AllP

| This manuscript was accepted by Chaos. Click here to see the version of record. |
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We consider networks of N identical oscillators with time delayed, global circulant
coupling, modeled by a system of delay diﬂ"erentialé% s with Z symmetry.
We first study the existence of Hopf bifurcations @; by the coupling time delay,
and then use symmetric Hopf bifurcation theofy t6 detezmine how these bifurcations
lead to different patterns of symmetric cﬁr illgions. We apply our results to

a case study: a network of FitzHugh-Na 0 ﬁ'aurons with diffusive coupling. For

this model, we derive the asymptotig sta 'ty‘,‘global asymptotic stability, absolute
instability, and stability switches okq.ﬂibrium point in the plane of coupling
time delay (7) and excitability pa M(a). We investigate the patterns of cluster
oscillations induced by the ti e\cyelng, and determine the direction and stability of

the bifurcating periodic c&& employing the multiple time scales method and
1

normal form theory. %& in the region where stability switching occurs, the
em can

dynamics of the syst switched from the equilibrium point to any symmetric

cluster oscillationyand back to equilibrium point as the time delay is increased.
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Publishing< lustering is a type of oscillatory network behaviour where elements of the
network separate into groups. Elements within a group oscillate synchronously;
elements in different groups maintain a fixed phase difference. We show, for a
general neural network model with time delayed coupling, how certain cluster
solutions arise due to the symmetry of the network. We (ggve explicit formulae
for the time delays at which the cluster solutions ari F)Ijn case study of a

particular model we show how time delays in the coupli etween neurons can

give rise to switching between different stable CI{T\%NH ns, coexistence of

multiple stable cluster solutions and solutions with inultiple frequencies. This
—

work gives a possible mechanism for the cre@ ifferent rhythms by the

same network in the brain — different cliister solutions give rise to different

network frequencies.

I. INTRODUCTION C —

Coupled oscillators arise in a arie?f\areas including engineering, biology and chem-
istry. Specific examples include r&\a’\@ works™?, laser arrays®*, flashing of fireflies®, and
movement of a slime mode®. On e prevalent behaviours of coupled oscillator systems
is phase locking, a staf, W‘%Sthe elements in the system oscillate with some fixed phase
difference. There is aflarge literature on synchronization, where the phase difference between
any two oscillatop is zero, (éee, e.g., the review paper of Dérfler and Bullo” and references
therein). How: Vcrwronization is just one of many possible phase-locked solutions that
can occur i upled oscillator systems. Further, synchronization is not always a desirable

state®. stefing 18.a type of phase locking behavior where the oscillators in a network sep-

arate into groups where each group consists of fully synchronized oscillators, and different

groups age phase—locked with nonzero phase difference.”!’. Symmetric clustering refers to
t%&ion where all the groups are the same size.

Slr}\realistic coupled systems, there are time delays in the connections between individual
os¢illators due to the time for information to propagate from one element to the other. In
neural networks, this delay is attributed to the transmission of electric activity along an
axon or dendrite, or across a synapse. In recent years, there has been considerable research

studying clustering in systems with time delays using a variety of techniques. Phase model


http://dx.doi.org/10.1063/1.5006921

! I P | This manuscript was accepted by Chaos. Click here to see the version of record. |

Publishimglysis can be used in the case where the uncoupled elements are intrinsically oscillating
and the coupling is weak!! 5. Alternatively, the stability of cluster solutions can be analyzed
directly using Floquet theory and the properties of the connection matrix!®2!. When the
uncoupled elements are not oscillatory, the emergence of in-phase and anti-phase (1-cluster

and 2-cluster) solutions in two cell networks has been studied by P(furcation analysis?? 25,

In many cases, cluster solutions occur in networks of couple illaters with symmetry.

nary differential equations and later extended by Wu?" to

Symmetric bifurcation theory was first developed by Golubitgky et 4l.2% for systems of ordi-
emsSwyith time delays. The key

point in such symmetric bifurcation theories is that the pattetns-ef bifurcated equilibria and
—

typical oscillators can be predicted in terms of their s 1metr§5. here has been great interest
in applying these results to artificial neural netvﬁi? m

nearest neighbour coupling)®*®73°. However, liw b‘e)n done on more general neural os-

0 with Dy symmetry (especially
L -

cillator models or on systems with other symumetrigs. A notable exception is the work of
Song and Xu* who use symmetric bi rcjxmeory to study the existence of 1-cluster
and 2-cluster solutions in a two cell etw%?EfNF‘itzHugh-Nagumo neurons. Further, Buono
et al.3¢ studied rings of delay-coupled rswith unidirectional and bidirectional coupling.

]&\KC ssify symmetric compound laser modes (CLMs)
according to isotropy subgroups,\“&qrther study the symmetry-breaking bifurcations from

They use group-theoretic techniq

maximally symmetric soltttions. We note also the related work of Blyuss et al.3" 3% which
uses symmetric bifu atiomry to study the cluster solutions arising in various disease
models. / y.

In this paperé restigate how symmetric bifurcation theory can help predict the cluster

IQ)ccurrmg in time delayed neural oscillator systems. We consider a network

periodic soluti
of arbitraly size with arbitrary oscillators and time delayed, global circulant coupling. The

general mod 's‘és follows

o 5 z, t) :F(Xi(t))Xi(t_TS)>+ZwijG<Xi(t>7Xj(t_T))7 i=1,--- N, (1>
j=1
wr& ; denotes the variables of a m-dimensional subsystems, 7, is the self-feedback delay,
a

T is the coupling time delay between different nodes. F' and G are smooth functions that
describe the internal and coupling behavior of the subsystems, respectively. We will focus on
models that are relevant to neural networks. Denote W = (w;;) = circ(wo, wq, -+ ,wn_1).

In particular, we take wy = 0, all w; to be positive and w; # wj, if ¢ # j. As we show below,

3
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Publishitig structure of W means that the system has Zy symmetry.

