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Abstract

A closed-loop drug delivery system is constructed in which external negative feed-
back is used to regulate the dynamics of a time-delayed negative feedback mechanism
which regulates hormone concentration. This results in a control system composed of
two time-delayed negative feedback loops arranged in parallel. Stability regions in pa-
rameter space and the location of steady states are determined for the cases when the
time delays are equal and when they are unequal. The advantage of this paradigm for
drug delivery is that both the steady states and stability of the multiple loop feedback
system can be influenced in a precisely controllable manner.

1 Introduction

Endocrine disease is reflected by both quantitative and qualitative abnormalities in hormone
production. An important treatment modality is hormone replacement: insulin is given to
patients with diabetes, thyroid hormone to those with hypothyroidism, and so on. Ideally the
strategy for hormone replacement should restore as closely as possible the normal dynamics

of hormonal regulation. Open loop drug delivery systems are most commonly employed, for
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example, pills or injections of hormone are given at fixed intervals. However, open-loop drug
delivery systems are inherently unstable since the replacement of hormone is unaffected by
either current hormonal blood levels or demands, so that many problems can arise.

An alternate approach is to utilize a closed-loop drug delivery system in which blood
levels are monitored by a detector whose output, in turn, affects the replacement of hormone.
The advantages of closed-loop drug delivery systems are their stability and controllability.
However, when a closed-loop drug delivery system was used to administer insulin to diabetic
patients [12], moderate amplitude oscillations in insulin-glucose were observed. Further
development of such methods requires a better understanding of the stability and regulation
of delayed feedback mechanisms.

The design of a closed-loop drug delivery system is reminiscent of methods designed to
dynamically clamp biological control systems [4, 11, 17, 19]. In the case that the in vivo
feedback loop to be regulated can be opened (Figure 1a), the dynamics are governed by the
properties of the external feedback. However, in endocrinology the feedback loop can rarely
be opened and thus it becomes necessary to consider the properties of both the inserted and
in vivo feedback loops (Figure 1b).

The control of a linear delayed feedback loop by a second linear delayed feedback loop
has been considered previously (see, for example, [18]). Recently the control of a nonlinear
dynamical system by an external delayed feedback loop has been considered [15, 16]; however,
the possibility that the dynamical system may also contain a delay was not considered. Here
we examine the case when both the in vivo and external feedback loops are delayed negative

loops.

2 Closed-loop drug delivery systems

We assume that the in vivo regulation of hormone concentration, x, can be described by a

first-order delay differential equation of the form
Tt+ar=flx(t—m)) (2.1)

where a is a positive constant, 7; is the time delay, and f is a non-negative, decreasing
function of x which describes the negative feedback, for example [6]
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where n;, ¢;, 0; are positive constants. The time delay, 7;, arises because of, for example,
finite signal transmission and hormone production times.

The drug delivery system introduces a second control loop with a feedback function, g,
of the same form as f, but with parameters n., c., #. which operates in parallel with the in
vivo control loop as shown in Figure 1b. Thus the regulation of x in the controlled system

is described by
tt+oar=flx(t—m7))+glzlt—r1)) =h(z(t —7),z(t — 7)) (2.2)

where 7, is the time delay of the external clamping feedback and h(u,v) = f(u) + g(v). The
time delay, 7., represents the time required to detect the signal and to add the hormone
supplement to the circulation. In principle, this time delay can be arbitrarily adjusted so
that an even longer delay can be introduced if desired. In the discussion which follows we
assume that the properties of the in vivo feedback control loop as set by the constant o and
the function f are fixed and examine the dynamics of (2.2) as the properties of the external
feedback, g are varied.

The unique steady state value of x, z}, is obtained from (2.2) by setting @ = 0 and is a
solution of the equation,

azy = h(x}) : (2.3)

Since h is a non-negative decreasing function of z, x; > 0. Equation (2.3) cannot be solved
analytically for arbitrary n; and n.; the values of zj determined numerically as a function
of 6. and n, are shown in Figure 2a. It should be noted that by suitably adjusting the
properties of g, i.e. by tuning 6., n. and c., the value of zj can be set to any arbitrary value
higher than the steady state value in the absence of clamping.

Since h < 0 for all z > 0, it follows that solutions of (2.2) cannot grow without bound

and thus x; must either be stable or there exists persistent oscillatory solutions.

2.1 Equal time delays: 7, =7,

The local stability analysis of (2.2) does not differ from that of (2.1) (see, for example, [5]).

The linearized stability of z* is found by linearizing (2.2) about the point, z = x}, to obtain
U+ au=—du(t — ;) (2.4)

where v = z — 2% and d = h(x}).



The characteristic equation is found by substituting u = e~ into (2.4) to obtain
Aat+de™=0 . (2.5)

The mechanism for the loss of stability is that a root of the characteristic equation
acquires a positive real part. When a pair of complex values passes through the imaginary
axis, the equation undergoes a supercritical Hopf bifurcation [9]. The Hopf bifurcation curves

can be found by substituting A = iw into (2.5) and are defined by

d=vw?+ a? (2.6a)

T = 1 arctan(_—w). (2.6b)
w a

It can be shown that the only stable solutions of a first-order delay-differential equation
with negative feedback, i.e. (2.1), are a steady state and a (slowly oscillating) limit cycle
(by applying the methods presented in [7]). Thus this local stability analysis completely
describes the stable global solutions of (2.2) when 7, = 7. ! .

