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Abstract. We discuss how distributed delays arise in biological models and review the literature
on such models. We indicate why it is important to keep the distributions in a model as general
as possible. We then demonstrate, through the analysis of a particular example, what kind of
information can be gained with only minimal information about the exact distribution of delays.
In particular we show that adistribution independentstability region may be obtained in a similar
way that delay independent results are obtained for systemswith discrete delays. Further, we
show how approximations to the boundary of the stability region of an equilibrium point may
be obtained with knowledge of one, two or three moments of thedistribution. We compare the
approximations with the true boundary for the case of uniform and gamma distributions and show
that the approximations improve as more moments are used.
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1. Introduction

Time delays are an important aspect of many biological and physical models. In models for popu-
lation growth, delays typically arise due to age structure,e.g. due to the time spent in a larval stage
before becoming an adult or due to the gestation period [14].In epidemic models, delays arise as
a result of the time spent in each stage of the disease, e.g. when someone becomes infected with
a disease they do not recover instantaneously but only aftersome period of time [8, 3]. In models
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for neural systems, there is a delay (the propagation delay)due to the time it takes for the signal
(action potential) of one neuron to travel from the soma of the sending neuron to the soma of the
receiving neuron. There is also a delay (the processing delay) due to the time it takes for the signal
to cross a chemical synapse between the neurons [21, 27].

Many models, especially those for neural systems, assume that the time delays are fixed. For
example, Hutchinson [19] proposed the following modification of the logistic equation

ẋ(t) = rx(t)

[

1 −
x(t − τ)

K

]

,

as a model for a population of insects. Here the delayτ represents the time between egg laying and
hatching. We shall refer to such models as discrete delay models. It is more likely, however, that
the delay will vary with some individuals taking more time tohatch and some taking less. Thus
a more appropriate model includes a distribution of delays,representing the situation where the
delay occurs in some range of values with some associated probability distribution, viz.,

ẋ(t) = rx(t)

[

1 −
1

K

∫

∞

0

x(t − u)g(u) du

]

. (1.1)

The functiong in this model is called the kernel of the distribution and represents the probability
that a particular time delay occurs. Sinceg is a probability density function, it is normalized so
that

∫

∞

0
g(u) du = 1. Note that ifg is taken to be a Dirac distribution, i.e.,g(u) = δ(u − τ), we

recover the model with discrete delay.
In the literature, there are two commonly used distributions. The uniform distribution with

meanτ is given by

g(u) =

{

1
τρ

, for τ(1 − ρ
2
) ≤ u ≤ τ(1 + ρ

2
)

0, elsewhere.

The parameterρ determines the width and height of the distribution. Some examples of this distri-
bution are shown in Figure 1(a). The gamma distribution is given by

g(u) =
up−1ape−au

Γ(p)
,

wherea, p ≥ 0 are parameters determining the shape of the distribution. In particular, the mean is
given byτ = p/a. Γ is the gamma function defined byΓ(0) = 1 andΓ(p + 1) = pΓ(p). Some
examples of this distribution are shown in Figure 1(b). It iscommon to considerp in the gamma
distribution to be an integer. In this caseΓ(p) = (p − 1)! and a scalar equation with one gamma
distributed delay can be shown to be equivalent to a system ofp+1 ordinary differential equations.
Details about this reduction, often called thelinear chain trick, may be found in the books of
MacDonald [24, 25]. This approach may seem attractive as it means the model is amenable to
analysis and simulation techniques for ordinary differential equations. However, it will only be
practical ifp is a small integer, while real data may call for much larger and/or nonintegerp. As
an example we note a recent paper [33] where data for the pre-symptomatic infectious period in an
outbreak of mumps was fit by a gamma distribution withp = 70.
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Figure 1: (a) The uniform distribution forρ = 0.8, 1, 2 and mean delayτ = 2. (b) The gamma
distribution forp = 1, 2, 4, 8 and mean delayτ = p

a
= 2.

Models with distributed delays have been considered in the population biology and epidemic
literature for some time, but only recently in the neural network literature. In the majority of this
literature (e.g. [23, 29]) specific kernels (usually the gamma distribution withp = 1 or p = 2) are
put into the model and the resulting behaviour is analyzed indetail. Such papers may be useful
in adding to our general knowledge of how distributed delaysaffect the dynamics differently from
discrete delays. However, if one is interested in modellingreal physical systems, one usually does
not have access to the exact distribution, and approaches using general kernels may be more useful.
This is the point of view we will take in this article and thus we begin with a review of the literature
where results for distributed delay equations with generalkernels have been obtained.

There are several monographs which explicitly treat systems with distributed delays. The
monograph of Cushing [14] give a general introduction to thestudy of systems with a distribu-
tion of delays, as well as stability and bifurcation analysis of some specific biological models.
Some linear stability results for general distributions are derived. The monographs of MacDon-
ald [24, 25] give linear stability results for system with gamma distributions (for generalp). The
monograph of Gopalsamy [16] uses the Liapunov function approach to derive some stability re-
sults for models from population biology. The monograph of Kuang [22] also treats equations with
distributed delay.

In the population biology literature there are several papers which give results for general distri-
butions. Faria and Oliveira [15] study the global stabilityof equilibria in a class of Lotka-Volterra
models with distributed delays having finite maximum delay.They give conditions on the inter-
action coefficients of the system which guarantee asymptotic stability for any distribution. Global
stability analysis of the equilibria in a chemostat model with gamma distributed delay has been
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carried out by Wolkowicz et al. [31, 32]. They obtain resultsfor any gamma distribution and show
that if in the limit the variance goes to zero with the mean delay held fixed, the results yield those
for the system with discrete delay. This fact was observed for linear stability by MacDonald [25].
They also note that changing the mean delay has a much larger effect on stability than changing
the variance. Ruan [28] considers Hutchinson’s equation with distributed delay, i.e., equation (1.1)
and gives a condition for asymptotic stability of the trivial solution in terms of the mean of the
distribution. Arino and van den Driessche [3] show how the reproduction number for certain epi-
demic models with distributed delays can be derived withoutassuming a particular form for the
distribution.

