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1 Introduction

Recently, a class of two-dimensional spiking neuron models has been introduced that can faithfully model

action potential generation in real neurons. This general class of models differs from the typical linear/leaky

integrate and fire neuron in the sense that the dynamics are nonlinear, and the models display spike frequency

adaptation through a recovery variable. Models of this class include the Izhikevich neuron (Izhikevich, 2003),

the adaptive exponential (AdEx) neuron (Brette and Gerstner, 2005; Naud et al., 2008), and the quartic

integrate and fire neuron (Touboul, 2008). Furthermore, the usual linear integrate and fire neuron can be

included in this class when one adds a recovery variable, which is a modification some authors have used

(Nesse et al., 2008; La Camera et al., 2004, 2008; van Vreeswijk and Hansel, 2001). The bifurcation analysis

for this two-dimensional class of adapting spiking neuron has also been extensively studied (Touboul, 2008).

However, when these neuron models are coupled together in large networks, they display emergent

network level bifurcations not present in the isolated neuron model. For example, the linear integrate and

fire with spike frequency adaptation and the Izhikevich neuron models have been shown to display bursts in

large networks (van Vreeswijk and Hansel, 2001; Dur-e-Ahmad et al., 2012; Nesse et al., 2008; Wu et al.,

2012). Unfortunately, these large network bifurcations remain outside the realm of classical bifurcation

theory without a suitable means of reducing the large network to an analyzable system.

One means of achieving this reduction is through population density equations. In population density

methods, one begins by defining a time varying population density function, whose evolution is determined

by a conservation law (Omurtag et al., 2000; Nykamp. and Tranchina, 2000; Apfaltrer et al., 2006; Abbott

and van Vreeswijk, 1993; Treves, 1993). While this is technically an approximation of a large network of time

varying ordinary differential equations (ODE’s) by a time varying partial differential equation (PDE), the

PDE is an exact representation in the limit as the network becomes arbitrarily large. At this stage, one either

numerically solves the partial differential equation, or makes further analytical or approximate reductions.

For example, one can derive ODE’s for the various moments of the density function (Ly and Tranchina,

2007), or try to resolve the spectrum of eigenvalues for the PDE, among other analytical treatments (Abbott

and van Vreeswijk, 1993; van Vreeswijk, 1996; Strogatz and Mirollo, 1991; Sirovich et al., 2000; Knight,

2000; Sirovich et al., 2006). It is often the case that this PDE is too complicated to be amenable to direct

bifurcation analysis. This is particularly true when we are dealing with neural models of dimension larger

than one.
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However, a population density approach provides a useful stepping stone to arriving at a mean field

approximation to a large network of adapting neurons. In particular, we shall show in this paper that

under a separation of time scales and averaging of the adaptation variable, one can rigorously derive a

quasi-steady-state approximation of the resulting population density equation of a large network. This

results in a system of autonomous switching ODE’s that can be analyzed using classical bifurcation theory,

in conjunction with the recently developed bifurcation theory of non-smooth systems (di Bernardo et al.,

2008). A quasi-steady state approximation to a large network of neurons has been suggested by Ly and

Tranchina (2007) and Sirovich et al. (2000), although to our knowledge it has never been used for the purpose

of bifurcation analysis for the kinds of two-dimensional neurons we are considering. A similar idea does

appear in the work of Nesse et al. (2008). However, the behavior and analysis of the linear integrate and fire

network in their work is based on synaptic noise. Mean-field models for uncoupled networks with stochastic

noise have also been derived (La Camera et al., 2004, 2008). The neuronal model used in these studies

were also adapting and the authors derive a mean-field equation for their adaptation variable, however, the

primary goal of the these studies was to derive a firing response for a stochastic adapting neuron. Slightly

further from our work is that of Vladimirski et al. (2008), who derive a mean-field equation for a network of

homogeneous linear integrate and fire neurons with synaptic depression and noise. Finally, we note the work

of Wu et al. (2012) who derive a mean field model for a network with hormone mediated excitability and

stochastic synapses, and use it to study network induced bursting. The networks we analyze are entirely

deterministic and homogeneous, and the quasi-steady state approximation we arrive is closer to Tikhonov’s

theorem from dynamical systems (Tikhonov, 1952).

