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Abstract

This paper undertakes a nonlinear analysis of a model for a maglev system with time-delayed

feedback. Using linear analysis, we determine constraints on the feedback control gains and

the time delay which ensure stability of the maglev system. We then show that a Hopf

bifurcation occurs at the linear stability boundary. To gain insight into the periodic motion

which arises from the Hopf bifurcation, we use the method of multiple scales on the nonlinear

model. This analysis shows that for practical operating ranges, the maglev system undergos

both subcritical and supercritical bifurcations, and which give rise to unstable and stable

limit cycles respectively. Numerical simulations confirm the theoretical results and indicate

that unstable limit cycles may coexist with the stable equilibrium state. This means that

large enough perturbations may cause instability in the system even if the feedback gains

are such that the linear theory predicts that the equilibrium state is stable.
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1. Introduction

The maglev train is a novel type of rail vehicle that has many advantages such as high

speed, comfort, low environmental pollution, and low maintenance cost [1, 2, 3]. However,

the maglev system is a complicated system with machinery, controllers and electromagnetic
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elements integrated together. The electromagnetic suspension provides non-contacting sup-

port by means of electromagnets in conjunction with a position regulator which uses position

(that is air-gap), velocity and acceleration feedback. During experiments, it is observed that

time delay is unavoidable in the control and execution processes of the maglev system. For

example, time delays occur in calculating the control variables, in signal processing and in

digital filtering. Further, it is well known that time delay can cause instability of a closed

loop system. Thus it is very necessary to investigate the dynamic behaviors of the nonlinear

maglev system with time-delay.

Time-delayed systems, which have been studied for various applications and control sys-

tems, may admit rich dynamics, including bifurcations and chaotic motions. M. Attilio

[4, 5, 6] has pointed out that time-delay can limit sympathetic vibrations. Stone and Camp-

bell [7] used center manifold theory to analyze the Hopf bifurcation of a variable-speed drill,

and found that different drill speeds coincide with several regions of local stability. G. Stépán

[8] analyzed the delayed positoning of a single-degree-of-freedom robot arm and showed that

the system exists a codimension two Hopf bifurcation. G. Orosz and G. Stépán [9] inves-

tigated the bifurcation phenomenon in traffic system. N.A. Nayfeh [10] concluded that the

controller of a container crane undergoes a supercritical bifurcation for practical operating

ranges.

Several valuable achievements have been made in the research of nonlinear dynamic and

bifurcation phenomenon for the maglev system. Using various techniques (centre manifold

reduction, pseudo-oscillator analysis), previous work [11, 12, 13] studied the stability and

Hopf bifurcation of the single-degree-of-freedom suspension system with time delay, and

found that the dynamic behavior can be changed by adjusting time delay. But the time

delay of state feedback signals for the maglev system is not adjustable in practice. So the

focus of our work is on how the control gains affect the stability and Hopf bifurcation of the

maglev time-delay feedback system.

In this paper, we present a linear stability analysis of time-delay feedback controller

to determine constraints on the feedback gains and time delay which ensure the system is

stabilized. The linear analysis shows that the maglev system undergoes a Hopf bifurcation for

certain parameter values. Choosing the velocity feedback gain as the bifurcation parameter,
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we obtain the normal form of the Hopf bifurcation using the method of multiple scales. With

the normal form we obtain, the type of bifurcation of the maglev system and the stability

of the resulting limit cycle can be determined.

Since A.H. Nayfeh [14, 15] first presented the method of multiple scales, it has been suc-

cessfully used in practical design engineering [16, 17, 18]. The method of multiple scales not

only reveals the complex dynamic of nonlinear systems, but also provides useful approximate

formulas for the periodic solution. In many cases it is easier to use than the centre manifold

approach [19].

This paper is organized as follows. In Section 2, we give the linear analysis of the maglev

time-delay feedback system and show that a Hopf bifurcation occurs at the linear stability

boundary. In Section 3 we derive the normal form and determine the criticality of the Hopf

bifurcation using the method of multiple scales. In Section 4 we show numerical studies

which verify the theoretical analysis. Finally, in Section 5, we draw conclusions about our

work and highlight the implications for the maglev system.

2. Linear stability analysis and existence of Hopf bifurcation

Figure 1: Structure of the maglev system.

The maglev model we study is similar to that presented in [11, 12, 13, 20]. Following the

approach of [11, 12, 13], we make the simplification that the deformation of the track is zero.

In this case, the schematic diagram of a single-degree-of-freedom suspension system with a

controlled DC electromagnet is as shown in Fig. 1. In the diagram, Mg and Fm represent
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the weight and the electromagnetic force of the electromagnet respectively, and za denotes

the vertical displacement of the electromagnet. The variables i(t) and v(t) are the current

and voltage of the electromagnet winding.