In the neural network literature, there are fewer results. Gopalsamy and He [17] study global
stability of equilibria in a Hopfield-type network of arbitrary size with either discrete or distributed
time delays with arbitrary kernels. Chen [10, 11] studies global stability of equilibria in artifi-
cial neural networks with distributed delays with arbitrary kernels using Liapunov functionals and
matrix theory. Also, the work of Faria and Oliveira [15] discussed above can be viewed as the
linearization of a Hopfield-type neural network about an equilibrium point. Thiel et al. [30] study
a scalar equation representing a mean field approximation for a population of pyramidal cells with
recurrent feedback, first formulated by [26]. They show thathaving a uniform distribution of de-
lays simplifies the dynamics of the system. The size of the stability region of the equilibrium point
is larger, and larger mean delays are needed to induce oscillations. Complex phenomena such as
chaos are less likely to occur, or totally precluded if the variance of the distribution is sufficiently
large. The model with a distribution of delays better explains the appearance of periodic bursts of
activity when penicillin is added to a hippocampal slice preparation (which reduces the coupling
strength).

An often quoted general principle is thata system with a distribution of delays is inherently
more stable than the same system with a discrete delay. It is clear that some of the results cited
above support this principle. Other are described below. Cooke and Grossman [13] and MacDonald
[24] compare the behaviour of a scalar equation with one discrete delay:

ẋ(t) = −ax(t) − bx(t − τ)

and the corresponding equation with a gamma distributed delay. They show that, for appropriate
values ofa andb, increasing the discrete delay in the model destabilizes the trivial solution and it
can never be restabilized. For the distributed delay, increasing the mean delay can also destabilize
the trivial solution, however, it will always be restabilized for large enough mean delay, for any
value ofp. Jirsa and Ding [20] analyze ann × n linear system with linear decay and arbitrary
connections with a common delay. They show, under some mild assumptions, that the stability
region of the trivial solution for any distribution of delays is larger than and contains the stability
region for a discrete delay. Campbell and Ncube [9] study a scalar equation with one discrete delay
and one distributed delay:

ẋ(t) = −kx(t) + αx(t − τs) + β

∫

∞

0

x(t − τ)g(τ) dτ .

They show that it is more difficult to get delay induced instability with gamma distributions, than
in the corresponding system with two discrete delays. For large variance (p = 1) delay induced
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instability is impossible, and for smaller variance (p > 1) the mean delay needed for instability
is much larger than the discrete delay value. They also show that sufficiently small variance in
the distribution is needed to get the stability switches observed in the corresponding system with
two discrete delays. In [4, 5], Atay studies a system consisting of two simple oscillators with
gap junctional coupling by incorporating a uniform distribution of delays. He shows it is easier
to destroy oscillations with a distribution of delays than with a discrete delay, in the sense that
there is a larger region of oscillator death in the parameterspace consisting of the mean delay
and the strength of the coupling. As the variance of the distribution increases, the size of this
region increases. In [6] Atay studies the stability of functional differential equations near a Hopf
bifurcation under delayed feedback. He shows the discrete delay is locally the most destabilizing
one among delay distributions having the same mean. He also gives conditions under which the
delays induce stability. In this case, he proves that the discrete delay is locally the most stabilizing.

Bernard et al. [7] have pointed out that it makes the most biological sense to incorporate a
distribution that has a nonzero minimum delay, since the probability of having zero delay is ef-
fectively zero in most applications. For the uniform distribution, this can be achieved naturally by
incorporating the constraintρ < 2. The gamma distribution can be reformulated to achieve thisas
follows:

g(u) =

{

0, for 0 ≤ u < τmin

ap

Γ(p)
(u − τmin)p−1e−a(u−τmin), for τmin ≤ u

whereτmin > 0 are the minimum delays. In this case, the linear chain trick shows that one
equation with a gamma distribution is equivalent to a systemof p ordinary differential equations
and one discrete delay differential equation. Bernard et al. [7] analyzed the linear stability of a
scalar system with one and two delays in terms of generic properties of the distributiong, such as
the mean, variance and skewness. For the uniform and continuous distributions, they have shown
that stability regions are larger than those with a discretedelay. The equation studied by Bernard
et al. [7] is similar to the linearization of the equation analyzed by Adimy et al. [1] describing
a model of blood cell production in the bone marrow. They determine conditions that guarantee
the local asymptotic stability of the nontrivial equilibrium and also obtain conditions for a Hopf
bifurcation to occur for any general distribution of delays. Further, Adimy et al. [2] study a model
of pluripotent stem cell population where the delay describing the cell cycle duration is distributed
uniformly. They obtain stability conditions independent of delay and show that the distributed
delay can destabilize the nontrivial equilibrium via a Hopfbifurcation. The linearization of their
model is similar to the scalar equation we consider in this paper.

In the following we will show, through the analysis of a specific example, how one can obtain
results for general distributions. The primary focus will be on the linear stability of equilibrium
points of the equations, via analysis of the characteristicequation. These results are not only
important for understanding where equilibrium points are stable, but also for determining where
bifurcations of the equilibrium points occur.

The plan for the article is as follows. First we show what can be determinedwithoutchoosing
a particular distribution. Next we illustrate a way of approximating the region of stability when the
actual distribution is not known, but some moments of the distribution are. Finally, we compare the
approximate stability regions with the stability regions for the gamma and uniform distributions.
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For ease of presentation we will consider a simple scalar system, the extension to others system
should be clear.

2. Distribution independent results

Consider the scalar DDE with one distributed delay

ẋ(t) =

∫

∞

0

f(x(t), x(t − u))g(u) du, (2.1)

where
∫

∞

0
g(u) du = 1. Let the mean delay of the distribution be given by

τ =

∫

∞

0

ug(u) du.

Biologically, the most interesting case is whenτ > 0 and we will assume this from now on. The
above equation includes many models. The distributed delayversion of Hutchinson’s equation
given by equation (1.1) is one example. Assume that the system has an equilibrium pointx∗, i.e.,

0 =

∫

∞

0

f(x∗, x∗)g(u) du = f(x∗, x∗).

