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Abstract

We give conditions under which a general class of delay differential equations has a
point of Bogdanov-Takens or a triple zero bifurcation. We show how a centre manifold
projection of the delay equations reduces the dynamics to a two or three dimensional
systems of ordinary differential equations. We put these equations in normal form and
determine how the coefficients of the normal forms depend on the original parameters
in the model. Finally we apply our results to two neural models and compare the
predictions of the theory with numerical bifurcation analysis of the full equations. One
model involves a transcritical bifurcation, hence we derive and analyze the appropriate
unfoldings for this case.
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1 Introduction

The bifurcation analysis of codimension one and two linear singularities has been investigated

by many researchers (e.g., see [14, 15, 21] and references therein). By contrast, there are few

studies of codimension three or higher problems in the literature. This is perhaps due to

the relative rarity in ODE models of higher codimension singularities. In delay differential

equations (DDEs), however, higher codimension singularities seem to occur more frequently.

In particular, the Bogdanov-Taken singularity has been studied in many models with time
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delays [6, 8, 9, 10, 13, 22, 29, 30, 35, 37, 40, 39] and the triple zero singularity shown to

occur in a model for a delayed planar pendulum with Z2 symmetry [31].

The purpose of this paper is to derive a mathematical framework for studying the double-

zero (Bogdanov-Takens) and triple zero with geometric multiplicity one, in a large class

of DDEs with two delays. Our goal is to determine conditions for the existence of these

singularities and to analyze how the parameters of the DDE affect the secondary bifurcations

which emanated from these points. While the Bogdanov-Takens has been studied in the

context of general delay differential equations [11, 28] these studies have not looked at the

specific questions we address. No general study of a DDE with a triple zero singularity has

been done. Our approach will be to use the centre manifold theory for delay differential

equations [17] to reduce the infinite dimensional dynamical system of the DDE to a finite

dimensional system of ODEs and then apply the standard normal form reduction.

For completeness, we briefly review the literature on the triple zero singularity. All

of these papers save one are related either to the derivation and analysis of the normal

form/unfolding or its application to an ODE model. Medved [23] showed the triple zero

singularity gives rise to saddle-node, Hopf, Bogdanov-Takens and Hopf-zero linear singu-

larities, without characterizing them. Cushman and Sanders [3] and Iooss and Adelmeyer

[20] derive normal forms for the triple zero singularity. Dumortier and Ibáñez [4] derive a

normal form for all three parameter unfoldings of the triple zero singularity. Further classi-

fication and discussions are given in [5, 18] who consider the co-dimension four degeneracies

when the lower order coefficients in the normal form vanish. Algaba et. al [1] study the

triple zero normal form for a general three dimensional ODE and applied their results to the

Rössler equation. Freire et al. [12] study the local codimension-two bifurcations, including

Bogdanov-Takens and Hopf-zero, which arise in a three parameter unfolding of the triple

zero singularity. Sieber and Krauskopf [31] show a model for a delayed planar pendulum

with Z2 symmetry has a triple zero singularity and derive the bifurcation diagram using the

numerical continuation software DDE-BIFTOOL [7]. Ibáñez and Rodriguez [19] show that

Shil’nikov homoclinic orbits occur in any generic unfolding of the triple zero singularity.

The plan for the article is as follows. In section 2 we review some background we will
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use for our analysis, derive the centre manifold of a general DDE with Bogdanov-Takens or

triple zero singularity with index one and then state the normal forms for these singularities.

In section 3 we apply these results to the following system of DDE’s:

ẋ1(t) = f1(x1(t), x2(t)) + g1(x1(t− τs), x2(t− τ)),

ẋ2(t) = f2(x1(t), x2(t)) + g2(x1(t− τ), x2(t− τs)).

In particular, we determine how the coefficients of the normal form depend on the parameters

of the DDE. In section 4 we consider two specific models which fall into this class: an

additive neural network studied by Shayer and Campbell [30] and a model for a delayed

recurrent neural circuit similar to one studied by Plant [27]. We use the results of section

3 to determine, for each model, conditions on the parameters such that a Bogdanov-Takens

singularity occurs. We show that the neural network model does not possess a triple zero

point, while the recurrent circuit model can, for appropriate choice of parameters. We then

apply the results of section 3 to determine the normal forms at the critical parameter values

for these systems. Finally, we state the unfoldings of these normal forms, analyze their

behaviour and compare the predictions of the theory with numerical studies of the full,

nonlinear DDEs using the numerical continuation software DDE-BIFTOOL [7]. Conclusions

are given in section 5.

2 General Approach

Define ut(θ) = u(t + θ), −h ≤ θ ≤ 0, C = C([−h, 0], IRn) and consider delay differential

equation

u̇(t) = F(ut, α), (1)

where u ∈ IRn, F ∈ Cr(C, IRn), r > 1 and α ∈ IRm is a parameter.

An equilibrium solution of equation (1) is a solution ut(θ) = u∗,−h ≤ θ ≤ 0. We assume

that the system possesses an equilibrium solution, i.e. that there exists u∗ ∈ IRn such that

F(u∗, α) = 0.

Linearizing equation (1) about this equilibrium yields

ẋ = L(xt), (2)
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where xt = ut − u∗ and L is a linear operator which may be represented

Lxt =
∫ 0

−h
dη(θ)x(t+ θ),

with η(θ) a function of bounded variation.

2.1 Results for Linear Equations

We begin by relating some results concerning the solutions of the linear delay equation (2).

This discussion follows the book of Hale and Lunel [17, Chapter 7].

The local stability of the equilibrium may be studied by considering the eigenvalues of

the linear operator L in the equation above. It can be shown that the eigenvalues, λ, are

the roots of the characteristic equation

p(λ) = det ∆(λ) = 0, (3)

where

∆(λ) = λI −
∫ 0

−h
eλθdη(θ) (4)

and I is the n× n identity matrix.

A point of Bogdanov-Takens (BT) bifurcation of the fixed point u∗ (also called a double

zero singularity) occurs if the following conditions are satisfied.

(i) The characteristic equation has a zero root of multiplicity two, i.e.,

p(0) = 0, p′(0) = 0, p′′(0) 6= 0. (5)

(ii) No other root of the characteristic equation has zero real part, i.e.,

p(iω) 6= 0 (6)

for any ω ∈ IR.

