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Abstract. An additive neural network model consisting of n elements with arbitrary connections, nonlinear activation
functions and multiple time delays is considered. Necessary and sufficient conditions for the delay independent local
asymptotic stability of equilibrium solutions are determined. Slightly stronger conditions are shown to ensure the delay
independent global stability of an equilibrium solution. These results and other delay independent stability results in the
literature are compared.

1. Introduction. In 1978, Grossberg [21] considered the equation

u̇i = di(ui)



−bi(ui) +

n
∑

j=1

aijgj(uj)



 , (1.1)

which, for appropriate choices of the functions di, bi, gi encompasses a large variety of biological models,
including several types of neural networks. In [21] and subsequent papers [9, 22] Grossberg et al. studied
pattern formation and stability in this model. In 1984, Hopfield [26] considered a special case of model
(1.1)

u̇i = −biui +

n
∑

j=1

aijgj(uj), (1.2)

as a continuous extension of a discrete, two state neural network model he had previously studied [25]. In
equation (1.2), which we shall call the additive neural network model, ui can be thought of as the mean
soma potential of the ith neuron. Then each neuron is represented by a linear electrical circuit consisting of
a resistor and capacitor, and is connected to the other neurons via nonlinear (usually sigmoidal) activation
functions. The studies outlined above assume instantaneous updating of each neuron and instantaneous
communication between the neurons, and thus the models are systems of ordinary differential equations.

Early work of Grossberg [16, 17, 18] considered the effect of including discrete time delays in neural
network models to represent the signal propagation time between neurons. These models consist of equa-
tions for the neural activity, such as (1.2), with time delays in the connection terms, supplemented by
equations modelling the variation of the synaptic weights, aij , due to learning. Although quite compli-
cated systems of delay differential equations, results on the learning and pattern recognition properties
of these networks were obtained. These are summarized and extended in [19, 20].

In 1989, Marcus and Westervelt [31] considered the simpler model of just (1.2) with time delays in
the connection terms. The analysis of this model is still quite complicated, and thus [30, 31] and much
of the initial work on these delayed, additive neural networks considered the situation where all the time
delays in the network are the same. Examples include the work of Bélair et al. [4, 5, 6], Gopalsamy and
Leung [15], Ye et al. [42] and Pakdaman et al. [33] (see also references therein).

Preliminary work on (1.2) with multiple time delays simplified the analysis by either restricting the
size of the network (e.g. [32, 34, 37]), or considering networks with simple architectures (e.g. [2, 8, 35]).
Recent work has focussed on the global stability of equilibrium points of an arbitrary sized network
with different time delays in each connection term. These papers generally formulate conditions on
the connection matrix under which there is global stability either independent of all the delays, as in
Gopalsamy and He [13, 14], or under additional conditions on some delays, as in van den Driessche et
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al. [40, 41] and Ye et. al. [43]. (This last article considered the general model (1.1) with time delays in
the connection terms). By contrast, the papers of Hofbauer and So [24] and of So, Tang and Zou [38]
formulate conditions related to the linear asymptotic stability of additive neural networks with multiple
time delays.

The purpose of this paper is to extend the results of [14] and [24] and to compare some of the delay
independent and delay dependent criteria for stability found in the literature. We thus consider the
nonlinear delay differential equation

u̇i(t) = −biui(t) +

n
∑

j=1

aijgj(uj(t− τij)) + Ji, (1.3)

where the RC decay constants bi are positive and the time delays τij are nonnegative. We will allow the
connection coefficients aij to be arbitrary real numbers, with positive (negative) numbers representing
excitatory (inhibitory) connections. Similarly, the neuron inputs, Ji, can be arbitrary real numbers. We
will assume that the nonlinear functions gj satisfy

(H1) gj ∈ C2(R), g′j(u) > 0, sup
u∈R

g′j(u) = g′j(0) = 1,

(H2) gj(0) = 0, lim
u→±∞

gj(u) = ±1.

The function g(u) = tanh(u), which is commonly used in the model (1.3), satisfies these conditions.
We will consider initial value problems consisting of (1.3) subject to the conditions

ui(θ) = φi(θ), h ≤ θ ≤ 0, (1.4)

where h = maxi,j{τij} and the φi are continuous. The local existence and uniqueness of solutions is then
guaranteed (see e.g. the book of Hale and Lunel [23]).

The plan for the article is as follows. In section 2 we consider the linear stability analysis of equilibrium
points of (1.3), giving necessary and sufficient conditions for them to be asymptotically stable for all
τij ≥ 0. In section 3 we show how related conditions give delay independent global stability of an
equilibrium point. In section 4 we compare our results and those of [14, 38] and [40] and in section 5 we
summarize our results and draw some conclusions.