The rest of this paper is organized as follows. In section II, we determine the critical
values of the delay in (1) which lead to Hopf bifurcation. In section III, we investigate the
synchronization patterns of the periodic solutions generated by the Hopf bifurcations using
the symmetric local Hopf bifurcation theory for delay differential gquations. In section IV,
we apply the results obtained in previous sections to a parti leaex le: a FitzHugh-

multiple time scales to

Nagumo network with diffusive coupling. We use the metho

determine the stability of bifurcating periodic solutions a ompare the theoretical results
with numerical simulations for specific parameter Values“n

gﬁ—c
II. HOPF BIFURCATIONS INDUCED BY T OUPLING TIME

DELAY D

Let E* = (X{,--- ,X}) be a Symmetr'}eq\ﬂ\&b:ium point of (1). That is, X; = --- =
Xy = X* where X* satisfies F/(X*, FWE(X*, X*) = 0 with @ = Y5 wi. The
linearization of (1) about E* is given % ~

=1

X! = A1 X(t) +@) + ZwijBXj(t —7),i=1,---,N. (2)

Here A;, Ay are the J oﬁ%matrix of F(X;, Xi(t — 7)) + Zjvzl wi;G(X;(t), X;(t — 1))
with respect to X, )
GX;(t), X;(t—7)) w /resyect to X;(t — 1), evaluated at £*. Therefore, the characteristic

matrix of the 'r%:rl\@t\ion

M — A — Aye™ s —e Mw, B ce —e Mwy_1B

_)‘TU}N_lB N — A — AQG_)\TS s —6_)‘TUJN_2B

/ —e€
Q 4 | | | .
- 3 —eiATwlB —e*’\ngB e M — Al — AQGiATS

whe )s the m x m identity matrix. Note that M(A,7) is a block circulant matrix. We

i(t =), /Jevaluated at E*, respectively. B is the Jacobian matrix of

—~

2) is given by

} this structure, inspired by the work of?>9, to simplify the characteristic equation.
ecall that X\ is a root of the characteristic equation if and only if Ker M(A,7) is

nonempty, i.e., there is a non-zero vector F such that
M\ T)E =0. (3)

4
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Publishihg: p be any N-th root of unity, that is
p e {PO;PIV" apN—l}a and Pk :eizﬁﬂka k :Oa]-?"' 7N_ L.

Let £ € R™. Then the compound vector

Ho= A — Ay — Age™ — ekf(%&fe e 4wy N Y)B.

Using the form of the vectors E with ‘\Q =0,...,N — 1, then shows that the

characteristic equation of the linearization.(2)\s

A(N, T) =det X)) = Ap(N\,7) =0, (4)
where \k\

= det(\ — A} — Age™™ — 75, B). (5)
Here 0;, = Z;V:_ll
Define 6, = J/ Ote that dy_p = Oy

)
an
1e paper we will focus on the case of neural oscillators that can be written

For the reQ
in the form:
Q/ ;
Q V! = Fy (Vi Vilt — 1), Ui(t) + 3wy GVi(h), Vit — 7))

Ul = Fy(Vi,Ui(t)
)

wr& e variable V; € IR corresponds to the voltage and the variables U; € IR™™! corre-
s

;- , N — 1, are eigenvalues of the connectivity matrix W.

nd to gating and other variables (such as intracellular ionic concentrations). This includes

2841 and networks of

artificial neural networks with delayed self feedback as considered in
conductance based models, such as those we consider in section IV. Since the connectivity

is always through the first variable in these models, the matrix B in (2) has all components

5
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Publishifg:cept the By ;. In this situation we can describe explicitly how coupling delay gives rise
to Hopf bifurcations.

Suppose that the characteristic equation has a pair of pure imaginary eigenvalues. Specif-

ically, for some value of 7, let iwy be a root of Ag(A, 7) for some k € {0,1,--- N —1}. In

this situation we have /

Ak(iwk, 7') = L(zwk) + H(iwk)éke_iw”. 5\
Separating into real and imaginary parts we have \
i

(Hray, — HiB) cos(wiT) + (Hroy + HrBx

~ (6)
(H]Oék + HR/BIC) COS(wkT) — (HROék — ]ﬂk) S'SI

where Ly, L;, Hr, H; denote the real and imagéa-fy p%r s of L(iwy), and H (iwy,), respec-
tively. Note that Lg, Hg are even functions oqugﬂu 7, H; are odd. Squaring and adding

the above two equations yields \

L+ 13 — (B H8Y(ad + ) = 0. (7)
There are several possibilities. 15\,1: coxmplex, and then Ag(A,7) has a root iw, and
An_k(A, 7) has a root —iwy, cdrigsponding to the roots £wy of (7). If 0y is real, then Ag (A, 7)
has a pair of pure imaginary root wwy,) corresponding to the roots +wy, of (7). This is the

case for k =0 and k = ()f-oh%Seven). If 6y is real and k # 0, % then Ag(A\, 7) = An_x(A, T)
and both have a paQ): maginary roots (£iwy), thus A(A, 7) has a repeated pair of
1iS

pure imaginary %ts. ﬁill occur, for example, if the connection matrix W is symmetric
as well as cir nt. all cases, it is enough to consider Ai(\,7), k = 0,1,..., L%J to

determine all thefroots of A(\, 7) with pure imaginary real parts.

Provi ihat );k exists, (6) may be solved for the corresponding value of 7

ﬂ
1 —Lg
N 2mi — U+ ,if Ly >0
-\Q¥ “k( S arceos(\/(H%JrH?)(ai +ﬁ£))> o

1 . —Lpg .
k’ = o ((27T(] + 1) — 9y, — arccos( N ﬁ]%))), if Ly <0
<

ith

Uy, = arg(H (iw)dg ).

