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Abstract. We discuss how distributed delays arise in biological medeld review the literature
on such models. We indicate why it is important to keep th&idigions in a model as general
as possible. We then demonstrate, through the analysis afteylar example, what kind of
information can be gained with only minimal information ab¢he exact distribution of delays.
In particular we show that distribution independergtability region may be obtained in a similar
way that delay independent results are obtained for systeithsdiscrete delays. Further, we
show how approximations to the boundary of the stabilityioegf an equilibrium point may
be obtained with knowledge of one, two or three moments ofdikeibution. We compare the
approximations with the true boundary for the case of unifand gamma distributions and show
that the approximations improve as more moments are used.
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1. Introduction

Time delays are an important aspect of many biological arydiphl models. In models for popu-
lation growth, delays typically arise due to age structarg, due to the time spentin a larval stage
before becoming an adult or due to the gestation period [Mé¢pidemic models, delays arise as
a result of the time spent in each stage of the disease, e gn sdmeone becomes infected with
a disease they do not recover instantaneously but onlysdtae period of time [8, 3]. In models
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for neural systems, there is a delay (the propagation dellag)to the time it takes for the signal
(action potential) of one neuron to travel from the soma efganding neuron to the soma of the
receiving neuron. There is also a delay (the processingpétiee to the time it takes for the signal
to cross a chemical synapse between the neurons [21, 27].

Many models, especially those for neural systems, assuat¢hid time delays are fixed. For
example, Hutchinson [19] proposed the following modificatof the logistic equation

#(t) = ra(t) [1 _ x(t[; Tq ,

as a model for a population of insects. Here the delegpresents the time between egg laying and
hatching. We shall refer to such models as discrete delayelnott is more likely, however, that
the delay will vary with some individuals taking more timehatch and some taking less. Thus
a more appropriate model includes a distribution of delaggresenting the situation where the
delay occurs in some range of values with some associatédlpitity distribution, viz.,

i(t) = ra [1——/ 2(t — u)g(u) dul . (1.1)

The functiong in this model is called the kernel of the distribution andressgnts the probability
that a particular time delay occurs. Singés a probability density function, it is normalized so
that [° g(u) du = 1. Note that ifg is taken to be a Dirac distribution, i.g(u) = d(u — 7), we
recover the model with discrete delay.

In the literature, there are two commonly used distribigioifhe uniform distribution with
meanr is given by 1

=, forr(1-4)<u<7(1+3%)
g(u) = { Op, elsewhere.

The parametep determines the width and height of the distribution. Sorengxes of this distri-
bution are shown in Figure 1(a). The gamma distributionvegiby

up—lape—au

I(p)

wherea, p > 0 are parameters determining the shape of the distributiopaiticular, the mean is
given by = p/a. I' is the gamma function defined B}0) = 1 andI'(p + 1) = pI'(p). Some
examples of this distribution are shown in Figure 1(b). kkasnmon to consider in the gamma
distribution to be an integer. In this caBép) = (p — 1)! and a scalar equation with one gamma
distributed delay can be shown to be equivalent to a system-adfordinary differential equations.
Details about this reduction, often called tlmear chain trick may be found in the books of
MacDonald [24, 25]. This approach may seem attractive asama the model is amenable to
analysis and simulation techniques for ordinary diffei@rgéquations. However, it will only be
practical ifp is a small integer, while real data may call for much larget/annonintegep. As
an example we note a recent paper [33] where data for theypnptematic infectious period in an
outbreak of mumps was fit by a gamma distribution witk 70.

g(u) =
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(a) Uniform distribution (b) Gamma distribution

Figure 1: (a) The uniform distribution fgr = 0.8, 1,2 and mean delay = 2. (b) The gamma
distribution forp = 1,2,4,8 and mean delay = £ =

Models with distributed delays have been considered in dpaifation biology and epidemic
literature for some time, but only recently in the neuraWwwek literature. In the majority of this
literature (e.g. [23, 29]) specific kernels (usually the gaardistribution withp = 1 or p = 2) are
put into the model and the resulting behaviour is analyzedetail. Such papers may be useful
in adding to our general knowledge of how distributed dekfjesct the dynamics differently from
discrete delays. However, if one is interested in modelleaj physical systems, one usually does
not have access to the exact distribution, and approachegsgeneral kernels may be more useful.
This is the point of view we will take in this article and thus Wwegin with a review of the literature
where results for distributed delay equations with genlezahels have been obtained.

There are several monographs which explicitly treat systenth distributed delays. The
monograph of Cushing [14] give a general introduction toghely of systems with a distribu-
tion of delays, as well as stability and bifurcation anadysf some specific biological models.
Some linear stability results for general distributions derived. The monographs of MacDon-
ald [24, 25] give linear stability results for system withngaa distributions (for general). The
monograph of Gopalsamy [16] uses the Liapunov function @ggr to derive some stability re-
sults for models from population biology. The monograph aBKg [22] also treats equations with
distributed delay.

