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We consider here a model from [1] for regenerative chatter in a drilling process. The model is
a nonlinear delay differential equation where the delay arises from the fact that the cutting
tool passes over the metal surface repeatedly. For any fixed value of the delay, a large enough
increase in the width of the chip being cut results in a Hopf bifurcation from the steady
state, which is the origin of the chatter vibration. We show that for zero delay the Hopf
bifurcation is degenerate and that for small delay this leads to a canard explosion. That is, as
the chip width is increased beyond the Hopf bifurcation value, there is a rapid transition from
a small amplitude limit cycle to a large relaxation cycle. Our analysis relies on perturbation
techniques and a small delay approximation of the DDE model due to Chicone [2]. We use
numerical simulations and numerical continuation to support and verify our analysis.

1. Introduction

In this paper we document the occurrence of canards in a constant delay system
developed for modeling metal cutting processes such as drilling. Canards were
first studied by a group of French mathematicians (E. Benoit, J.-L. Callot, F.
Diener, and M. Diener) in the context of relaxation oscillations of the Van der
Pol equation with a constant forcing term ([3], [4]). Close to a Hopf bifurcation
in this system, a small change of the control parameter leads to a fast transition
from a small amplitude limit cycle to a large amplitude relaxation cycle. The fast
transition is called canard explosion and happens within an exponentially small
range of the control parameter. Because this phenomenon is hard to detect it was
nicknamed a canard, after the French newspaper slang word for hoax. Furthermore,
the shape of the limit cycle immediately following the transition has a knob-like
corner reminiscent of a duck’s beak. So the notion of a canard cycle/explosion was
born and the chase after these creatures began following either nonstandard ([4])
or standard ([5]) methods.

The discovery of the canard cycles by the end of the seventies was aided by new
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computational methods for the systematic simulation of bifurcation of solutions
in the phase plane. Over the past decade, there has been increased interest in
delay differential equations (DDEs). Previously studied equations have been re-
investigated allowing for a better physical understanding of old problems, and new
areas of research have appeared. Of particular interest are dynamical phenomena
that are directly generated by the delayed variable. These include, for example, the
stabilization of unstable steady states [6], the emergence of square-wave oscillations
for first order DDEs [7], or the secondary bifurcation to quasi-periodic oscillations
for second order DDEs [8]. In this paper, we concentrate on a mechanical model for
high-speed drilling and investigate the limit of small delays. This limit is singular
and we construct and analyze the emergence of strongly pulsating oscillations by
both numerical and asymptotic techniques.

The plan of the paper is as follows. In Section 2, we formulate the evolution
equation for the machine-tool system subject to a delayed feedback. In Section 3, we
investigate the small delay limit corresponding to the high speed revolution of the
spindle of the cutting machine. We note that the equation of motion for zero delay
can be reformulated as a weakly perturbed conservative problem and anticipate
a non-trivial effect of the delayed feedback. In Section 4, we construct the limit-
cycle solution that emerges from the Hopf bifurcation using an averaging technique
appropriate for weakly perturbed but strongly nonlinear conservative oscillators.
We determine the critical value of the control parameter where the amplitude of the
oscillations suddenly increase (canard explosion). The validity of our asymptotic
analysis is then evaluated in Section 5 by systematic comparisons between the
numerical bifurcation diagram of the original DDE, its ODE approximation for
small delay, and the analytical predictions. Finally, we discuss in Section 6 the
impact of our results for the original mechanical system and, more generally, DDEs
that exhibit similar bifurcation properties. In particular, we explain how dramatic
changes of the amplitude and waveform of the oscillations are possible near a Hopf
bifurcation even if the delay is small.

2. Chatter in Machining Models

In a previous paper one of us [1] documented the development of a model for a
certain type of regenerative chatter in drilling processes. This model incorporated
nonlinear friction on the tool face interacting with fundamental axial-torsional
vibrations found in some twist drills. Metal cutting processes such as turning,
milling and drilling, are plagued with an instability to self-sustained vibrations
that can ruin both the tool and the work piece, due to the fact that the tool
cuts over a surface repeatedly at a constant frequency. This phenomenon is called
regenerative chatter, and is modeled by fixed delay differential equations, since the
force on the cutting tool depends on the thickness of chip being removed, and this
depends on the position of the tool one revolution prior to the current position.

In engineering applications an operation such as metal cutting is modeled by
considering distinct vibrational modes of the apparatus and their interaction with
external forces. See figure 1. The vibrations are assumed to be linear, with large
inertia and stiffness, and small damping. Thus the equation of motion of a machine
tool vibration mode excited by a cutting force is

I+ et +wor = F(z, 1)

where x(t) is the amplitude of the vibration, ¢ is the effective damping, and wy is
the natural frequency of the mode. The forcing function, F(x, ), is the projection
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of the cutting force onto the vibration direction, which occurs at an angle # with
respect to the vertical from the tool path. The cutting force has the general form

F(x, @) = F((x(t) — 2t — 7)), 4(t)),

where 7 is the period of revolution of the spindle of the cutting machine. This means
it is proportional to the chip thickness (i.e., (z(t) — z(t — 7), the difference between
the position at the time ¢, and the time one revolution ago), and the penetration
rate &(t). Thus 7 is the delay parameter in the delay differential equation.