We now have the following result.
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PublishiT@corem II.1. Assume that the characteristic equation (4) has a simple pair of pure imag-
inary roots tiwy, when T = Ty, ; as defined in (8), and all other roots A\ satisfy A\ # lwy, for

any integer [. Assume
| L(iw)[Hr(w) Hp(w) + Hi(w)Hj(w)] - ‘H(w)|2[LR(W>LIR((’U7L1(W)L,I<W)] 7# 0.

Then, (1) undergoes a Hopf bifurcation near the equilibrium p nf\i*\aﬁach critical value

Proof. Straightforward calculations show that Q‘_\
&

T=1k,j

if and only if \ g:_)
| L(iw)|*[HR(w) H(w) + Hi(w)H] )]\‘\(fﬁ’?lz[LR(W)L’R(W) + Li(w) Ly (w)] # 0.

The result then follows from the st H'e)d pf bifurcation theorem for delay differential

Re

dA(T)
dr

N
equations*?. \\ O
III. PATTERNS OE BIF&A’I‘ING PERIODIC SOLUTIONS

In this section, we in)(es igate the patterns of periodic solutions arising in the Hopf bi-

furcation descri?!d aboye. £ To do this, we must reformulate (1) and study its symme-

try. Set wu(t) X1, -, Xn(t)T and define uy (V) = u(t + ), for 9 € [-7,0]. Let
u; € C = @([=¢f0],R™"), the Banach space of continuous mapping from [—7,0] to R™Y
equippe SI?I“ mum norm. Then (1) can be rewritten

ﬁ

) (1) = h(w) (9)

NS (6) = Fln0) 6(—7)) + 3w Galn(0), 5(—) (10

withi=Im+k, 1=0,...,N—1, k=0,...,m— 1. Similarly, the linearization (2) may be
rewritten

W) = L(T)u (11)
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Publishingcre
L(1)¢ = (A1 ® L;,)$(0) + (A2 ® L) $(—7) + (W @ B)g(—T) (12)

where [, is the m x m identity matrix, and “® ” represents the Kronecker product of

matrices. From standard theory*?, this linear system generates a jt/rmgly continuous semi-

rw
A(T)¢ = $, ¢ € Dom(A)
Dom(A(7)) = {¢ € C : ¢ € C,(0) N
Let ' be a group acting on R™V. Tt follows that (9)%s [-equivariant if h(yu;) = vh(uy)
for all v € T?527. From (10), the symmetry of &18 eter}wmed by the symmetry of the

group of linear operators on C with infinitesimal generator, A, de

connection matrix W. We will focus on the cagseSghere ¥/ is circulant but does not possess

any other symmetry. Thus we consider I' =Z y, c&‘t’hc group of order N, with generator
7, where the action of Zy on R™ is give \

(yu); = i, Z—mmod Nm,

where u; is the ith component ofg\\ it is easy to verify that both (9) and (11) are Zy
equivariant. \\h

Suppose that when 7= 7 ; characteristic equation (4) has a pair of pure imag-
inary roots, +iwy, witlisgorresponding vectors, &;,&, € Ker M(iw, 7y ), as described in

the previous sectior, Thén %,j) has eigenvalues +iwy and the corresponding generalized

eigenspace, Uy, {isgpanned by the eigenfunctions Re(e™+¢; ), Tm(e™r0¢;,)2742,

Lemma ILI. )35ume that for one and only one k € 0,2,..., L%J and some j € 7§,

T =Tp; 20 a6 defined in (8), i.e., the characteristic equation (4) has a simple pair of pure

z'mag1@3 4@'(%. Then
o dim Ker M

W.Khe restricted action of Zy on Ker M(iwy, 7y ;) is isomorphic to the action of Zy on
R

(:I:iwk, Tk,j) = 2,

Proof. Tt follows from the discussion of the previous section that
Ker M(iwg, 7i.7) = {(y1 + 192)&: y1, 92 € R}

8
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Publishi_‘ﬁgrther, R is an absolutely irreducible representation of Zy2%. Define .J : Ker M (iwy, T j) =

R? as
J((yr + iy2)ér) = (y1,52)"

Clearly, J is a linear isomorphism. Note that

Y((y1 +iy2)&r) = (y1 + iy2)y

Consequently \

Tr((y1 + iy2)&)] )
This completes the proof. O]
Let T = i—:, and denote by Py the Banach contmuous T-periodic mappings,

when 7 = 73, ;. Specifically,

SPr = { a%\\i\geg(t), 71,72 € RY, (13)

~
where \\
%t)f{e (&) — sin(wt)Im (&),

%sm(w)f{e 2) + cos(wrt)Im(&y).

Let S! be the mrc ot{p hen Zy x S acts on Pr (and hence, SPr) as follows

u:R — R™ and by SPr the subspace of Qsﬁﬂg of all T-periodic solutions of (11)

yu(t+0), v € Zy,0 €[0,7T). (14)

For any §'€ 90, let ©% be the subgroup of Zy x S' generated by (v, 6). Its fixed point

set 1s given V.
Q Fix(2%, SPr) = {u € SPr, (v,0)u(t) = u(t)}. (15)

Q'IO

m II1.2. Assume that the characteristic equation (4) has a simple pair of pure imag-
~

mary roots Liwy. If 0 = %T, then Fiz(X9, SPr) = SPr, otherwise Fix(X?, SPr) = 0.

Moreover,

2, if 0= %T,

0, otherwise.

dim(Fiz(%’, SPr)) =
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Publishifgoof. To begin, note that
~v(Re(&)) = cos %Re(ﬁk) + sin #Im(ﬁk),

v(Im(&)) = —sin %Re({k) + cos #Im(ﬁk).