If the characteristic equation has a zero root of multiplicity three, which means

p(0) = p′(0) = p′′(0) = 0 and p′′′(0) 6= 0, (7)

and the condition (6) holds, this gives rise to a triple zero singularity.
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2.2 Centre Manifold Analysis

Consider the original nonlinear DDE (1). If F is sufficiently smooth, one can expand the

right side of the equation in a Taylor series about the equilibrium solution u∗:

ẋ = Lxt + G(xt), (8)

where xt,L are as above and G : C → IRn satisfies G(0) = DG(0) = 0.

Under the conditions given above ((5) and (6), or (6) and (7)), it can be shown [17] that

the space of solutions, C, can be decomposed as C = P ⊕ Q. Here P is an m-dimensional

(m = 2 or 3) subspace spanned by the solutions of (2) corresponding to the m zero real part

eigenvalues (sometimes called the centre eigenspace), Q is the complementary space, and P

and Q are invariant under the flow associated with (2). Further, for the nonlinear equation

(8), there exists a centre manifold in C which is a finite (m = 2 or 3) dimensional, invariant

manifold. We denote the centre manifold by

Mf = {φ ∈ C : φ = Φ(θ)z + g(z, θ), z in a neighbourhood of zero in IRm},

where Φ = [φ1, . . . , φm] is a basis for the subspace P and g is a function in the subspace Q

which is O(‖z‖2).

If all eigenvalues of the characteristic equation (3) with nonzero real part have negative

real part, then the center manifold will be attracting and the long term behaviour of solutions

to the nonlinear equation (8) is well approximated by the flow on this manifold. This flow

is given by

xt(θ) = Φ(θ)z(t) + g(z(t), θ) , (9)

where z ∈ IRm satisfies the ordinary differential equation [16, 36]

ż = Bz + bG(Φz + g(z, θ)), (10)

Φ′(θ) = Φ(θ)B, B is a m×m constant matrix with m zero eigenvalues, and b is determined

as described below.

Consider the equation adjoint to Eq.(2). It also has m zero eigenvalues. Let Ψ =

[ψ1, . . . , ψm]T be a basis for the invariant subspace spanned by the solutions of the adjoint
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equation corresponding to these eigenvalues. Then b = Ψ(0). The basic functional form (up

to arbitrary constants) of Ψ can be found by noting that it must satisfy −Ψ′(s) = BΨ [11, 36].

The integration constants may be specified by requiring that Ψ satisfy the normalization

condition

〈Ψ,Φ〉 = I, (11)

where I is the m×m identity matrix, 〈Ψ,Φ〉ij = 〈ψi, φj〉 and

< ψ, φ >= ψ(0)φ(0) −
∫ 0

−h

∫ θ

0
ψ(ξ − θ)dη(θ)φ(ξ)dξ

is the bilinear form associated with Eq. (2). In section 3 we shall consider a system with

only discrete delays. In this case, the components of the matrix valued function η(θ) will be

sums of step functions at the delay values.

In summary, the long-term behaviour of solutions of the DDE (1) in a neighbourhood

of the equilibrium solution u∗ can be described if we can understand the behaviour of the

solutions of a finite dimensional system of ordinary differential equations (10). To investigate

this system of ODE’s further we now consider how to put it in its simplest form.

To be more precise, for the BT singularity, P is a two dimensional subspace with a basis

constructed as follows. Consider the linear equation on IRn

∆(0)v = 0. (12)

From conditions (5) it is clear that a nontrivial solution, v1, of this equation exists. In the

case of a BT singularity, the geometric multiplicity of the eigenvalue 0 is 1, implying the

solution space of (12) is one-dimensional. In this situation, a basis for P is given by [17,

Chapter 7, Theorem 4.2]

Φ = [φ1, φ2] = [v1,v2 + θv1] ,

where v2 is a solution of the linear equation

∆(0)v + ∆′(0)v1 = 0. (13)

Here ∆′(0) = ∆′(λ)|λ=0 is the derivative of the matrix function ∆(λ) with respect to λ at

λ = 0.
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For the triple zero singularity, P is a three-dimensional invariant subspace. We will

focus on the case where the solution space of (12) is one-dimensional. Let v2 and v3 be the

solutions of the linear equations

∆′(0)v1 + ∆(0)v2 = 0 ,

1

2
∆′′(0)v1 + ∆′(0)v2 + ∆(0)v3 = 0 , (14)

where ∆′′(0) = ∆′′(λ)|λ=0 is the second derivative of the matrix function ∆(λ) with respect

to λ at λ = 0. Then the basis for P can be chosen as [17, Chapter 7, Theorem 4.2]

Φ = [φ1, φ2, φ3] = [v1,v2 + θv1,v3 + v2θ + v1
θ2

2
] . (15)

2.3 Normal Form Reduction

When only the lowest order terms in the normal forms are needed, the centre manifold

function, g, is not needed to calculate the normal form. To see this, rewrite (10) as

ż = Bz + Ψ(0)[G2(Φz + g(z, θ)) +G3(Φz + g(z, θ)) + h.o.t.] , (16)

where Gj represents the terms of order j in G. Expanding each Gj in a Taylor series about

Φz yields

ż = Bz + Ψ(0)G2(Φz) + h.o.t., (17)

where the higher order terms are cubic in z and thus will play no role in the calculation of

the quadratic terms of the normal form.

The near identity transformation

z = w + F̂2,

for appropriate choice of F̂, may then be used to bring system (17) into a simpler (normal)

form. For BT singularity, this form is (see [2, 11] or [14, Section 7.3])

ẇ = B1w + A20

(

0
w2

1

)

+ A11

(

0
w1w2

)

+ h.o.t. . (18)

For triple zero singularity, the normal form is (see [38])

ẇ = B2w +A200







0
0
w2

1





+A110







0
0
w1w2





+A101







0
0
w1w3





+A020







0
0
w2

2





+ h.o.t. . (19)
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Here

B1 =

[

0 1
0 0

]

B2 =







0 1 0
0 0 1
0 0 0





 ,

and all the coefficients Aij or Aijk can been expressed in terms of the coefficients in (17).