The specific form of the cutting force was determined from the Merchant-Oxley
model of steady orthogonal cutting ([9], [10]) and is

F(x,&) = wT(t; — (x — x(t — 7)) cos 0)(po + p1d + pai?). (1)

It depends on the instantaneous chip thickness, given by the expression (t; — (z(t)—
x(t—7)) cos 8), where t; is the nominal chip thickness set by the machine feed. The
polynomial in & is a truncation of an asymptotic expansion for a nonlinear stick-
slip type friction force. The expansion coefficients pg, p1, and p2, depend on cutting
speed, rake angle of the tool, and vibration angle. For the conditions considered
in [1] both p; and py are quite small for all vibration angles, two to four orders of
magnitude smaller than pg in most cases. The other parameters are w, the chip
width, and 7', the strength of the material. In [1] these parameters were set at
values typical for machining aluminum, namely w = 6.35 x 10™3m, T = 276 MPa,
t; =176 x 1075m.

Two modes of vibration were considered in our earlier work. A traditional milling
mode where the vibration occurs perpendicular to the workpiece, and an axial-
torsional mode where vibrations occur across the first and third quadrants, cor-
responding to a motion where the drill lengthens when it “unwinds”. A three di-
mensional vibration analysis revealed that this vibration angle is (approximately)
f = 1.38 = 79°. In this case both pg and p; are less than zero. For a vertical
vibration 6 is zero, and py and p; are positive for the rake angles of the tool that
we considered.

After a non-dimensionalization we arrive at the following equation of motion for
the new amplitude variable, 7,

0"+ +n— B —(n—n(t—7)cos(d)] (po+ i +p2n*) =0.  (2)

In this equation, prime means differentiation with respect to the dimensionless
time ¢ = wyt, where wy is the vibrational frequency of the mode. The dimensionless
amplitude 7 is the vibration amplitude normalized by the nominal chip thickness
t1. Our objective here is to investigate the limit of small delays (small 7), that is,
the high-speed cutting limit. As we shall demonstrate, this limit is singular and
requires careful study. In what follows we drop the bar on the rescaled t variable.

Introducing the deviation from the steady state, y = n — Opo, eq. (2) can be
rewritten as

y" + vy +y =By + p2y?) — Bpo cos(0)(y — y(t — 7))
—Bprcos(0)y (y — y(t — 7))
—Bp2 cos(0)y*(y — y(t — 7)). (3)

This is the form of the model we will study in this paper. We will refer to it as the
DDE model.
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From the linearization of this equation, we can determine the characteristic equa-
tion for the growth rate, and from this the conditions for a purely imaginary eigen-
value. To do so we substitute 2 = ¢! (the neutrally stable solution) into the
equation (3) and set the coefficients of the real and imaginary parts equal to zero.
These two equations can be solved for 3 and 7 as a functions of w, namely

2 1—w? 1 (Tw)”
7(w) = ;(arctan( » ) +nm), Blw) = 2pocosf w? —1

+ (W =1} (4

We have set I' = v — Opy, and assume that I' > 0, to guarantee stability in the
unforced case. Note that n = 0,1,2,... determines the branch of the arctangent
function. For fixed values of the physical parameters, (4) yields the parametric
equations, 7 = 7(w), # = B(w), describing curves in the (3, 7 parameter space. The
n = 0 branch is plotted in Figure 2, which ranges over small values of 7.

In [11] we compute the Hopf stability coefficient along this boundary via a center
manifold approximation [12-14]. In the case of the traditional vibration mode the
Hopf bifurcation is supercritical for values of 7 below 0.5. In this study we will limit
ourselves to this case and to small 7 values, so the Hopf bifurcation will always be
supercritical in what follows.

As observed in [11], the system exhibits interesting behaviour for small values
of 7. In particular, as 3 is increased from the bifurcation value, there is a rapid
transition from small amplitude to large amplitude limit cycles. It is the purpose
of this paper to show that this transition is caused by a canard explosion. In
particular, we shall show that the canard transition is induced by perturbing in
the delay term from a singular limit.

3. The High Speed/Small Delay Limit (7 — 0)

We begin by considering the case 7 = 0. In this situation, eq. (3) reduces to
y' + (v = B0y +y = B2y (5)

The characteristic equation of the linearization of (5) about the trivial solution has
a pair of pure imaginary eigenvalues, +i, if 3 = v/p; </ Bo- It was noted in [11]
that the Hopf bifurcation in this model is degenerate, since the cubic coefficient of
the normal form is zero. In fact, more can be said.