Therefore,

v(z1€1(t) + w2€2(t)) = x1 cos(wyit)y(Re(&)) — sin(wkt)v(lm( \

+ g sin(wit)y(Re(&)) + cos(wit)y
2k . 27Tk‘ 21k

= (1 o8 —— — Tosin — ey (¢ :L’l in —|— 2o COS T)Eg(t).

N
Further, straightforward calculations show that -~
(x1€61 + 2269 (t + 6) = (1 cos(wil) + xo sin(wib) )€ t 1 sin(wgd) + x9 cos(wid))ea(t).
Now consider

Y(z1€1(t) + :UQEQ(&K T1€ x262)(t +0). (16)

In order for this to hold we must have“\\
2k k
T1 COS % — X981 = cos(wil) + 2 sin(wh),

= —x1 sin(wgf) + xg cos(wib).

Solving the above two equatlons tain

Q and x1, Ty € R, or

N —

/% kTandm:m:O.

Note that yu(t) \ ) if and only if yu(t+ £L) = u(t). The conclusion follows. [

From Lémm II 1, and II1.2, we can apply the symmetric local Hopf bifurcation theorem

for delay di é’ren}&al equation®” (Theorem 2.1) to obtain the following results.
ﬁ

T eo Iﬁ.l. Assume the conditions of Theorem II.1 are satisfied. The spatio-temporal
synmetry of the periodic solution of (1) arising in the Hopf bifurcation at T = 7y, ; is deter-

Wg’be Fiz(X%, SPr) as described in Lemma II1.2. Specifically, we have the following
~

) For T =1y > 0, there exists a bifurcation of periodic solutions of (1) with period near
™

2n - and satisfying

wk7
u,_pm(t)zuz(t), i=1,2,...,m, pzl,...,N—l,

10
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Publishing — which is the in-phase (1-cluster) periodic solution.

(2) For 7 =1;,; > 0 such that k and N are relatively prime, there exists a bifurcation of

N-cluster periodic solutions of (1). These solutions satisfy

kT

Ui (t) = wi(t — ), 1=1,2,...,m, p= 1/.{ 1.
0";”%%67’6 exists a bifurcation

of n-cluster periodic solutions of (1). These solutign

Ui () = u;(t —p%), i= ]@ .
where n = N/b, | = k/b and T is nea%‘-—

Remark II1.1. We have focussed on the case of*minimal symmetry in W. The case that
W has more symmetry can be dealtgquwith musly. For example, when W is symmetric
and circulant the system (1) has D, %Wy. In this case, the additional symmetry leads

i\dg{ alues and the standard Hopf bifurcation theorem

s sunilar to that carried out in this section can be done

where T is near Z—’;

(3) Forty; such that k and N have greatest common fa

to multiple pairs of pure imagina

e

does not apply. However, ana

7

and the symmetric local bifurcation theorem?®” may be applied. This has been done for

artificial neural netwdrk medels with delai?™3041,
£
4
IV. APPLI 3A N TO A FITZHUGH-NAGUMO NETWORK.
In thi ec}io we apply the theory of the previous sections to the following network of

FitzH g&— 1111}6 neurons:

3 N
T
~ 3 ,ua,';:mi——Z—y,'—i-eZwij(xj(t—T)—xi(t))
3 .
3 j=1 (17)
\ yi=xz;+a, 1=1,2--- N.
~
e a is an excitability parameter whose value defines whether the system is excitable (|a| >
1), or exhibits self-sustained periodic firing (|Ja| < 1), and g > 0 is the time-scale parameter,
which is usually chosen to be much smaller than unity, corresponding to fast activator

43,44

variables, x;, and slow inhibitor variables, y; The coupling is diffusive/electrical, i.e.,

11
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Publishigggh pair of neurons is linearly coupled with coupling strength €. The connectivity matrix
W = (w;;) describes how information is distributed between neurons.

In the model (17) there is a unique symmetric equilibrium point given by E* =

(x*, g, - o5, y*)T with o = —a, y* = —a—i—%. The linearization of (17) at this equilibrium

point is given by (2) with

Hence the characteristic equation is given by (4) wit _‘&"“‘
Ap =N +prA+ TCrék ’)‘) (18)
1 wi]LE

where p = a*> —1+ew,r =+ >0, w = ?1\
section II.
\

A. Distribution of roots of the }aqteristic equation in the complex plane

It is well-known that the I‘A@ots (counting their multiplicity) of equation (4) in

the open right half plane {\ € C, > 0} can change only if a root appears on, or crosses

N-1 . :
Y by Wk, and & is as defined in

==

the imaginary axis. T the dondition guaranteeing that (4) has a root with zero real part

will play a key roledn the analysis of the distribution of roots.

Straightforw@ tténs lead to the following

Lemma IV. )ssume that 7 =0 and let Ty ={0,1,..., L%J }. Then we have
£
1. AR 00(9 of (4) have negative real parts if €e(ay —w) < a®> — 1, for all k € Iy .

At one root of (4) has positive real part if e(ay — w) > a®> — 1 for some k € Iy.

\?.\ elagy —w) = a®> =1, for k =0 or k = N/2 (N even), (4) has a pair of purely
imaginary roots +i\/r.

4. If elay, —w) = a®> — 1, for some k =1,--- | L%J, then (4) has two pairs of purely
€ /62 2
1maginary roots :i:z'ﬁki2—u6’“Hu

12
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Publishingin the following, we seek the condition such that (4) has purely imaginary roots when
7 > 0. That is, for some k € Zy, Ay has purely imaginary roots. Noting that

1
Liiw) =~ —?+il Hw) = —i%°
M 1t f
we define w,:f and T,i:j, as follows: /
&N
S

2 r i
Wi = \2/7:\/(2# =P+ E|52) £ /(20 — p? %2 — 4y (19)

and
1
+
20
Tk,j = E

and %,fj = T,fj — %, where \\
k N
= U

Then, Lemma IV.1 and the results of }ﬁn IT give the following.