We note that when F is an odd function of xt then G will include terms with odd powers

of xt and the coefficients Aij(Aijk) at the second order in Eqs. (18)((19)) will be zero. Then

we have to calculate the normal form up to third order. For the BT singularity, this is (see

[2] or [14, Section 7.3])

ẇ = B1w + A30

(

0
w3

1

)

+ A21

(

0
w2

1w2

)

+ h.o.t., (20)

whereas for triple zero singularity it is (see [38])

ẇ = B2w + A300







0
0
w3

1





+ A210







0
0
w2

1w2





+ A120







0
0
w1w

2
2







+A030







0
0
w3

2





+ A201







0
0
w2

1w3





+ A102







0
0
w1w

2
3





+ h.o.t. (21)

3 A general two-dimensional system

We consider the system

ẋ1(t) = f1(x1(t), x2(t)) + g1(x1(t− τs), x2(t− τ)),

ẋ2(t) = f2(x1(t), x2(t)) + g2(x1(t− τ), x2(t− τs)). (22)

Note that this includes many artificial neural network models [9, 10, 30], gene regulatory

network models [34], various models for metal cutting [32, 33], car-following models [25], and

models for nonlinear oscillators with delayed feedback [27, 31].

We assume that the equation has an equilibrium solution x∗ = (x∗1, x
∗

2), i.e. fi(x
∗

1, x
∗

2) =

gi(x
∗

1, x
∗

2) = 0, and that fi, gi ∈ C3, i = 1, 2. We write the Taylor expansion about x∗ of the

functions gi, fi up to mth order terms (m = 2 or 3) as

fi(x1(t), x2(t)) =
m
∑

n=1

∑

j+k=n

aijkx
j
1(t)x

k
2(t) ,
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g1(x1(t− τs), x2(t− τ)) =
m
∑

n=1

∑

j+k=n

b1jkx
j
1(t− τs)x

k
2(t− τ) ,

g2(x1(t− τ), x2(t− τs)) =
m
∑

n=1

∑

j+k=n

b2jkx
j
1(t− τ)xk

2(t− τs) . (23)

The linearization of (22) about x∗ is then

u̇1(t) = a110u1(t) + a101u2(t) + b110u1(t− τs) + b101u2(t− τ) ,

u̇2(t) = a210u1(t) + a201u2(t) + b210u1(t− τ) + b201u2(t− τs). (24)

It follows that the characteristic matrix is

∆(λ) =

[

λ− a110 − b110e
−τsλ −a101 − b101e

−τλ

−a210 − b210e
−τλ λ− a201 − b201e

−τsλ

]

,

and that the characteristic equation is

p(λ) = det ∆(λ) = (λ−a110−b110e
−τsλ)(λ−a201−b201e

−τsλ)−(a101+b101e
−τλ)(a210+b210e

−τλ) .

(25)

The nonlinear part of system (22), to order m, has the following form

Gm

(

ϕ1

ϕ2

)

=















m
∑

n=2

∑

j+k=n

a1jkϕ
j
1(0)ϕk

2(0) +
m
∑

n=2

∑

j+k=n

b1jkϕ
j
1(τs)ϕ

k
2(−τ)

m
∑

n=2

∑

j+k=n

a2jkϕ
j
1(0)ϕk

2(0) +
m
∑

n=2

∑

j+k=n

b2jkϕ
j
1(τ)ϕ

k
2(−τs)















.

In this paper, we focus on two singularity cases related to the existence of zero roots,

with multiplicity 2 or 3, of the characteristic equation (25).

3.1 Bogdanov-Takens Singularity

From eq. (5), a Bogdanov-Takens singularity can occur in (22) if the following conditions

are satisfied

(a110 + b110)(a201 + b201) − (a101 + b101)(a210 + b210) = 0 (26)

−(1 + τs b110)(a201 + b201) − (1 + τs b201)(a110 + b110)

+ τ [ b101(a210 + b210) + b210(a101 + b101) ] = 0, (27)
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and p′′(0) 6= 0, i.e.,

τ2
s (a201b110+4b110b201+a110b201)+2τs(b201+b110)−τ2(a210b101+4 b101b210+a101b210)+2 6=0 .

As discussed above, the invariant subspace P corresponding to the zero roots is two

dimensional with basis Φ1 = [v1,v2 + θv1]. For convenience, we choose

v1 =

(

1
m1

)

, v2 =

(

0
m2

)

, (28)

where m1 = −
a110 + b110
a101 + b101

, m2 =
1 + τsb110 + τb101m1

a101 + b101
.

The corresponding basis, Ψ1, for the adjoint problem must have the form

Ψ1(s) =

[

−d1s+ d3 −d2s+ d4

d1 d2

]

(29)

to satisfy −Ψ′

1 = B1Ψ1. Using < Ψ1,Φ1 >= I we can determine the constants di (i =

1, 2, 3, 4). We omit the expressions for the di here due to their length, however, they are

given for the examples in the next section. Note that this gives Ψ1(0) =

[

d3 d4

d1 d2

]

.

To this point, we have reduced the original infinite dimensional DDE system to a two-

dimensional ODE system

ż = B1z + Ψ1(0)G2(Φ1z) + h.o.t. , (30)

where z =

(

z1
z2

)

. As discussed in section 2.3 (see eq. (18)), a normal form to second order

for this equation is given by

ẇ1 = w2 ,
ẇ2 = A20w

2
1 + A11w1w2 + h.o.t. .

(31)

To find the relationship between the coefficients of (30) and (31) we need to know the form

of the near-identity transformation that relates them. This transformation is given in [11].

Using this transformation and Φ1z =

(

z1 + θz2
m1z1 + (m2 + θm1)z2

)

, we find

A20 = d1E1 + d2E2 ,

A11 = d1 T
1
1 (τs, τ) + d2 T

2
1 (τ, τs) + 2 (d3E1 + d4E2) , (32)
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where

Ei = ai20 + ai11 m1 + ai02m
2
1 + bi20 + bi11 m1 + bi02 m

2
1 =

∑

j+k=2

(aijk + bijk)m
k
1 ,

T i
1(τs, τ) = ai11 m2 + 2 ai02m1m2

+ 2bi20 n1(τs) + bi11 [m1 n1(τs) + n2(τ)] + 2bi02 m1 n2(τ) ,

(i = 1, 2, n1(τs) = −τs, n2(τ) = m2 − τ m1) . (33)

In the following, we denote n1(τs), n2(τ) by n1, n2, and T 1
1 (τs, τ), T

2
1 (τ, τs) by T 1

1 , T
2
1 , respec-

tively. We will use the same simplified notation for n3, n4 and T i
j , (i = 1, 2, j = 2, · · · , 10)

which will be introduced later.