Using the notation of Fig. 1, the dynamical and electromagnetic equations of the system

are given as [11, 12, 13, 20]

v = ri+ A1
i̇za − iża

2z2a
, (1)

Mz̈a = Mg − A1i
2

4z2a
, (2)

where A1 = N2µ0S0, µ0 is the magnetic permeability in vacuum, N is the number of turns

of coil, S0 is the pole area and r is the resistance of the electromagnet. More details on the

physical principles underlying this model can be found in [20, 21].

From (2), i = 2za

√

M(g−z̈a)
A1

. Substituting this into (1) gives:

...
z a =

4r

A1

za(g − z̈a)− 2

√

(g − z̈a)

MA1

v. (3)

Typically the feedback control is applied to the port voltage of the electromagnet. Thus,

taking za, ża and z̈a as the feedback state variables, we have:

v = kp(zaτ − ze) + kdżaτ + kaz̈aτ + vec, (4)

where kp, kd and ka are, respectively, position, velocity and acceleration feedback control

gains and vec is the voltage in the static (equilibrium) state. Note that kp influences the

steady-state error and hence the stiffness, kd controls the suspension damping and ka the

overall stability margin. Some previous work [11, 12] assumed that the time delay occurs

only in one or two of the feedback control variables, however, we make the more reasonable

assumption, as in [13], that all the feedback control variables have a time delay. We use

zaτ = za(t − τ), żaτ and z̈aτ to denote, respectively, the position, velocity and acceleration

feedback control signals with time delay. The linear stability analysis of the equilibrium

point of (3)-(4) has been considered in [13], with an emphasis on stability changes as the

delay, τ , is varied. Here we will consider how variation of the feedback gains as well as the

delay affect the stability. For clarity, we repeat some of the linear analysis presented in [13].
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The values of the state variables at the equilibrium point are

za = ze, ża = 0, z̈a = 0,

where ze is the desired gap. Note that this gives the value of the voltage at equilibrium as

vec = 2rze

√

Mg
A1

. Setting z = za − ze, i.e., moving the equilibrium point to the origin, and

using expression (4) for the feedback, (3) becomes:

...
z −A2(z + ze)(g − z̈) = −A3

√

g − z̈[kpzτ + kdżτ + kaz̈τ + vec], (5)

where A2 =
4r
A1

, A3 =
2√

MA1

.

Note that our model breaks down when the electromagnet comes into contact with the

track. This corresponds to z = −ze, i.e., za = 0 in the original variables.

Expanding (5) in a Taylor series in (z, ż, z̈, zτ , żτ , z̈τ ), and retaining up to cubic terms,

we obtain

...
z = −1

2
A2zez̈ −

√
gA3kaz̈τ −

√
gA3kdżτ −

√
gA3kpzτ + A2gz + f(z, ż, z̈, zτ , żτ , z̈τ ), (6)

where

f =
A3ka
2
√
g
z̈z̈τ +

zeA2

8g
z̈2 +

A3kd
2
√
g
żτ z̈ +

A3kp
2
√
g
z̈zτ −A2zz̈ +

A3ka

8
√

g3
z̈2az̈τ +

zeA2

16g2
z̈3

+
A3kd

8
√

g3
żτ z̈

2 +
A3kp

8
√

g3
z̈2zτ +O(z4a, ż

4, z̈4, z4τ ).

The linearized system equation is

...
z +

1

2
A2zez̈ +

√
gA3kaz̈τ +

√
gA3kdżτ +

√
gA3kpzτ − A2gz = 0. (7)

The characteristic equation of the linear system (7) is

D(λ, τ) = λ3 + aλ2 + bλ2e−λτ + cλe−λτ + de−λτ + e = 0, (8)

where

a =
1

2
A2ze, b =

√
gA3ka, c =

√
gA3kd, d =

√
gA3kp, e = −A2g.

For τ = 0 the characteristic equation becomes

D(λ, 0) = λ3 + (a+ b)λ2 + cλ+ d+ e = 0. (9)

Using the Routh–Hurwitz criterion, we obtain the following lemma.
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Lemma 1 ([13]). The eigenvalues of (9) have negative real part if and only if :

a + b > 0, d+ e > 0, (a+ b) c > d+ e.

From Lemma 1, the maglev system with no delay will be stable if and only if the control

parameters satisfy the following conditions

ka > − A2ze
2A3

√
g

def
= kamin

, kp >
√
g
A2

A3

def
= kpmin

, kd >

√
gA3kp −A2g

(1/2 · A2ze +
√
gA3ka)

√
gA3

def
= kdmin

.