Consider eq. (5) with 8 = Gy

Y +y — Bopay’? = 0. (6)

It is easily shown that this equation is conservative with a one parameter family
of solutions given by

_ 1 1
—2B0p2y /2 —
e - — + — =C.
(y Bop2 <y 2602 > >

= Cipin corresponds to the equilibrium point at the origin, while

Now C = —ﬁ
Cinin < C < 0 corresponds to periodic orbits surrounding this equilibrium point.
For C' > 0 the solutions are unbounded. The separatrix between the two solution
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types is given by the invariant curve defined by C' = 0, which is

1

_ = 12
y = Bop2y T (7)

Some representative solution curves are shown in bold in Figure 3. Other equivalent
forms of eq. (6) and its first integral are possible see [15, 16].

For 7 sufficiently small it can be shown, using the results of Chicone [2], that
the DDE model (3) has a two dimensional inertial manifold. Restricted to this
manifold, the term y(t) — y(t — 7) in the vector field is approximated by 7y'(t).
That is, the long term behaviour of solutions of (3) is well approximated by the
behaviour of the solutions of the following ordinary differential equation

Y' + (v = Bp1)Y +y = Bpey” + 7 [~Beos(0) oy + pry? + 52y . (8)

This equation is central to the analysis of the rest of the paper and will be referred
to as the inertial manifold ODE. In particular, we investigate eq. (8) in the limit
of small 7 and compare our asymptotic approximation with the numerical solution
of the DDE model (3) in Section 4.

We begin with some basic results. Standard calculations [17] show that (8) has
a supercritical Hopf bifurcation of the trivial solution at § = ~v/(p1 — 7pg cos(6)) =
Br. Since T is close to zero, we may write

B =L+ %‘;’S(e)f +O(r2). 9)
b1 P

This shows how the bifurcation parameter Sy depends on the small parameter 7.
More terms in the expansion can be obtained by returning to the characteristic
equation of the DDE model (3) and expanding  and w in 7. In this case one finds

By = T4 0 cos()7 + O(7?) (10)
p1 n
wg =1+ 4p0 cos(8)72 4+ O(73), (11)
4p1

which motivates an asymptotic analysis valid for small 7.

4. Perturbing from the Singular Hopf
The limit 7 — 0 is singular if v — 8p1 = O(7) because eq. (8) reduces to eq. (6), a
conservative problem admitting a family of periodic solutions. To determine how

these periodic solutions persist for small 7, we must investigate the higher order
problem in 7. Assuming

B=00+T10+.. (12)

with Gy = ﬁll as previously defined, Eq. (8) simplifies to

Y +y— Bopy? = T9(y') + O(7?) (13)
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where

9(y') = Bi(pry + P2y®) — Bo cos(0) (poy’ + pry? + pay™).

and (3 is the bifurcation parameter.
The Hopf bifurcation point now corresponds to 81 = S1g where

Bin = o 008(9)2—(1]. (14)

Close to the Hopf bifurcation point, the orbits remain bounded by the separatrix
of the conservative system. At a critical value of 31 the limit-cycle changes dramat-
ically from a small to a large amplitude orbit. We note that the ¢/ = 0 nullcline for
(13) at the Hopf bifurcation value lies close to the critical manifold that determines
the shape of the orbit.

4.1. Limit cycles from the Hopf bifurcation

We now determine how the periodic solutions arising from the Hopf bifurcation of
eq. (13) depend on the bifurcation parameter 3;. To begin, we rewrite (13) as a
system and rescale the variables via v{ = SBypoy, v2 = Bop2y’ to obtain

V] = 2

vh = —v; + v% + 7G(v2) + O(12)’ (15)

where

~ cos(0) 3
Bopz °

G(v3) = (G151 — fopo cos(6)) vs + (% _n cosw)) 2
0 P2

= Gy + GQ’U% — Gg’u%.
We next seek solutions of (15) of the form

Ul(th) = UlO(t) + T?)ll(t) + ..
UQ(t7T) = U2O(t) + T’Ugl(t) + ...

Substituting this into (15) we find (as expected) that the system for the leading
order terms is conservative, with a one parameter family of solutions given by

1
6_2U10 (’U%O — V10 — §> = L, (16)

where L is a constant. For —1/2 < L < 0 the solutions are periodic with pe-
riod P(L). Setting L = 0 gives the separatrix between the periodic solutions and
unbounded solutions: vig = v3, — 1/2.