When
∂2fi(x

∗

1, x
∗

2)

∂xj
1∂x

k
2

= 0 and
∂2gi(x

∗

1, x
∗

2)

∂xj
1∂x

k
2

= 0 for j + k = 2, obviously A20 = A11 = 0 and

the flow on the centre manifold becomes

ż = B1z + Ψ1(0)G3(Φ1z) + h.o.t .

As discussed in section 2.3 (see eq. (20)) the normal form up to third order is

ẇ1 = w2,

ẇ2 = A30w
3
1 + A21w

2
1w2 + h.o.t. . (34)

Following a similar procedure to the quadratic case, we find that

A30 = d1 F1 + d2 F2 ,

A21 = d1 T
1
2 + d2 T

2
2 + 3 ( d3F1 + d4 F2) , (35)

where

Fi =
∑

j+k=3

(aijk + bijk)m
k
1 ,

T i
2 = ai21 m2 + 2 ai12m1m2 + 3 ai03m

2
1m2 + 3 bi30 n1

+bi21 (2m1 n1 + n2) + bi12 m1 (m1 n1 + 2n2) + 3 bi03m
2
1 n2 .

(i = 1, 2) (36)
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3.2 Triple zero Singularity

From (7) a triple zero singularity can occur in (22) if (26), (27) and the following condition

are satisfied:

τ 2
s (a201 b110 + 4 b110 b201 + a110 b201) + 2 τs (b201 + b110 )

− τ 2 ( a210 b101 + 4 b101 b210 + a101 b210) + 2 = 0 , (37)

and p′′′(0) 6= 0. Due to its length, we omit the expression for p′′′(0) here. In this case, the

invariant subspace P corresponding to the zero roots is three dimensional with basis Φ2 as

given in (15). For convenience, we choose v1, v2 as for the BT singularity (see eq. (28)),

and v3 =

(

0
m3

)

where

m3 = −
b110τ

2
s + b101τ

2m1 − b101τm2

a101 + b101
.

The corresponding basis, Ψ2, for the adjoint problem must have the form

Ψ2(s) =







e1
s2

2
− e3s+ e5 e2

s2

2
− e4s+ e6

−e1s+ e3 −e2s+ e4
e1 e2







to satisfy −Ψ′

2 = B2Ψ2. The constants ei (i = 1, 2, · · · , 6) can be determined by < Ψ2,Φ2 >=

I. This gives Ψ2(0) =







e5 e6
e3 e4
e1 e2





 .

Applying the centre manifold projection to the DDE system (22) yields the three-dimensional

ODE system

ż = B2z + Ψ2(0)G2(Φ2z) + h.o.t. , (38)

where z =







z1
z2
z3





. As discussed in section 2.3 (see eq. (19)), the normal form of this

equation is
ẇ1 = w2,
ẇ2 = w3,
ẇ3 = A200w

2
1 + A110w1w2 + A101w1w3 + A020w

2
2 + h.o.t. .

(39)

To find the relationship between the coefficients of (38) and (39) we need to know the form

of the near-identity transformation that relates them. This transformation is given in [38].
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Using this transformation and Φ1z =

(

z1 + θz2 + 1
2
θz3

m1z1 + (m2 + θm1)z2 + (m3 + θm2 + 1
2
θm1)z3

)

,

we find

A200 = e1E1 + e2E2 ,

A110 = e1 T
1
1 + e2 T

2
1 + 2 (e3E1 + e4E2) ,

A101 = e1 T
1
3 + e2 T

2
3 + e3 T

1
1 + e4 T

2
1 + 2 (e5E1 + e6 E2) ,

A020 = e1 T
1
4 + e2 T

2
4 + e3 T

1
1 + e4 T

2
1 + 2 (e5E1 + e6 E2) , (40)

with Ei, T
i
1 (i = 1, 2) being given in (33), and

T i
3 = ai11m3 + 2ai02m1m3 + 2bi20n3 + bi11(m1n3 + n4) + 2bi02m1n4 ,

T i
4 = ai02m

2
2 + bi20n

2
1 + bi11n1n2 + bi02n

2
2 ,

(i = 1, 2, n3(τs) =
τ 2
s

2
, n4(τ) = m3 −m2τ +m1

τ 2

2
) . (41)

Similar to the BT singularity, if
∂2fi(x

∗

1, x
∗

2)

∂xj
1∂x

k
2

= 0 and
∂2gi(x

∗

1, x
∗

2)

∂xj
1∂x

k
2

= 0 for j+k = 2, then

A200 = A110 = A101 = A020 = 0. As discussed in section 2.3 (see eq. (21)) the normal form

to third order is

ẇ1 = w2,

ẇ2 = w3,

ẇ3 = A300w
3
1 + A210w

2
1w2 + A120w1w

2
2 + A030w

3
2 + A201w

2
1w3 + A102w1w

2
3 + h.o.t. .(42)

Proceeding as in the quadratic case, we find

A300 = e1 F1 + e2 F2 ,

A210 = e1 T
1
2 + e2 T

2
2 + 3 (e3 F1 + e4 F2) ,

A120 = e1 T
1
5 + e2 T

2
5 + 2 (e3 T

1
2 + e4 T

2
2 ) + 6 (e5 F1 + e6 F2) ,

A030 =
e1
3

(3 T 1
6 − T 1

7 ) +
e2
3

(3 T 2
6 − T 2

7 ) +
e3
3

(T 1
5 − 2 T 1

8 ) +
e4
3

(T 2
5 − 2 T 2

8 ) ,

A201 = e1 T
1
8 + e2 T

2
8 + e3 T

1
2 + e4 T

2
2 + 3 (e5 F1 + e6 F2) ,

A102 =
e1
2

(2 T 1
9 − T 1

10) +
e2
2

(2 T 2
9 − T 2

10) +
e3
2

(T 1
7 − 3 T 1

6 )