The plan of our article is as follows. Section 1.1 introduces the specific neuron models and networks

that we wish to analyze in this paper. Section 2.1 introduces population density methods and section

2.2 introduces moment closure methods as a means of simplifying the population denisty equation. In

sections 2.3, we employ a sequence of approximations and assumptions, including the quasi-steady state

approximation, to arrive at a system of switching ODE’s from the moment-closure reduced population

density equation. These ODEs are the mean field equations for the original network. In section 3 we apply

this approach to three numerical examples. The first example, studied in section 3.1, is a homogeneous

all-to-all coupled Izhikevich network. Section 3.2 considers a network of Izhikevich neurons split into two

populations, one strongly adapting, and the other weakly adapting. Both populations are all to all coupled
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both internally and externally. Finally, section 3.3 studies a network of AdEx neurons consisting of two

populations, one excitatory and one inhibitory with the same network topology as the network studied in

section 3.2. Whenever possible, the parameters used in the numerical examples are a result of fitting to

actual neuronal data by various authors. In all examples the isolated neurons have two states: quiescent or

tonically firing; they are not intrinsically bursting. In section 4, we conclude by discussing the sufficient

requirements for our approach to be valid and outline what can be done to extend this approach when these

requirements cannot be met. Possible extensions to more realistic types of networks are also discussed in

addition to a comparison with other mean-field approaches.

1.1 Modeling Networks of Neurons as Large Networks of Pulse-Coupled Integrate and Fire Neurons

We will consider integrate and fire models consisting of a two-dimensional system of ODEs of the form:

v′ = F (v)− w + I (1)

w′ = a(bv − w), (2)

supplemented by the following discontinuities

v(t−spike) = vpeak ⇒
v(t+spike) = vreset,

w(t+spike) = w(t−spike) + wjump.

(3)

Here v represents the nondimensionalized membrane potential and w is a nondimensionalized current that

serves as an adaptation variable. Time has also been non-dimensionalized.

The networks we consider will be coupled together through synaptic currents:

Isyn,ij = ḡijsij(t)(er − vi)

where ḡij is the maximal synaptic conductance and sij(t) represents the proportion of ion channels open in

the membrane of neuron i as a result of the firing in neuron j. The total synaptic current in neuron i due to

the presynaptic neurons j = 1, 2 . . . N is then

Isyn,i =
N∑
j=1

ḡijsij(t)(er − vi).

We assume all-to-all connectivity between different populations and within each population, hence we take

ḡij = ḡi
N where ḡi is the maximal synaptic conductance of neuron i. Then the synaptic conductance of

4



neuron i due to the presynaptic neurons j = 1, 2 . . . N is given by

gi(t) = ḡisi(t) =
ḡi
N

N∑
j=1

sij(t), (4)

where si(t) is the proportion of ion channels open in the membrane of neuron i due to all presynaptic

neurons. Since si(t) is a proportion, it should be bounded by 1. This bound is implemented in all numerical

simulations. Under the assumption of all-to-all connectivity, si(t) = s(t), as every post synaptic neuron

receives the same summed input from all the presynaptic neurons. We will assume that ḡi = g, for all i

within a population of neurons.