In the population biology literature there are several papdich give results for general distri-
butions. Faria and Oliveira [15] study the global stabibfyequilibria in a class of Lotka-Volterra
models with distributed delays having finite maximum del@fiey give conditions on the inter-
action coefficients of the system which guarantee asyngustdability for any distribution. Global
stability analysis of the equilibria in a chemostat modethvgamma distributed delay has been
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carried out by Wolkowicz et al. [31, 32]. They obtain res@itisany gamma distribution and show
that if in the limit the variance goes to zero with the mearagédield fixed, the results yield those
for the system with discrete delay. This fact was observetifear stability by MacDonald [25].
They also note that changing the mean delay has a much ldfget @en stability than changing
the variance. Ruan [28] considers Hutchinson’s equatio eistributed delay, i.e., equation (1.1)
and gives a condition for asymptotic stability of the trivéalution in terms of the mean of the
distribution. Arino and van den Driessche [3] show how th@eduction number for certain epi-
demic models with distributed delays can be derived witlemstuming a particular form for the
distribution.

In the neural network literature, there are fewer resultgpasamy and He [17] study global
stability of equilibria in a Hopfield-type network of arkay size with either discrete or distributed
time delays with arbitrary kernels. Chen [10, 11] studiesbgl stability of equilibria in artifi-
cial neural networks with distributed delays with arbiyréernels using Liapunov functionals and
matrix theory. Also, the work of Faria and Oliveira [15] dissed above can be viewed as the
linearization of a Hopfield-type neural network about anildopium point. Thiel et al. [30] study
a scalar equation representing a mean field approximatrangopulation of pyramidal cells with
recurrent feedback, first formulated by [26]. They show tiating a uniform distribution of de-
lays simplifies the dynamics of the system. The size of thalgtaregion of the equilibrium point
is larger, and larger mean delays are needed to induceatsni$. Complex phenomena such as
chaos are less likely to occur, or totally precluded if thearace of the distribution is sufficiently
large. The model with a distribution of delays better exmahe appearance of periodic bursts of
activity when penicillin is added to a hippocampal slicepgamation (which reduces the coupling
strength).

An often quoted general principle is thatsystem with a distribution of delays is inherently
more stable than the same system with a discrete détayg clear that some of the results cited
above support this principle. Other are described belowk€and Grossman [13] and MacDonald
[24] compare the behaviour of a scalar equation with oneelisdelay:

(t) = —ax(t) — bx(t — 1)

and the corresponding equation with a gamma distributealyddlhey show that, for appropriate
values ofa andb, increasing the discrete delay in the model destabilizesrthial solution and it
can never be restabilized. For the distributed delay, asing the mean delay can also destabilize
the trivial solution, however, it will always be restabéit for large enough mean delay, for any
value ofp. Jirsa and Ding [20] analyze anx n linear system with linear decay and arbitrary
connections with a common delay. They show, under some mmgdraptions, that the stability
region of the trivial solution for any distribution of deksys larger than and contains the stability
region for a discrete delay. Campbell and Ncube [9] studyasasequation with one discrete delay
and one distributed delay:

(t) = —kx(t) + azx(t —75) + 0 /OOO x(t —7)g(7)dT .

They show that it is more difficult to get delay induced indtgbwith gamma distributions, than
in the corresponding system with two discrete delays. FHgelaariance{ = 1) delay induced

4



S.A. Campbell et al. Approximating the Stability Region for a Distributed DDE

instability is impossible, and for smaller variange ¥ 1) the mean delay needed for instability
is much larger than the discrete delay value. They also shatwsufficiently small variance in
the distribution is needed to get the stability switcheseobesd in the corresponding system with
two discrete delays. In [4, 5], Atay studies a system commgjsdf two simple oscillators with
gap junctional coupling by incorporating a uniform distrilon of delays. He shows it is easier
to destroy oscillations with a distribution of delays thaithwa discrete delay, in the sense that
there is a larger region of oscillator death in the paramgpaice consisting of the mean delay
and the strength of the coupling. As the variance of the ididion increases, the size of this
region increases. In [6] Atay studies the stability of fuocal differential equations near a Hopf
bifurcation under delayed feedback. He shows the discedtgy ds locally the most destabilizing
one among delay distributions having the same mean. He alss gonditions under which the
delays induce stability. In this case, he proves that therelis delay is locally the most stabilizing.

Bernard et al. [7] have pointed out that it makes the mostlgickl sense to incorporate a
distribution that has a nonzero minimum delay, since thdaidity of having zero delay is ef-
fectively zero in most applications. For the uniform distriion, this can be achieved naturally by
incorporating the constraipt < 2. The gamma distribution can be reformulated to achievesis
follows:

W(U,—T

where 7™ > () are the minimum delays. In this case, the linear chain trlubws that one
equation with a gamma distribution is equivalent to a syssém ordinary differential equations
and one discrete delay differential equation. Bernard .g7alanalyzed the linear stability of a
scalar system with one and two delays in terms of genericautigs of the distribution, such as
the mean, variance and skewness. For the uniform and contsrdistributions, they have shown
that stability regions are larger than those with a disadetay. The equation studied by Bernard
et al. [7] is similar to the linearization of the equation Bzad by Adimy et al. [1] describing
a model of blood cell production in the bone marrow. They eiee conditions that guarantee
the local asymptotic stability of the nontrivial equilibm and also obtain conditions for a Hopf
bifurcation to occur for any general distribution of delaksirther, Adimy et al. [2] study a model
of pluripotent stem cell population where the delay desaglbhe cell cycle duration is distributed
uniformly. They obtain stability conditions independeffitdelay and show that the distributed
delay can destabilize the nontrivial equilibrium via a Hojfurcation. The linearization of their
model is similar to the scalar equation we consider in thgepa

In the following we will show, through the analysis of a sgecexample, how one can obtain
results for general distributions. The primary focus wil dn the linear stability of equilibrium
points of the equations, via analysis of the characteritjgcation. These results are not only
important for understanding where equilibrium points debke, but also for determining where
bifurcations of the equilibrium points occur.