Let λ = σ + iβ (β > 0; σ, β ∈ R) be a root of the characteristic equation (8), where σ is

the growth or decay rate and β is the frequency of oscillations. If σ < 0 for every root of (8),

then the equilibrium of the system is asymptotically stable and if σ > 0 for at least one root

of (8), then the equilibrium of the system is unstable. Thus the stability of the equilibrium

may change if there is a root of (8) with σ = 0. Substituting λ = iβ into (8) and separating

the real and imaginary parts of (8), we obtain

aβ2 − e = cβ sin βτ − (bβ2 − d) cosβτ, (10)

β3 = cβ cos βτ + (bβ2 − d) sin βτ. (11)

We wish to describe the parameter values for which these equations are satisfied. Elimi-

nating sin βτ and cos βτ between (10) and (11), we get an expression for c

c =

√

(aβ2 − e)2 + β6 − (bβ2 − d)2

β

def
= c0. (12)

Recall that c =
√
gA3kd and

√
gA3 > 0, so c is directly proportional to the velocity

feedback gain, kd. For simplicity in our calculations, we use c as the bifurcation parameter.

However, in the numerical simulations we give the results in terms of the control parameter

kd.

From (11), we have cos βτ = (β3 − (bβ2 − d) sinβτ)/cβ. Substituting this into (10) and

solving for τ , gives

τ =
1

β

[

arcsin
(aβ2 − e)cβ + (bβ2 − d)β3

c2β2 + (bβ2 − d)2
+ 2jπ

]

, j = 0, 1, 2 · · · . (13)
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For fixed values of the physical parameters N, r,M, µ0, ze, S0 and of the control parameters

kp and ka, equations (12) and (13) describe curves in the kd, τ parameter space which are

parametrized by β. Each point of these curves corresponds to a set of parameter values for

which the characteristic equation (8) has a pair of pure imaginary roots, λ = ±iβ. The set

of values in the parameter space where all the roots of the characteristic equation (8) have

negative real part is called the stability region, since the equilibrium point is asymptotically

stable inside this region and unstable outside. Parts of the curves defined by equations (12)

and (13) form the boundary of this region. The exact boundary will depend on the parameter

values considered.

Let us illustrate this with an example. We use realistic values [11, 12] for the physical

parameters as given in Table 1. We choose the control parameters kp and ka according to

Table 1: Physical Parameter Values

N = 320, r = 0.5Ω, M = 500 kg, µ0 = 4π × 10−7, ze = 0.008 m, S0 = 0.047m2

Lemma 1. With these parameters fixed, we then use (12) and (13) with j = 0 to plot kd and

τ as β is varied. Fig. 2 shows the resulting curves for various values of kp and ka. Note that,

according to Lemma 1, for asymptotic stability when τ = 0, kd should be larger than kdmin
,

which depends on kp and ka. This value corresponds to the intersection point of each curve

with the kd axis. Consideration of equations (12)–(13) shows that each curve approaches

the kd axis as kd → ∞. We do not show the curves with j > 0 as that they all lie above

the corresponding curve with j = 0 and hence do not form part of the stability boundary.

Thus the stability region is the region between each j = 0 curve and the kd axis. Fig. 2(a)

shows the the stability region for ka fixed and varying kp. The thin solid curve corresponds

to taking kp = 1200. Increasing kp (dashed line and thick solid line) decreases the size of

the stability region. Fig. 2(b) shows the stability region for kp fixed and varying ka. The

dashed curve corresponds to taking ka = 6. Increasing ka (thick solid line and thin solid

line) increases the size of the stability region. Note that in all cases, the range of values of

kd for which the system is stable decreases as τ increases and there is a critical value of τ ,

τc, such that the equilibrium position is unstable for any kd if τ > τc. Specifically, τc is the
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τ value at the intersection point, m, if it exists, otherwise τc is the τ value at the maximum,

n. We have tried different pairs of kp and ka and the shapes of the curves defined by (12)

and (13) and their behaviour as kp and ka are varied are similar to what is shown in Fig. 2.
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Figure 2: Stability region and Hopf bifurcation curve in kd, τ parameter space. (a) ka = 8 is fixed, three

values of the position feedback parameter: kp = 1200 (thin, solid line), kp = 1500 (dashed line), kp = 2000

(thick, solid line); (b) kp = 2000 is fixed, three values of the acceleration feedback parameter: ka = 10 (thin,

solid line), ka = 8 (thick, solid line), ka = 6 (dashed line).

Note that the points on the curves defined by equations (12) and (13) are potential Hopf

bifurcation points. To confirm whether they are we need to check the other conditions of the

Hopf Bifurcation Theorem [22, Section 11.1]. For concreteness, we consider the case where

τ is fixed and kd (equivalently, c) is varied as the bifurcation parameter. The case where kd

is fixed and τ is varied can be analyzed in a similar manner.

First we consider the transversality condition of the Hopf bifurcation theorem, i.e.,

whether a pair of complex eigenvalues crosses the imaginary axis with non-zero speed. Dif-

ferentiating (8) with respect to c, and evaluating the real part at the bifurcation point gives:

Re

[

dλ

dc

]λ=iβ

c=c0

=
−βq

p2 + q2
, (14)

where

p = −3β2 cos βτ − 2aβ sin βτ + bτβ2 + c0 − dτ, q = −3β2 sin βτ +2aβ cos βτ − c0τβ +2bβ.

