L3(εy(y, t), εs(t), εw(t)).
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Note that

L(εy(y, t), εs(t), εw(t)) =

⎛
⎝L1(εy(y, t), εs(t), εw(t))
L2(εy(y, t), εs(t), εw(t))
L3(εy(y, t), εs(t), εw(t))

⎞
⎠

is an operator on the Banach space Ω = L2[0, 1]×R
2. The linearization of the system (96)–(98)

about 0 is determined by Frechet derivative of the operator L. It is straightforward to show
that the linearization is DL(0) defined by

DL1(0)h = −〈R〉
(
∂h1(y)

∂y
− ∂h1(y)

∂y

∣∣∣∣
y=1

)

− 〈R〉
(

gh2(er − η−1(y))− h3

G(η−1(y), λs〈R〉, λw〈R〉) −
gh2(er − vpeak)− h3

G(vpeak, λs〈R〉, λw〈R〉)

)
,

DL2(0)h = −h2
τs

+
〈R〉λs

τs

(
gh2(er − vpeak)− h3

G(vpeak, λs〈R〉, λw〈R〉)

)
+

〈R〉λs

τs

∂h1(y)

∂y

∣∣∣∣
y=1

,

DL3(0)h = −h3
τw

+
〈R〉λw

τw

(
gh2(er − vpeak)− h3

G(vpeak, λs〈R〉, λw〈R〉)

)
+

〈R〉λw

τw

∂h1(y)

∂y

∣∣∣∣
y=1

.

Now, we can proceed to determine the spectrum of eigenvalues for this linear operator, i.e.,
the complex numbers μ such that

DL(0)h = μh.

Defining

A(y) =
g(er − η−1(y))

G(η−1(y), λs〈R〉, λw〈R〉) ,(99)

B(y) =
−1

G(η−1(y), λs〈R〉, λw〈R〉) ,(100)

we can write the eigenvalue problem as

μh1(y) = −〈R〉(h′1(y)− h′1(1)) − 〈R〉[h2(A(y)−A(1)) + h3(B(y)−B(1))],(101)

μh2 = −h2
τs

+
〈R〉λs

τs

(
h2A(1) + h3B(1) + h′1(1)

)
,(102)

μh3 = −h3
τw

+
〈R〉λw

τw

(
h2A(1) + h3B(1) + h′1(1)

)
.(103)

Note that the solution must satisfy the boundary conditions h1(0) = h1(1) = 0. Solving (101)
for h1(y) and using h1(0) = 0 yields

h1(y)e
yμ/〈R〉 =

〈R〉
μ

(eyμ/〈R〉 − 1)(h′1(1) + h2A(1) + h3B(1))

−
∫ y

0
ey

′μ/〈R〉(h2A(y′) + h3B(y′)) dy′.
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Applying the condition h1(1) = 0 then determines h′1(1):

h′1(1) =
μ

〈R〉(e
μ/〈R〉 − 1)−1

∫ 1

0
ey

′μ/〈R〉(h2A(y′) + h3B(y′)) dy′ − h2A(1)− h3B(1).

This allows us to solve for the first component of the eigenfunction:

h1(y) =

(
eyμ/〈R〉 − 1

eμ/〈R〉 − 1

)∫ 1

0
e(y

′−y)μ/〈R〉(h2A(y′) + h3B(y′)) dy′

−
∫ y

0
e(y

′−y)μ/〈R〉(h2A(y′) + h3B(y′)) dy′.

Defining

Â(μ) =

∫ 1

0
ey

′μ/〈R〉A(y′) dy′,

B̂(μ) =

∫ 1

0
ey

′μ/〈R〉B(y′) dy′,

and using the expression for h′1(1), we have

h2

(
μ+

1

τs
− μλs

τs(eμ/〈R〉 − 1)
Â(μ)

)
+ h3

(
−μλs

τs(eμ/〈R〉 − 1)
B̂(μ)

)
= 0,

h2

(
− μλw

τw(eμ/〈R〉 − 1)
Â(μ)

)
+ h3

(
μ+

1

τw
− μλw

τw(eμ/〈R〉 − 1)
B̂(μ)

)
= 0,

or

M(μ)

(
h2
h3

)
= 0.