+
e4
2

(T 2
7 − 3 T 2

6 ) +
e5
2

(2 T 1
8 − T 1

5 ) +
e6
2

(2 T 2
8 − T 2

5 ) , (43)
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and

T i
5 = ai12m

2
2 + 3 ai03m

2
2m1 + 3 bi30 n

2
1

+bi21 n1 (m1 n1 + 2n2) + bi12 n2 (2m1 n1 + n2) + 3 bi03 m1 n
2
2 ,

T i
6 = a103m

3
2 + bi30 n

3
1 + bi21 n

2
1 n2 + bi12 n1 n

2
2 + bi03 n

3
2 ,

T i
7 = 2 [ai12m2m3 + 3 ai03m1m2m3

+3 bi30 n1 n3 + bi21 (m1 n1 n3 + n1 n4 + n2 n3)

+ bi12 (m1 n2 n3 +m1 n1 n4 + n2 n4) + 3 bi03m1 n2 n4] ,

T i
8 = ai21m3 + 2 ai12m1m3 + 3 ai03m

2
1m3

+ 3 bi30 n3 + bi21 (2m1 n3 + n4) + bi12 m1 (m1 n3 + 2n4) + 3 bi03m
2
1n4 ,

T i
9 = ai12 m

2
3 + 3 ai03m

2
3m1 + 3 bi30 n

2
3

+bi21 n3(m1 n3 + 2n4) + bi12 n4 (2m1 n3 + n4) + 3 bi03m1 n
2
4 ,

T i
10 = 3 ai03m

2
2m3 + 3 bi30 n

2
1 n3

+bi21 n1 (n1 n4 + 2n2 n3) + bi12 n2 (n2 n3 + 2n1 n4) + 3 b030 n
2
2 n4 ,

(i = 1, 2) . (44)

4 Examples

4.1 Neural Network Model with Two Delays

Here we apply our results to the neural network model considered in [30]. In that paper,

the authors showed that Bogdanov-Takens points occurred in their model, but did not do

the centre manifold analysis. The model (with a rescaling of the parameters) is given by the

following system:

ẋ(t) = −x(t) + a tanh(x(t− τs)) + a12 tanh(y(t− τ)),

ẏ(t) = −y(t) + a21 tanh(x(t− τ)) + a tanh(y(t− τs)).
(45)

Expanding Eq. (45), we have

ẋ(t) = −x(t) + ax(t− τs) + a12y(t− τ) −
a

3
x3(t− τs) −

a12

3
y3(t− τ)

ẏ(t) = −y(t) + a21x(t− τ) + ay(t− τs) −
a21

3
x3(t− τ) −

a

3
y3(t− τs)

+ h.o.t. .
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The characteristic equation is

p(λ) = (λ+ 1)2 − 2(λ+ 1)ae−τsλ + a2e−2τsλ − a12a21e
−2τλ = 0.

When a12a21 = (a− 1)2 and τ = 1+aτs

a−1
, then

p(0) = p′(0) = 0,

so the system has double zero (Bogdanov-Takens) singularity. As noted in [30], this will

occur for τ > 0 if a > 1 or a < 0 and τs > −1
a
, and only the latter case occurs on the

boundary of the region of stability of the trivial solution. Furthermore,

p′′(0) = −2(1 + 2 aτs + a τ 2
s ) 6= 0 if a > 1 or a < 0, τs > −

1

a
,

thus no triple zero singularity occurs.

Using the results of the previous section, the basis for the eigenspace corresponding to

the double zero eigenvalue is, from (28),

Φ1(θ) =







1 θ
1 − a

a12

1 − a

a12
θ





 ,

and the basis for the dual space, Ψ1(s), is given by (29) with

d1 =
a− 1

aτ 2
s + 2aτs + 1

, d2 = −
a12

aτ 2
s + 2aτs + 1

,

d3 =
((aτs + 1)3 − a(a− 1)2τ 3

s

3(aτ 2
s + 2aτs + 1)2

, d4 = −
a12((aτs + 1)3 − a(a− 1)2τ 3

s

3(a− 1)(aτ 2
s + 2aτs + 1)2

.

Since the nonlinear functions are odd functions, we compute the normal form up to third

order:
ẇ1 = w2,
ẇ2 = A30w

3
1 + A21w

2
1w2 ,

(46)

where

A30 = −
(a− 1)(a2

12 + (a− 1)2)

3a2
12(aτ

2
s + 2aτs + 1)

, A21 = −
(a2

12 + (a− 1)2)(a(2a− 1)(τs + 1)3 − 2(a− 1)2)

3a2
12(aτ

2
s + 2aτs + 1)2

.

Noting that aτ 2
s + 2aτs + 1 = (aτs + 1)(τs + 1) + (a− 1)τs, we see that A30 < 0 when a < 0

and τs > −1
a
. Further since τs > −1

a
, we have

a(2a− 1)(τs + 1)3 > a(2a− 1)(1 − 1/a)3

= 2a2 − 7a+ 9 −
5

a
+

1

a2

= 2(a− 1)2 − 3a + 7 −
5

a
+

1

a2
.
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Thus A21 < 0 as well.

The unfolding of the normal form (46) is

ẇ1 = w2,
ẇ2 = µ1w1 + µ2w2 + A30w

3
1 + A21w

2
1w2.

(47)

This system is well understood. The complete set of bifurcations for any values of A30 and

A21 is given in the book of Guckenheimer and Holmes [14, Section 7.3]. In particular, they

show that when A30 < 0 and A21 < 0, there is a region in the µ1, µ2 parameter plane where a

pair of stable equilibria coexist with a large amplitude stable limit cycle. The period of the

limit cycle may be large as the region of bistability ends near a homoclinic bifurcation. This

region of bistability does not occur for other signs of the normal form coefficients. Bistability

between a pair of equilibrium points and a slowly oscillating limit cycle was observed by

Shayer and Campbell (cf. [30, Fig. 8]) in numerical simulations of the full nonlinear DDE

(45) with the parameter values a = −2, τs = 0.75, τ = 0.1, a12 = 2 a21 = 4.68. Engelborghs

et al. used the numerical bifurcation for package they developed, DDE-BIFTOOL [7], to

study the homoclinic bifurcation of periodic orbits in this model with similar parameter

values [6].