Lemma IV.2. for k € Iy a7$\
1. If |e||0k| < plpl, t% jon Ar = 0 has no purely imaginary roots for all 7 > 0.
2. If |e]| 6| > %}m ion Ay = 0 has purely imaginary roots iwif (—iw) at T = 7
ua

F210,1,...),

7j

(f,;tj) and the tion Ay_y, = 0 has purely imaginary roots —iwy (iwif) at T = 7

TR
3. If €l é— then wi =w, =+/r and 1,5, = 7. If €|0x| = up then v = w, = /1
- 8] AP k k kg = Tk k| = Hp k k
nd le—b:

ﬁ
. Let\(1) = n(7) +iw(7) be a solution of the equation Ay = 0 satisfying 77(7',5) =0 and
S = T,fj) = wy, then we have

d\ d\
-z > -z
Re (dT T:T,j.,@j) >0, Re (dT o

with equality occurring only when |€||dx| = u|p)|.

7j

Tk 1

13
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PublishiRg mark IV.1. When ¢ <0, the above statements remain true with

1 a? —1+ew
T = — {27{] + 1y, + arccos (T)] ,
Wi €0

1 21 U
Thj = = [(2]' + 2)7 + ), — arccos <w>] ,

k €| 0|
If €0k = pp then wi = wy = /r and 7,7, =7, . /\
We can now completely describe the stability of £* and the % bifurcations.

Theorem IV.1. Assume that w,f and T]i:j are defined a iWQ d (20), respectively.

2_ , then the equilibrium point E* %
7 € [0, 00). - 5
2. If either |a| > 1 and € < }_I%Qlfor somA\ZN‘D{O} orla] <1 and e < '+\5  for

some k € Iy, then the equilibrium pow unstable for all T € [0,00).

asymptotically stable for all

3. If either |a| > 1 and € < 2“ Md =2 then the system undergoes Hopf
bifurcation at the equilibrium E or T = 7'0] and T = Tom, for all jym € yAs
such that 7'07]- 7& ~ Jor an s € Z$ and Toum 7 7' 2 forany q € In,t € 73 .

4. If either |a] > 1 and -

wi

w+|5 | for some k € Ix \ {0}, or |a] < 1 and

€ > @1;";  Jor so Iy \
the equilibrium goinb* at = 7, and T = Trms Jor all j,m € Zg such that T,j:j #* 7';[8

2]

0}, then system (17) undergoes Hopf bifurcation near

for any p € ZNY éZ?andT,;m#T;; for any q € Iy, t € Z§.

Proof. The p QSM from Lemma IV.2 and consideration of the roots of the character-

istic equation. ]

£

We 10W B§e a Iyapunov functional to establish a global stability result for the equilibrium

point \&*. Fi&:t, letting x; +a — z;, y; +a — “—33 — 7;, and dropping the ~ for simplicity, we

t@ to a zero equilibrium point for the following system
N 3

1
\\ ti==[(1—a*— ew)z; yz—i—eZwijt—T)—I—cw: —%]
j=1 (21)

/

Theorem IV.2. If |a| > 2 and € > 45;52, the equilibrium point E* of (17) is globally

asymptotically stable.

14
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N

_ Méz?(t) + éyf(t) + |é] i: (; Wig /: xi(v)dv) '

Thus

. i%l et \eli ( 3 ;(x;@ +:C§(t—r))) —Z/Bixf

i=1 i=1 Nj

+Z(3a2/2m?+2/3:p + |e’§‘ §E i(x5(1) —x?(t—7‘))>
NZ:1 \N‘S
= Z( —1/2a® — 2ew + x: ()

=

1/2a*> < 0; and if € < 0, th
2 —1/2a* — 4ew < 0. S‘C

If ¢ > 0, the zero equilibriu intvof ( is globally asymptotically stable if 2 —
&e\ uilibrium point is globally asymptotically stable if

e zero equilibrium point has the same stability as E* of (17),

we have the conclusi e t ecorem.

0
A XY -
The Hopf Bifurcations described by Theorem IV.1 create cluster periodic solutions, as

described orem II1.1. To understand how this effects the dynamics of the system, we

need to m the stability of these solutions, which we do in the next section.

“]&&uon and stability of Hopf bifurcations

Sln

1e scales method and taking the time delay as bifurcation parameter. We then give a

is Sectlon we first derive the normal form for a Hopf bifurcation, using the multiple

bifurcation analysis based on the normal form.

+

As discussed above, system (17) undergoes Hopf bifurcations when 7 = 7. Here we

denote Tl;tj = 73 for simplicity. In this section, we assume that the characteristic equation

15
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Publishif¥g has a pair of pure imaginary roots :I:w,jcE at 7, and all the other eigenvalues have negative

real parts.

Defining u(t)

(ul(t>7 R

be rewritten as

' = Noult)+ Nt — ) + (1), &4 Y 22)
where 3
( ) ( \ [ aui —
M 0 0 0 wp Wy 0
0 M - 0 WN— 1
No =4 Ny == nd f(u(t)) = =
1 : H )
aQU5N_ 1 —
0 0 -« M 0, Wy A
\ 7 \ 0
with
1—a?—ew 1 \ w: 0
M = " m ) and w; ’ , 1 =1, SN —1
1 0 S 00
Defining \ .
\\\r T+ G, (23)

we seek a second-order

iforn expansion of the solution of equation (22) in the neighbor-
hood of 7 = 73, in theffor

V.