Linearizing (2.1) aboutx∗ we obtain

ẋ(t) = −αx(t) − β

∫

∞

0

x(t − u)g(u) du, (2.2)

where−α is the derivative off with respect to its first argument, and−β is the derivative off
with respect to its second argument.

In the following, we would like to study the dependence of thelinear stability of the equilibrium
point on the mean delay. Thus we will transform the equation so that the mean delay appears
explicitly. Let s = t/τ , v = u/τ and′ denote the derivative with respect tos, then we have

x′(s) = −ταx(s) − τβ

∫

∞

0

x(s − v)g(τv)τ dv.

Defining ĝ(v) = g(τv)τ we find

x′(s) = −ταx(s) − τβ

∫

∞

0

x(s − v)ĝ(v) dv. (2.3)

Note that the equation is still in the form of a distributed delay, however the mean of the distribution
ĝ is 1.
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Settingx(s) = eλs we derive the characteristic equation

∆(λ) = λ + ατ + βτ

∫

∞

0

e−λvĝ(v) dv = 0. (2.4)

Note that this may be written
λ + ατ + βτĜ(λ) = 0, (2.5)

whereĜ is the Laplace transform of̂g.
Changes of stability of the equilibrium point will take place when the characteristic equation

has a root with zero real part. In the following we will describe where in the parameter space such
changes may occur, and hence determine the region of stability of the equilibrium point. We will
consider the parameterα as fixed and describe the stability region in theβ, τ parameter space for
various values ofα.

In the study of systems with discrete delays, it is common to describe thedelay independent
stability region, sometimes called theabsolutestability region. Such results give a conservative
estimate of the stability region which is useful if one is unable to accurately estimate the time delay
in the system. In this section we will formulate similar results for equation (2.3). In particular
we will give one result which is independent of all aspects ofthe distribution and one which is
independent of all aspects save the mean delay. This latter may be especially useful as the mean
delay is often all one may be able to estimate for a particularsystem. We begin with a result which
will help locate the region of stability of the equilibrium point.

Theorem 1. Assume that̂G(λ) is analytic inRe(λ) ≥ 0. If 0 < |β| < α then the characteristic
equation has no roots with positive real part. If0 < |β| < −α then the characteristic equation has
one root with positive real part.

Proof. We will prove the results by the use of Rouché’s Theorem [12,p. 313]. Letf1(λ) = λ+ατ
andf2(λ) = βτĜ(λ), and consider the contour in the complex plane,C = C1 ∪ C2, given by

C1 : λ = Reiθ, −
π

2
≤ θ ≤

π

2

C2 : λ = iy, −R ≤ y ≤ R,

whereR is a real number.
On C1 we have|f1(λ)| ≥ |R − |α|τ | and |f2(λ)| ≤ |β|τ . Thus |f1(λ)| > |f2(λ)| for R

sufficiently large. OnC2 we have|f1(λ)| ≥ |α|τ and|f2(λ)| ≤ |β|τ . Thus|f1(λ)| > |f2(λ)| if
|α| > |β|. Further, note that ifατ 6= 0, andβτ 6= 0 then bothf1 andf2 do not reduce to zero
anywhere onC. Thus by Rouché’s Theorem, if|α| > |β| > 0 andR is sufficiently large thenf1(λ)
and∆(λ) = f1(λ) + f2(λ) have the same number of zeros insideC. Let R → ∞ thenf1(λ) and
∆(λ) have the same number of zeros with Re(λ) > 0. Now f1(λ) has just one zero atλ = −ατ .
The results follow.

From this theorem, we can conclude that the trivial solutionof equation (2.3) (and hence the
equilibrium point of equation (2.1)) is locally asymptotically stable ifα > 0 and |β| < α and
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unstable ifα < 0 and |β| < −α. We note that these results also hold for equation (2.2) and its
discrete delay analogue

ẋ(t) = −αx(t) − βx(t − τ).

We can next determine a region in the parameter space where the equilibrium point is unstable
for any distribution̂g(v). The proof of the following result is similar to the proof of Theorem 3.1
in [1].

Theorem 2. The equilibrium point of (1) is unstable whenβ < −α.

Proof. Note that we only need to consider the case whenβ < −|α|, since from Theorem 1
we already have instability forα < β < −α, whenα < 0. We focus on the real roots of the
characteristic equation (2.4), hence we assume∆(λ) : R → R. Now

dRe(∆(λ))

dλ
= 1 − βτ

∫

∞

0

ve−λvĝ(v) dv > 0,

sinceβ < 0. Thus∆(λ) is a strictly increasing function. Forλ = 0 we have

∆(0) = τ(α + β) < 0,

by our assumption. Ifλ ≥ 0 then|e−λv| ≤ 1, and thus the integral term is bounded:
∫

∞

0

e−λvĝ(v) dv ≤

∣

∣

∣

∣

∫

∞

0

e−λv ĝ(v) dv

∣

∣

∣

∣

≤

∫

∞

0

|e−λv|ĝ(v) dv ≤

∫

∞

0

ĝ(v) dv = 1.

It follows that
lim

λ→+∞

∆(λ) = +∞.

Since∆(λ) is continuous, we conclude that∆(λ) has a unique real root which is positive, i.e. the
characteristic equation has at least one root with positivereal part. The result follows.

Some additional information about the stability region maybe obtain from the characteristic
equation (2.4). First note that the characteristic equation has a zero root ifα + β = 0 for any
distribution. Forα > 0, from Theorems 1 and 2, stability is gained as this line is crossed by
increasing the parameterβ, and thus the lineβ = −α forms part of the boundary of the stability
region. Forα < 0 we need to determine how the eigenvalue changes as this line is crossed in the
parameter space. We will focus on varying the parameterβ, the analysis for the variation ofα is
similar.

To begin, we note that

dRe(λ)

dβ
= Re

(

dλ

dβ

)

= −Re

(

∂∆

∂β
/
∂∆

∂λ

)

. (2.6)

In particular, we need to evaluate this whenλ = 0, i.e. along the lineβ = −α:

dRe(λ)

dβ

∣

∣

∣

∣

λ=0, β=−α

= −Re

(

∂∆

∂β
/
∂∆

∂λ

∣

∣

∣

∣

λ=0,β=−α

)

= −
τ

1 + ατ
.
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From this it is easy to conclude that

dRe(λ)

dβ

<
> 0 along the lineβ = −α, with α < 0 andτ

<
> −

1

α
. (2.7)

It follows that for forα < 0 andτ < −1/α, the equilibrium pointbecomesstable asβ is increased
through the lineβ = −α. Hence, forα < 0 the line segmentβ = −α, τ < −1/α forms part of
the stability boundary.