The plan for the article is as follows. First we show what cardbterminedvithoutchoosing
a particular distribution. Next we illustrate a way of apgroating the region of stability when the
actual distribution is not known, but some moments of th&ithistion are. Finally, we compare the
approximate stability regions with the stability regions the gamma and uniform distributions.

min)p—le—a(u—r

B 0, . for 0 < u < 7™in
g(u) _— l'nln) for Tmin S u
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For ease of presentation we will consider a simple scalaesysthe extension to others system
should be clear.

2. Distribution independent results

Consider the scalar DDE with one distributed delay

i(t) = / " Fla(t), 2t — u))g(uw) du, (2.1)

WherefoOO g(u) du = 1. Let the mean delay of the distribution be given by

e /OOO wg(u) du.

Biologically, the most interesting case is when- 0 and we will assume this from now on. The
above equation includes many models. The distributed dedasion of Hutchinson’s equation
given by equation (1.1) is one example. Assume that thesyisées an equilibrium point*, i.e.,

0 :/ flz*, 2")g(u) du = f(z*, ).
0

Linearizing (2.1) about* we obtain

(t) = —ax(t) — 6/ z(t —u)g(u) du, (2.2)

0
where—q is the derivative off with respect to its first argument, ands is the derivative off
with respect to its second argument.
In the following, we would like to study the dependence oflthear stability of the equilibrium

point on the mean delay. Thus we will transform the equatmithait the mean delay appears
explicitly. Lets = t/7, v = u/7 and’ denote the derivative with respect4pthen we have

2'(s) = —rax(s) — 7 /000 x(s — v)g(Tv)T dv.
Definingg(v) = g(7v)r we find
7'(s) = —tax(s) — 7 /000 z(s —v)g(v) dv. (2.3)

Note that the equation is still in the form of a distributetbgehowever the mean of the distribution
gisl.
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Settingz(s) = ** we derive the characteristic equation
AN = +ar+ 67'/ e g(v)dv = 0. (2.4)
0

Note that this may be written )
A+ at+ BrG(N) =0, (2.5)

where( is the Laplace transform gf

Changes of stability of the equilibrium point will take ptawhen the characteristic equation
has a root with zero real part. In the following we will deberiwhere in the parameter space such
changes may occur, and hence determine the region of sgaifihe equilibrium point. We will
consider the parameteras fixed and describe the stability region in ther parameter space for
various values of.

In the study of systems with discrete delays, it is commonescdbe thalelay independent
stability region, sometimes called tlabsolutestability region. Such results give a conservative
estimate of the stability region which is useful if one is bleeto accurately estimate the time delay
in the system. In this section we will formulate similar rigsdor equation (2.3). In particular
we will give one result which is independent of all aspectshef distribution and one which is
independent of all aspects save the mean delay. This latgrom especially useful as the mean
delay is often all one may be able to estimate for a particayarem. We begin with a result which
will help locate the region of stability of the equilibriunojmt.

Theorem 1. Assume tha€()\) is analytic inRe(\) > 0. If 0 < |3| < a then the characteristic
equation has no roots with positive real part0Olk |3| < —« then the characteristic equation has
one root with positive real part.

Proof. We will prove the results by the use of Rouché’s Theoremp1313]. Letf;(\) = A+ a7
andfy(\) = p7G()N), and consider the contour in the complex plafier C; U Cy, given by

0 T
2 2
Cy: A=1y, —R<y <R,

Ci: A=Re"Y —Z— <6<

whereR is a real number.

On Cy we have|fi(A)| = [R — |a|7] and [f2(A)[ < |B]7. Thus|fi(A)] > [f2(A)] for R
sufficiently large. OrCy we have|f;(A)| > |a|r and|fo(A)| < |5]7. Thus|fi(A)] > |fo(N)] if
la| > |B|. Further, note that iter # 0, and37 # 0 then bothf, and f, do not reduce to zero
anywhere or”. Thus by Rouché’s Theorem,|t| > |5| > 0 andR is sufficiently large therf; (\)
andA(X) = fi(A) + fa(M\) have the same number of zeros insidelLet R — oo thenf;(\) and
A()\) have the same number of zeros with(Re> 0. Now f;(\) has just one zero &t = —ar.
The results follow. O

From this theorem, we can conclude that the trivial solubbequation (2.3) (and hence the
equilibrium point of equation (2.1)) is locally asymptatily stable ifa > 0 and|3| < « and
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unstable ifa < 0 and|5| < —a. We note that these results also hold for equation (2.2) &nd i
discrete delay analogue
i(t) = —ax(t) — fx(t — 7).
We can next determine a region in the parameter space wheeegthlibrium point is unstable

for any distributiong(v). The proof of the following result is similar to the proof oh&orem 3.1
in [1].

Theorem 2. The equilibrium point of (1) is unstable whén< —a.