Thus if q 6= 0 then a pair of complex conjugate eigenvalues will cross the imaginary axis

transversely. Rearranging (10) and (11) and differentiating implicitly with respect to β
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shows that
[

dτ

dβ

]

c=c0

=
q

c0β2
.

Thus we can conclude that the transversality condition is satisfied so long as dτ
dβ

6= 0. Refer-

ring to Fig. 2(b), this means that the transversality condition is satisfied everywhere but at

the maximum point n.

At points of intersection of the curves defined by equations (12) and (13) there will be

two pairs of pure imaginary roots of the characterstic equation (8), and everywhere else

on the curves there will only be one root. Thus, away from the intersection points, the

nonresonance condition of the Hopf bifurcation is guaranteed to be satisfied. In Fig. 2(b),

this means that the nonresonance condition is satisfied everywhere except at the point m.

Note that this point is potentially a double Hopf bifurcation point.

We thus conclude that at each point (c0, τ) on the curves defined by (12) and (13) which

satisfies
[

dτ
dβ

]

c=c0
6= 0 and which is not a point of intersection of the curves, the trivial solution

undergoes a Hopf bifurcation at as c passes through c0.

3. Nonlinear analysis with the method of multiple scales

In this section, we use the method of multiple scales to seek an approximate periodic

solution of equation (6), and hence determine the normal form of the Hopf bifurcation and

its type (subcritical or supercritical).

To begin, we introduce a small parameter, ǫ, and a detuning parameter, δ, to describe

the closeness of the parameter c to the Hopf bifurcation value c0:

c = c0 + ǫ2δ. (15)

Then, we introduce the fast and slow time scales T0 = t, T2 = ǫ2t and expand the solution

in terms of the small parameter and the two time scales:

z(t; ǫ) = ǫz1(T0, T2) + ǫ2z2(T0, T2) + ǫ3z3(T0, T2) + · · · . (16)

The solution does not depend on the slow scale T1 = ǫt, because secular terms first appear

at O(ǫ3).
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In terms of the two time scales, the derivative with respect to t is transformed into

d

dt
=

∂

dT0
+ ǫ2

∂

∂T2
+ · · · = D0 + ǫ2D2 + · · · . (17)

Using this, we may expand z(t− τ) in terms of ǫ and the two time scales:

z(t− τ ; ǫ) =

3
∑

m=1

ǫmzm(T0 − τ, T2 − ǫ2τ) + · · ·

=

3
∑

m=1

ǫmzm(T0 − τ, T2)− ǫ3τD2z1(T0 − τ, T2) + · · · .
(18)

Substituting eqs. (15)–(17) into eq. (6), expanding the result in ǫ, and equating coeffi-

cients of like powers of ǫ, we obtain

O(ǫ1) : D3
0z1 + aD2

0z1 + bD2
0z1τ + c0D0z1τ + dz1τ + ez1 = 0; (19)

O(ǫ2) : D3
0z2 + aD2

0z2 + bD2
0z2τ + c0D0z2τ + dz2τ + ez2 =

A3ka
2
√
g
D2

0z1 ·D2
0z1τ +

A2ze
8g

(D2
0z1)

2 +
c0
2g

D0z1τ ·D2
0z1 +

A3kp
2
√
g
D2

0z1 · z1τ − A2z1 ·D2
0z1; (20)

O(ǫ3) : D3
0z3 + 3D2

0D2z1 + aD2
0z3 + 2aD0D2z1 + bD2

0z3τ − bτD2
0D2z1τ + 2bD0D2z1τ

+c0D0z3τ − c0τD0D2z1τ + c0D2z1τ + δD0z1τ + dz3τ − dτD2z1τ + ez3 =

A3ka
2
√
g
(D2

0z1 ·D2
0z2τ +D2

0z2 ·D2
0z1τ ) +

A2ze
4g

D2
0z1 ·D2

0z2 +
c0
2g

(D0z1τ ·D2
0z2 +

D0z2τ ·D2
0z1) +

A3kp
2
√
g
(D2

0z1 · z2τ +D2
0z2 · z1τ )−A2(z1 ·D2

0z2 + z2 ·D2
0z1) +

A3ka

8
√

g3
(D2

0z1)
2 ·D2

0z1τ +
A2ze
16g2

(D2
0z1)

3+
c0
8g2

D0z1τ · (D2
0z1)

2+
A3kp

8
√

g3
(D2

0z1)
2z1τ .(21)

The solution of (19) corresponding to the roots ±iβ of (8) can be expressed in the form

z1(T0, T2) = A(T2)e
iβT0 + Ā(T2)e

−iβT0 , (22)

where A(T2), which is determined by eliminating the secular terms at O(ǫ3), is a complex-

valued function of T2, and Ā(T2) is its complex conjugate. Note that β is the critical frequency

corresponding to c0.