We wish to find the periodic solutions which persist for 7 > 0. To do this we
follow the averaging technique of [15, 16]. Consider the variable corresponding to
the conserved quantity for the 7 = 0 system

N(t,7) = e 201(t7) (vg(t,7)2 — o (t,7) — %) . (17)
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If v; and ve are P(L) periodic in ¢, then N will be, too. Thus, a condition for
existence of a periodic solution is given by

P(L) AN
—adt = 0.
/0 =0

Using eqs. (15) and (17) the solvability condition to O(72) becomes
P(L)
0 / 26210 (G 03y + Gaudy — Gy dt. (18)
0

Noting that v1g(P(L)—t) = vi0(t) and veo(P(L)—t) = —vgo(t) for any ¢ € [0, P(L)],
this further simplifies to

P(L)/2
0= / e 20 (Grv3y — Gvag) dt.
0

Rewriting this in terms of the original parameters gives

P(L)/2 cos(0) [PE)/2
(B1P1 — Bopo cos(@))/0 e 200p2 dt — ) /0 e 203, dt = 0

Bop2
or
Bo po 1 }
=|——+4+ ———H(L)| cos(f), 19
A [Pl Bo D1 D2 2 ©) (19)
where
P(L)/2 —9u,,

fOP(L)/2 6—21)101)%0 dt IQ (L) ’

Using (15) and (16), the integrals may be expressed in terms of v1:

vr(L) 1
Il(L) — /l(L) e—2v10(e2me + 10 + 5)3/2 d’l)l(),

I vr(L) —2v10 2v 1
Q(L) = w e eV [, + v1g + 5 dvi,

where vl < wvr are the two wvig intercepts of the limit cycle, i.e., the roots of
e~200 (v 4+ 1/2) + L = 0. Eq. (19) relates the bifurcation parameter 5 to L,
the constant of the conservative system and hence to the amplitude of the corre-
sponding solution of the unperturbed equation, (vig,v90). For particular parameter
values the integrals can be computed numerically. A bifurcation diagram can be
obtained in this way and is shown in Figure 4.

To find the critical value of 81 where the amplitude of the periodic solution
becomes unbounded, we take the limit of H(L) in (19) as L approaches 0 (the
value corresponding to the separatrix). Let
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Note that the limits of both integrals exist and are given by:

oo

[10: 1im[1 L :/
L—0 ( ) _1/2

o0
1
Iyo = lim IH(L ~2v0, ~ dvyo.
20 ngb 2 )/_1/26 1)10+2 V10

Applying integration by parts to Iy yields I1g = 3/4159, which gives the critical
value of (y:

_ 1
e 2U10(U10+ 5)3/2 dle;

5 = [ﬂopo N

3
D1 4

Bo p1 PJ cos(8) < . (20)

4.2. Trajectories

In the previous section, we showed that for 3; close enough to S1 one periodic
solution exists for each value of 1. In addition, numerical simulations such as
that in Fig. 6 show that for 3; large enough the system exhibits large amplitude
relaxation oscillations. In this section, we shall show that the limit cycles arising
from the Hopf bifurcation connect to the relaxation oscillations at a critical value
B1 = B, following the approach of [15].

To begin, we rewrite eq. (13) as first order system:

!
Y1 =92 21
vh = —y1 + Bopays + T9(y2). (21)

Recall from eq. (7) that the 7 = 0 separatrix is given by

1

_ 5
y1 = Pob2ys — z—-
> 20Bopa

We look for solutions close to this separatrix via an expansion in 7:

P 9
y1(y2) = BoP2y3 G0 + 7h(y2) + O(77)

Differentiating this expression with respect to y2 and using (21) gives the following
equation for h(y2)

dh

e AB3p3yah = —4B355y29(ya).
Y2

Solving this ODE with initial condition h(y20) = hg gives

_ _ Y2 ~
h(ys) = hoe2BP0—vi) _ 2680303 / AR g () du,
Y20
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Next, we rescale by v = V28ppay2, w = V2[ppau to arrive at

w

V202
= hoe(" ) — 2¢v* / e~ [Aw? + Buw® + Cw?] dw

h(v) = hoe®" %) — 2¢¥° / e wy( ) dw

where

4 Pip1—bopo cos(0) g 2~ bom cos(f) ., cos(f)

V2 Bo pa ’ 2032 p3 ’ 22322

Assume that vg < 0 and define § = —% and v = £. When 6 << 1, i.e. [vo| >> 1,
we can derive the following asymptotic expression for h(v), now in terms of z:

h(z) &~ (hg — B)e® “*~D — (A + ; C)yred 7.

In terms of the original parameters, this can be written

—2,2

h(z) = (ho — B)e® "7V 4 (My — M) Vme® =, (22)
where

D1 po cos(0) 3 cos()

My = 2 My = . A
V2 Bo b2 V2 P2 42 B3 p3

For the second term in (22) to remain bounded, we require

(My — My By) /7 = pe 0 %, (23)

for some positive O(1) constant k, where y = +1 is determined by the sign of
M2 — Mlﬁl- This giVGS

h(z) = (hog — B)e® "1 4 b “(° k)

The analysis after this point again is similar to that in [15], and we refer the reader
there for more details. The expression for h(z) will be dominated by the second term
if |vg| is sufficiently large. It follows that the trajectory of the perturbed system
will lie outside (inside) the separatrix of the unperturbed system if © = 1 (—1).
Since M; > 0 (in both the traditional and axial-torsional cases), p = £1 if

My

<
ﬂ1>ﬁ1_ﬂ07

where f3. is defined by eq. (20).