To further support our analysis, we have performed numerical continuation studies of

the full system (45) using DDE-BIFTOOL. These results are illustrated in Figures 1–2.

We find three secondary bifurcations emanating from the Bogdanov-Takens point. As a21 is

increased with τ less that the value at the BT point these bifurcations are as follows. A Hopf

bifurcation of the nontrivial equilibria (denoted HNT in the figures) creates a pair of limit

cycles surrounding the nontrivial equilibria. These limit cycles then undergo a bifurcation

(HL) in which they form a double homoclinic loop to the origin and then become a single

large limit cycle surrounding both nontrivial equilibria. Finally, this large limit cycle is

destroyed in a saddle node bifurcation of limit cycles (SNLC) with the limit cycle from

the primary Hopf bifurcation (H0). This sequence of bifurcations is exactly that presented

in [14, Section 7.3]. A schematic of the sequence of phase portraits associated with these

bifurcations can be seen in [14, Figure 7.3.9].
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Figure 1: Bifurcation curves of equation (45) in a21, τ parameter space. Other parame-
ter values are: a = −2, a12 = 2, τs = 0.75. P - pitchfork bifurcation, H0/HNT - Hopf
bifurcation of trivial/nontrivial equilibrium, HL - homoclinic loop bifurcation of periodic
orbits surrounding nontrivial equilibria, SNLC saddle node of limit cycles bifurcation, BT
- Bogdanov-Takens point. The stability region of the trivial solution is denoted by STAB0.
The HL and SNLC curves are too close together to resolve at this scale.

4.2 Fitzhugh/Nagumo Equation with One Delay

Plant [27] considered a model for a recurrent neural circuit which consisted of a single

Fitzhugh Nagumo neuron with delayed feedback on the voltage. We will study a similar

model here and show that it exhibits both the double zero and triple zero singularity. Our

neural model is a slight modification of the Fitzhugh Nagumo model due to Murray [24].

Including the delayed feedback leads to the following system of equations:

v̇ = v(t) (a− v(t))(v(t) − 1) − w(t) + µ v(t− τs) ,

ẇ = b v(t) − γ w(t). (48)

The parameters are restricted to 0 < a < 1 and τs ≥ 0, for physical reasons.

Clearly, (0, 0) is an equilibrium point of the system for all parameter values. The char-

acteristic equation of the linearization of (48) about this trivial equilibrium point is

P (λ) = λ2 + (γ + a)λ+ a γ − µ e−τsλ λ− µ e−τsλ γ + b = 0 .

It is easy to see that when the parameters satisfy

µ = a+
b

γ
def
= µ∗ , (49)
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Figure 2: Bifurcations of equation (45) as a21 is varied with τ = 0.0653, a = −2, a12 =
2, τs = 0.75. This corresponds to dotted line in Figure 1. Thin lines represent equilibria,
thick lines periodic orbits. Solid/dashed lines represents stable/unstable objects. Periodic
orbits are represented by their maximum and minimum values. (a) Full diagram. (b) Zoom
in illustrating the three secondary bifurcations. Labels are as for Figure 1.

the characteristic equation has a zero root. A check of the standard conditions [26] shows

that this corresponds to a transcritical bifurcation of the trivial solution. If the parameters

also satisfy

τs =
b− γ2

γ(aγ + b)
def
= τ∗ (50)

and b2 +2γ(γ+a)b−γ4 6= 0, there exists double zero singularity in the system (48). Finally,

if the parameters satisfy (49), (50),

b = −γ(a + γ) ± γ
√

(a+ γ)2 + γ2 def
= b∗± ,

γ 6= −a and γ 6= −3a
7
, there exists a triple zero singularity in (48).

For the double zero singularity to occur in the physically reasonable part of parameter

space, we require τ∗ ≥ 0. This will occur under the following constraints of the parameters

1. γ > 0 and b > γ2

2. γ > 0 and b < −aγ < 0

3. −a < γ < 0 and γ2 < b < −aγ
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4. γ < −a and −aγ < b < γ2.

By considering the stability of the equilibrium with τs = 0, one can show that case 3 does

not lie on the boundary of the stability region of the equilibrium point. Hence the double

zero point in this case will not affect the observable dynamics of the system. Further, it

can be shown that in cases 1 and 4 the triple zero singularity does not occur. Thus we will

concentrate on case 2 from now on. Noting that the triple zero singularity occurs at b = b∗−

in this case, we will denote b∗− = b∗.

For double zero singularity, we choose the basis in the two-dimensional subspace P as

Φ(θ) =





1 θ

b
γ

− b
γ2 + b

γ
θ



 ,

then the coefficients in the corresponding basis

Ψ(s) =

[

−l1 s+ l3 −l2 s+ l4
l1 l2

]

are

l1 = −
2γ

γ µ∗ τ 2
∗
− 2µ∗τ∗ − 2

, l2 =
2γ2 (µ∗ τ∗ + 1)

b(γ µ∗ τ 2
∗
− 2µ∗τ∗ − 2)

,

l3 = −
2[γ2 µ∗ τ

3
∗
− 6(µ∗ τ∗ + 1)]

3(γ µ∗ τ 2
∗
− 2µ∗τ∗ − 2)2

, l4 =
2γ2µ∗ τ

2
∗
(µ∗ τ∗ + 1)(γ τ∗ − 3)

3 b (γ µ∗ τ 2
∗
− 2µ∗τ∗ − 2)2

.

We can obtain the second-order normal form as

ẇ1 = w2 ,

ẇ2 = l1(a+ 1)w2
1 + 2l3(a + 1)w1w2.