Proof. Note that we only need to consider the case wher —|al, since from Theorem 1
we already have instability far < 7 < —a, whena < 0. We focus on the real roots of the
characteristic equation (2.4), hence we assikfe) : R — R. Now

dRe(A(N))
)

=1- 67'/ ve M g(v) dv > 0,
0
sincef < 0. ThusA()\) is a strictly increasing function. For= 0 we have
A0) =1(a+ ) <0,
by our assumption. Ik > 0 then|e=*¥| < 1, and thus the integral term is bounded:
/ e Mg(v)dv < / e g(v) dv
0 0

It follows that

S/ |e_’\”|§(v)dv§/ g(v)dv = 1.
0 0

lim A(N) = +o0.
A——+00
SinceA(\) is continuous, we conclude that(\) has a unique real root which is positive, i.e. the
characteristic equation has at least one root with positiaepart. The result follows. O

Some additional information about the stability region nbayobtain from the characteristic
equation (2.4). First note that the characteristic equoatias a zero root ift + 5 = 0 for any
distribution. Fora > 0, from Theorems 1 and 2, stability is gained as this line issed by
increasing the parametgr and thus the lingg = —a forms part of the boundary of the stability
region. Fora < 0 we need to determine how the eigenvalue changes as thislaressed in the
parameter space. We will focus on varying the parametéine analysis for the variation af is
similar.

To begin, we note that

dRe(\) [\ OA DA
v Re(dﬁ) B Re(é‘ﬁ m) | 26)
In particular, we need to evaluate this wheg- 0, i.e. along the lingg = —a:
dRe(\) ~ Re OA A T
dﬁ A=0, f=—« B aﬁ a)\ A=0,8=—a N 1 -+ Oé’T.

8
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From this it is easy to conclude that

deeﬁ(A) < 0along the line? = —a, with a < 0 andr > ——. (2.7)
(%

It follows that for fora < 0 andr < —1/a, the equilibrium poinbecomestable as’ is increased
through the lines = —a. Hence, fora < 0 the line segment = —a, 7 < —1/«a forms part of
the stability boundary.

To further define the boundary of stability, we need to deteerwhere the characteristic equa-
tion has a pair of pure imaginary rootsjw. This occurs when we s&t = iw,w > 0 in the
characteristic equation (2.4), i.e.,

w+ ot + BT/ e ™" g(v) dv = 0. (2.8)
0

Separating this into real and imaginary parts, we find thattfe characteristic equation to have a
pair of real imaginary roots, the parameters must satishfahowing equations

ar = —f071 fooo cos(wv) g(v) dv = —07C(w), (2.9)

w = P17 sin(wv) §(v) dv =) pBrS(w). .
Fixing «,, we can formally define curves, parameterized.hyn the 3, = plane along which the
equations in (2.9) are satisfied. These curves are given by

a w C(w)
_ — 22\ 2.1
g @)’ T Tasw) (2.10)

for all w > 0 such thatC(w) and S(w) are nonzero. The values af such thatC(w) = 0 or
S(w) = 0 define discontinuities in the curves and do not correspomddts of the characteristic
equation (2.8).

To obtain explicit expressions for the curves given in (2.1 need to evaluat€'(w) and
S(w) which requires knowledge of the distributigiiv). We can, however, determine how the
number of eigenvalues changes as one crosses one of thees.dtnom equations (2.5) and (2.9),
the characteristic equation whan= iw can be written as

A(iw) = iw + a7 + 7 (C(w) — iS(w)) = 0.
Taking the derivative of in (2.10) with respect ta we obtain

dr 1 C'"(w)S(w) — §'(w)C(w)
dw ~ aSw) (C(”) e (@) ) | 1)
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Next we compute the rate of change of the real part with respect tq3,
dRe(\ oA oA
ds RN

L Cw) —iS(w)
- oTRe (1 — (S (w) + z’c«w)))

A=iw

:_H%w(() BrC(w)S () + TS (w)C' (w))
o CS) - S)CW)
=~ (0 o). e

where H%(w) = (1 — p75'(w))* + (B7C"(w))?* is a positive function ofv and we have used
BT = w/S(w) from (2.10). Comparing with (2.11), and using (2.10) agaia,see that

dRe(\)
dp

Thus whether the number of eigenvalues with positive redbpa increasing or decreasing @s
is increased through a point on one of the curves defined h@)2epends on the sign afand
whetherr is an increasing or decreasing function.oét the point.

We can also obtain the following distribution independesiits.

_a w dr
B H2(w)dw

(2.13)

A=iw

Theorem 3. Under the conditions of Theorem 1, the equilibrium pointlgfi¢ locally asymptoti-
cally stable in the following regions of parameter space

(1) 18] < a

1
(2) la] < fandd < 7 < 7
Proof. Result(1) follows from Theorem 1 and the subsequent discussion. T@Xeeonsider
equations (2.9). From the first equation, we have

«

G

While from the second equation, we have
1

ES/OOO

Thus equations (2.9) have a solution onlydf > |«| andr > 1/|3|. In particular, forg > 0 this
means the system cannot have pure imaginary rogts>if |«| andr < 1/4 and hence for this
range of(3, the stability cannot change. Res(#} follows. O

We note that, in the case > 0, the second result of this theorem is similar to Theorem 9 in
[28], although we have proven it in a different way.

</ " Jeos(wn)gv) dv < / Towydv=1.

sin(wv)

wv

vg(v)dv < / vg(v)dv = 1.
0

10
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Figure 2: lllustration of the distribution independentlslify results described by Theorems 2
and 3. (I) Region of instability described by Theorem 2. R&gion of stability described by
Theorem 3. (Ill) No distribution independent stability ués are known for this region.