So the trajectory ultimately lies inside the separatrix (and is attracted to the
limit cycles born from the Hopf bifurcation) if 51 < f.. If 81 > [, it lies outside
the separatrix and is attracted to the relaxation limit cycles. So the switch from
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small amplitude limit cycles to large amplitude limit cycles occurs at

Bo Po
D1

B1 =P = Z COS(Q) = By + ALS.

Bo D1 D2

This is the critical value of 1 where the amplitude of the limit cycle produced
by the Hopf bifurcation grows without bound. Thus it marks the point where
the canard transition to relaxation oscillations takes place, and coincides with the
value computed in the previous section from the limit of the periodic solution
criterion as the separatrix is approached. For instance, for the parameter values
po = 0.8,p1 =0.2,p2 = 0.1,0 = 0, we have Gy = 10 and the switch point becomes
Be = 43.75. This is confirmed by the calculation of the bifurcation diagram shown
in figure 4, where it is the value of #; where the amplitude of the cycle increases
very rapidly.

5. Numerical Investigations

In order to investigate the range of validity of our various approximations we
turn now to computational techniques. In particular, we simulate the DDE model
(3) and its inertial manifold ODE (8) and use branch following methods to trace
bifurcation curves.

Numerical simulations were carried out with MATLAB’s ode45 for the ordinary
differential equation approximation to the DDE, and MATLAB’s dde23. Relative
error tolerances ranged from the default 1073, to as little as 10~7, for runs with
parameter values near the transition to the canard cycle.

Numerical continuation of periodic solutions of the delay differential equation
was performed using the package DDEBIFTOOL [18]. For the inertial manifold
ordinary differential equation approximation to the DDE, the AUTO package con-
tained in the program XPPAUT [19] was used. Both packages use collocation meth-
ods to approximate the periodic orbits and can thus approximate both stable and
unstable solutions. For both packages we used 400 mesh intervals and degree 4
polynomials for approximation of the periodic orbits.

Numerical computation of canards is not easy, due to the sensitivity of the system
to round-off error in both the phase space and parameter space. We refer the reader
to [20] for a treatment of these issues. Collocation methods employed by the branch
following routines perform better, but the results must be carefully examined near
the transition from the small to the large orbit. We are confident of the validity of
the bifurcation curves showing amplitude of solution versus 3 because these remain
unchanged as we increase the accuracy of the computations. However, we do not
trust the computations by AUTO and DDEBIFTOOL of the Floquet multipliers
for the canard periodic orbits for the following reasons. The method used by both
programs to compute Floquet multipliers is known to be inaccurate when the
system has Floquet multipliers which are very large or close to zero [21] and we
observed that the computed values were indeed very large on some parts of the
computed branches. Further, Krupa and Szmolyan [22] have shown analytically
that the nontrivial Floquet multiplier of a canard periodic orbit in a class of two
dimensional ODE systems similar to (8) is either close to zero or very large.

To begin we compare the Hopf bifurcation 3 values for varying 7 for the DDE
model (3), the inertial manifold ODE (8), and the first order perturbation approx-
imation to bifurcation value. In Figure 5 the 8 vs. 7 curves are plotted that mark
the Hopf bifurcation. The solid line denotes the boundary for the inertial manifold
ODE (8) (Brvs.T), the dashed line the linear approximation to Gy and the dotted
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line is the analytic expression for the Hopf stability boundary for the DDE model
(3). The bifurcation curve for the inertial manifold ODE lies above the linear ap-
proximation, with the difference growing larger with larger 7. We expect the linear
approximation to the boundary to be valid only in the small 7 limit, since the true
boundary is a curve. The inertial manifold ODE captures the stability boundary
for the DDE model up to the value where the DDE boundary turns downward,
at which point the ODE cannot capture the more complex behaviour of the DDE.
For both, the bifurcation has been shown to be supercritical.

In Figure 6 the transition from limit cycle to canard-type cycle to relaxation
oscillation for (13) with 7 = 0.1 is demonstrated in the phase plane. We also plot
the ¢/ = 0 nullcline for (13) with /3 set to the Hopf bifurcation value, for illustration
purposes. We note that these numerical simulations are sensitive to round-off error,
especially for smaller values of 7. This can create a “banding” effect in the orbit,
making it appear to be thickened, and/or cause it to cycle around both the large
and small orbit. The vanishingly small region of parameter space over which the
transition occurs also makes it difficult to find a sequence of orbits that smoothly
transitions from small to large amplitude.