U\ L3

Here Ty = t; 19%

the solution 906

£ Cur (To, o) + Cua(Ty, To) + Cus(Ty, To). (24)

= (%, and ( is a dimensional bookkeeping parameter. Note that
ot depend on the slow scale T} because secular terms first appear at
ca{e, the derivative with respect to t is transformed into

d 0 0

dt — 9T, ' 9Ty

%, i = 0,2. Substituting (24) into f(u(t,()) yields

+¢* o = Do+ (* Dy,

Flu(t, Q) =D filua(To, T), ua(To, T), us(To, T))-

k>2

Moreover, we express u(t — 7) in terms of the scales Ty and T as
u(t —7,¢) = Cur(To — 7, Ty — ¢*7) + Cun(Ty — 7, o — 1) + Cug(Ty — 7, T — ¢P7)

16

oy ()T = (21 (t), y1(t), -+ 2N (t), yn(t))T, system (21) can

Uy

3

3
UaN-—1
3
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u(t —7,¢) = Cuir + Cuzr + C(us, — Dourr — 7 Dauy ) (26)

with u;; = u(Ty — 73, T»), © = 1,2, 3. Substituting equations (24) - (26) into equation (22),

and equating coefficients of like powers of ( yields

D0u1 - N0u1 - Nlulr = O, \ (27)
Douy — Noug — Nyug, = f2> X\Q (28>
Dous — Nous — Nyug, = —Douy — 12 N1 Dy ‘)T 2ULr + f3, (29)

The general solution of equation (27) is

uy = Ay (Ty)pe™" +@2) o, (30)

where py is given by -

Pr = (iwg, 1, Zwkﬂk, QkPkNl7 Pl]cv_l)Tv (31)

with p, = e~ *. Substituting equat% to equation (28) yields
alok

Dous — Nous — A?ePinTog 4 AAB} + c.c, (32)
where c.c stands for the comp ugate of the preceding terms and
(5,0,03,0,--+ . pp "7, 0)7,
& (1,0,1,0,---,1,0)".
A particular solu on 3 )/has the form

= a0 4 B+ coc. (33)

to (32), and balancing similar terms, we have

1 0
1
21wy 1
Pi 0
Uy = ~einTo e awiAA | 1| + cc, (34)
2(N-1
Pk( : 0
1 2(N 1)
L 2iwy, Mk _1_

17
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2

Ly ; . — (35)
M[2w)k - l_afj—w) + Qio.l)k,u — ie—%wkm (wlpi 4+ wN—lpi(N 1)

Substituting (30) and (34) into (29), we have that

Doyug — Noug — Nyug, = g\
(36)

. . ) 2 _ .
— [(pk — T N1pre TR AL — iwr o Nipre “FTE Ay — (W . n)AiAk] e“rTo 4 cc4+ NRT

= |E

Here n = (1,0, px,0, - - - ,pkN_l,O)T, and NRT stands l&@cular terms that do not
contribute the normal form. Because the homogeneo@i 6) has nontrivial solutions,
a selyva

the nonhomogeneous equation has a solution on ility condition is satisfied. To

determine this solvability condition, we seek agpari u@ solution of (36) in the form
O

] -

U3<T0, TQ) & wiglo + c.c. (37)
and obtain s\
\J

(—iwkl + N() + ]\716_wk7—’€ -

)¢§\
. , Wy 2iwga -
(Px — T N1pxe™ k@kﬁf\hpke—zwmflk - (7]6 + : In)A2A).

(38)

Note that the problem ing a solvability condition for the system of different equations
(36) has been transf; mem‘::% finding a solvability condition for the system of algebraic
equation (38). a ’Eec?use iwy, is an eigenvalue of the homogeneous part, (38) has

2;&%‘ lvability condition is satisfied. The condition is that the right-

hand side of @oe orthogonal to every solution of the adjoint homogeneous problem. In

solutions if and

this casefthe /adj Wt problem is

- V.
3 (NS + Nle™s™ +jw. I)qx = 0. (39)
ﬁ
te th45 gk is not unique. To make it unique, we impose the condition

\ - (di, Px) = dic’ Pk = 1. (40)

Thus, we have

1 , 1 . . _
= —)(Zbuka_alwkpka%a"' 7zwkpfgv 1710k ))T (41>
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which is the normal form
A; = DngAk + DQA%A]C, (42)

where

T Wt ehme ) £ 17w+ %‘um o
Let Aj = re | substituting these expressions into (42), we ha

T, = diTorg + dg?“;z_‘ ™~
0, = dsmy + dyri, 3
where d; = Re(Dy),dy = IR(D3),ds = Im(Dy), d4 :“Im&?Q).
This normal form determines both the directign ®fthe Hopf bifurcation (supercritical
when dids < 0, and subcritical when dl@%&

solutions (stable if dy < 0, and unstabl

C. Example: FitzHugh Naé\& twork with 6 neurons.

In this section, we illustrate o lts by considering specific parameter values: p = 0.1,

N = 6 neurons and co -\itrlx W = cire(0, 1, ;, é, }1, é)

From Theorems I¥.1 an for a fixed p value, the delay independent stability regions
can be plotted in
marked by G Sﬁ uilibrium point E* is globally asymptotically stable for all 7 > 0. In

D — W} edpe™ Wk D, — wkﬁ{x

(43)

d the stability of bifurcating periodic

ne 6t parameters a and e. This is done in Figure (1). In the region

the region by AS, E* is asymptotically stable. In the region marked by US, E* is
unstable ‘andAhere’is no Hopf bifurcation for any 7 > 0. In the white region, E* may be
unstable, or expérience stability switching when Hopf bifurcation occurs at 7 = 7.