The results of Theorems 2 and 3 are illustrated in Figure 2eofdém 3 describes the re-
gion of stability of the equilibrium point with either no kmtedge of the distribution of delays or
knowledge of only the first moment of the distribution, ilee imean delay;. From the proof of
Theorem 3, it is clear that the curves given by equation®jariust lie outside the stability region
described by the Theorem. Thus this region is only a conseevestimate of the full region in the
parameter space where the equilibrium point is stable. ém#xt section we will show how one
may improve this approximation by using more informaticomfrthe distribution. We note that it
is only necessary to considér> 0, given the results of Theorems 2 and 3.

3. Approximating the boundary of the stability region

In the previous section, we established that the boundamphefstability region (in the3, 7
plane) consists of all or part of the line= —« and the curve(s) defined parametrically by equa-
tions (2.10) fors > |«/|. In this section, we shall show how partial knowledge of tiribution,
g(v), can allow us to approximate these latter curves.

Let m; denote thg”” moment ofg, i.e.,

m; = /OO v §(v) do. (3.1)
0

It is easy to check that, = m; = 1 and thatn; > 0 for all j. The second moment is related
to the varianceg?, viamy = o2 + 1. And the third moment is related to the measure of the

11
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Table 1: Approximations for equations (2.10), whéreand N relate to the number of terms used
in the summation fo€'(w) andS(w), respectively.

(M,N) | Cw) Sw) B T
(0,0) 1 w -« —1/a
z _
(1,0) | 1— %uﬂ w 23 5 ng 2
mow*= — 6]
ma o ms 4 200 3maw? — 6
1,1) |12 s
(1,1) S mow? — 2 | 6o — amaw?

lopsidedness of the distribution, i.e. skewed to the rightbahe left [18]. By Using the Taylor
polynomial approximation for cosine, we may relétév) to the moments of(v):

o M k()2
Clw) ~ /0 ;%g(v)dv

M
(_1)kw2k /oo -
Y [ () d,
22k s
and similarly forS(w). Using (3.1), it follows that

M k 2k

22

k=0
k 2k+1

N
Z a1y Mak+1-
— 2/<: -+ 1

ZZ

We define approximatioM, V) as the approximation faf'(w) and S(w) if we take the sum up
to M for the Taylor series for cosine and the sum up\tdor the Taylor series for sine. Note that
these approximations should improve.aapproaches 0 or ag and N increase.

Thus, given knowledge of some momentsjof), we may obtain an approximation for the
curve(s) (2.10). The results for different cases are sunzein Table 1. In particular, we see that
approximation(0, 0) is just a single point which corresponds to the charactemsfuation having
a double zero root. The other approximations are as follows

2 5)
) W = — R E
mo 5}

2
, W= —<1+g),
ﬁ_mga mo ﬁ

3ma

(1,0) : T =

(1- g

where, fora. < 0 we require3 > —« in order forw to be defined.

(L,L1): 7=

= =

12
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We note that approximatiofi, 0) always underestimates the region of stability. Bas |«|,
this approximation recovers the results of Theorem 3. Fet o (« > 0) the curve enters the
region of delay-independent stability and thus gives a estimate than Theorem 3.

Approximation(1, 1) is a hyperbola with vertical asymptote @t= va/(1 — v), whererv =
ms/(3ms) > 0 (since the moments are positive). The relationship betvaggnoximation(1, 1)
and the results of Theorem 3 will depend on the value,odnd hence on the moments of the
particular distribution. However, we can say thatik 1, then for large3, approximation1, 1)
always lies above approximatidn, 0). For5 < a (a > 0) the curve given by approximation
(1, 1) enters the region of distribution-independent stabifity ik 1/2.

Since it is known from Theorem 3 that, far> 0, there is stability fol3 < |«| for any distribu-
tion, the best estimate for the stability region in this dasgearly to use the approximations above
only for 5 > |aJ. This is what we do in the following sections where we appb/dpproximations
to specific distributions.

4. \Verifying the approximation for the uniform distributio n

In this section we will apply the approximation proceduredeeived in the previous section to the
uniform distribution, thus determining approximations fiee boundary of the region of stability.
We will then compare these approximations with the true blamynderived from the characteristic
equation.

The general uniform distribution with mean detays given by

_ e Hfuelr(1=5). 7 (1+5)]
9lu) = { %, elsewhere,

where( < p < 2. Thus the normalized uniform distribution becomes
X {%, ifvell—£41+%]
0,

g(v) = elsewhere. (4.1)

Hence the moments are given by

() 1 1+p/2
my = / v*g(v) dv = —/ o dv
0 1

P J1—p/2

- <k—+1 D [<1 w5 (- g)“} |

The moments for some particular valuespare given in Table 2.

13
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Table 2: Moments of the uniform distribution.

p | Mo | T Mo ma

2 1 1 4/3 2

1 1 1 | 13/12| 5/4
4/5| 1 1 | 79/75 | 29/25

The corresponding approximations are

p=2 (1,0): T:%, W= §<1+%) (4.2)
(1,1) T:ﬁfa, o §<1+%>, (4.3)
p=1 (1,0): T:%, W= %(1+%), (4.4)
(1,1) T:Sﬁlf?’m, o %<1+%), (4.5)
p=1 (1,0): T:%, o= %(ht%), (4.6)
(1,1) T:wﬁ%ga, o= %(H%), (4.7)

where, fora < 0 we requires > —a for w to exist. Approximation1,0) corresponds to the
dotted line and approximatidr, 1) corresponds to the dashed line in Figures 3 — 5.