In Figure 7 we plot the curves marking the transition to the large canard cycle
in the 8 vs. 7 plane for all three cases. Note that the § value is not determined
exactly, but is representative of a vanishingly small range of 8 over which the
transition occurs. We compare the perturbation approximation to the canard tran-
sition line, 5 = By + 701, (where ;. is determined by (20)), with a curve generated
from numerically solving the inertial manifold ODE (8). Again this value lies above
the linear approximation, and is concave up over the range examined, so that the
difference grows with increasing 7 (as would be expected from an asymptotic ap-
proximation in 7). The transition curve for the DDE model (3) was also estimated
numerically. Somewhat surprisingly, the ODE and DDE behavior are still quanti-
tatively quite close, even though the size of the orbit in the phase plane is growing
large. The range in 7 is smaller in this figure than in Figure 5, due to the difficulty
in resolving a single clean transition value for the DDE. For 7 larger than about
0.1 there is a more complicated transition to the large orbit in the DDE model, a
matter we take up in the Discussion.

To further investigate the Hopf bifurcation and the growth of the large orbit
in both the DDE model and its inertial manifold ODE approximation, branch
following routines were employed (XPPAUT and DDEBIFTOOL respectively).
We present in Figure 8 a) a numerical continuation of the Hopf bifurcation curve
for the inertial manifold ODE (8) with 7 = 0.05. In part b) of that figure periodic
orbits corresponding to increasing (§ values are shown. These orbits, computed
via collocation, give a more complete representation of the canard transition than
can be found by numerical simulation of the ODE, due to the vanishingly small
range of B over which it occurs. The orbit starts small, grows to an amplitude
where it reaches the knee of the critical manifold, at which point the orbit turns
up instead of down before it completes the cycle. At larger 7 values it leaves the
vicinity of the critical manifold for smaller and smaller y values, until it becomes
the large cycle. This occurs over a very small range of 3, as indicated by the almost
vertical transition in the numerical bifurcation diagram. AUTO indicates the that
the branch of periodic orbits is stable, except for a section of the vertical part of
the branch. As indicated above, the computation of Floquet multipliers along this
part of the branch cannot be trusted. Other studies of canard explosions in ODE
systems similar to (8) have shown numerically [15] and analytically [22] that if
the canard explosion originates in a supercritical Hopf bifurcation then the entire
branch of periodic orbits is stable. We believe the same is true for the inertial
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manifold ODE (8).

A similar diagram following the branch of periodic solutions from the Hopf bifur-
cation for the DDE model is shown in figure 9 a). This was created with the branch
following routine in DDEBIFTOOL [18]. The bifurcation parameter in the graph is
0, and the delay is fixed at 7 = 0.05. The other parameters are as in the previous
section. We note that shortly after the Hopf bifurcation at 8 = 12.5, the rapid
transition to large amplitude cycles is seen (8 ~ 12.75). In figure 9 b) representa-
tive orbits from the transition are plotted. These were determined by collocation
and the canard cycle is found in the progression from small to large periodic orbits.
DDEBIFTOOL indicates the that the branch of periodic orbits is stable, except for
a section of the vertical part of the branch. As indicated above, the computation
of Floquet mulipliers along this part of the branch cannot be trusted. Numerical
simulations of the DDE (3) (see Fig. 6) seem to indicate stability everywhere along
the branch.

We close this section by reporting that the approximation to this order fails
when 7 grows larger than about 0.1. A complicated transition to the large orbit
involving period doubling is observed, see figure 10 a), which was also computed
using DDEBIFTOOL for 7 = 0.2. Example of orbits from this sequence are shown
in figure 10 b). This behaviour will be the subject of future investigations.

6. Discussion

Although we have focussed on a particular DDE due to our interest in the physical
system it models, the canard transition we observe should occur in other systems
with time delays. The basic ingredient is simple: for zero delay the system has a
“degenerate” Hopf bifurcation, i.e., at a particular value of the bifurcation param-
eter the system is conservative and has an equilibrium point which is a nonlinear
centre. Baer and Erneux [15, 16] showed that perturbing an ODE with such point
can lead to the canard transition. We have extended this to show that the pertur-
bation may be the introduction of a time delay. We expect that one could “design”
a system with a canard transition by the appropriate introduction of a time delay
into an ODE with a nonlinear centre.

Specifically, for our machining model in the high speed limit, 7 — 0, we found
a center manifold approximation to the delay differential equation that is conser-
vative if the viscous damping term is removed. This ODE can be solved exactly,
and solutions to it form the backbone of the analysis for small 7. In particular, the
separatrix between unbounded and bounded solutions found in the singular limit
(both delay and damping vanish) determines the form of the oscillation for small
delay and damping.