The time variation of sij(t) will be modeled as transient pulses that occur after a spike. That is, if

neuron j fires its kth action potential at time t = tj,k, then the variable sij(t) at time t is given by

sij(t) =
∑
tj,k<t

E(t− tj,k). (5)

There are different functions proposed for E(t) in the literature. Examples include the single exponential

synapse:

E(t) = sjump exp

(
−t
τs

)
, (6)

the double exponential synapse:

E(t) =
1

τD − τR

(
exp

(
−t
τD

)
− exp

(
−t
τR

))
, (7)

and the alpha synapse

E(t) = α2t exp (−αt). (8)

With any of these functions, the synaptic coupling function s(t), in the case of all-to-all connectivity

(and other cases), can be formally described by a linear system of ordinary differential equations with a sum

of delta pulses on the right hand side corresponding to the times a neuron in the network fires a spike. For

example, the simple exponential synapse is governed by the ordinary differential equation

ds(t)

dt
= − s

τs
+
sjump
N

N∑
j=1

∑
tj,k<t

δ(t− tj,k). (9)

The alpha function synapse and the double exponential synapse have a system of two coupled first order

ODEs that describe their dynamics and can be derived in the same manner as the single exponential synapse.

For reference purposes, these systems are:

ds

dt
= −s(t)

τR
+ h (10)

dh

dt
= − h

τD
+

1

NτRτD

N∑
j=1

∑
tj,k<t

δ(t− tj,k) (11)
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for the double exponential synapse and

ds

dt
= −αs(t) + h (12)

dh

dt
= −αh+

α2

N

N∑
j=1

∑
tj,k<t

δ(t− tj,k) (13)

for the alpha synapse. One should note that all these ordinary differential equations are linear, and they all

contain the term

j(t) =
1

N

N∑
j=1

∑
tj,k<t

δ(t− tj,k). (14)

This term is very important in the large network dynamics and represents a kind of network averaged firing

rate as we will show in section 2.1.

In summary, the model of a network of all-to-all coupled neurons that we will consider is given by system

of discontinuous ODE’s

v′i = F (vi)− wi + I + gs(er − vi) (15)

w′i = a(bvi − wi) (16)

vi(t
−
spike) = vpeak ⇒

vi(t
+
spike) = vreset

wi(t
+
spike) = wi(t

−
spike) + wjump,

(17)

for i = 1, 2, . . . N , and where the dynamics of s(t) depend on the specific synapse implemented. A similar

set of equations can also be written for multiple coupled populations of neurons within a network. For the

purpose of subsequent sections, we will define xi = (vi, wi), and denote equations (15)–(16) in vector form

as

x′i = G(xi) =

G1(vi, wi, s)

G2(vi, wi)

 =

F (vi)− wi + I + gs(er − vi)

a(bvi − wi)

 . (18)

2 Model Reduction

The model derived in the previous section can be complicated to analyze if N is large. Thus, in this section

we will introduce a simpler model that can be used to approximate the behaviour of the full network. This

model is actually a partial differential equation that describes the time evolution of the equations (15)-(17)

in the limit N → ∞. After a brief departure to discuss firing rates we derive an appropriate mean field

synaptic equation in the large N limit. This results in a “typical” population density model, consisting of

a PDE coupled to an ODE, with the slight twist that the PDE depends on two variables. Next we show

6



how a moment closure approach can be used to replace the PDE with one dependent only on the voltage

variable and a second ODE for the mean adaptation current. Finally, we introduce a quasi-steady state

approximation to eliminate the PDE and derive a pair of non-smooth/switching ODEs for the mean field

synaptic and adaptation variables.

2.1 Population Density Methods

One way to analyze large systems with quantities that are conserved is the continuity equation or population

density equation. This equation applies to neural networks since the total number of neurons in a network

is a conserved quantity. In order to apply it, we need to define a density function. Using the notation

introduced in the previous section, we take the phase space X consisting of vectors x = (v, w). Note that we

are not considering the synaptic components as part of phase space. Their incorporation will follow in the

subsequent section. Now consider a region Ω in phase space with piecewise smooth boundary. Let P (Ω, t)

be the proportion of neurons in Ω at time t. In the “large network limit”, we can define the population

density function, ρ(x, t) as follows

P (Ω, t) = lim
N→∞

N∑
i=1

χΩ(xi) =

∫
X

χΩ(x)ρ(x, t) dx =

∫
Ω

ρ(x, t) dx. (19)

where χΩ is the conventional indicator function. The time evolution of the probability density function ρ is

simply a conservation equation, often called the continuity equation, given by

∂ρ

∂t
= −∇ · J(x, t). (20)

where J(x, t) = G(x)ρ(x, t) is the flux. In the case we are considering, the flux is a vector of two components,

J(x, t) = (JV (v, w, s, t), JW (v, w, t)). Note, from the definition of G(x) (see (18)), that JV is s dependent.