We now turn to the exact representation of the curves wherehhracteristic equation has a
pair of pure imaginary roots. Since our scalar equation witliorm distributed delay is similar
to the linearization of the delay equation used by Adimy ef2jlto represent the dynamics of a
pluripotent stem cell population, the computations thiibfoare similar to those found in [2]. For
the uniform distribution (4.1) we have

14+p/2 .
Clw) = 1/ cos(wn) dv — 2 cos(w) s1n(pw/2)7
P J1—p/2 pw
and 14p/2
) . .
S(w) = l/ sin(wv) dv = 2sin(w) sm(pw/2).
P J1-p/2 pw

Putting these into equations (2.10), we see that the cureededined (parametrically in terms of

14
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w) by
apw w cos(w)
_ = 4.8
b 2 cos(w) sin(pw/2)’ ’ asin(w) (4.8)
To determine which curve(s) form part of the stability boandwe analyze the rate of change
of the real part of the eigenvalues as one of the curves isedpsising the formula (2.13) derived
in the Section 2.

Now, from the expression far from (4.8) and equation (2.11), we have

dr _ cos(w) w (= sin*(w) — cos?(w))

dw asin(w)  « sin?(w)
Whena > 0, from (4.8) we need only considervalues such thatos(w)/ sin(w) < 0, and thus

dr 1 (_cos(w)

“a ﬁmw*km%w)>“

Whena < 0, we rewrite the derivative as

dw  «

dr 1 .
T = aemi) @~ sin) cos(w))

But cos(w)/sin(w) > 0 in this case, so

sin(w) cos(w)  |sin(w) cos(w) sin(w)

= = | cos(w)| < 1.

w w

Thusw — sin(w) cos(w) > 0 and = < 0. We therefore determine thati” > 0, for any value of
«. Using this and the fact that we only consider- 0, we conclude from (2.13) that

dRe(\)
dp

In other words, the real part of increases (decreases) @asncreases (decreases), as the curves
where A = iw are crossed. It follows from this computation that the baugdf the stability
region is formed by the curve closest to thaxis.

For p = 2, the parametric equations in (4.8) become

> 0.

A=iw

aw w cos(w)
b= cos(w) sin(w)’ T asin(w)’ (4.9)
Due to the singularities at = k7 andw = (2k + 1)x/2 for kK = 0,1, ..., these equations define
multiple curves in the3, 7 plane, which lie either in the first or third quadrant. Since are
interested inr > 0, the only curves of interest are those in the first quadrant.
Fora < 0, the curve forming the boundary of the stability region ifired by equation (4.9)
withw € [0, 5] and fora > 0 with w € [7, 7]. Some simple properties of this curve are as follows.
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Qlr

-

@a>0 (b) a <0

Figure 3: Stability region for the uniform distribution \Wifpp = 2. The region of distribution
independent stability lies between the solid and dashegllgras whena > 0. The true region
of stability lies between the solid gray line and the soliddil curve which is defined by equa-
tions (4.9). The dotted curve, defined by equation (4.2)wshbe first approximation to the solid
black curve. The dashed curve, defined by equation (4.3)ystite second approximation.

Fora < 0, the curve approaches the poitt 7) = (—«a, —1/«a) asw — 0. For anya, the curve
has a horizontal asymptote,= 0, which is approached as — 7. Fora > 0 it has an oblique
asymptote; = 3/a?, which is approached as — 7. This curve corresponds to the solid black
lines in Figure 3.
Forp = 1, the parametric equations in (4.8) are given by
aw/2 w cos(w)

b= )@ T asin(@) (4.10)

These equations define multiple curves in ther plane with singularities ab = k7 andw =
(2k+1)w/2fork =0,1,.... Fora < 0 the closest curve to theaxis is defined by equation (4.10)
with w € [0, 7] and fora > 0 with w € [7,7]. Fora < 0, the curve approaches the point
(8,7) = (—a,—1/a) asw — 0. For anya, the curves in (4.10) have a horizontal asymptote,
7 = 0, which is approached as — (2k + 1) /2, vertical asymptotes as — (2k + 1)7, and an
oblique asymptote as — 2kw. These curves correspond to the solid black lines in Figure 4
Forp = 4/5, the parametric equations in (4.8) become
2aw/5 w cos(w)

~ cos(w)sin(2w/5)’ ~ asin(w)’

(4.11)

These equations define multiple curves in ther plane with singularities ab = k7 andw =
(2k+1)m/2fork = 0,1,.... Fora < 0this curve closest to theaxis is defined by equation (4.11)
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131
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@a>0 (b) a <0

Figure 4: Stability region for the uniform distribution \Wifpp = 1. The region of distribution
independent stability lies between the solid and dashegllgras whena > 0. The true region
of stability lies between the solid gray line and the soliddil curve which is defined by equa-
tions (4.10). The dotted curve, defined by equation (4.4wstthe first approximation to the solid
black curve. The dashed curve, defined by equation (4.5)ystite second approximation.

with w € [0, 7] and fora > 0 with w € [7,7]. Fora < 0, the curve approaches the point
(8,7) = (—a,—1/a) asw — 0. For anya, the curves in (4.11) have a horizontal asymptote,
7 = 0, which is approached as— (2k+ 1)7/2 and vertical asymptotes as— (2k+1)x. These
curves correspond to the solid black lines in Figure 5.