2. Linear Stability Analysis. Equilibrium points of (1.3) are solutions u(t) = u∗, t ≥ −h. We
will study the existence of such equilibrium points in section 3. Assuming that such an equilibrium point
exists one can translate it to the origin via the transformation u(t) = u∗ + x(t), yielding the equations

ẋi = −bixi(t) +

n
∑

j=1

aij
[

gj(xj(t− τij) + u∗
j)− gj(u

∗
j )
]

. (2.1)

Due to (H1) we can use the linearization

ẋi = −bixi(t) +
n
∑

j=1

cijxj(t− τij), (2.2)

where cij = aijg
′
j(u

∗
j ), to study the asymptotic stability of the trivial solution of (2.1) and hence of the

equilibrium point u∗ of (1.3). To do this we consider the roots of the characteristic equation,

∆(λ)
def
= det











−b1 + c11e
−λτ11 − λ c12e

−λτ12 · · · c1ne
−λτ1n

c21e
−λτ21 −b2 + c22e

−λτ22 − λ · · · c2ne
−λτ2n

...
cn1e

−λτn1 cn2e
−λτn2 · · · −bn + cnne

−λτnn − λ











= 0, (2.3)
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which correspond to nontrivial solutions of (2.2) of the form x(t) = eλtv.

Consider the matrices B = diag(b1, b2, . . . , bn), C = (cij) and |C| = (|cij |) associated with (2.2) and

define the matrices K = −B+C and K̂ = −B+ |C|. In the following we will determine conditions on the
matrices K and K̂ which are necessary and sufficient for all the roots of (2.3) to have negative real parts,
independent of the size of the delays τij . It follows that these will be necessary and sufficient conditions
for the trivial solution of eq. (2.2) to be asymptotically stable and sufficient conditions for the equilibrium
point u = u∗ of nonlinear system (1.3) to be locally asymptotically stable (see the books of Kolmanovskii
and Nosov [28], Stépán [39], or Hale and Lunel [23]). Our conditions are a slight generalization of those
presented in [24], and our proofs similar to theirs. The main difference is that we allow delays in the self
connection terms, i.e. the τii are not necessarily all zero.

Lemma 2.1. λ = 0 is a solution of equation (2.3) if and only if detK = 0.

Proof. The proof follows immediately from the fact that ∆(0) = detK.

Before proceeding further, we state some standard results from Matrix Theory.

Definition 2.2. Let A be an n×n matrix whose off-diagonal elements are all nonpositive. We shall
call A an M-matrix if all its principal minors are nonnegative.

There are many equivalent properties which can be used to define an M-matrix (see Fiedler [11,
Theorem 5.3]), we have chosen the one most useful in our analysis. Note that our definition allows an
M-matrix to be singular. In some texts [11] such matrices are referred to as class K0 matrices. In [24]
such matrices are called weakly diagonally dominant.

Lemma 2.3. If −K̂ is an M-matrix and detK 6= 0 then the all the roots of (2.3) have negative real
parts for all τij ≥ 0, 1 ≤ i, j ≤ n.

Proof. First consider −K̂ irreducible. Then by [11, Theorem 5.9], there exist γi > 0, i = 1, . . . , n
such that

k̂iiγi +
∑

j 6=i

k̂ijγj ≤ 0, for i = 1, . . . , n.

That is

(−bi + |cii|)γi +
∑

j 6=i

|cij |γj ≤ 0, for i = 1, . . . , n. (2.4)

Let λ be a root of (2.3). Then λ is an eigenvalue of the matrix D = (dij), where dii = −bi + ciie
−λτii

and dij = cije
−λτij . Applying Geršgorin’s theorem (cf. Lancaster and Tismenetsky [29, p. 371]) to the

matrix D̂ = (γ−1

i dijγj) we know that each eigenvalue, λ̂, of D̂ satisfies

|λ̂− dii| ≤
∑

j 6=i

γ−1

i |dij |γj ,

for at least one i ∈ {1, 2, . . . , n}. Now D is similar to D̂ so they have the same eigenvalues. Thus for each
eigenvalue λ of D there is an i such that

Re(λ) ≤ Re(dii) +
∑

j 6=i

γ−1

i |dij |γj .

Now suppose that Re(λ) ≥ 0. Then Re(dii) ≤ −bi + |cii|, |dij | ≤ |cij | and

Re(λ) ≤ −bi + |cii|+
∑

j 6=i

γ−1

i |cij |γj (2.5)
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Hence

γiRe(λ) ≤ (−bi + |cii|)γi +
∑

j 6=i

|cij |γj

≤ 0,

which implies Re(λ) ≤ 0. Now equality occurs in (2.5) only when λ is real and detK 6= 0 precludes λ = 0,
hence we have a contradiction. We conclude that Re(λ) < 0 for all eigenvalues λ of D.