The flux is particularly interesting as it is intuitively the mass (proportional) flow rate along a specific

direction in phase space. Additionally, any resets in the neural model are incorporated into boundary

conditions defined in terms of the flux. In our model, the reset (17) becomes the boundary condition

JV (vpeak, w, s, t) = JV (vreset, w + wjump, s, t). (21)

In the context of neuroscience, there are derivations of equation (20) contained in various sources

(Omurtag et al., 2000; Nykamp. and Tranchina, 2000). The continuity equation has been used to analyze

the stability of the asynchronous state of a network of one dimensional non-adapting coupled neurons
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(predominantly integrate and fire) by various authors (van Vreeswijk, 1996; Strogatz and Mirollo, 1991;

Abbott and van Vreeswijk, 1993; Sirovich et al., 2006; van Vreeswijk et al., 1994). Another use is to eliminate

the need for direct simulation of large networks, instead numerically solving the continuity equation (Omurtag

et al., 2000; Nykamp. and Tranchina, 2000; Ly and Tranchina, 2007; Apfaltrer et al., 2006). The specific

application of the continuity equation to neurons that are governed by more complicated dynamics than a

single differential equation is limited (Casti et al., 2002). It should be noted that the system analyzed by

Casti et al. (2002) is a network of linear integrate-and-fire or burst neurons, neurons that intrinsically burst

due to their underlying dynamics, not due to the effect of network connectivity. More analytical treatments

of the partial differential equation (20), including solving for the steady state, resolving its spectrum of

eigenvalues, and studying its properties as a linear operator can be found in Abbott and van Vreeswijk

(1993); van Vreeswijk (1996); Strogatz and Mirollo (1991); Sirovich et al. (2000); Knight (2000) and Sirovich

et al. (2006).

To complete our population density model we need to consider the large network limit of the model for

the synaptic coupling. It can be shown (see Appendix) that the following holds

lim
N→∞

j(t) = lim
N→∞

1

N

N∑
j=1

∑
tj,k<t

δ(t− tj,k) = 〈Ri(t)〉 =

∫
W

JV (vpeak, w, s, t) dw. (22)

Here 〈Ri(t)〉 denotes the network averaged instantaneous firing rate, where 〈〉 corresponds to averaging

across the network. Using equation (22), our model is now a PDE coupled to an ODE or system of ODE’s.

In the case of the simple exponential synapse, we have

∂ρ(v, w, t)

∂t
= − ∂

∂v
((F (v)− w + I + gs(er − v))ρ(v, w, t))− ∂

∂w
(a(bv − w)ρ(v, w, t)) (23)

s′ = − s

τs
+ sjump

∫
W

JV (vpeak, w, s, t) dw. (24)

The ordinary differential equations for the double exponential and alpha synapses can be derived in a similar

matter, yielding equations where j(t) is replaced with 〈Ri(t)〉, as given by (22). A similar system of coupled

ODEs/PDEs can be derived in the case of multiple distinct populations of neurons. One merely defines a

population density equation and flux vector for each population.

The coupled ODE-PDE system (23)–(24) is generally not analytically solvable. Numerical solution of

the system is possible, however, this approach will not be pursued here. There is a simpler alternative to

numerical solution that can be implemented to determine the bifurcation types this system displays, and

yield the approximate bifurcation manifolds. Furthermore, one can easily extend this approach to networks
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containing mutiple populations of neurons with different parameters (as we will show in section 3). However,

we will first simplify the PDE (23).