The value of d = h(m}i) can be controlled by adjusting the properties of the external
feedback, g. Figure 2b shows the value of d = h(z}) in (2.6a) as a function of 6, for different
values of n.. Since the function g can be rather freely adjusted, it follows from Figure 2 that

both the value of the critical point, =7, as well as its stability can be completely controlled.

2.2 Unequal time delays: 7; # 7,

In the case where the two delays 7; and 7, are not equal, the determination of the stability
regions in a parameter space is more complicated algebraically. The substitution v = e~

into the linearization of (2.2) leads to the characteristic equation
A= dpe’m 4 dget. (2.7)

After letting A = iw and separating real and imaginary parts of the ensuing equations, we
are lead to the system

dycoswT, = a — dy coswT; (2.8a)

dysinwt, = —w — dysinwr; (2.8b)

Tt is known that unstable rapidly oscillating solutions also exist, i.e. solutions with period less than 27.



which immediately yields the equalities

d, = \/d? +w? + a? + 2df(wwT; — coswr;) (2.9a)
arctan {%}
Te = ! - (2.9b)
w

Equations (2.9) are analogous to equations (2.6) and can be used to calculate the stability
curves. Figure 3 shows the stability curves obtained for two values of 7; for fixed d;. As
7; increases, the region of parameter space for which stable steady state solutions of (2.2)
exist shrinks until it becomes a narrow strip along the dg,-axis. Thus, in general, stable
steady state solutions of (2.2) exist always when 7, is sufficiently small. When 7; is also
small additional parameter ranges exist where stable steady state solutions exist; however, it
is clear on inspecting Figure 3 that such regions would be very difficult to locate empirically
using a trial and error approach.

In contrast to the case when 7; = 7, it is not possible to deduce the global behavior of
(2.2) from the local stability analysis when 7; # 7.. This is because there is an additional
mechanism for the loss of stability, i.e. more than one pair of complex eigenvalues can pass
through the imaginary axis simultaneously. Provided that 7. and 7; are chosen such that
there is only one branch of the curve of loss of stability, then it can be shown that the
stability problem is equivalent to that of a delay-differential equation with one delay [13]. In
such cases the global behavior can be deduced.

However, as can be seen in Figure 3, there clearly are ranges of 7; and 7. where more
than one branch of the curve of loss of stability exist as, for example, 7. is increased with
fixed d,. In such cases it can be shown that the stable oscillatory solutions include 2-tori as

well as limit cycles [1, 2].

3 Discussion

The implementation of a closed-loop drug delivery system increases the number of feedback
loops involved in endocrine regulation by one. It is known that the complexity of the dynam-
ics produced by systems composed of multiple feedback loops becomes more complex as the
number of loops increases [3, 8, 10, 14] and may, for example, include chaotic dynamics. The
advantage of insertion of a synthetic feedback loop is that it is possible to influence both the

steady states and stability of the multiple feedback loop system in a precisely controllable



manner. Morever, by careful design of the external feedback it may be possible to learn
something about the nature of the in vivo control mechanisms by studying the response of
the dynamics to variations in the properties of the external feedback.

We have examined the special case of the control of a single negative feedback loop by an
external negative feedback loop. This paradigm results in a control system composed of two
negative feedback loops arranged in parallel. When the time delays are equal in the feedback
loops, it is relatively straightforward to determine how the properties of the external feedback
must be modified to control the stability and steady states of the endocrine system. The
stability curves become more complex when the delays are not equal. The loss of stability
results in the appearance of stable oscillations, stable limit cycles when 7; = 7. and stable
limit cycles and 2-tori when 7; # 7.. Provided that the amplitude of these oscillations do not
exceed certain bounds, the instability of the steady state may have few clinically significant
consequences for the patient.

An unsettled question is whether the control strategy of in vivo feedback control mecha-
nisms is designed to achieve a stable steady state or a stable limit cycle or for that matter
a chaotic oscillation. Whereas linear servo-mechanism theory is well suited to the design of
control mechanisms to achieve a desired steady state, nonlinear techniques must be used if
the control of stable oscillatory dynamics is required. The implementation of the external
types of feedback considered in this study presents few technical problems. In addition, it
is feasible to introduce external positive feedback to produce “mixed” feedback of the type
known to induce chaotic dynamics [4]. Thus it should be possible to directly explore the

effects of various types of oscillatory dynamics on health in animal models.
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FIGURE LEGENDS
FIGURE 1:

Schematic diagram of a closed loop drug delivery system in which the internal feedback
loop has been a) opened, and b) closed.
FIGURE 2:

Variations of the (a) steady state, x}, and (b) slope of the feedback function at steady
state, h(z}), as (A.,n.) of the external feedback are varied. Calculations were performed for
ne = 3,3.5,4,4.5,5,6,7 with §; = 5 and n; = 3.

FIGURE 3:
Stability curves in the (d,,7.) plane calculated from (2.9) for (a) 7. = 1.25 and (b)

T. = 1.65 when 7; = 1. The cross-hatched areas correspond to regions of stability.