The small 7 approximation to the DDE possesses a supercritical Hopf bifurca-
tion for the drilling model parameters, and perturbations of the Hopf bifurcation
parameter [ for fixed 7 allow us to compute the behavior of the branch of limit
cycle solutions that emerge at Bg. We see that this branch diverges at a critical
B value (f3.) where the small periodic orbit jumps to the large cycle in a canard
explosion. Following the analysis in [15] we find solutions close to the separatrix
from the conservative system to show the large cycle exists and arises smoothly
from the small orbit as the bifurcation parameter is increased.

In the last section we used numerical methods to evaluate the validity of the
asymptotic approximation to solutions found in section 4. Numerical simulation of
both the ODE and the DDE demonstrated the Hopf bifurcation and the transition
to the large orbit. Numerical branch following/continuation methods were used to
construct bifurcation diagrams for the period orbits. We also used these programs
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to compute limit cycle solutions along the branch via collocation methods. The
smaller the value of 7 used, the more singular the transition to the large orbit
becomes. This is typical of canard type transitions, which are notoriously difficult
to find as the region of parameter space in which they occur becomes exponentially
small. We also observed the numerical instability demonstrated in [20], where orbits
close to the transition are sensitive to round-off error and can switch erratically
between large and small orbits.

While the high speed limit is not physical, and would not be attainable in real life
machining processes, the solutions obtained using it shed light on the behaviour for
more realistic values of the delay. In particular, the existence of a rapid transition
to large amplitude oscillations from small orbits, is important to identify. This
jump to large orbit is a concern, since it implies a dramatic loss of stability in the
process. A similar sort of transition can be found in systems with a subcritical
Hopf, where a small unstable limit cycle keeps solutions bounded near the steady
cutting state, so long as they are initiated inside that orbit. Here, even though the
initial Hopf bifurcation is supercritical, the behaviour is reminiscent of a subcritical
Hopf, except that the perturbations responsible are in the bifurcation parameter
rather than in phase space.

Finally, we note that increasing 7 away from the singular limit results in some
very complicated dynamics (period doubling and mixed mode oscillations) that we
will take up in a future paper.

Acknowledgments

E.S. and S.A.C. would like to thank the University of Montana-Missoula PArtner-
ship for Comprehensive Equity (PACE) for travel support. S.A.C. also acknowl-
edges the support of NSERC. The research of T.E. was supported by the Fonds
National de la Recherche Scientifique (Belgium).

References

[1] E. Stone and A. Askari, Nonlinear models of chatter in drilling processes, Dynamical Systems 17
(2002), pp. 65-85.
[2] C. Chicone, Inertial and slow manifolds for delay differential equations, J. Diff. Eqs. 190 (2003), pp.
364-406.
[3] J. Callot, F. Diener, and M. Diener, Le probléme de la chasse au canard, C.R. Acad. Sc. Paris Série
A 286 (1978), pp. 1059-1961.
[4] E. Benoit, J. Callot, F. Diener, and M. Diener, Chasse au canard, Collectanea Mathematica 31 (1981),
pp. 37-119.
[5] W. Eckhaus, Relazation oscillations including a standard chase on French ducks, Asymptotic Analysis
II, Springer Lecture Notes Math 985 (1983), pp. 449-494.
[6] E. Scholl and H. Schuster Handbook of Chaos Control 2nd Rev. Enl. Edition, Wiley-VCH, Weinheim,
2007.
[7] T. Erneux, L. Larger, M. Lee, and J. Goedgebuer, Ikeda Hopf bifurcation revisited, Physica D 194
(2004), pp. 49-64.
(8] T. Erneux Applied Delay Differential Equations, 7?7, New York, 2008.
[9] M. Merchant, Mechanics of the cutting process, J. Appl. Phys. 16 (1945), p. 267.
[10] P. Oxley The mechanics of machining, Ellis Horwood Ltd., Chincester, 1989.
[11] E. Stone and S. Campbell, Stability and bifurcation analysis of a nonlinear DDE model for drilling,
Journal of Nonlinear Science 14 (2004), pp. 27-57.
[12] J. Bélair and S.A. Campbell, Stability and bifurcations of equilibria in a multiple-delayed differential
equation, SIAM J. Appl. Math. 54 (1994), pp. 1402-1424.
[13] T. Faria and L. Magalhaes, Normal Forms for Retarded Functional Differential Equations with Pa-
rameters and Applications to Hopf Bifurcation, J. Diff. Egs. 122 (1995), pp. 181-200.
[14] W. Wischert, A. Wunderlin, A. Pelster, M. Olivier, and J. Groslambert, Delay-induced instabilities
in nonlinear feedback systems, Phys. Rev. E 49 (1994), pp. 203-219.
[15] S. Baer and T. Erneux, Singular Hopf bifurcation to relazation oscillations, SIAM J. Appl. Math. 46
(1986), pp. 721-739.
, Singular Hopf bifurcation to relazation oscillations II, SIAM J. Appl. Math. 52 (1992), pp.
1651-1664.