To further define the boundary of stability, we need to determine where the characteristic equa-
tion has a pair of pure imaginary roots,±iω. This occurs when we setλ = iω, ω > 0 in the
characteristic equation (2.4), i.e.,

iω + ατ + βτ

∫

∞

0

e−iωvĝ(v) dv = 0. (2.8)

Separating this into real and imaginary parts, we find that for the characteristic equation to have a
pair of real imaginary roots, the parameters must satisfy the following equations

ατ = −βτ
∫

∞

0
cos(ωv) ĝ(v) dv

def
= −βτC(ω),

ω = βτ
∫

∞

0
sin(ωv) ĝ(v) dv

def
= βτS(ω).

(2.9)

Fixing α, we can formally define curves, parameterized byω, in theβ, τ plane along which the
equations in (2.9) are satisfied. These curves are given by

β = −
α

C(ω)
, τ = −

ω

α

C(ω)

S(ω)
, (2.10)

for all ω > 0 such thatC(ω) andS(ω) are nonzero. The values ofω such thatC(ω) = 0 or
S(ω) = 0 define discontinuities in the curves and do not correspond toroots of the characteristic
equation (2.8).

To obtain explicit expressions for the curves given in (2.10), we need to evaluateC(ω) and
S(ω) which requires knowledge of the distribution̂g(v). We can, however, determine how the
number of eigenvalues changes as one crosses one of these curves. From equations (2.5) and (2.9),
the characteristic equation whenλ = iω can be written as

∆(iω) = iω + ατ + βτ (C(ω) − iS(ω)) = 0.

Taking the derivative ofτ in (2.10) with respect toω we obtain

dτ

dω
= −

1

αS(ω)

(

C(ω) + ω
C ′(ω)S(ω) − S ′(ω)C(ω)

S(ω)

)

. (2.11)
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Next we compute the rate of change of the real part ofλ with respect toβ,

dRe(λ)

dβ

∣

∣

∣

∣

λ=iω

= −Re

(

∂∆

∂β
/
∂∆

∂λ

∣

∣

∣

∣

λ=iω

)

= −τRe

(

C(ω) − iS(ω)

1 − βτ(S ′(ω) + iC ′(ω))

)

= −
τ

H2(ω)
(C(ω) − βτC(ω)S ′(ω) + βτS(ω)C ′(ω))

= −
τ

H2(ω)

(

C(ω) + ω
C ′(ω)S(ω)− S ′(ω)C(ω)

S(ω)

)

, (2.12)

whereH2(ω) = (1 − βτS ′(ω))2 + (βτC ′(ω))2 is a positive function ofω and we have used
βτ = ω/S(ω) from (2.10). Comparing with (2.11), and using (2.10) again,we see that

dRe(λ)

dβ

∣

∣

∣

∣

λ=iω

=
α

β

ω

H2(ω)

dτ

dω
. (2.13)

Thus whether the number of eigenvalues with positive real parts is increasing or decreasing asβ
is increased through a point on one of the curves defined by (2.10) depends on the sign ofα and
whetherτ is an increasing or decreasing function ofω at the point.

We can also obtain the following distribution independent results.

Theorem 3. Under the conditions of Theorem 1, the equilibrium point of (1) is locally asymptoti-
cally stable in the following regions of parameter space

(1) |β| < α

(2) |α| ≤ β and0 < τ <
1

β
.

Proof. Result(1) follows from Theorem 1 and the subsequent discussion. To see(2), consider
equations (2.9). From the first equation, we have

∣

∣

∣

∣

α

β

∣

∣

∣

∣

≤

∫

∞

0

| cos(ωv)|ĝ(v) dv ≤

∫

∞

0

ĝ(v) dv = 1.

While from the second equation, we have
∣

∣

∣

∣

1

βτ

∣

∣

∣

∣

≤

∫

∞

0

∣

∣

∣

∣

sin(ωv)

ωv

∣

∣

∣

∣

vĝ(v) dv ≤

∫

∞

0

vĝ(v) dv = 1.

Thus equations (2.9) have a solution only if|β| ≥ |α| andτ ≥ 1/|β|. In particular, forβ > 0 this
means the system cannot have pure imaginary roots ifβ ≥ |α| andτ < 1/β and hence for this
range ofβ, the stability cannot change. Result(2) follows.

We note that, in the caseα > 0, the second result of this theorem is similar to Theorem 9 in
[28], although we have proven it in a different way.
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Figure 2: Illustration of the distribution independent stability results described by Theorems 2
and 3. (I) Region of instability described by Theorem 2. (II)Region of stability described by
Theorem 3. (III) No distribution independent stability results are known for this region.

The results of Theorems 2 and 3 are illustrated in Figure 2. Theorem 3 describes the re-
gion of stability of the equilibrium point with either no knowledge of the distribution of delays or
knowledge of only the first moment of the distribution, i.e. the mean delay,τ . From the proof of
Theorem 3, it is clear that the curves given by equations (2.10) must lie outside the stability region
described by the Theorem. Thus this region is only a conservative estimate of the full region in the
parameter space where the equilibrium point is stable. In the next section we will show how one
may improve this approximation by using more information from the distribution. We note that it
is only necessary to considerβ > 0, given the results of Theorems 2 and 3.

3. Approximating the boundary of the stability region

In the previous section, we established that the boundary ofthe stability region (in theβ, τ
plane) consists of all or part of the lineβ = −α and the curve(s) defined parametrically by equa-
tions (2.10) forβ > |α|. In this section, we shall show how partial knowledge of the distribution,
ĝ(v), can allow us to approximate these latter curves.