Now consider −K̂ reducible. Then there exists a permutation matrix P such that

P (−K̂)PT =











K̃11 0 0 · · · 0

K̃21 K̃22 0 · · · 0
...

K̃n1 K̃n2 K̃n3 · · · K̃nn











,

where each K̃ii is square and either irreducible or a 1 × 1 null matrix (cf. Berman and Plemmons [7, p.
39]). Since the permutations won’t change the principle minors, each K̃ii will be an M-matrix.

Let λ be a root of (2.3) and define D as above. Then PDPT will also be lower block diagonal, with
blocks D̃ii corresponding to the K̃ii. Thus λ is root of

∆(λ) = det(D − λI)

= ± det(PDPT − λI)

= ±
∏

i

det(D̃ii − λI).

The rest of the proof follows by applying the argument for the irreducible case to each block, K̃ii.

Lemma 2.4. If det(−K̂) < 0, then there exists delays τij ≥ 0 such that (2.3) has a root λ with
Re(λ) > 0.

Proof. Consider the function

Fǫ(z) = det











−b1 + c11e
−zη11 − ǫz c12e

−zη12 · · · c1ne
−zη1n

c21e
−zη21 −b2 + c22e

−zη22 − ǫz · · · c2ne
−zη2n

...
...

...
cn1e

−zηn1 cn2e
−zηn2 · · · −bn + cnne

−zηnn − ǫz











where

ηij =

{

1

2
, if cij < 0

1, if cij ≥ 0.

For z = x+ 2πi, where x is real, F0(z) becomes

D(x) = det











−b1 + |c11|e−xη11 |c12|e−xη12 · · · |c1n|e−xη1n

|c21|e−xη21 −b2 + |c22|e−xη22 · · · |c2n|e−xη2n

...
...

...
|cn1|e−xηn1 |cn2|e−xηn2 · · · −bn + |cnn|e−xηnn











.

By assumption, (−1)nD(0) = det(−K̂) < 0. Further (−1)n limx→∞ D(x) = b1b2 · · · bn > 0. Hence,
by the Intermediate Value Theorem, there exists x̂ > 0 such that D(x̂) = 0 and ẑ = x̂+ 2πi is a zero of
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F0. It follows from Rouché’s Theorem (see Ahlfors [1, p. 153]) that the analytic function Fǫ has a zero

ẑ(ǫ) near ẑ for small ǫ > 0. Clearly, λ = ẑ(ǫ)ǫ and τij =
ηij
ǫ

satisfy (2.3), with Re(λ) > 0.

Lemma 2.5. If detK 6= 0 and −K̂ is not an M-matrix, then there exists delays τij ≥ 0 such that
(2.3) has a root λ with Re(λ) > 0.

Proof. Since −K̂ is not an M-matrix, it follows that some principle minor of order m of −K̂ is
negative. For notational convenience, we will assume that det(−K̂m) < 0 where K̂m is the m × m
submatrix obtained by keeping the first m rows and columns of K̂; the argument is the same for any
principle minor. Applying Lemma 2.4 to K̂m shows that the characteristic equation corresponding to
this submatrix, i.e.

∆m(λ)
def
= det











−b1 + c11e
−λτ11 − λ c12e

−λτ12 · · · c1me−λτ1m

c21e
−λτ21 −b2 + c22e

−λτ22 − λ · · · c2me−λτ2m

...
cm1e

−λτm1 cm2e
−λτm2 · · · −bm + cmme−λτmm − λ











= 0,

has a root λ̂ with Re(λ̂) > 0.
Applying Laplace’s Theorem [29, p. 37], ∆(λ) can be written

∆(λ) = ∆m(λ)
[

P (λ, e−λτii) +Q(λ, e−λτij )
]

+R(λ, e−λτij ),

where P,Q,R are quasipolynomials with

P (λ) =
n
∏

i=m

(−bi + ciie
−λτii − λ)

and |Q| and |R| can be made arbitrarily small, for λ > 0, by taking τij , (m+ 1) ≤ i, j ≤ n large enough.
Thus by Rouché’s Theorem (cf. [10, p. 247]) (2.3) also has a root with positive real part.

Theorem 2.6. The trivial solution of equation (2.2) is asymptotically stable for all delays τij ≥ 0 if

and only if −K̂ is an M-matrix and detK 6= 0.
Proof. The trivial solution of (2.2) will be asymptotically stable if and only if all roots λ of (2.3) have

negative real parts. Thus necessity follows from Lemmas 2.1 and 2.5 and sufficiency follows from Lemma
2.3.