Exo heorem V.1, the characteristic equation has at least one root with positive real
pat for %H 7 > 0 when (a, €) is located on the region marked by US. It follows that periodic
Wts\ created in Hopf bifurcations from E* in this region are unstable. Thus, Hopf bifur-
cations creating stable periodic orbits can occur only in the white region. To investigate in
further detail, we fix the p and a values, and plot the Hopf bifurcation curves and stability

region in the plane of the coupling strength € and time delay 7. See Figure 2. Then, using

Theorem IV.1, we can determine how many pairs of eigenvalues with positive real part there

19
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FIG. 1. Delay independent stabi E* and Hopf bifurcation regions in the a — € plane

for a network of 6 Fitz agumo oscillators with © = 0.1 and connectivity matrix W =

cire(0,1, 3, 3,1, 1), Ing

1513, I E ded region the equilibrium E* is globally asymptotically stable

(GAS), in the yellow s d re __ioh E* is asymptotically stable (AS), and in the blue shaded region

1—a?
2w

R r¥ curve is € — and the solid (dashed) green, magenta, and blue

(€= a}__—ﬁs;) for k = 1,2, 3, respectively.

are.in ‘each région of the ¢ — 7 plane. Hence we can determine the region of stability of £*;
shown by the shaded region in Figure 2. For a > 1, region of stability looks similar to that
a .05, but as a increases/decreases the Hopf bifurcation curves move to the left /right.
len a = 0.98 equilibrium point is unstable for all ¢ when 7 = 0, but the delay induced
Hopf bifurcation stabilizes the equilibrium point in the region shown. As a decreases the

curves reorganize and this region of stability is lost for a < 0.82.

From the expressions derived in the previous section, we can calculate the sign of the

20


http://dx.doi.org/10.1063/1.5006921

! I P | This manuscript was accepted by Chaos. Click here to see the version of record. |

PUblIShlng Hopf bifurcation diagram, a = 0.98 Hopf bifurcation diagram, a = 1.05

0 01 0 K < ‘ 07 —}06 —005 -0.04 -003

(a) a =0.98 \ a=1.05
FIG. 2. Hopf bifurcation curves for the sys \Z@ h N = 6 neurons. Red, green, magenta,

blue curves are Hopf bifurcation curves f 3, (corresponding to 1-cluster, 6-cluster,
3-cluster and 2-cluster periodic soluti sp tlvely Thin (thick) dashed curves correspond
to 7 ;(7%;)- Thin (thick) solid cu spond to 7,5 g (7 ;) - In the green shaded region the
equilibrium E* is asymptotlcal rameter values are u = 0.1, W = circ(0,1, 3 5 %, ;11, %)

and a values as shown.

&

coefficients dy, ds {'Jf t nor al form (42), at each critical 7 value along the Hopf bifurcation

curves of Figur, e that the sign of d; is the same as that of dRe(\)/dr thus it is positive

at the T,: ; bi ons sohd curves in Figure 2) and negative at the 7, bifurcations (dashed

curves ind'igute 2)The sign of dy varies. For a = 0.98, all the 7, ; bifurcations have dy < 0.

Howeyer,* d, a{ges sign along the 7']:: ; bifurcation curves. For the l-cluster Hopt (red,
d h.g urve) do > 0 for most of the curve, while for the other Hopfs generally dy < 0 on
t portlyns of the curves which form the boundary of the stability region. This indicates
‘&hgt 2, 3 and 6-cluster Hopf bifurcations that lie next to the region of stability give rise

stable periodic orbits while the 1-cluster Hopf bifurcations gives rise to stable periodic

orbits along the solid curves and unstable periodic orbits along the dashed curves.

In the following, we illustrate how the coupling time delay affects the stability of the

equilibrium point E* and the cluster periodic solutions arising in the Hopf bifurcations by

21
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numerical continuation with respect to 7 carried out with DDE-BIFTOOL*, and numerical

simulations for some specific 7 values with initial conditions

zi(t) =2+ 05RD — 0.5RD,

y;(t) =y*+0.5RD — 0.5RD, t € [-1,0 \
where RD is any random number between [0, 1]. 3

For e = 0.04, the sequence of 7 bifurcation values rounde decimal places) is
0 < 75,(0.35) < 701(1 49) < 795(2.58) < 702 32 < 5*82 < 703 (5.02).

The theory predicts that the equilibrium point £* is s ble fo 7 € (0.35,1.49)U(2.58,3.26)U
(4.82,5.02) and unstable elsewhere. Further, stabQ eluster perlodlc orbits are predicted for

7 greater than but sufficiently close to TOJ, T&“ 2%& nstable 1-cluster periodic orbits for
20,3

7 greater than but sufficiently close to 7, ,Qx\

numerical simulations. The simulatio dww that a large amplitude stable 1-cluster

hese predictions are confirmed by the

solution exists for 7 € (0,0.46) Numerical continuation further confirms the

theoretical predictions and Showx%h;e ﬁge amplitude 1-cluster solutions are connected

to the 1-cluster solutions cre opf bifurcation (see Figure 3(a)). For example,
there is a saddle node of hmlt ¢ ear 7 = 0.5 connecting the 1-cluster solution which
exists for 7 near 0 wit th f bifurcation at 7,;. Numerical simulations also show that

nonsymmetrlc clust solu hs'exist for 7 € (757, 75,) U (702, 7o) (see Figure 7 (b) for an
example).

For ¢ = 0,

+

2% focus on 7 < 3. Note that, in this case, no stable 6-cluster so-
from any 7 J (11 j) > 3. The theory predicts a stable equilibrium for

lutions bifurc

46)) U (11,(0.61),7,7,(1.37)) U (Tf1(2.61) T02(3.28)), a stable 6-cluster

periodic orblt Qr T 2 7110(0.46), T T 71(0.61), 7 £ 71,(1.37), 7 £ 71,(2.61). This is con-

numerlcal simulations. See Figure 4 for some examples. Note that the large

@1’; 1-cluster solutions are observed here as well. Numerical continuation further con-

the theoretical predictions (see Figure 3(b)). It also shows that the large amplitude

1= luster solutions are created in a similar way to ¢ = 0.04, although the 1-cluster Hopf
bifurcations all give rise to unstable periodic orbits.