Let mj denote thejth moment of̂g, i.e.,

mj =

∫

∞

0

vj ĝ(v) dv. (3.1)

It is easy to check thatm0 = m1 = 1 and thatmj > 0 for all j. The second moment is related
to the variance,σ2, via m2 = σ2 + 1. And the third moment is related to the measure of the

11
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Table 1: Approximations for equations (2.10), whereM andN relate to the number of terms used
in the summation forC(ω) andS(ω), respectively.

(M, N) C(ω) S(ω) β τ
(0, 0) 1 ω −α −1/α

(1, 0) 1 −
m2

2
ω2 ω

2α

m2ω2 − 2

m2ω
2 − 2

2α

(1, 1) 1 −
m2

2
ω2 ω −

m3

6
ω3 2α

m2ω2 − 2

3m2ω
2 − 6

6α − αm3ω2

lopsidedness of the distribution, i.e. skewed to the right or to the left [18]. By Using the Taylor
polynomial approximation for cosine, we may relateC(ω) to the moments of̂g(v):

C(ω) ≈

∫

∞

0

M
∑

k=0

(−1)k(ωv)2k

(2k)!
ĝ(v) dv

≈

M
∑

k=0

(−1)kω2k

(2k)!

∫

∞

0

v2kĝ(v) dv,

and similarly forS(ω). Using (3.1), it follows that

C(ω) ≈
M
∑

k=0

(−1)kω2k

(2k)!
m2k

S(ω) ≈
N
∑

k=0

(−1)kω2k+1

(2k + 1)!
m2k+1.

We define approximation(M, N) as the approximation forC(ω) andS(ω) if we take the sum up
to M for the Taylor series for cosine and the sum up toN for the Taylor series for sine. Note that
these approximations should improve asω approaches 0 or asM andN increase.

Thus, given knowledge of some moments ofĝ(v), we may obtain an approximation for the
curve(s) (2.10). The results for different cases are summarized in Table 1. In particular, we see that
approximation(0, 0) is just a single point which corresponds to the characteristic equation having
a double zero root. The other approximations are as follows

(1, 0) : τ =
1

β
, ω =

√

2

m2

(

1 +
α

β

)

,

(1, 1) : τ =
1

(

1 − m3

3m2

)

β − m3

3m2
α

, ω =

√

2

m2

(

1 +
α

β

)

,

where, forα < 0 we requireβ > −α in order forω to be defined.

12
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We note that approximation(1, 0) always underestimates the region of stability. Forβ > |α|,
this approximation recovers the results of Theorem 3. Forβ < α (α > 0) the curve enters the
region of delay-independent stability and thus gives a worse estimate than Theorem 3.

Approximation(1, 1) is a hyperbola with vertical asymptote atβ = να/(1 − ν), whereν =
m3/(3m2) > 0 (since the moments are positive). The relationship betweenapproximation(1, 1)
and the results of Theorem 3 will depend on the value ofν, and hence on the moments of the
particular distribution. However, we can say that ifν < 1, then for largeβ, approximation(1, 1)
always lies above approximation(1, 0). For β < α (α > 0) the curve given by approximation
(1, 1) enters the region of distribution-independent stability if ν < 1/2.

Since it is known from Theorem 3 that, forα > 0, there is stability forβ < |α| for any distribu-
tion, the best estimate for the stability region in this caseis clearly to use the approximations above
only for β > |α|. This is what we do in the following sections where we apply the approximations
to specific distributions.

4. Verifying the approximation for the uniform distributio n

In this section we will apply the approximation procedure wederived in the previous section to the
uniform distribution, thus determining approximations for the boundary of the region of stability.
We will then compare these approximations with the true boundary derived from the characteristic
equation.

The general uniform distribution with mean delayτ is given by

g(u) =

{

1
ρτ

, if u ∈
[

τ
(

1 − ρ
2

)

, τ
(

1 + ρ
2

)]

0, elsewhere,

where0 < ρ ≤ 2. Thus the normalized uniform distribution becomes

ĝ(v) =

{

1
ρ
, if v ∈ [1 − ρ

2
, 1 + ρ

2
]

0, elsewhere.
(4.1)

Hence the moments are given by

mk =

∫

∞

0

vkĝ(v) dv =
1

ρ

∫ 1+ρ/2

1−ρ/2

vk dv

=
1

(k + 1)ρ

[

(

1 +
ρ

2

)k+1

−
(

1 −
ρ

2

)k+1
]

.

The moments for some particular values ofρ are given in Table 2.

13
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Table 2: Moments of the uniform distribution.

ρ m0 m1 m2 m3

2 1 1 4/3 2
1 1 1 13/12 5/4

4/5 1 1 79/75 29/25

The corresponding approximations are

ρ = 2 (1, 0) : τ =
1

β
, ω =

√

3

2

(

1 +
α

β

)

, (4.2)

(1, 1) : τ =
2

β − α
, ω =

√

3

2

(

1 +
α

β

)

, (4.3)

ρ = 1 (1, 0) : τ =
1

β
, ω =

√

24

13

(

1 +
α

β

)

, (4.4)

(1, 1) : τ =
13

8β − 5α
, ω =

√

24

13

(

1 +
α

β

)

, (4.5)

ρ = 4
5

(1, 0) : τ =
1

β
, ω =

√

150

79

(

1 +
α

β

)

, (4.6)

(1, 1) : τ =
79

50β − 29α
, ω =

√

150

79

(

1 +
α

β

)

, (4.7)

where, forα < 0 we requireβ > −α for ω to exist. Approximation(1, 0) corresponds to the
dotted line and approximation(1, 1) corresponds to the dashed line in Figures 3 – 5.

We now turn to the exact representation of the curves where the characteristic equation has a
pair of pure imaginary roots. Since our scalar equation withuniform distributed delay is similar
to the linearization of the delay equation used by Adimy et al. [2] to represent the dynamics of a
pluripotent stem cell population, the computations that follow are similar to those found in [2]. For
the uniform distribution (4.1) we have

C(ω) =
1

ρ

∫ 1+ρ/2

1−ρ/2

cos(ωv) dv =
2 cos(ω) sin(ρω/2)

ρω
,

and

S(ω) =
1

ρ

∫ 1+ρ/2

1−ρ/2

sin(ωv) dv =
2 sin(ω) sin(ρω/2)

ρω
.