If aij > 0 for all i, j then the conditions of Theorem 2.6 reduce to:

−K = −K̂ is a nonsingular M-matrix. (See Definition 3.1 below.)
Corollary 2.7. Let detK 6= 0. Then the equilibrium solution u∗ of (1.3) is locally asymptotically

stable for all delays τij ≥ 0 if and only if −K̂ is an M-matrix.
Proof. The sufficiency follows directly from Theorem 2.6 and standard results on nonlinear delay

differential equations [23]. The necessity follows from Lemma 2.5.
The result for (1.3) is slightly weaker than that for (2.2) as the situation when detK = 0 will depend

on the exact nonlinearities in the model.

3. Global Stability. In this section we will show, in a manner similar to that in [14], that conditions
slightly stronger than those of Theorem 2.6 imply global stability of an equilibrium point of the nonlinear
equation (1.3). To begin, we introduce the following definition.

Definition 3.1. Let A be an n×n matrix whose off-diagonal elements are all nonpositive. We shall
call A a nonsingular M-matrix if all its principal minors are positive.

Consider the matrices B = diag(b1, b2, . . . , bn) and A = (aij) associated with (1.3). Define the

matrices K and K̂ via K = −B +A and K = −B + |A|, where |A| is the matrix with elements |aij |.
Proposition 3.2. Assume (H1) and (H2) hold. If −K̂ is a nonsingular M-matrix then (1.3) has a

unique equilibrium point.
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Proof. If −K̂ is a nonsingular M-matrix then so is its transpose. Thus by a well-known Theorem ([7,
Theorem 62.3], ([11, Theorem 5.1]) there are constants γj > 0, j = 1, . . . , n such that

−bjγj +
n
∑

i=1

|aij |γi < 0, j = 1, . . . , n. (3.1)

Hence it follows that

β
def
= max

1≤j≤n

(

1

γjbj

n
∑

i=1

|aij |γi
)

< 1.

Now equation (1.3) will have an equilibrium point, u∗ = (u∗
1, u

∗
2, . . . , u

∗
n)

T , if the u∗
i satisfy

biui =

n
∑

j=1

aijgj(uj) + Ji, i = 1, . . . , n. (3.2)

Multiplying equation i by γi > 0 yields the equivalent equations

γibiui =

n
∑

j=1

γiaijgj(uj) + γiJi, i = 1, . . . , n.

Define vi = γibiui. Then the ui satisfy (3.2) if and only if the vi satisfy

vi =
n
∑

j=1

γiaijgj(
vj
γjbj

) + γiJi, (3.3)

def
= Gi(v1, v2, . . . , vn). (3.4)

Thus we seek fixed points of the map G : Rn → R
n, defined by G = (G1(v), . . . , Gn(v)), v = (v1, . . . , vn).

Clearly, from the conditions (H1) and (H2) on the gi, the Gi satisfy

ζ−i = γi(Ji −
n
∑

j=1

|aij |) ≤ Gi(v) ≤ γi(Ji +

n
∑

j=1

|aij |) = ζ+i .

Thus G maps the set

S = {(v1, . . . , vn)|ζ−i ≤ vi ≤ ζ+i , i = 1, . . . , n}

into itself.
Further

||G(v) −G(w)|| =
n
∑

i=1

|Gi(v) −Gi(w)|

≤
n
∑

i=1

n
∑

j=1

γi|aij |
∣

∣

∣

∣

fj(
vj
γjbj

)− fj(
wj

γjbj
)

∣

∣

∣

∣

≤
n
∑

i=1

n
∑

j=1

γi|aij |
γjbj

|vj − wj |
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where the latter follows from condition (H1) and the Mean Value Theorem. Rearranging the subscripts
we see that

||G(v) −G(w)|| ≤
n
∑

j=1

(

1

γjbj

n
∑

i=1

γi|aij |
)

|vj − wj |

≤ β

n
∑

j=1

|vj − wj |

= β||v −w||,
where β < 1. Thus G is a contraction on S and by the contraction mapping principle, G has a unique
fixed point. It follows that (1.3) has a unique equilibrium point.

Theorem 3.3. Assume (H1) and (H2) hold. If −K̂ is a nonsingular M-matrix then the equilibrium
point of (1.3) is globally asymptotically stable.

Proof. Let γi > 0 be as in the previous proof and define

µ = min
1≤j≤n

{

bjγj −
n
∑

i=1

|aij |γi
}

.

It follows from (3.1) that µ > 0. Let xi(t) = ui(t)−u∗
i and recall that the delay differential equation (2.1)

governs the time evolution of xi(t). As mentioned in the introduction, we will assume that this equation
is subject to continuous initial data of the form (1.4), in which case the local existence and uniqueness
of solutions for xi(t) is guaranteed.