2.2 Simplification of the Continuity Equation

In this section we will show how the moment closure assumption (Ly and Tranchina, 2007) can be used to

replace the PDE (23) by one where ρ is a function of t and v only and an ODE governing the mean of w.

To begin, we write the density in its conditional form

ρ(v, w, t) = ρW (w|v, t)ρV (v, t), (25)

and substitute into (23) to obtain

∂

∂t
(ρV (v, t)ρW (w|v, t)) = − ∂

∂v
((F (v) + I − w + g(er − v)s)ρV (v, t)ρW (w|v, t))

− ∂

∂w
(a(bv − w)ρV (v, t)ρW (w|v, t)) . (26)

If this equation is integrated with respect to w, terms involving the first order conditional moments 〈w|v〉

will occur. The first order moment closure method entails making the assumption that 〈w|v〉 = 〈w〉. The

validity of this assumption at high firing rates is supported by numerical simulations of the full network.

These simulations show that when the firing rate is high, wi tracks the network averaged firing rate much

more closely than it follows vi at any point in time.

Integrating (26) with respect to w over the entire phase space W , using the normalization condition on

the density of w, the fact that ρW (w|v) is zero on the boundary and the moment closure assumption yields

∂

∂t
(ρV (v, t)) = − ∂

∂v
((F (v)− 〈w〉+ I + g(er − v)s)ρV (v, t)) . (27)

Integrating the boundary condition (21) with respect to w on W and using the moment closure assumption,

we get the corresponding boundary condition for the PDE (27):

J(vpeak, 〈w〉, s, t) = J(vreset, 〈w〉+ wjump, s, t), (28)

where we have dropped the subscript V on J as it is unnecessary.

We now derive an ordinary differential equation for the mean adaptation variable

〈w〉 =

∫
V

∫
W

wρ(v, w, t) dwdv.
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Differentiation with respect to time, using the continuity equation (20) and equation (18) yields

〈w〉′ = −
∫
V

∫
W

w
∂

∂v
(ρ(v, w, t)G1(v, w, s)) dwdv −

∫
V

∫
W

w
∂

∂w
(ρ(v, w, t)G2(v, w)) dwdv.

Applying integration by parts and changing the order of integration as needed then gives:

〈w〉′ = 〈G2(v, w)〉 −
∫
W

wρ(v, w, t)G1(v, w, s)|∂V dw −
∫
V

wG2(v, w)ρ(v, w, t)|∂W dv. (29)

Note that since G2(v, w) is linear, 〈G2(v, w)〉 = G2(〈w〉, 〈v〉). Then, using ρ(v, w, t) = 0 on ∂W , the boundary

condition (28) and returning to the flux notation, the equation can be rewritten

〈w〉′ = G2(〈w〉, 〈v〉)−
∫
W

w (JV (vpeak, w, s, t)− JV (vpeak, w − wjump, s, t)) dw. (30)

To proceed further, we assume that 〈w〉 � wjump and apply a Taylor expansion to yield

〈w〉′ = G2(〈w〉, 〈v〉)−
∫
W

w

(
wjump

∂JV (vpeak, w, s, t)

∂w
+O(w2

jump)

)
dw

= G2(〈w〉, 〈v〉) + wjump

∫
W

JV (vpeak, w, s, t) dw +O(w2
jump) (31)

Thus the partial differential equation (23) can be replaced by (27) and (31). Note that this can be interpreted

as replacing each neuron’s adaptation variable with the mean field adaptation, 〈w〉.

We now have a first order partial differential equation and a pair of coupled ordinary differential equations

describing our system:

∂

∂t
ρ(v, t) = − ∂

∂v
((F (v)− 〈w〉+ I + g(er − v)s) (ρ(v, t))) (32)

〈w〉′ = a(b〈v〉 − 〈w〉) + wjump

∫
W

JV (vpeak, w, s, t) dw +O(w2
jump) (33)

s′ = − s

τs
+ sjump

∫
W

JV (vpeak, w, s, t) dw, (34)

where we have dropped the V subscript on ρ since it is unnecessary. Thus far, everything we have done is

exact. One level of approximation comes from dropping all the higher order terms in the expansion in (33),

yielding

〈w〉′ ≈ a(b〈v〉 − 〈w〉) + wjump

∫
W

JV (vpeak, w, s, t) dw.