Putting these into equations (2.10), we see that the curves are defined (parametrically in terms of

14
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ω) by

β = −
αρω

2 cos(ω) sin(ρω/2)
, τ = −

ω cos(ω)

α sin(ω)
. (4.8)

To determine which curve(s) form part of the stability boundary we analyze the rate of change
of the real part of the eigenvalues as one of the curves is crossed, using the formula (2.13) derived
in the Section 2.

Now, from the expression forτ from (4.8) and equation (2.11), we have

dτ

dω
= −

cos(ω)

α sin(ω)
−

ω

α

(

− sin2(ω) − cos2(ω)
)

sin2(ω)
.

Whenα > 0, from (4.8) we need only considerω values such thatcos(ω)/ sin(ω) < 0, and thus

dτ

dω
=

1

α

(

−
cos(ω)

sin(ω)
+

ω

sin2(ω)

)

> 0.

Whenα < 0, we rewrite the derivative as

dτ

dω
=

1

α sin2(ω)
(ω − sin(ω) cos(ω)).

But cos(ω)/ sin(ω) > 0 in this case, so

sin(ω) cos(ω)

ω
=

∣

∣

∣

∣

sin(ω) cos(ω)

ω

∣

∣

∣

∣

=

∣

∣

∣

∣

sin(ω)

ω

∣

∣

∣

∣

| cos(ω)| < 1.

Thusω − sin(ω) cos(ω) > 0 and dτ
dω

< 0. We therefore determine thatα dτ
dω

> 0, for any value of
α. Using this and the fact that we only considerβ > 0, we conclude from (2.13) that

dRe(λ)

dβ

∣

∣

∣

∣

λ=iω

> 0.

In other words, the real part ofλ increases (decreases) asβ increases (decreases), as the curves
whereλ = iω are crossed. It follows from this computation that the boundary of the stability
region is formed by the curve closest to theτ axis.

Forρ = 2, the parametric equations in (4.8) become

β = −
αω

cos(ω) sin(ω)
, τ = −

ω cos(ω)

α sin(ω)
. (4.9)

Due to the singularities atω = kπ andω = (2k + 1)π/2 for k = 0, 1, . . ., these equations define
multiple curves in theβ, τ plane, which lie either in the first or third quadrant. Since we are
interested inτ > 0, the only curves of interest are those in the first quadrant.

For α < 0, the curve forming the boundary of the stability region is defined by equation (4.9)
with ω ∈ [0, π

2
] and forα > 0 with ω ∈ [π

2
, π]. Some simple properties of this curve are as follows.
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α
1

βα−α

τ

(a) α > 0

α
1

−α

τ

β

(b) α < 0

Figure 3: Stability region for the uniform distribution with ρ = 2. The region of distribution
independent stability lies between the solid and dashed gray lines whenα > 0. The true region
of stability lies between the solid gray line and the solid black curve which is defined by equa-
tions (4.9). The dotted curve, defined by equation (4.2), shows the first approximation to the solid
black curve. The dashed curve, defined by equation (4.3), shows the second approximation.

For α < 0, the curve approaches the point(β, τ) = (−α,−1/α) asω → 0. For anyα, the curve
has a horizontal asymptote,τ = 0, which is approached asω → π

2
. Forα > 0 it has an oblique

asymptote,τ = β/α2, which is approached asω → π. This curve corresponds to the solid black
lines in Figure 3.

Forρ = 1, the parametric equations in (4.8) are given by

β = −
αω/2

cos(ω) sin(ω/2)
, τ = −

ω cos(ω)

α sin(ω)
. (4.10)

These equations define multiple curves in theβ, τ plane with singularities atω = kπ andω =
(2k+1)π/2 for k = 0, 1, . . .. Forα < 0 the closest curve to theτ axis is defined by equation (4.10)
with ω ∈ [0, π

2
] and forα > 0 with ω ∈ [π

2
, π]. For α < 0, the curve approaches the point

(β, τ) = (−α,−1/α) asω → 0. For anyα, the curves in (4.10) have a horizontal asymptote,
τ = 0, which is approached asω → (2k + 1)π/2, vertical asymptotes asω → (2k + 1)π, and an
oblique asymptote asω → 2kπ. These curves correspond to the solid black lines in Figure 4.

Forρ = 4/5, the parametric equations in (4.8) become

β = −
2αω/5

cos(ω) sin(2ω/5)
, τ = −

ω cos(ω)

α sin(ω)
. (4.11)

These equations define multiple curves in theβ, τ plane with singularities atω = kπ andω =
(2k+1)π/2 for k = 0, 1, . . .. Forα < 0 this curve closest to theτ axis is defined by equation (4.11)
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3α
13

α

τ

1

α−α β

(a) α > 0

β

α
1

−α

τ

(b) α < 0

Figure 4: Stability region for the uniform distribution with ρ = 1. The region of distribution
independent stability lies between the solid and dashed gray lines whenα > 0. The true region
of stability lies between the solid gray line and the solid black curve which is defined by equa-
tions (4.10). The dotted curve, defined by equation (4.4), shows the first approximation to the solid
black curve. The dashed curve, defined by equation (4.5), shows the second approximation.

with ω ∈ [0, π
2
] and forα > 0 with ω ∈ [π

2
, π]. For α < 0, the curve approaches the point

(β, τ) = (−α,−1/α) asω → 0. For anyα, the curves in (4.11) have a horizontal asymptote,
τ = 0, which is approached asω → (2k+1)π/2 and vertical asymptotes asω → (2k+1)π. These
curves correspond to the solid black lines in Figure 5.

Comparing the approximations with the true boundary of the stability region in Figures 3-5
we can make several conclusions. The approximations improve as the number of moments used
increases. This corresponds to increasingN andM in the approximations forsin andcos so is as
expected. The approximations are better for largeβ. In all cases, largerβ corresponds to smaller
ω so this is also as should be expected. Note also that the approximate stability regions are always
conservative, i.e. they underestimate the region of of stability.