Consider a Lyapunov functional V (t) = V (x)(t) defined by

V (x)(t) =

n
∑

i=1

γi|xi(t)|+
n
∑

i=1

γi

n
∑

j=1

|aij |
∫ t

t−τij

|xj(s)| ds. (3.5)

Then the upper righthand derivative of V along the solutions of (1.3) is given by

D+V (t) ≤
n
∑

i=1

γi



−bi|xi(t)|+
n
∑

j=1

|aij ||gj(xj(t− τij) + u∗
j)− gj(u

∗
j )|





+
n
∑

i=1

γi

n
∑

j=1

|aij | (|xj(t)| − |xj(t− τij)|)

≤
n
∑

i=1

(−γibi|xi(t)|) +
n
∑

i=1

n
∑

j=1

γi|aij ||x(t − τij)|

+

n
∑

i=1

n
∑

j=1

γi|aij ||xj(t)| −
n
∑

i=1

n
∑

j=1

γi|aij ||xj(t− τij)|

≤
n
∑

j=1

(

−γjbj +

n
∑

i=1

γi|aij |
)

|xj(t)|

≤ −µ
n
∑

j=1

|xj(t)|.

(3.6)

The boundedness of
∑n

i=1
|xi(t)| for all t ≥ 0 follows from (3.5) and (3.6). Thus, the solutions of (2.1)

exist for all t ≥ 0. We have from (3.5) and (3.6) that

V (x)(t) + µ

∫ t

0

(

n
∑

i=1

|xi(s)|
)

ds ≤ V (x)(0).
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It follows that

n
∑

i=1

|xi(t)| ∈ L1(0,∞). (3.7)

The boundedness of xi(t) on (0,∞) implies that of the derivative of xi(t) on (0,∞); hence xi(t) is
uniformly continuous on (0,∞). The uniform continuity of

∑n
i=1

|xi(t)| on (0,∞) together with (3.7)
implies that

n
∑

i=1

|xi(t)| → 0 as t → ∞. (3.8)

This last assertion is a consequence of a lemma due to Barbǎlat [3]. (The statement and proof of this
lemma can be found in the book of Gopalsamy [12, pp. 4–5]).

It was pointed out in [41] that [14, Proposition 1] remains valid (with a slight modification of the
Lyapunov function) under weaker assumptions on the nonlinearities: each of the gj is globally Lipschitz
and globally bounded. The same is true of Theorem 3.3.

4. Comparison of Results. Campbell [8] considered a delayed additive neural network which is a
unidirectional ring, and is modelled by the following system:

u̇i(t) = −biui(t) + aiigi(ui(t− τii)) + ai,i−1gi−1(ui−1(t− τi−1)), i = 1, . . . , n. (4.1)

Due to the structure of system, the characteristic equation is amenable to direct analysis and the exact
region of linearized stability of the trivial solution of (4.1) can be described. In this section, we will use
this model and its stability region as a benchmark for the criteria for local and global stability obtained
in sections 2 and 3 and in the work of other authors. That is, we will compare the regions of stability
predicted by each set of criteria when applied to this model.

4.1. Linear Stability. We begin our comparison of criteria for linearized stability by stating a
slight generalization of a result of [8] concerning stability independent of all the delays.

Theorem 4.1. The trivial solution of (4.1) is linearly asymptotically stable for all τij ≥ 0 if

|aii| < bi, i = 1, . . . n and

∣

∣

∣

∣

∣

n
∏

i=1

ai,i−1

∣

∣

∣

∣

∣

<

n
∏

i=1

(bi − |aii|). (4.2)

If |aii| > bi for at least one i, then there no such region of delay independent stability. The Theorem in
[8] is stated for the case that the diagonal delays are all equal, i.e. τii = τs, i = 1, . . . , n. However, the
proof there holds in the case that the τii are not equal.

Consideration of the trivial solution of model (4.1) shows that for this model the matrix K = K and
is given by











−b1 + |a11| 0 · · · 0 |a1n|
|a21| −b2 + |a22| 0 · · · 0

...
0 · · · 0 |an,n−1| −bn + |ann|











(4.3)

Applying Corollary 2.7 shows that the trivial solution of (4.1) will be linearly asymptotically stable for
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all τij > 0 if

−bi ≤ aii < bi, i = 1, . . . n
and

n
∏

i=1

(bi − aii) ≤
n
∏

i=1

ai,i−1 <

n
∏

i=1

(bi − aii), if aii > 0, i = 1, . . . , n,

∣

∣

∣

∣

∣

n
∏

i=1

ai,i−1

∣

∣

∣

∣

∣

≤
n
∏

i=1

(bi − |aii|), otherwise.

(4.4)

There will be no delay independent stability if |aii| > bi for at least one i or

∣

∣

∣

∣

∣

n
∏

i=1

ai,i−1

∣

∣

∣

∣

∣

>

n
∏

i=1

(bi − |aii|).