For nontrivial eigenfunctions we require detM(μ) = 0, which yields the spectral equation:
(104)(

eμ/〈R〉 − 1
)(

μ+
1

τs

)(
μ+

1

τw

)
−
(
μ+

1

τs

)(
λw

τw
μB̂(μ)

)
−
(
μ+

1

τw

)(
λs

τs
μÂ(μ)

)
= 0.

This determines the eigenvalues, μ, of the linear operator Dh(0), and thus the stability of the
steady state solution to (90)–(93).

Previously, we derived the mean field system of differential equations via a perturbation
argument. We assumed that τ−1

w = ε was small, and τs = τwγ, where γ = O(1). Applying the
same assumptions here yields spectral equation(

eμ/〈R〉 − 1
)(

μ+
ε

γ

)
(μ+ ε)−

(
μ+

ε

γ

)
ελwμB̂(μ)− λs

γ
(μ+ ε) εμÂ = 0.

We look for perturbation solutions to this system, μ = μ0 + εμ1. The O(1) problem is
immediately resolvable:

μ2
0(exp(μ0/〈R〉)− 1) = 0,D
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which has solutions μ0 = 0 with multiplicity 2, and μ0 = 2nπi〈R〉. Let us first consider the
μ0 = 0 solution, i.e., μ = εμ1. Then μ1 satisfies

ε3

(
μ1

〈R〉 +O(ε)

)(
μ1 + γ−1

)
(μ1 + 1)− ε3

(
μ1 + γ−1

)
μ1λwB̂(μ1ε)− ε3(μ1 + 1)γ−1λsμ1Â(μ1ε).

We need to determine the leading order behavior of

Â(μ1ε) =

∫ 1

0
eεy

′μ1/〈R〉A(y′) dy =

∫ 1

0
A(y′) dy′ +O(ε),(105)

B̂(μ1ε) =

∫ 1

0
eεy

′μ1/〈R〉B(y′) dy =

∫ 1

0
B(y′) dy′ +O(ε).(106)

Undoing the substitutions we had before yields the following:∫ 1

0
A(y′) dy′ =

∫ 1

0

g(er − η−1(y′))
G(η−1(y′)λs〈R〉, λw〈R〉) dy

′(107)

= 〈R〉
∫ vpeak

vreset

g(er − v)

G(v, λs〈R〉, λw〈R〉)2 dv,(108)

∫ 1

0
B(y′) dy′ =

∫ 1

0

1

G(η−1(y′), λs〈R〉, λw〈R〉) dy
′(109)

= 〈R〉
∫ vpeak

vreset

−1

G(v, λs〈R〉, λw〈R〉)2 dv
′.(110)

Recalling the definition (93) of 〈R〉 yields∫ 1

0
A(y′) dy′ =

1

〈R〉
∂〈Ri(t)〉

∂s

∣∣∣∣
(λs〈R〉,λw〈R〉)

,(111)

∫ 1

0
B(y′) dy′ =

1

〈R〉
∂〈Ri(t)〉

∂w

∣∣∣∣
(λs〈R〉,λw〈R〉)

.(112)

Collecting all the O(ε3) terms in the equation for μ1 we have

μ1

〈R〉 (μ1 + γ−1)(μ1 + 1)− μ1

〈R〉λw(μ1 + γ−1)
∂〈R〉
∂w

− γ−1λs
μ1

〈R〉 (μ1 + 1)
∂〈R〉
∂s

= 0

or, equivalently,

(μ1 + γ−1)(μ1 + 1)− λw(μ1 + γ−1)
∂〈R〉
∂w

− γ−1λs(μ1 + 1)
∂〈R〉
∂s

= 0.(113)

The above is the characteristic polynomial for the Jacobian of the mean field system of equa-
tions given by (18)–(20) when we back substitute for μ1 = μ/ε + O(ε). Thus, we know that
two solutions for μ1 are equivalent to the mean field eigenvalues for the steady state up to
O(ε).D
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Now, consider μ0 = 2nπi〈R〉. In this case, the O(ε) problem is

−4n2π2μ1〈R〉+ 4n2π2〈R〉2λwB̂(2nπi) + 4n2π2〈R〉2λsγ
−1Â(2nπi) = 0.

Solving gives

μ1 = 〈R〉λwB̂(2nπi〈R〉) + 〈R〉γ−1λsÂ(2nπi〈R〉)
= λw〈R〉

∫ 1

0
e2nπiy

′
B(y′) dy′ + 〈R〉γ−1λs

∫ 1

0
e2nπiy

′
A(y′) dy′

= 〈R〉γ−1

∫ 1

0
e2nπiy

gλs(er − η−1)(y)− γλw

G(η−1(y), λs〈R〉, λw〈R〉) dy.