Another level of approximation comes from a perturbation argument. When deriving the non-dimensionalized

system (1)-(2) from particular dimensional models, we often found that b� 1, i.e., b can be considered a
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small parameter. Thus, our second approximation is a perturbation expansion in b, where we only consider

the O(1) problem:

〈w〉′ ≈ −a〈w〉+ wjump

∫
W

JV (vpeak, w, s, t) dw.

Evaluating the integral of the flux using the moment closure assumption, we obtain the following dynamical

system:

∂

∂t
ρ(v, t) = − ∂

∂v
((F (v)− 〈w〉+ I + g(er − v)s) (ρ(v, t))) (35)

〈w〉′ = −a〈w〉+ wjumpJ(vpeak, 〈w〉, s, t) (36)

s′ = − s

τs
+ sjumpJ(vpeak, 〈w〉, s, t). (37)

Note that we can replace the boundary condition (28) with

J(vpeak, 〈w〉, s) = J(vreset, 〈w〉, s),

as this is consistent with the assumption 〈w〉 � wjump.

At this point we need another level of approximation to yield a system that is simple enough to analyze

using bifurcation theory. This will take the form of a quasi-steady state approximation, based on a separation

of time scales.

2.3 The Quasi-Steady State Approximation

In the type of neural models we are considering, the shortest time scale is typically the membrane time

constant and the longest time scale is that of the adaptation variable. However, for inhibitory synapses or

certain excitatory synapses, the longest timescale may be that of the s variable (Ermentrout and Terman,

2010). As our starting system (1)-(2) is dimensionless, the membrane potential time constant is 1. Assuming

the adaptation time scale is much longer, a−1 = τw � 1, we can regard τ−1
w as a small parameter. Then,

introducing the “slow time” t̃ = τ−1
w t, the system becomes

τ−1
w

∂

∂t̃
ρ(v, t̃) = − ∂

∂v

(
(F (v)− 〈w〉+ I + g(er − v)s)

(
ρ(v, t̃)

))
d

dt̃
〈w〉 = 〈w〉+ τwwjumpJ(vpeak, 〈w〉, s, t̃)

τs
τw

ds

dt̃
= −s+ τssjumpJ(vpeak, 〈w〉, s, t̃).
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If τs = O(τw), we can apply a quasi-steady state approximation to the PDE. This entails assuming that the

density ρ(v, t) reaches its steady state density ρ(v), rapidly relative to s and 〈w〉:

∂ρ(v, t̃)

∂t̃
= 0

⇒ (F (v)− 〈w〉+ I + g(er − v)s) (ρ(v)) = J(〈w〉, s), (38)

i.e., the flux is independent of v. If that the network is tonically firing, i.e., the v vector field is strictly

non-negative, then we can use the normalization condition on the density to solve for the flux:

J(〈w〉, s) =

[∫
V

dv

F (v)− 〈w〉+ I + g(er − v)s

]−1

. (39)

Using equation (39) and the ordinary differential equations for 〈w〉 and s, we now have a closed system of

non-linear autonomous ODE’s. Hence it would appear that we can use classical bifurcation theory to analyze

the resulting bifurcations. However, one has to be careful when the denominator inside the integrand of (39)

is not strictly positive on the phase space. If this occurs, then the flux changes sign in the phase space and

one can no longer assume the flux is independent of v (∂J∂v = 0). For a more intuitive explanation, one can

consider the pseudo-neuron with “average” dynamics

v′ = F (v)− 〈w〉+ I + g(er − v)s, (40)

A sign change in the flux corresponds to a saddle-node bifurcation for (40). Regarding s, 〈w〉 as fixed

parameters, we know from the analysis of Touboul (2008) that this bifurcation occurs when

I = I∗(〈w〉, s) = 〈w〉 −min
v

(F (v) + g(er − v)s). (41)

For I < I∗(〈w〉s), (40) has two fixed points, for I > I∗(〈w〉, s), (40) has no fixed points, and for I = I∗(〈w〉s)

has one fixed point. The line I∗(〈w〉, s) thus forms a switching manifold in the phase space of s and 〈w〉.