The unfolding consistent with the transcritical bifurcation in the orginal system, (48), is (see

[14, Section 7.3])

ẇ1 = w2 ,
ẇ2 = µ1w1 + µ2w2 + l1(a+ 1)w2

1 + 2l3(a+ 1)w1w2.
(51)

The behaviour of this unfolding is similar to the more common case where the steady state

bifurcation associated with the double zero singularity is a saddle node bifurcation. For

simplicity in our description of this behaviour, we define

α = l1(a+ 1), β = 2l3(a + 1),

19



and note that since a > 0, the signs of these quantities are determined by l1 and l3, respec-

tively. Analysis similar to that found in, for example, [14, Section 7.3] shows that there are

five bifurcation curves emanating from the origin in the µ1, µ2 parameter space:

- a transcritical bifurcation at µ1 = 0,

- a Hopf bifurcation of the trivial equilibrium at µ2 = 0, µ1 < 0,

- a Hopf bifurcation of the the nontrivial equilibrium along a curve which is tangent at

the origin to µ2 = β

α
µ1, µ1 > 0,

- a homoclinic bifurcation leading to the creation of a periodic orbit about the trivial

solution along a curve which is tangent at the origin to µ2 = β

7α
µ1, µ1 < 0,

- a homoclinic bifurcation leading to the creation of a periodic orbit about the nontrivial

equilibrium point along a curve which is tangent at the origin to µ2 = 6β

7α
µ1, µ1 > 0.

The signs of l1 and l3 determine where these bifurcations occur, the criticality of the Hopf

bifurcations and the stability of the periodic orbits created by the homoclinic orbits. In

particular, when l1l3 > 0 both Hopf bifurcations are subcritical and when l1l3 < 0 they

are both supercritical. There are only four possible unfoldings, two of which are pictured in

Figure 3. The others may be obtained from these by noting that the equations are unchanged

by the transformation lj → −lj , wj → −wj .

Using the expressions for µ∗ and τ∗ we can rewrite those for l1, l3 as

l1 =
2 γ3 (b+ a γ)

b2 + 2 (a+ γ) b γ − γ4
, l3 =

2 γ2 (5 b3 + 3 (4 a+ γ) b2 γ + 3(2 a2 − γ2) b γ2 + γ6)

3(b2 + 2 (a+ γ) b γ − γ4)2
.

Note that both l1 and l3 have zero denominator at b = b∗ and that l1 changes sign at b∗ but

l3 does not. Further, b∗ < −aγ, and hence l1 < 0 for b < b∗ and l1 > 0 for b∗ < b < −aγ.

Recall that for b > −aγ we have τ∗ < 0. Since the numerator of l3 is a cubic in b it will

change sign at least once as b is varied.

Taking the specific parameter values a = 0.2, γ = 1, we find that l3 changes sign once at

b = b̂ ≈ −1.527. The sign of the coefficients and the corresponding unfoldings are given in

the following table.
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(a) l1 > 0, l3 > 0

µ1Hopf 0

Hom 0

Trans

NTHom

Hopf NT

µ2

(b) l1 > 0, l3 < 0

Figure 3: Possible unfoldings of the double zero with a transcritical bifurcation. Trans -
transcritical bifurcation, Hom- homoclinic bifurcation. Subscripts refer to equilibrium type:
0 - trivial, NT - nontrivial.

Range in b Signs of coefficients Unfolding
b < b∗ ≈ −2.76 l1 < 0, l3 < 0 Figure 3(a), with wj → −wj

b∗ < b < b̂ ≈ −1.527 l1 > 0, l3 < 0 Figure 3(b)

b̂ < b < −aγ = −0.2 l1 > 0, l3 > 0 Figure 3(a)

Numerical continuations (using DDE-BIFTOOL [7]) of the full equation (48) confirm the

predictions of the normal form analysis. Figure 4 shows three continuations of the periodic

orbits created from the Hopf bifurcation of the trivial solution. For b = −3.1 and b = −1

the Hopf bifurcation is subcritical, for b = −2.5 it is supercritical. All of the periodic orbits

are eventually lost in homoclinic bifurcations as predicted by the normal form. Note that

for b = −3.1 the equilibrium point and periodic orbit are unstable before and after the

bifurcation as the Hopf bifurcation point does not lie on boundary of the region of stability.

Figure 5 shows a two parameter bifurcation diagram in the case b = −2.5. We have confirmed

the presence of three secondary bifurcations emanating from the Bogdanov-Takens point: a

homoclinic bifurcation of the periodic orbit surrounding the trivial equilibrium point (Hom0),

a Hopf bifurcation of the nontrivial equilibrium point (HopfNT) and a homoclinic bifurcation

of the periodic orbit surrounding the nontrivial equilibrium point (HomNT). Note the good
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Figure 4: Numerical bifurcation diagrams showing bifurcations as τ is varied. In each
diagram a periodic solution is created via a Hopf bifurcation from the trivial solution and
subsequently destroyed in a homoclinic bifurcation. Parameter values are a = 0.2, γ = 1
and b, µ as shown. Solid lines indicate stable equilibria/periodic orbits and dashed lines
indicate unstable ones. Left: amplitude of solutions. Right: period of solutions.

correspondence with the prediction from normal form theory shown in Figure 3(b).

For triple zero singularity, we can select the basis in the three-dimensional subspace P

as

Φ(θ) =







1 θ θ2

2

b∗
γ

− b∗
γ2 + b∗

γ
θ (b∗−γ2)2

γ3(aγ+b∗)
+ −b∗

γ2 θ + b∗
γ

θ2

2





 ,

then the basis in the associated dual subspace is

Ψ(s) =







e1
s2

2
− e3s+ e5 e2

s2

2
− e4s+ e6

−e1s+ e3 −e2s+ e4
e1 e2





 ,

where

e1 = −
6(µ∗ − a)

τ 2
∗
µ∗(5τ∗µ∗ + τ∗a + 6)

,

e3 = −
12[109τ 2

∗
µ3
∗
+ (10τ∗a + 51)τ∗µ

2
∗
+ (τ 2

∗
a2 + 9τ∗a− 57)µ∗ − 3a]

5τ∗µ∗(5τ∗µ∗ + τ∗a + 6)[7τ 2
∗
µ2
∗
− (τ∗ + 24)τ∗µ∗ + 6]

,
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Figure 5: Bifurcations curves in µ, τ parameter space generated by numerical continuation
of system (48) with γ = 1, a = 0.2 and b = −2.5. The picture would be qualitatively
similar for any b ∈ (b∗, b̂) ≈ (−2.76,−1.527). STAB denotes stability region of trivial, 0, or
nontrivial, NT, equilibrium. Other labels are as for Figure 3.

e5 = −
3[313τ 2

∗
µ2
∗
+ 2(23aτ∗ + 126)τ∗µ∗ + τ 2

∗
a2 − 12τ∗a− 120]

10[35τ 3
∗
µ3
∗
+ 2(aτ∗ − 39)τ 2

∗
µ2
∗
− (a2τ 2

∗
+ 30aτ∗ + 114)τ∗µ∗ + 6aτ∗ + 36]

...