September 4, 2009

11:26 Dynamical Systems delay canardDSSsplitrev2

14 REFERENCES

[17] J. Guckenheimer and P. Holmes Nonlinear Oscillations, Dynamical Systems and Bifurcations of
Vector Fields, Springer-Verlag, New York, 1983.

(18] G.S. K. Engelborghs T.Luzyanina, DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis
of delay differential equations., TW-330, Department of Computer Science, K.U. Leuven, Leuven,
Belgium, 2001.

[19] G. Ermentrout Similating, Analyzing and Animating Dynamical Systems: A Guide to XPPAUT for
Researcher and Students., SIAM, Philadelphia, PA, 2002.

[20] J. Guckenheimer, K. Hoffman, and W. Weckesser, Numerical computation of canards, Int. J. Bifurc.
Chaos 10 (2000), pp. 2669-2687.

[21] K. Lust, Improved Numerical Floguet Multipliers, 11 (2001), pp. 2389-2410.

[22] M. Krupa and P. Szmolyan, Relazation Oscillation and Canard Explosion, J. Diff. Egs. 174 (2001),
pp. 312-368.



September 4, 2009

11:26 Dynamical Systems

delay canardDSSsplitrev2

REFERENCES

1

shear plane

) e

cutter

workpiece

15

Figure 1. Diagram of cutting tool and workpiece in an orthogonal cutting operation. t; is the chip thick-
ness, V' is the cutting speed, « is the rake angle of the tool, 0 is the vibration angle, and 7 is the vibration

amplitude.

40

Figure 2. Hopf bifurcation boundary for the machining model for small values
po = 0.8, p1 = 0.2, v = 0.5, § = 0. See equation (4).

10

0.4 0.5 0.6 0.7 0.8

of 7 (n = 0 branch) and

Figure 3. Closed orbit solutions to the conservative system (6). The values of the parameters are v = 0.5,
p1 = 0.2, po = 0.1, and 8 = Bo = v/p1 = 2.5. The outer dashed curve is the separatrix, given by (7),
which separates the closed orbit solutions from the unbounded ones. The inner dashed curve is the 3’ = 0

nullcline.
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Figure 4. Bifurcation diagram for the amplitude of periodic solutions as 7 — 0 (i.e. for the small 7 limit of
the inertial manifold ODE (13), computing by using equation (19). The x-axis is the bifurcation parameter
B1, and the y-axis is the first component of the expansion for the position variable vy in system (15). The
values of the parameters are B9 = 10, po = 0.8, p1 = 0.2, p2 = 0.1. The Hopf bifurcation is located at
1 = 40 and the amplitude becomes unbounded at 81 = 8. = 43.75, marking the transition to the large
amplitude cycle.
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Figure 5. Comparison of Hopf bifurcation curves for the two systems for varying 7. The values of the
parameters are po = 0.8, p1 = 0.2, p2 = 0.1. The Hopf bifurcation curve for the inertial manifold ODE
(8) is denoted by the dark hatched line and is given by 8 = m. In the limit of small 7, this

reduces to a bifurcation line (light hatched) which is given by 8y = Bo + 7011, where Bo = % = 10.0

and B1g = %‘;Sw) = 40.0 for these parameter values. The bifurcation curve for the DDE model (3)is

1
found from the Hopf bifurcation conditions for a purely imaginary eigenvalue (4) and is denoted by the
solid line.
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Figure 6. Phase plane of the solution to (8) for varying values of 8. The transition to the canard cycle
is shown, to be compared with the 3’ = 0 isocline for the system at the Hopf bifurcation value of 3. The
values of the parameters are po = 0.8, p1 = 0.2, p2 = 0.1, 7 = 0.1, 8 ranging from 17.25 to 20.0.
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Figure 7. Comparison of transition curves from small to large limit cycles for the inertial manifold ODE
and the DDE model for varying 7. The values of the parameters are po = 0.8, p1 = 0.2, p2 = 0.1. The
linear approximation to the transition for the inertial manifold ODE (8) is given by 8c = Bo + 7(1¢, where
Bo = 10.0 and B1. = 43.75. The transition curve for the inertial manifold ODE (8) (dashed line) and the
DDE model (3) (solid line) were computed numerically.
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Figure 8.
canard transition at 8 & 12.73. The value predicted by the perturbation theory analysis is § = 12.1875.
The points marked with a e correspond to the periodic solutions shown in (b).
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transition at 8 & 12.75. The points marked with a e correspond to the periodic solutions shown in (b).
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(a) Numerical bifurcation diagram for the inertial manifold ODE (8) with 7 = 0.05, showing
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Figure 10.
transition to the large orbit at 51 = 49.5. The points marked with a e correspond to the periodic solutions
shown in (b).
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(a) Numerical bifurcation diagram for full DDE model (3) with 7 = 0.05, showing canard

(a) Numerical bifurcation diagram for full DDE model (3) with 7 = 0.2, showing a complicated