This gives a slight extension to Theorem 4.1.
The following is a restatement and generalization of a result of [8] concerning stability independent

of the off-diagonal delays.
Theorem 4.2. The trivial solution of (4.1) is linearly asymptotically stable for all τij > 0, i 6= j if

aii < bi, i = 1, . . . n; τii <
1

bi

(
√

1 +
bi
|aii|

− 1

)

, i such that aii < 0; (4.5)

and
∣

∣

∣

∣

∣

n
∏

i=1

ai,i−1

∣

∣

∣

∣

∣

<

n
∏

i=1

(bi − aii). (4.6)

Proof. Let β
def
=
∏n

i=1
ai,i−1 and α

def
=
∏n

i=1
(bi − aii). Note that if −bi < aii < bi or aii < −bi and

τii <
1√

a2

ii
−b2

i

Arccos
(

bi
aii

)

< 1

bi

(√

1 + bi
|aii|

− 1
)

, then the trivial solution will be stable for β− < β <

min{β+, α}, where β = β± correspond to curves along which the characteristic equation of (4.1) has a
pair of pure imaginary roots.

It is shown in [8] that

β±2 =
n
∏

i=1

[

(bi − aii cosωτii)
2 + (ω + aii sinωτii)

2
]

def
=

n
∏

i=1

β2
i (ω)

Now if aii > 0 then (bi − aii cosωτii)
2 ≥ (bi − aii)

2 and (ω + aii sinωτii)
2 ≥ 0 thus β2

i (ω) ≥ β2
i (0), with

equality only when ω = 0. Further, by [8, Theorem 2.5], if τii <
1

bi

(√

1 + bi
|aii|

− 1
)

then β′
i(ω) ≥ 0 with

equality at ω = 0 implying β2
i (ω) ≥ β2

i (0). Thus if this condition is satisfied for each i such that aii < 0
then we have β±2 ≥ β±(0) = α2 and the result follows.

Note that in the case bi = 0, i = 1, . . . , n conditions (4.5)–(4.6) become

aii < 0, −aiiτii <
1

2
,

∣

∣

∣

∣

∣

n
∏

i=1

ai,i−1

∣

∣

∣

∣

∣

<

n
∏

i=1

(−aii), i = 1, . . . , n. (4.7)
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Recently, So, Tang and Zou [38] obtained the following result for general networks of the form (1.3),
with bi = 0.

Theorem 4.3. [38, Theorem 1.2] Let C̃ be the matrix with elements c̃ii = −cii,

c̃ij = −1− 1

9
ciiτii(3 − 2ciiτii)

1 + 1

9
ciiτii(3 − 2ciiτii)

|cij |, i 6= j,

and assume that −ciiτii < 3

2
, i = 1, . . . , n. If C̃ is a non-singular M-matrix, then every solution

(x1(t), x2(t), . . . , xn(t)) of (2.2) tends to 0 as t → ∞.
In the case of the ring network (4.1) these conditions reduce to

aii < 0, −aiiτii <
3

2
,

∣

∣

∣

∣

∣

n
∏

i=1

ai,i−1

∣

∣

∣

∣

∣

<
n
∏

i=1

(−aii)
1 + 1

9
aiiτii(3 − 2aiiτii)

1− 1

9
aiiτii(3 − 2aiiτii)

, (4.8)

i = 1, . . . , n.
There is playoff between the conditions on the connection strengths, aij and those on the diagonal

delays τii, which can be seen in Figure 4.1. In this figure we portray the stability regions of the trivial
solution of (4.1) with bi = 0 in the β, τ plane (β =

∏n
i=1

ai,i−1 and τ =
∑n

i=1
τi,i−1). The exact linear

stability region lies between the solid curves. The lines with negative slope mark the region corresponding
to (4.7) and lines with positive slope mark that corresponding to (4.8). It would appear that (4.7) gives
the region with the weakest condition on the ai,i−1. A simple analysis of the characteristic equation
shows that the region with the weakest condition on the τii is

aii < 0, τii <
π

2
,

∣

∣

∣

∣

∣

n
∏

i=1

ai,i−1

∣

∣

∣

∣

∣

= 0.

Condition (4.8) gives an interesting compromise between the two.