We omit the expressions for the other coefficients ei, i = 2, 4, 6 since they do not appear in

the coefficients of the normal form.

The second-order normal form for the triple zero singularity is Eq. (38) with the coeffi-

cients are

A200 = (a+ 1)e1 , A110 = 2 (a+ 1)(e1 + e3) ,

A101 = 2 (a+ 1)(e1 + e3 + e5) , A020 = (a+ 1)(e1 + 2 e3 + 2 e5) .

The unfolding of this is (see [31])

ẇ1 = w2 ,

ẇ2 = w3 ,

ẇ3 = µ1w1 + µ2w2 + µ3w3 + A200w
2
1 + A110w1w2 + A101w1w3 + A020w

2
2 . (52)

We have the following results for the unfolding normal form (52).
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- The origin is stable when µi < 0, (i = 1, 2, 3) and µ1 > −µ2µ3;

- The origin undergoes a Hopf bifurcation when µ3 = −µ1

µ2

and µ2 < 0;

- The origin undergoes a transcritical bifurcation at µ1 = 0;

- For µ1 6= 0, there is a nontrivial equilibrium point at z∗ = (−µ1/A200, 0, 0);

- The nontrivial equilibrium point, z∗, undergoes a Hopf bifurcation when

µ3 = µ1(A101/A200 − A200/(A110µ1 − A200µ2)) and A200/(A110µ1 − A200µ2) > 0;

- The origin undergoes a BT bifurcation when µ1 = µ2 = 0;

- The origin undergoes a Transcritical/Hopf bifurcation when µ1 = µ3 = 0 and µ2 < 0.

There will also be two surfaces of Homoclinic bifurcation: one creating a periodic orbit

about the trivial solution and one creating a periodic orbit about the nontrivial solution. To

see this, note that on each plane µ3 = K 6= 0 the origin is a BT point, in which case system

(52) may be reduced to system (51).

For system (48) the surface of transcritical bifurcation is given by equations (49). The

equation for the surface of Hopf bifurcation of trivial solution is given by the following

equations, defined parametrically in terms of the Hopf bifurcation frequency ω,

µ =

√

S(ω)2 + C(ω)2

γ2 + ω2
, τs =

1

ω
arctan

(

S(ω)

C(ω)

)

,

where

S(ω) = ω(b− (ω2 + γ2)) and C(ω) = γ(aγ + b) + ω2a.

These surfaces are illustrated in Figure 6 for a = 0.2, γ = 1, with the light grey surface

corresponding to the transcritical bifurcation and the dark grey surface to the Hopf bifur-

cation. The codimension two points occur along the curves of intersection of these surfaces.

The curve of double zero singularities is marked by a solid line and the curve of zero/pure

imaginary pair singularities is marked by a dashed line. The intersection point of these two

curves is the triple zero singularity point.
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Figure 6: Bifurcation surfaces in µ, τ, b parameter space for system (48) with γ = 1, a = 0.2.
Shown are: surfaces of Hopf bifurcation (dark grey) and transcritical bifurcation (light grey),
curves of double zero singularities (solid) and zero/pure imaginary pair singularities (dashed).
The triple zero singularity occurs at the intersection of these latter two curves.

5 Conclusions

We have studied the double zero (Bogdanov-Takens) and triple zero singularities with geo-

metric multiplicity one in a general system of two delay differential equations with two time

delays. Our results are given in terms of the coefficients of the Taylor series of the right

hand side of the general DDE about an equilibrium point, and thus can be easily applied

to any model which can be written in this form. In particular, we have given conditions for

the existence of each type of singularities. We have also given formulas for the coefficients

of the normal form for each singularity, both in the generic case and the case where the

quadratic terms of the Taylor series are zero. This latter case occurs, for example, when the

nonlinearities in the model are odd functions.

Our results apply to a large variety of nonlinear dynamical models. We have given

detailed studies of the application of the results to two of these models: an artificial neural
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network model [30] and a model for a delayed recurrent neural circuit similar to that studied

by [27].

The neural network model can exhibit the double zero singularity but not the triple zero

singularity. We have given constraints on the parameters so that double zero singularity

occurs on the boundary of the region of stability of the equilibrium point and showed that

under these constraints, both coefficients of the normal form must negative. We confirmed,

via numerical bifurcation analysis, the presence of all the secondary bifurcations predicted by

the normal form theory. The main implication of the double zero singularity for the dynamics

of the system is the existence of a region in parameter space where bistability between a

pair of nontrivial equilibrium points and a large amplitude (and possibly slowly oscillating)

periodic solution. This bistability means that the neural network can exhibit oscillator death,

i.e. a correctly applied perturbation may cause the system to stop oscillating and settle on

an equilibrium point.

The recurrent neural circuit model is more interesting for two reasons. First, it can ex-

hibit both the double and triple zero singularities. Second, due to the form of the model,

the steady state bifurcation associated with these singularities is a transcritical bifurcation,

instead of the usual (generic) saddle node bifurcation. We determined and analyzed the

unfoldings of the normal forms (with arbitrary coefficients) for both singularities. The sec-

ondary bifurcations resulting from the double zero singularity are similar to those in the

case of a saddle node bifurcation, however, no region of bistability occurs. The unfold-

ing of the triple zero singularity reveals that surfaces of Hopf bifurcation and transcritical

bifurcation must emanate from the singularity point. Further, two curves of codimension

two bifurcations occur: Bogdanov-Takens bifurcations (corresponding to the double zero

singularity) and Transcritical/Hopf bifurcations. We also argue that two surfaces of homo-

clinic bifurcations must occur. Analysis of the model shows that the Hopf, Transcritical and

the codimension two bifurcations occur as predicted by the normal form. The triple zero

singularity acts as an organizing centre for the dynamics of the model.
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