Similar analysis predicts 7 values where stable 6-cluster and 3-cluster periodic solutions

exist for e = 0.0266, and stable 3-cluster and 2-cluster periodic solutions for e = 0.0263. In

22
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(d) e = 0.0263

(c) € = 0.0266
FIG. 3. Branches of symmetric cluster iodic solutions from numerical continuation with re-

spect to 7 with e values as sh rO\Xammeter values are as in Figure 2(a). Circles (dots)
e) soluti

correspond to stable (unstabl ons. Red/green/magenta/blue correspond to 1-cluster/6-

cluster/3-cluster/ 2—clu3t@ solutions. Black corresponds to the equilibrium point, E*.
A

Z

both cases, e-@meric | simulations and numerical continuation agree with the analysis.
See Figu 3(}), for numerical continuations and Figure 5 for numerical simulations for
e =0.0263._ /£

—

V. CO}VCLUSION

N\~

In this paper, we investigated Hopf bifurcations of a general network of N globally coupled
identical nodes with time delayed coupling. We derived expressions for all delay induced Hopf
bifurcations from a symmetric equilibrium point and used symmetric bifurcation theory to

determine the cluster periodic solutions which are created by these bifurcations. Our results
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ANV
w/ e 0,

OO0

FIG. 4. Numerical/si atio?! showing stable behaviour for ¢ = 0.0285 and 7 values as shown.

Val\uwa as in Figure 2(a). In each plot the upper traces correspond to yi, .. ., ys

aces to x1,...,7z6. (a) In-phase (1-cluster) periodic orbit. (b) 6-cluster periodic

Other paramet

orbit. (c)®Equilibriutn point, E*. (d) In-phase periodic orbit.

-

_lx mogt typical neural network models, including both biophysical (conductance-

a
baged) aﬁd artificial networks.

W{ applied our results to a particular model: a network of FitzHugh-Nagumo neurons

h delayed, diffusive coupling. We completely described the delay independent stability of
the symmetric equilibrium point and the delay induced Hopf bifurcations. We gave explicit
expressions for the critical delay values, showing how these depend on other parameters,

including the coupling strength and the parameter (a) that induces oscillations in the un-
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FIG. 5. Numerical simulationsmtable behaviour for € = 0.0263 and 7T values as shown.

Other parameter values afe as innigure 2(a). In each plot the upper traces correspond to y1, ..., ys

and the lower traces . (a) 3-cluster periodic orbit. (b) Equilibrium point, E*. (c) 2-

cluster perlodlc o c)ﬁster periodic orbit.

coupled ne I&el Further, using the method of multiple scales, we explicitly derived
the nor ofms at Hopf bifurcation critical points, which determine the direction of Hopf
bifurgation an ablhty of bifurcating periodic orbits.

strated our results for specific parameter values in the example model, focussing
ot the c%e of 6 neurons. We presented curves of Hopf bifurcations in the parameter space
?b?ﬁ}s\tmg of the coupling delay and coupling strength and studied how these curves change
as\the parameter a is varied. We showed that Hopf bifurcations leading to stable cluster
solutions could occur both in the case where the neurons are intrinsically oscillating and
when they are not. Theoretical results, confirmed by numerical continuation and numerical

simulations, indicate that increasing the time delay can cause the stable solution to switch
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We note that symmetric bifurcations exist in the coupled system with no delay, but
occur in a strict ordering in parameter space. The delay causes variation in the ordering
of the curves, allowing for bifurcation of stable solutions of all cluster types. Further, this

reordering gives rise to intersection points of the various Hopf bifur%:ions, which correspond

to co-dimension two Hopf-Hopf bifurcation points. Such poin ;ayhichvare quite common
in delay systems®¢, can lead to coexistence of multiple st iodic solutions or tori*”
Indeed, in other numerical simulations we have found bis ty tween symmetric cluster

solutions (Figure 6) and stable torus solutions (Figure 7

1050 1100 SllSh 3550 3600 3650
time t - time t
(a) Aa = 0.05, 1100 —\—% . (b) Aa=—0.2, 3600 < ¢ < 3605, all

3. neurons

FIG. 6. Numerical simul 10ﬁs§ksowmg bistability between a large amplitude 1-cluster solution and
a small amplitude 6-gluster solution. Parameter values are as in Figure 2(a) with e = 0.027, 7 =
0.65. Initial con ons erefconstant on ¢t € [—7,0] with values as follows (a) z; = 1, j =
——04 j=2,...,6; (b) 2y = =09,z; = =09, j =2,...,6, y1 =

., 6. Switching between the attractors is achieved by applying a short

As previously noted, other solutions not predicted by our results occur (see Figure 7(b)).
origy of such solutions is a topic for future work.
ﬁf_&e elay-induced Hopf bifurcations in the case study we considered are linked to super-
critical Hopf bifurcations in the uncoupled neurons. This can be seen as follows. Taking
Tko to zero, implies that e(ay — w) + 1 — a® = 0, which is the Hopf bifurcation condition
for the nondelayed system (see Lemma IV.1 and Figure 2). Further, as € goes to zero we

obtain the Hopf bifurcation condition in the uncoupled neuron, 1 —a? = 0. Thus the cluster
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FIG. 7. Numerical simulations showing stable solutl(ns noﬁjre icted by theory. Parameter values
are as in Figure 2(a) with € and 7 as shown. (a) 6- a&g@ s. (b) Non-symmetric cluster periodic

orbit.
N

patterns can be thought of as emanating fiom an interaction of the delay with the intrin-

sic oscillation mechanism of the eurs Imeneural models exhibiting Type II excitability,
where oscillations are created, by \Q

mechanism for creating cluster s can occur. In neural models exhibiting Type I ex-

citability, however, osci hbgire created by a saddle node on an invariant circle (SNIC)
del

tical Hopf bifurcations, we expect that a similar

bifurcations. Nevert induced cluster patterns are still observed!3. Since most
Type I model ne ave opf bifurcation involved in the destruction of limit cycles we

conjecture that echa ism we have discussed may still come into play.
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