Provided that the real components of μ1 are negative, then the mean field system forms a
stable slow manifold that the solutions of the PDE system converge to assuming that 〈R〉 > 0.
Consider the case when G(v, s, w) is for a network of Izhikevich/quadratic integrate and fire
neurons:

G(v, λs〈R〉, λw〈R〉) = I − I∗(λs〈R〉, λw〈R〉) + F ′′(v∗)
(v − v∗)2

2!

= κ+ F ′′(v∗)
(v − v∗)2

2!
,

y = η(v) =

∫ v

vreset

〈R〉dv′
κ+ F ′′(v∗) (v−v∗)2

2!

= 〈R〉
√

2

F ′′(v∗)κ

[
arctan

(
(v − v∗)

√
F ′′(v∗)
2κ

)

− arctan

(
(vreset − v∗)

√
F ′′(v∗)
2κ

)]
,

v = η−1(y) = v∗

+

√
2κ

F ′′(v∗)
tan

[
1

〈R〉

√
κF ′′(v∗)

2
y + arctan

(
(vreset − v∗)

√
F ′′(v∗)
2κ

)]

= v∗ +

√
2κ

F ′′(v∗)
tan(Cy +D),

G(η−1(y), λs〈R〉, λw〈R〉) = κ+
F ′′(v∗)

2

2κ

F ′′(v∗)
tan(Cy +D)2

= κ(1 + tan2(Cy +D)),

C =
1

〈R〉

√
κF ′′(v∗)

2
= arctan

(
(vpeak − v∗)

√
F ′′(v∗)
2κ

)

+ arctan

(
(v∗ − vreset)

√
F ′′(v∗)
2κ

)
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∼ π −
√

2κ

F ′′(v∗)

(
1

vpeak − v∗
+

1

v∗ − vreset

)
, κ → 0,

D = − arctan

(
(v∗ − vreset)

√
F ′′(v∗)
2κ

)

∼ −π

2
+

√
2κ

F ′′(v∗)
1

v∗ − vreset
, κ → 0.

The sign of the real part of μ1 can be determined by

Re(μ1) = 〈R〉γ−1

∫ 1

0

cos(2nπy′)
(
gλsγ

(
er − v∗ −

√
2κ

F ′′(v∗) tan(Cy′ +D)
)
− λw

)
κ(1 + tan2(Cy′ +D))

dy′

=
H1(C,D)

κ

(
gλsγ(er − v∗)− λw

−2n2π2 + 2C2

)
+

H2(C,D)√
κ

(
gγλs

(−2nπ2 + 2C2)
√

F ′′(v∗)

)

H1(C,D)(114)

= 2C

(
cos(C)2 sin(D) cos(D) +

(
cos(D)2 − 1

2

)
sin(C) cos(C)− sin(D) cos(D)

)

H2(C,D) = 2
√
2C

((
cos(D)2 − 1

2

)
cos(C)2 − 1

4
sin(2C) sin(2D)− cos(D)2 +

1

2

)
.

Provided that H1(C,D) > 0, then μ1 < 0 if κ � 1 and the quantity g(er − v∗(0))λs − γλw =
(er−v∗(0))λs(g− ḡ) > 0. For the theta neuron (vpeak = ∞, vreset = −∞), when the quantities
H1 and H2 are evaluated at D = −π/2 and C = π one obtains H1 = H2 = 0, and one has to
compute a higher order perturbation to resolve this as the O(ε) contribution is 0. For all the
other neuron models, however, H1(C,D) > 0 when C < π and D > −π

2 locally near C = π
and D = −π

2 which is precisely the case when one expands C and D asymptotically.
This implies that for the quadratic integrate and fire neuron, with vpeak < ∞ and vreset >

−∞, as I − I∗(s,w) → 0+, and τw, τs � 1, the mean field system of equations forms a finite
dimensional stable slow manifold if g > ḡ. Note that to lowest order, if one replicates the
asymptotic analysis of integrals in the proof of Theorem 1 for the Fourier coefficients of A(y)
and B(y), we arrive at the same quantities for the more general neuron types (AdEx, etc.)
that we have considered (to lowest order).
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