Substituting (22) into (20) yields

D3
0z2 + aD2

0z2 + bD2
0z2τ + c0D0z2τ + dz2τ + ez2 = RA2(T2)e

2iβT0 +RA(T2)Ā(T2) + cc, (23)
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where cc represents the complex conjugate of the preceding terms and

R = Rr + iRi

=

(

A3ka
2
√
g
β4 cos βτ +

A2ze
8g

β4 − c0
2g

β3 sin βτ − A3kp
2
√
g
β2 cos βτ + A2β

2

)

+ i

(

−A3ka
2
√
g
β4 sin βτ − c0

2g
β3 cos βτ +

A3kp
2
√
g
β2 sin βτ

)

.

The particular solution of eq. (23) can be expressed as

z2 = PA2e2iβT0 +QAĀ + cc, (24)

where

P = Pr + iPi Q = Qr + iQi

=
RrSr +RiSi

S2
r + S2

i

+ i
−RrSi +RiSr

S2
r + S2

i

=
Rr

d+ e
+ i

Ri

d+ e

with

S = Sr + iSi

= (−4aβ2 − 4bβ2 cos 2βτ + 2c0β sin 2βτ + e+ d cos 2βτ)

+ i(−8β3 + 4bβ2 sin 2βτ + 2c0β cos 2βτ − d sin 2βτ).

Substituting (22) and (24) into equation (21) and eliminating the secular terms, we get

the complex-valued normal form of the Hopf bifurcation

MA′ = −iδβAe−iβτ + ΓA2Ā, (25)

11



where M and Γ are given as follows

M = Mr + iMi

= (−3β2 + bβ2τ cos βτ + 2bβ sin βτ − c0τβ sin βτ + c0 cos βτ − dτ cos βτ)

+ i (2aβ − bβ2τ sin βτ + 2bβ cos βτ − c0τβ cos βτ − c0 sin βτ + dτ sin βτ)

Γ = Γr + iΓi

=
[

A3ka
2
√
g
(4β4Pr cos 2βτ + 4β4Pi sin 2βτ + 4β4Pr cos βτ − 4β4Pi sin βτ) +

A2ze
g

β4Pr +

c0
2g
(−4β3Pr sin βτ − 4β3Pi cos βτ − 2β3Pr sin 2βτ + 2β3Pi cos 2βτ) +

A3kp
2
√
g
(−2β2Qr

−β2Pr cos 2βτ − β2Pi sin 2βτ − 4β2Pr cos βτ + 4β2Pi sin βτ) + A2(5β
2Pr + 2β2Qr)

− A3ka

8
√

g3
3β6 cos βτ − A2ze

16g2
3β6 + c0

8g2
3β5 sin βτ + A3kp

8
√

g3
3β4 cos βτ

]

+ i
[

A3ka
2
√
g
(4β4Pi cos 2βτ − 4β4Pr sin 2βτ + 4β4Pi cos βτ + 4β4Pr sin βτ) +

A2ze
g

β4Pi

c0
2g
(4β3Pr cos βτ − 4β3Pi sin βτ − 2β3Pr cos 2βτ − 2β3Pi sin 2βτ)

+A3kp
2
√
g
(−β2Pi cos 2βτ + β2Pr sin 2βτ − 4β2Pi cos βτ − 4β2Pr sin βτ) + A2 − 5β2Pi

+ A3ka

8
√

g3
β6 sin βτ + c0

8g2
β5 cos βτ − A3kp

8
√

g3
β4 sin βτ

]

.

Next, we express A(T2) in the polar form

A(T2) =
1

2
α(T2)e

iω(T2), (26)

where α(T2) and ω(T2) are real-valued functions of the slow time T2. Substituting (26) into

(25) yields

α′ = δχ1α + χ3α
3, (27)

ω′ = δχ2 + χ4α
2, (28)

where

χ1 =
−β

M2
r +M2

i

(sin βτMr + cos βτMi), χ3 =
ΓrMr + ΓiMi

4(M2
r +M2

i )
, (29)

χ2 =
β

M2
r +M2

i

(sin βτMi − cos βτMr), χ4 =
ΓiMr − ΓrMi

4(M2
r +M2

i )
. (30)

A periodic solution of eq. (6) must yield α 6= 0 and D2α = 0, namely

α =

√

−δχ1

χ3
. (31)
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Substituting (31) into (28) yields

ω = ǫ2(χ2 − δχ1χ4/χ3)t+ ω0, (32)

where ω0 is a constant. Returning to the original variables, we obtain following expression

for the limit cycle

z(t) = ǫ

√

−δχ1

χ3
cos

[

βt+ ǫ2
(

χ2 −
δχ1χ4

χ3

)

t+ ω0

]

+O(ǫ2). (33)

The stability of this solution is determined by the derivative of the right-hand side of

equation (27) evaluated on the limit cycle, i.e.,

[

δχ1 + 3χ3α
2
]

α=
√

−δχ1/χ3

= −2δχ1. (34)

Thus limit cycle will be stable (unstable) if δχ1 > 0 (< 0). Since the limit cycle exists only

when −δχ1/χ3 > 0, the stability of the limit cycle is determine by the sign of χ3, i.e. the

limit cycle will be stable (unstable) if χ3 < 0 (> 0).