5. Verifying the approximation for the gamma distribution

In this section we will apply the approximation procedure wederived in Section 3 to the gamma
distribution, thus determining approximations for the boundary of the region of stability. We will
then compare these approximations with the true boundary derived from the characteristic equa-
tion.
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21α

79

α

τ

1

α−α β

(a) α > 0

α
1

−α

τ

β

(b) α < 0

Figure 5: Stability region for the uniform distribution with ρ = 0.8. The region of distribution
independent stability lies between the solid and dashed gray lines whenα > 0. The true region
of stability lies between the solid gray line and the solid black curve which is defined by equa-
tions (4.11). The dotted curve, defined by equation (4.6), shows the first approximation to the solid
black curve. The dashed curve, defined by equation (4.7), shows the second approximation.

Recall that the gamma distribution is given by

g(u) =
up−1ape−au

(p − 1)!
,

with mean delayτ = p/a. Thus the scaled distribution is given by

ĝ(v) = τg(τv)

=
(τ a)pvp−1e−aτv

(p − 1)!

=
ppvp−1e−pv

(p − 1)!
,

(5.1)

and thekth moment is given by

mk =

∫

∞

0

vkĝ(v) dv

=
pp

(p − 1)!

∫

∞

0

vk+p−1e−pv dv. (5.2)

To find a general expression formk we will use the following result, which is easily derived by
mathematical induction,

∫

∞

0

vne−pv dv =
n!

pn+1
. (5.3)
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Using this in (5.2) we arrive at an expression for thekth moment of the gamma distribution:

mk = p−k (k + p − 1)!

(p − 1)!
.

Table 3 gives values of these moments for various values ofp. The corresponding approximations

Table 3: Moments of the gamma distribution.

p m0 m1 m2 m3

1 1 1 2 6
2 1 1 3/2 3
3 1 1 4/3 20/9

are

p = 1 (1, 0) : τ =
1

β
, ω =

√

1 +
α

β
, (5.4)

(1, 1) : τ = −
1

α
, ω =

√

1 +
α

β
, (5.5)

p = 2 (1, 0) : τ =
1

β
, ω =

√

4

3

(

1 +
α

β

)

, (5.6)

(1, 1) : τ =
3

β − 2α
, ω =

√

4

3

(

1 +
α

β

)

, (5.7)

p = 3 (1, 0) : τ =
1

β
, ω =

√

3

2

(

1 +
α

β

)

, (5.8)

(1, 1) : τ =
9

4β − 5α
, ω =

√

3

2

(

1 +
α

β

)

, (5.9)

where, forα < 0 we impose thatβ > −α in order forω to be defined. Approximations(1, 0) are
shown with dotted lines and approximations(1, 1) are shown with dashed lines in Figures 6 – 8.

We now turn to the exact representation of the curves where the characteristic equation has a
pair of pure imaginary roots. For the gamma distribution (5.1) we have

C(ω) = Re

(
∫

∞

0

ĝ(v)e−iωv dv

)

= Re

(

pp

(p − 1)!

∫

∞

0

vp−1e−(p+iω)v dv

)

=

(

1 +
ω2

p2

)

−p

Re

(

1 −
iω

p

)p
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Table 4: Expressions forC(ω) andS(ω) for the gamma distribution withp = 1, 2, 3.

p C(ω) S(ω)

1
1

1 + ω2

ω

1 + ω2

2
1 − ω2/4

(1 + ω2/4)2

ω

(1 + ω2/4)2

3
1 − ω2/3

(1 + ω2/9)3

ω(1 − ω2/27)

(1 + ω2/9)3

using equation (5.3). Similarly,S(ω) = −
(

1 + ω2

p2

)

−p

Im
(

1 − iω
p

)p

. The expressions forC(ω)

andS(ω) for various values ofp are given in Table 4. Using these expressions we arrive at the
parametric equations forτ andβ.

Forp = 1 we have

τ = −
1

α
, ω2 = −

(

1 +
β

α

)

. (5.10)

Note that this implies that there are no points where the characteristic equation has pure imaginary
roots in the regionτ ≥ 0 if α > 0. If α < 0, ω is only defined forβ > −α, so the stability
boundary can only include this part of the curve. A simple calculation shows that

dRe(λ)

dτ

∣

∣

∣

∣

λ=iω

= − Re

(

∂∆

∂τ
/
∂∆

∂λ

)
∣

∣

∣

∣

λ=iω

= −Re

(

(α + β) + i(αω)

i(2ω)

)

= −
α

2
> 0,

sinceα < 0. We obtain the region of stability forp = 1 as seen in Figure 6. Forα > 0 the
equilibrium point is locally asymptotically stable whenβ > −α, and forα < 0 it is locally
asymptotically stable whenβ > −α andτ < −1/α. Recall that the approximations are given by
equations (5.4) and (5.5). Thus the estimate for the region of stability for p = 1 given by the second
approximation is identical to the true region of stability obtained analytically using full knowledge
of the distribution.

For p = 2 the curve where the characteristic equation has a pair of pure imaginary roots is
defined by

β =
(ατ + 2)2

τ
, ω2 = 4(ατ + 1). (5.11)

If α > 0, ω is defined for allτ and the curve is a parabola with minimum atβ = 8α andτ = 2/α.
If α < 0, ω is defined forτ < −1/α and the curve is a parabola with minimum atβ = 0 and
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α

τ

1

α β−α

(a) α > 0

α
1

β−α

τ

(b) α < 0

Figure 6: Stability region for the gamma distribution withp = 1. Whenα > 0, the region of
distribution independent stability lies between the solidand dashed gray lines. Forα > 0, the true
region of stability lies to the left the the solid gray line, and for α < 0, it lies between the solid
gray line and the solid black curve defined by equations (5.10). The dotted curve, defined by (5.4),
shows the first approximation to the boundary of the stability region. In both cases, the second
approximation, defined by equation (5.5), recovers the fullstability region.

τ = −2/α. To obtain the rate of change of the real part ofλ with respect toβ we first compute

C ′(ω) =
8ω(ω2 − 12)

(ω2 + 4)3
andS ′(ω) =

16(4 − 3ω2)

(ω2 + 4)3
.