-1.5 1.5
β

τ
20

0

20

0-1.5 1.5
β

τ

Fig. 4.1. Regions of stability in the β, τ plane for the three element ring network (4.1) with bi = 0, a11 = −0.5, a22 =
−0.8, a33 = −1.2. (a) τii = 0.4 (b) τii = 1.0. The trivial solution is linearly asymptotically stable between the solid
curves. Dashed lines with negative slope indicate the region of off-diagonal delay independent linear stability as predicted
by Theorem 4.2 [8]. Dashed lines with positive slope indicate the region as predicted by Theorem 4.3 [38].
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4.2. Global Stability. Now consider the result in section 3. When applied to the ring network
(4.1), Theorem 3.3 predicts global stability exactly in the region given by (4.2). In [14], Gopalsamy and
He obtained the following sufficient condition for global stability independent of the delays:

max
1≤i≤n







1

bi

n
∑

j=1

|aji|







< 1 (4.9)

which for system (4.1) can be written as

|ai,i−1| < bi − |aii|, 1 ≤ i ≤ n. (4.10)

Clearly conditions (4.10) imply conditions (4.2).
Since (4.2) is close to being sharp, in the sense that the condition for delay independent local stability

is almost the same, it seems likely that to get any weaker conditions on the aij which guarantee global
stability, one will need to have conditions involving the delays. For example, recent work of van den
Driessche, Wu and Zou [40, 41] has obtained conditions for global stability in the network (1.3) (in the
case bi = 1) which depend on the diagonal delays. This work uses the techniques of monotone dynamical
systems theory to obtain the following result:

Theorem 4.4. [40, Theorem 2.1] Assume (H1) and (H2) hold, and τij > 0. If either

max
1≤i≤n







aii +

n
∑

j 6=i

|aij |







< 1 or max
1≤i≤n







aii +

n
∑

j 6=i

|aij |+ |aji|
2







< 1,

then for every input J = (J1, . . . , Jn)
T , system (1.3) has a unique equilibrium, which is globally asymp-

totically stable provided that the diagonal delays τii corresponding to the negative aii are sufficiently small
such that 0 ≤ τii ≤ 1

1−eaii
.

If these conditions are applied to system (4.1), they become

|ai,i−1| < 1− aii, 1 ≤ i ≤ n. (4.11)

and

0 ≤ τii ≤
1

1− eaii
, (4.12)

for each i such that aii < 0. Clearly condition (4.11) is weaker than either of the conditions (4.2), (4.10),
except in the case aii ≥ 0, i = 1, . . . , n in which case (4.10) and (4.11) are equivalent. This is not
surprising; van den Driessche et al. [40] have been able to weaken the condition on the aii by adding a
condition on the τii. Note further that both (4.11),(4.12) are stronger than the analogous ones obtained
for off-diagonal delay independent local stability in [8], i.e (4.5), (4.6).

We illustrate these results in the β, τ plane in Figures 4.2 and 4.3 (β =
∏n

i=1
ai,i−1 and τ =

∑n
i=1

τi,i−1). In this parameter space the result of [14] appears the same as the result of Theorem 3.3.

5. Conclusions. We have given necessary and sufficient conditions for delay independent, asymp-
totic stability of the trivial solution of the linear delay differential equation (2.2) and shown how they can
be modified to give necessary and sufficient conditions for the local asymptotic stability of equilibrium
points of the general additive neural network (1.3). We further showed that a slightly strengthening
of these conditions yields sufficient conditions for the nonlinear system to possess a unique equilibrium
solution, and for this solution to be global asymptotically stable independent of the delays. Our linear
results are slightly stronger than those of [24] as we allow delays in the self feedback terms. They are
complementary to those of [38] who impose weaker conditions on the connection matrix, but stronger
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-5 5
β

τ
20

0

20

0-5 5
β

τ

Fig. 4.2. Region of stability in the β, τ plane for the three element ring network (4.1) with bi = 1, a11 = −0.1, a22 =
−0.2, a33 = −0.3. (a) τii = 0.5 (b) τii = 10. The trivial solution is linearly asymptotically stable between the solid curves.
Dashed lines with negative slope indicate the region of global stability as predicted by Theorem 4.4 [40]. Dashed lines with
positive slope indicate the region of global stability as predicted by Theorem 3.3.

-5 5
β

τ
20

0

20

0-5 5
β

τ

Fig. 4.3. Region of stability in the β, τ plane for the three element ring network (4.1) with bi = 1, a11 = −0.1, a22 =
−0.2, a33 = −1.2. (a) τii = 0.2 (b) τii = 1.5. The trivial solution is linearly asymptotically stable between the solid curves.
Dashed lines indicate the region of global stability as predicted by [40]

conditions on the diagonal delays. Our global results are stronger to those of [14] and complementary to
those of [40], as described above.