Comparing the approximations with the true boundary of tiadilty region in Figures 3-5
we can make several conclusions. The approximations inepasvthe number of moments used
increases. This corresponds to increasihgnd M in the approximations fasin andcos so is as
expected. The approximations are better for la¥gén all cases, large corresponds to smaller
w SO this is also as should be expected. Note also that thexapate stability regions are always

conservative, i.e. they underestimate the region of ofilgtab

5. \Verifying the approximation for the gamma distribution

In this section we will apply the approximation proceduredegived in Section 3 to the gamma
distribution, thus determining approximations for the hdary of the region of stability. We will
then compare these approximations with the true boundaryedkfrom the characteristic equa-
tion.
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Figure 5: Stability region for the uniform distribution \wip = 0.8. The region of distribution
independent stability lies between the solid and dashegllgras whena > 0. The true region
of stability lies between the solid gray line and the soliddil curve which is defined by equa-
tions (4.11). The dotted curve, defined by equation (4.@wstthe first approximation to the solid
black curve. The dashed curve, defined by equation (4.7)ystite second approximation.

Recall that the gamma distribution is given by

—au

(w) uP~taPe
g(u) = ————,
(p—1)!

with mean delay- = p/a. Thus the scaled distribution is given by

~

gv) = 7g(mv)

(7 a)PvP~lemam

. p(g)l—_%gl (5.1)
(-1

and thek™ moment is given by
my = / v*g(v) dv
0

B (pzipn! /OOO ORI dy, (5.2)

To find a general expression for, we will use the following result, which is easily derived by
mathematical induction,

o0 |
/ Ve dy = (5.3)
0

pn+1

18
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Using this in (5.2) we arrive at an expression for iffemoment of the gamma distribution:

w(k+p—1)!
(p— 1!

Table 3 gives values of these moments for various valugs ©he corresponding approximations

myg = p

Table 3: Moments of the gamma distribution.

P | Mo | My | Mo ms
11 1 1 2 6
21 1 [ 1 [3/2] 3
31 [ 1 [4/3]20/9
are
p=1 (1,0 T:%, w= 1+%, (5.4)
(1,1) T:—é, W= 1+%, (5.5)
1 4 «
p:2 (170) T:B, w = §<1+B), (56)
3 4 «
(L) 7= w= §<1+5), (5.7)
1 3 «
p:3 (170) T:B, w = §<1+B)7 (58)
9 3 «
(1,1): TG s YT 2<1+6) (5.9)

where, fora < 0 we impose thatt > —« in order forw to be defined. Approximationd, 0) are
shown with dotted lines and approximatiaris1) are shown with dashed lines in Figures 6 — 8.

We now turn to the exact representation of the curves wherehhracteristic equation has a
pair of pure imaginary roots. For the gamma distributiod 5ve have

C(w) = Re / Q(U)e_i“’”dv)
0
— Re L/ Up—le—(p-i-iw)vdv)
P AL
- (1+w—2) Re(1—2ﬁ>
p p
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Table 4: Expressions far'(w) andS(w) for the gamma distribution with = 1, 2, 3.

p| Cw) S(w)

1 1 w
1+ w? 1+ w?

5 1—w?/4 w

(1+w?/4)? | (14 w?/4)?
1—w?/3 | w(l—w?/27)
(14+w?/9)2 | (1+w?/9)3

using equation (5.3). Similarhy§(w) = — <1 + ;j—§>_p Im (1 - %)p The expressions faf'(w)
and S(w) for various values op are given in Table 4. Using these expressions we arrive at the

parametric equations foerands.
Forp = 1 we have

oL wzz_(1+ﬁ). (5.10)
«

«v

Note that this implies that there are no points where theatharistic equation has pure imaginary
roots in the region > 0if a > 0. If @ < 0, w is only defined for5 > —a, so the stability
boundary can only include this part of the curve. A simplegktion shows that

dRe(\) L % %
AT |y—iw a Re(aT 8)‘) A=iw
_ (a+ B) +i(aw)
- "Re< i(20) )
o
— —5 > 0,

sincea < 0. We obtain the region of stability fgy = 1 as seen in Figure 6. Fer > 0 the
equilibrium point is locally asymptotically stable wheéh > —a«, and fora < 0 it is locally
asymptotically stable whefi > —« andT < —1/«. Recall that the approximations are given by
equations (5.4) and (5.5). Thus the estimate for the redistability for p = 1 given by the second
approximation is identical to the true region of stabilityt@ned analytically using full knowledge
of the distribution.
For p = 2 the curve where the characteristic equation has a pair @& poaginary roots is
defined by ,
5= (aT +2)
If « > 0, w is defined for allr and the curve is a parabola with minimumgat 8« andr = 2/a.
If o« < 0, w is defined forr < —1/a and the curve is a parabola with minimum/at= 0 and

, wr=4(ar +1). (5.11)
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Q-

—o o B - B
@a>0 (b) a<0
Figure 6: Stability region for the gamma distribution wjth= 1. Whena > 0, the region of
distribution independent stability lies between the sahd dashed gray lines. Far> 0, the true
region of stability lies to the left the the solid gray lineydafor o < 0, it lies between the solid
gray line and the solid black curve defined by equations {510 dotted curve, defined by (5.4),

shows the first approximation to the boundary of the stabikgion. In both cases, the second
approximation, defined by equation (5.5), recovers thestalbility region.