Substituting these and the values ofC(ω) andS(ω) from Table 4 into (2.12) we obtain

dRe(λ)

dβ

∣

∣

∣

∣

λ=iω

= −
τ

H2(ω)

(

−
8ω2

(ω2 − 4)2

)

> 0.

We determine the region of stability forp = 2 as seen in Figure 7. Forα > 0 the equilibrium point
is locally asymptotically stable when

β > −α andτ <
β − 4α −

√

β2 − 8αβ

2α2
or τ >

β − 4α +
√

β2 − 8αβ

2α2
.

Forα < 0 it is locally asymptotically stable when

β > −α andτ <
β − 4α −

√

β2 − 8αβ

2α2
.

We note that forα > 0 the stability is recovered asτ is sufficiently increased, but forα < 0
stability is lost as soon asτ crosses the lower branch of the parabola.
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β−α

α
1

τ

8αα

(a) α > 0

α
1

β

τ

−α

(b) α < 0

Figure 7: Stability region for the gamma distribution withp = 2. The region of distribution in-
dependent stability lies between the solid and dashed gray lines whenα > 0. The true region
of stability lies between the solid gray line and the solid black curve which is defined by equa-
tions (5.11). The dotted curve, defined by equation (5.6), shows the first approximation to the solid
black curve. The dashed curve, defined by equation (5.7), shows the second approximation.

Next we will consider how well the approximations curves estimate this region of stability.
Recall that the approximation curves are given by (5.6) and (5.7). These are shown in Figure 7
by the dotted curve representing approximation(1, 0) and the dashed curve representing approx-
imation (1, 1). For α > 0, both approximations estimate the region of stability wellfor largeβ.
Whenα < 0, the two approximation curves give good estimates for anyβ > −α. We note that the
second approximation gives a better estimate than the first approximation, as expected, and that
both curves give smaller regions of stability than the exactcurves.

Finally, for p = 3 we have

β =
8(ατ + 3)3

τ(ατ + 9)2
, ω2 =

27(ατ + 1)

ατ + 9
. (5.12)

For α > 0, ω is defined for allτ ≥ 0 and the curve lies in the first quadrant with a horizontal
asymptote atτ = 0 and a vertical asymptote atβ = 8α. For α < 0, ω is defined forτ ≤ −1/α
which corresponds toβ ≥ −α, or τ > −9/α which corresponds toβ < 8α. However, as noted
above, we only consider curves whereβ is positive, and thus only the portion of the curve with
τ < −1/α will form part of the stability boundary. This curve has a horizontal asymptote atτ = 0.
Further we have that

C ′(ω) =
927ω(ω2 − 9)

(ω2 + 9)4
andS ′(ω) =

81(ω4 − 54ω2 + 81)

(ω2 + 9)4
.
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Substituting these and the values ofC(ω) andS(ω) from Table 4 into (2.12) and, using (5.12), we
obtain

dRe(λ)

dβ

∣

∣

∣

∣

λ=iω

= −
τ

H2(ω)

(

11664ω2

(ω2 + 9)3(ω2 − 27)

)

=
τ

H2(ω)

(

54ω2(ατ + 9)

(ω2 + 9)3

)

.

But ατ + 9 > 0 for α > 0 and also forα < 0 since we are only consideringτ ≤ −1/α. Therefore

dRe(λ)

dβ

∣

∣

∣

∣

λ=iω

> 0.

The region of stability forp = 3 can be as seen in Figure 8. Forα > 0 the equilibrium point is
locally asymptotically stable when

β > −α andβ <
8(ατ + 3)3

τ(ατ + 9)2
.

Forα < 0 the equilibrium point is locally asymptotically stable when

β > −α andβ <
8(ατ + 3)3

τ(ατ + 9)2
with τ < −1/α,

i.e., τ is underneath the solid line as seen in Figure 8. We note that for α > 0, if β < 8α then
stability is always recovered whenτ is sufficiently large, but forα < 0 stability is lost as soon as
τ crosses the solid curve.

We next examine the approximation curves given by equations(5.8) and (5.9). These are shown
in Figure 8 by the dotted and dashed curves. Forα > 0, both approximations give a good estimate
of the region of stability for largeβ. Whenα < 0, the two approximation curves estimate the
region of stability well for anyβ > −α. We note that, again, the second approximation gives a
better estimate than the first approximation, and that both curves give smaller regions of stability
than the exact curves.

6. Conclusions

We have studied the linear stability analysis of a scalar differential equation with one distributed
delay. While our results are specific to this differential equation, our methods are general and could
be applied equations of higher order and/or with more than one distributed delay. These methods
and results are summarized below.

We have shown how to obtain thedistribution independentregion of stability of an equilibrium
point. This region is similar to the delay independent region of stability for equations with discrete
delays. In fact, for the equation we studied, the distribution independent region of stability is the
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8α4αα

(a) α > 0

α
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−α β

τ

(b) α < 0

Figure 8: Stability region for the gamma distribution withp = 3. The region of distribution in-
dependent stability lies between the solid and dashed gray lines whenα > 0. The true region
of stability lies between the solid gray line and the solid black curve which is defined by equa-
tions (5.12). The dotted curve, defined by equation (5.8), shows the first approximation to the solid
black curve. The dashed curve, defined by equation (5.9), shows the second approximation.

same as the delay independent region if the distributed delay is replaced by a discrete delay equal
to the mean of the distribution.

We have shown how to reformulate the distribution so that themean delay occurs as a natural
parameter in the distribution. This allows us to determine aregion of stability which depends on
the mean delay, but is independent of other properties of thedistribution.

Both the distribution independent region of stability and the mean delay dependent region are
conservative estimates of the full region of stability of the equilibrium point. Thus we formulated
and approached to approximate the boundary of the full region of stability based on a finite num-
ber of moments of the distribution. By comparing our approximation with the true stability region
boundary calculated for the uniform and gamma distributions, we show that the approximation
improves as more moments are included, as might be expected.The accuracy of a given approx-
imation is not uniform in the parameters of the system, however, we can predict, where it should
be better and worse.

We feel that the distribution independent and approximation approaches may be valuable for
studying models of real applications. In such situations, the exact distribution is generally un-
known, but it may be reasonable to obtain the mean, variance and possibly other moments of the
distribution.
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