The stability results derived and reviewed in this paper all contain the following:
(A1) conditions on some or all of the “diagonal parameters” bi, aii, and τii ;
(A2) a condition forcing the off-diagonal connection coefficients, aij , to be “small” in comparison with

the diagonal parameters.
When these conditions are independent of τii, as in Theorems 2.6, 3.3 and 4.1 and in [14], [24] one obtains
what is usually called delay independent stability. When they depend on the τii, as in Theorem 4.2 and
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in [8, 38, 40], one obtains what can be described as off-diagonal delay independent stability.
To see why such conditions might lead to stability, we return to the simple case of a group of

unconnected elements, i.e. (1.3) with aij = 0, i 6= j. In this situation it is well known [28, 39] that
equilibrium points u∗ of the system will be locally asymptotically stable for

−bi ≤ aii < bi, τii ≥ 0 (5.1)

and for

aii < −bi, τii <
1

√

a2ii − b2i
Arccos

bi
aii

. (5.2)

In Theorem 2.6, condition (A1) above is exactly (5.1); in Theorems 3.3,4.1 and in [14] it is slightly
stronger. In Theorem 4.2 and in [8, 38, 40] condition (A2) is similar to (5.2), but stronger. Thus it
seems that we can obtain (off-diagonal) delay independent local asymptotic stability of an equilibrium
point of the network by choosing the diagonal parameters so that the (corresponding) equilibrium point is
locally asymptotically stable when the neurons are unconnected, and choosing the off-diagonal connection
weights to be “small” or “weak”. (Similar ideas are discussed for neural networks without time delays in
the work of Hoppensteadt and Izhikevich [27].) Global stability results can be obtained by adding some
monotonicity conditions, e.g. (H1) and (H2), on the activation functions.

We note that necessary and sufficient conditions have only been found for delay independent local
stability in (1.3). The off-diagonal delay independent case is more delicate as there is a compromise
between the conditions imposed on the diagonal parameters and those on the off-diagonal parameters.
As might be expected, one can find weaker conditions on one set of parameters by imposing stronger
conditions on the other set. For Lotka-Volterra systems it has been shown [24, 36] that delay independent
conditions such as those discussed in this paper are actually necessary and sufficient for delay independent
global stability. To our knowledge, no such results have yet been obtained for the model (1.3).
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7. Appendix. Lemma 7.1. Let −K̂ be an M-matrix. If |cii| = bi for some i, then for each j 6= i
either cij = 0 or cji = 0. If cii = bi, then detK = 0.

Proof. Since −K̂ is an M-matrix then all its 2 × 2 principle minors are nonnegative. In particular,
for each j 6= i

(bi − |cii|)(bj − |cjj |)− |cij ||cji| ≥ 0.

Then |cii| = bi implies

−|cij ||cji| ≥ 0,

i.e. for each j 6= i either cij = 0 or cji = 0. If cii = bi then for a suitable permutation matrix P , PKPT

has a row of zeros, which implies detK = 0.
Theorem 7.2. If |ckk| > bk for some k ∈ {1, 2, . . . , n}, then there exist delays τij > 0 such that the

characteristic equation (2.3) has a root with positive real part.
Proof. Note that the characteristic equation (2.3) can be written

∆(λ) = P (λ) +Q(λ, e−λτij ) = 0

where

P (λ) =

n
∏

i=1

(−bi + ciie
−λτii − λ)

def
=

n
∏

i=1

pi(λ) = 0.

Note that as τij , i 6= j approach ∞, Q(λ) approaches 0.
Fix the τii and the cij and suppose ckk > bk > 0, for some k. Then we have pk(0) = −bk + ckk > 0.

Further, for λ real, we have lim
λ→∞

pk(λ) = −∞. Since pk(λ) is a continuous function, we may apply the

Intermediate Value Theorem to conclude that pk(λ) and hence P (λ) has a positive real root.
Now fix the cij with ckk < −bk < 0 and the τii with

τkk >

{

1
√

c2kk − b2k

[

Arccos

(

bk
ckk

)]

}

.

Then it is well known [28, 39] that pk(λ) (and hence P (λ) has at least one pair of complex conjugate
roots with positive real parts.

Now applying Rouché’s Theorem, we conclude that for τij sufficiently large the characteristic equation
(2.3) also has a root with positive real part.

Theorem 7.3. If |cij |, i 6= j are sufficiently small and |ckk| sufficiently large for some k ∈
{1, 2, . . . , n}, then the characteristic equation (2.3) has a root with positive real part, for any set of
delays τij > 0.

Proof. Fix τij , i 6= j at some arbitrary values. Setting cij = 0 for i 6= j in (2.3) yields

P (λ) =

n
∏

i=1

(−bi + ciie
−λτii − λ)

def
=

n
∏

i=1

pi(λ) = 0.

This is just the product of the characteristic equations for the n decoupled neurons.
Suppose that ckk > bk > 0 for some k. In exactly the same manner as in the proof of Theorem7.2

one may show that P (λ) has a positive real, root.
Now suppose for some k ckk < −

√

b2k − ω2, where ω is the first solution of the equation tanωτkk =
bk/ω. Then it is well known (see e.g. [28, 39]) that pk(λ) (and hence P (λ)) has at least one pair of
complex conjugate roots with positive real parts.

Now by Rouché’s Theorem if the cij , i 6= j vary slightly from zero in each case the characteristic
equation will still have a root with positive real part.