Comparing eqs. (14) and (29) shows that χ1 = Re[dλ
dc
] |λ=iβ

c=c0 , as expected from the theory.

Thus the equilibrium point will lose (gain) stability as c increases through c0 if χ1 > 0 (< 0).

In summary, we have the following. If the signs of χ1 and χ3 are the same, then the limit

cycle exists when δ < 0, i.e., c < c0. The limit cycle will be stable (unstable) and the Hopf

bifurcation supercritical (subcritical) when χ1 < 0, χ3 < 0 (χ1 > 0, χ3 > 0). If the signs of

χ1 and χ3 are different, then the limit cycle exists when δ > 0, i.e., c > c0. The limit cycle

will stable (unstable) and the Hopf bifurcation supercritical (subcritical) if χ1 > 0, χ3 < 0

(χ1 < 0, χ3 > 0).

We now apply the results above to determine the criticality of the Hopf bifurcation curves

for some specific values of the parameters. Recall from Fig. 2, that for each fixed value of

τ , the system has two different Hopf bifurcation values of the velocity gain: kd1 < kd2. The

equilibrium state of the maglev system is asymptotically stable if kd ∈ (kd1, kd2), otherwise

it is unstable. From the stability of the equilibrium state, it is clear that χ1 < 0 at kd1

and χ1 > 0 at kd2. Further, as discussed above, the criticality of the Hopf bifurcation and

stability of the associated limit cycle are determined by the sign of χ3. We evaluated χ3 at
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Figure 3: Hopf bifurcation curves in the kd, τ parameter space. A solid line indicates χ3 < 0, and a dashed

line indicates χ3 > 0. Physical parameters are as in Table 1. Feedback parameters are as indicated. Note

that (b) has a different scale than (a) and (c). The stability region of the equilibrium point is indicated.

each point of the Hopf bifurcation curves for three pairs of kp and ka. The results are shown

in Fig. 3.

Since there are two Hopf bifurcations which can be either subcritical or supercritical,

there are four possible branching types as shown in Fig. 4. The system exhibits all of these

as we now describe. For Fig. 3(a) (kp = 1200, ka = 8), the branching type is as in Fig. 4(a)

Figure 4: Different branching structure of the Hopf bifurcations according to the signs of χ1 and χ3.

when 0.055 < τ < τc and as in Fig. 4(b) when τ < 0.055. (Recall that τc is the the largest

value of τ for which the equilibrium state is stable). For Fig. 3(b) (kp = 2000, ka = 3), the

branching type is as in Fig. 4(a) when 0.0016 < τ < τc and Fig. 4(c) when τ < 0.0016. For

Fig. 3(c) (kp = 2000, ka = 10), the branch type is as in Fig. 4(b) when 0.02 < τ < τc and

as in Fig. 4(d) when τ < 0.02. Note that at points where the criticality changes, the Hopf

14



bifurcation is degenerate. It has been shown [23, 24] that a secondary bifurcation curve may

emerge from such points. This secondary bifurcation is a saddle node bifurcation of limit

cycles which produces a second, large amplitude limit cycle in addition to the one produced

by the Hopf bifurcation.

4. Numerical studies

In this section we consider the maglev model (3)–(4) with the physical parameters given

in Table 1 and the control feedback gains kp = 2000 and ka = 10. The Hopf bifurcation

curve is shown in Fig. 3(c). We will focus on the case when τ = 0.047. Then kd1 ≈ 76.61,

kd2 ≈ 87.75 and the bifurcations are as shown in Fig. 4(b), i.e., the Hopf bifurcation at

kd1 is subcritical and that at kd2 is supercritical. We will compare these theoretical results

with numerical simulations and numerical continuation studies of the model (3)–(4), with

parameter values as indicated above. The initial conditions used in the numerical simulations

are of the form (z(t), ż(t), z̈(t)) = (z0, 0, 0), −τ ≤ t ≤ 0 for various values of z0.

From Fig. 5 (a)-(b), if kd = 75 < kd1 ≈ 76.61, solutions diverge from the trivial solution,

i.e., it is unstable; if kd = 78 > kd1 and z0 = 0.001m, solutions approach the trivial solution,

indicating it is asymptotically stable (see Fig. 5 (c)-(d)). However, if we choose kd = 78 and

a larger initial condition, z0 = 0.022m, solutions diverge (see Fig. 5 (e)-(f)), which suggests

that an unstable limit cycle exists when kd > kd1 and that the Hopf bifurcation is subcritical.