T = —2/«. To obtain the rate of change of the real parhafith respect tg3 we first compute

C'(w) = % ands'(w) — %

Substituting these and the valuesgfv) and.S(w) from Table 4 into (2.12) we obtain
dRe(\) T B 8w? -0
df | HYw) \ (w?—4)? '

We determine the region of stability fpr= 2 as seen in Figure 7. Far > 0 the equilibrium point
is locally asymptotically stable when

G —4a — /% —8af
202

Fora < 0 itis locally asymptotically stable when

0 —4da — /(% — 8af
202

We note that forae > 0 the stability is recovered as is sufficiently increased, but fax < 0
stability is lost as soon ascrosses the lower branch of the parabola.

or

o G —4a+ /(% —8al
202 '

G > —aandr <

0> —aandr <
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@a>0 (b) a <0

Figure 7: Stability region for the gamma distribution wjth= 2. The region of distribution in-
dependent stability lies between the solid and dashed grag Whena > 0. The true region
of stability lies between the solid gray line and the soliddil curve which is defined by equa-
tions (5.11). The dotted curve, defined by equation (5.@wstthe first approximation to the solid
black curve. The dashed curve, defined by equation (5.7)ystite second approximation.

Next we will consider how well the approximations curvesraate this region of stability.
Recall that the approximation curves are given by (5.6) &d)( These are shown in Figure 7
by the dotted curve representing approximatior0) and the dashed curve representing approx-
imation (1,1). Fora > 0, both approximations estimate the region of stability viefllarge ;.
Whena < 0, the two approximation curves give good estimates for@any —«. We note that the
second approximation gives a better estimate than the figbaimation, as expected, and that
both curves give smaller regions of stability than the exactes.

Finally, for p = 3 we have

5 8(ar+3)*  , 27(ar+1)

- = 5.12
T(aT +9)%’ v at+9 ( )

Fora > 0, w is defined for allr > 0 and the curve lies in the first quadrant with a horizontal
asymptote at = 0 and a vertical asymptote gt= 8«a. Fora < 0, w is defined forr < —1/a
which corresponds t6 > —a, or7 > —9/a which corresponds t6 < 8«. However, as noted
above, we only consider curves wheteas positive, and thus only the portion of the curve with
T < —1/a will form part of the stability boundary. This curve has ailzontal asymptote at = 0.
Further we have that

927w(w? - 9)

, 81(w* — H4w? + 81)
W) == oy

andS’(w) = 1oy
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Substituting these and the values(¢fv) andS(w) from Table 4 into (2.12) and, using (5.12), we
obtain

dRe(\)
dp

T H 2T(w) ((w2 +191)63(1ii2_ 27))
- 54w?(at + 9)
= H2(w) ( (w?2+9)3 ) .

A=iw

Butar +9 > 0 for o > 0 and also forv < 0 since we are only considering< —1/a. Therefore

dRe(\)
dp

The region of stability fop = 3 can be as seen in Figure 8. For> 0 the equilibrium point is
locally asymptotically stable when

A=iw

8(at + 3)3
/6 > —w andﬂ < W

Fora < 0 the equilibrium point is locally asymptotically stable whe

3
8ar+3) Lith r < —1/a
T(at +9)2

i.e., 7 is underneath the solid line as seen in Figure 8. We note tinat £ 0, if 5 < 8« then
stability is always recovered whenis sufficiently large, but forv < 0 stability is lost as soon as
T crosses the solid curve.

We next examine the approximation curves given by equatmB3 and (5.9). These are shown
in Figure 8 by the dotted and dashed curves.d~or 0, both approximations give a good estimate
of the region of stability for larggf. Whena < 0, the two approximation curves estimate the
region of stability well for any3 > —«. We note that, again, the second approximation gives a
better estimate than the first approximation, and that bothes give smaller regions of stability
than the exact curves.

0> —aandf <

6. Conclusions

We have studied the linear stability analysis of a scaldewdihtial equation with one distributed
delay. While our results are specific to this differential@tipn, our methods are general and could
be applied equations of higher order and/or with more thandstributed delay. These methods
and results are summarized below.

We have shown how to obtain thlestribution independenegion of stability of an equilibrium
point. This region is similar to the delay independent ragibstability for equations with discrete
delays. In fact, for the equation we studied, the distriouindependent region of stability is the
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Figure 8: Stability region for the gamma distribution wjth= 3. The region of distribution in-
dependent stability lies between the solid and dashed grag Whena > 0. The true region
of stability lies between the solid gray line and the soliddil curve which is defined by equa-
tions (5.12). The dotted curve, defined by equation (5.&wstthe first approximation to the solid
black curve. The dashed curve, defined by equation (5.9)stite second approximation.

same as the delay independent region if the distributed deleplaced by a discrete delay equal
to the mean of the distribution.

We have shown how to reformulate the distribution so thantlean delay occurs as a natural
parameter in the distribution. This allows us to determimegaon of stability which depends on
the mean delay, but is independent of other properties aditgbution.

Both the distribution independent region of stability ahd thean delay dependent region are
conservative estimates of the full region of stability of #quilibrium point. Thus we formulated
and approached to approximate the boundary of the full registability based on a finite num-
ber of moments of the distribution. By comparing our appmoedion with the true stability region
boundary calculated for the uniform and gamma distribjome show that the approximation
improves as more moments are included, as might be expebhedaccuracy of a given approx-
imation is not uniform in the parameters of the system, h@rewve can predict, where it should
be better and worse.

We feel that the distribution independent and approxinmaéipproaches may be valuable for
studying models of real applications. In such situatiohs, @éxact distribution is generally un-
known, but it may be reasonable to obtain the mean, variamdgassibly other moments of the
distribution.
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