From Fig. 6 (a)-(b), if kd = 85 < kd2 ≈ 87.75, the trivial solution is stable; if we choose the

same control gain kd = 85 but a larger initial condition z0 = 0.0328m (larger than the initial

condition in Fig. 5 (e)-(f)), Fig. 6 (c)-(d) show the position variable grows quickly, which

suggests the existence of an unstable limit cycle. From Fig. 6 (e)-(f), if kd = 90 > kd2, the

trivial solution is unstable and a stable limit cycle exists, indicating that the Hopf bifurcation

is supercritical; if we choose the same kd = 90 but a larger initial condition z0 = 0.033m

(larger than the initial condition in Fig. 6 (c)-(d)), the solution grows rapidly (see Fig. 6

(g)-(h)), which suggests the existence of an unstable limit cycle when kd > kd2.

The horizontal lines in Fig. 5 and Fig. 6. indicate where z = −ze, i.e., the air-gap between

the train and the rail becomes zero. The model becomes invalid at this point as it does not

include the effect of the impact. In Fig. 5 (a),(e) and Fig. 6 (c),(g) one can see that the
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Figure 5: Numerical simulations of the maglev system (5), using the initial condition (z(t), ż(t), z̈(t)) =

(z0, 0, 0), −τ ≤ t ≤ 0, with values of z0 as indicated. Physical parameters are as in Table 1. Feedback

parameters are kp = 2000, ka = 10, τ = 0.047 and kd as indicated. (a),(c),(e) are trajectories of z vs

time and (b),(d),(f) are (pseudo) phase portraits. The horizontal lines in (a),(c),(d) indicate where air-gap

becomes zero.
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Figure 6: Numerical simulations of the maglev system (5), using the initial condition (z(t), ż(t), z̈(t)) =

(z0, 0, 0), −τ ≤ t ≤ 0, with values of z0 as indicated. Physical parameters are as in Table 1. Feedback

parameters are kp = 2000, ka = 10, τ = 0.047 and kd as indicated. (a),(c),(e),(g) are trajectories of z vs

time; and (b),(d),(f),(h) are (pseudo) phase portraits. The horizontal lines in (a),(c),(d),(g) indicate where

air-gap becomes zero.
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Figure 7: Numerical continuation of the periodic orbits of (5) with kp = 2000, ka = 10, τ = 0.047 and

physical parameters as given in Table 1. Dashed/solid lines indicate unstable/stable periodic orbits.

instability causes the train to hit the rail. However, in Fig. 6 the amplitude of the oscillations

is small enough that the train does not hit the rail.

Thus the numerical simulations agree with the local bifurcation diagram of Fig. 4(b)

as predicted by the theory. They also suggest that the unstable limit cycle created in

the subcritical Hopf bifurcation at kd = kd1 persists throughout the entire range of values

where the equilibrium point is stable, (kd1, kd2). To verify this, we carried out a numerical

continuation study of the periodic orbits using the software DDE-BIFTOOL [25]. The

result is shown in Fig. 7. This confirms that the unstable limit cycle created by the Hopf

bifurcation at kd = kd1 (≈ 76.61) persists past the Hopf bifurcation at kd = kd2 (≈ 87.75).

Note that the limit cycle produced by the Hopf bifurcation at kd1 (l1 in Fig. 7) terminates

on the limit cycle produce by the Hopf bifurcation at kd2 in what appears to be a period

doubling bifurcation. Numerical simulations for parameter values near this bifurcation point

show transient oscillations which look similar to typical period two orbits. The bifurcation

diagram of Fig. 7) may be explained by noting that the frequencies associated with the double

Hopf bifurcation at the intersection point (kd, τ) ≈ (100, 0.05) are close to 1:2 resonance. The

bifurcation diagram of Fig. 7 has been predicted to occur near such 1:2 resonant double Hopf

bifurcation points [26, 27].

We have performed numerical simulations and numerical continuation studies for several
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other values of τ . These also agree with the predictions of the nonlinear analysis. In par-

ticular, we observe for τ < 0.02 that the bifurcation at kd2 becomes subcritical, as predicted

by the nonlinear analysis. In all cases, it appears that an unstable limit cycle coexists with

the stable equilibrium point for kd1 < kd < kd2.

A valid question is whether the behaviour we observe persists if other control gains are

varied. To partially address this question, we performed some studies with the delay fixed

at the value above, τ = 0.047 s. With fixed delay, the stability region can be visualized in

a parameter space consisting of two of the feedback gains. The boundary of the region of

stability in these parameters is easily found by solving (10)-(11) for kd and ka or kp in terms

of the other parameters:

kd = 1√
gA3β

((aβ2 − e) sin(βτ) + β3 cos(βτ))

kp − kaβ
2 = 1√

gA3

((aβ2 − e) cos(βτ)− β3 sin(βτ))
(35)

The resulting boundaries with parameters as in the example above are shown in Figure 8.

In both cases, the stability region is a closed region of the plane. Note that the thin lines

define the stability region for τ = 0, thus one effect of the delay is to reduce the choices of

feedback gains for which the equilibrium point will be asymptotically stable. Similar stability

regions have been observed for models of the inverted pendulum with time delayed feedback

[31, 32, 33, 34]. Numerical continuation studies varying kp or ka with kd fixed are shown in

Figure 9. In both cases there are two branches of periodic orbits emanating from the Hopf

bifurcations which occur on the boundary of the stability region. In both cases, the unstable

limit cycle created by the subcritical Hopf persists throughout the region of stability of the

equilibrium point. The branching structure when ka is varied is very similar to that when

kd is varied.

5. Conclusions and future research

In this paper, the stability and Hopf bifurcation of the suspension system of a maglev

train with time-delayed position, velocity and acceleration feedback are studied.

We first described a method for choosing appropriate control gains to stabilize the system.

Given values of the physical parameters in the system, the position and acceleration feedback
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Figure 9: Numerical continuation of the periodic orbits of (5) with kd = 87.75, τ = 0.047 and physical

parameters as given in Table 1. (a) kp = 2000 (b) ka = 10. Dashed/solid lines indicate unstable/stable

periodic orbits. The equilibrium point is stable between starting points of the two branches.
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gains can be chosen using the Routh-Hurwitz criterion. A set of values of the delay and the

velocity feedback gain for which the the maglev train is stable can then be described. For

the parameter values we investigated, increasing the acceleration feedback gain or decreasing

the position feedback gain increased the size of this set of values. Further, there is always

a critical delay such that if the delay is larger than the critical delay there is no value of

the velocity feedback gain,kd, that stabilizes the system. For any fixed delay less than the

critical delay there is a finite range of values (kd1, kd2) such that any feedback gain in this

range stabilizes the system. The smaller the delay, the larger this range. A similar effect of

the delay on the choice of feedback gains for which the system may be stabilized has been

observed in models for an inverted pendulum with time delayed feedback [31, 32, 33, 34].

We next showed that these critical velocity feedback gains, kd1 and kd2, correspond to

Hopf bifurcation points. Based on the method of multiple scales, we obtained the normal

form of the Hopf bifurcation. By numerically evaluating the coefficients of the normal form

for several sets of parameters, we showed that the each of the Hopf bifurcations can be

supercritical or subcritical. For the parameter values we considered, both bifurcations were

subcritical for small enough delay. We considered one set of parameter values in more detail.

For this set, the Hopf bifurcation at kd1 is subcritical and that at kd2 is supercritical. This

means that an unstable limit cycle coexists with the stable equilibrium point for kd > kd1

and at least close to kd1. Numerical simulation and numerical continuation studies of the full

model confirm the predictions of the analysis, and indicate that the unstable limit cycle exists

for kd ∈ (kd1, kd2). We saw similar behaviour in numerical studies where the position feedback

gain, kp, or the acceleration feedback gain, ka, was used as the continuation parameter.

This means that large enough perturbations may cause instability in the system even if the

feedback is chosen to stabilize the equilibrium position. This nonlinear instability mechanism

due to a subcritical Hopf bifurcation has been observed in other systems with delay [28, 29,

30, 35, 36, 37]. The fact that subcritical Hopf bifurcations exist for all the parameter values

we tested means that this phenomenon may be quite prevalent in the maglev system. Thus

linear control theory/stability analysis may not be adequate to guarantee good performance

of the system.

Vibration phenomena are profuse when the maglev vehicle runs on the guideway. To
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completely understand the dynamic behavior of the maglev system, further research needs

be carried out. Numerical bifurcation analysis can determine the amplitude of unstable

limit cycles which co-exist with the stable equilibrium state. This would help quantify how

robust the stability is to perturbations. A more extensive exploration of parameter space

may yield values of the feedback gains or physical parameters which give better performance

of the system. Our analysis has shown that the system can have codimension 2 Hopf-Hopf

bifurcation points. In the particular example we considered the frequencies of the Hopf

bifurcations were in 1:2 resonance and a secondary period doubling bifurcation occurred.

If the Hopf bifurcations are not resonant, then quasiperiodicity or multistability between

different periodic solutions can occur. The resulting complex dynamics would likely degrade

the performance of the maglev system. Thus a more detailed study of when such points occur

and the behaviour associated with them would be useful. Finally, in some of our numerical

studies the instability was large enough that the train would come in contact with the rail,

at which point our model becomes invalid. It would be interesting to extend the model to

include the effect of impacts with the rail. The resulting hybrid model would presumably be

related to impact oscillator models, which have been shown to exhibit a variety of interesting

behaviour such as grazing bifurcations [38]. The study of machine tool dynamics can lead

to models with both impacts and time delay. Chaotic behaviour has been shown to arise in

such models [39, 40].
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