For I > I∗(〈w〉, s), there are no fixed points and the system is tonically firing. Thus

〈Ri(t)〉 = J(〈w〉, s) =

[∫
V

dv

F (v)− 〈w〉+ I + g(er − v)s

]−1

, if I > I∗(〈w〉, s). (42)

When the system undergoes the saddle-node bifurcation, solutions approach a stable fixed point, thus it

seems reasonable to take the firing rate to be zero:

〈Ri(t)〉 = 0, if I ≤ I∗(〈w〉, s). (43)

This is the assumption we will make in the rest of the paper. In reality, however, things are more subtle.

Where the fixed points emerge at the bifurcation and their respective stability have important implications
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for the value of 〈Ri(t)〉. As shown in Figure 1, if an unstable equilibrium point, v+ emerges in the region

[vreset, vpeak], a residual firing rate occurs. This is due to the remaining density in the region [v+, vpeak]

and the positive flux in this region as v̇ > 0 for [v+, vpeak]. If we simply set 〈Ri(t)〉 = 0 when I < I∗(〈w〉, s),

then we do not account for this residual firing rate. We have numerically found that it is small in magnitude

for biophysical derived parameters and thus it can be ignored.

In summary, using the quasi-steady state approximation and other assumptions as discussed above, the

system (35)-(37) can be reduced to the following switching system of ODEs:

〈w〉′ = −〈w〉
τw

+ wjump〈Ri(t)〉 (44)

s′ = − s

τs
+ sjump〈Ri(t)〉 (45)

where 〈Ri(t)〉 is given by (42)-(43). We will refer to this system the mean field model.

3 Numerical Examples

We now apply the approach described in the previous section to a set of numerical examples to demonstrate

its versatility. We consider three networks with different kinds of synapses, topology, and individual neurons.

The first is an all-to-all coupled Izhikevich network with the simple exponential synapse. This network is

notable as with strong enough adaptation, it displays a bifurcation to bursting which we analyze using

bifurcation theory. We will need the bifurcation theory of non-smooth systems (di Bernardo et al., 2008) to

understand the limit cycle associated with bursting, and its emergence/disappearance. The second network

we analyze contains two populations of Izhikevich neurons, one strongly adapting, and one weakly adapting.

We vary the proportion of neurons of each type in the network, and show how it affects the bifurcation to

bursting. The final network we consider consists of inhibitory and excitatory adaptive exponential neurons.

The synapses implemented in this network are of the double-exponential kind. The network topologies and

neuron types are shown in Figure 2. The code needed to generate direct network simulations, the mean field

equations, and any bifurcation diagrams of the mean-field equations has been uploaded to ModelDB (Hines

et al., 2002). The accession number for the code is 146499.
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3.1 Example 1: The Single All-to-All coupled Izhikevich Network

The dimensional form of this model is given by

CV̇i = k(Vi − VT )(V − VR)−Wi + Iapp + gsyn(er − Vi)s (46)

Ẇi =
η(Vi − VR)−Wi

τW
(47)

ṡ = − s

τsyn
+ sjumpj(t) (48)

Vi(t
−
spike) = Vpeak ⇒

Vi(t
+
spike) = Vreset

Wi(t
+
spike) = Wi(t

−
spike) +Wjump,

(49)

for i = 1, 2, . . . N . The parameter values can be found in Table 1. With the exception of the parameter k,

these values are taken from Dur-e-Ahmad et al. (2012) where they were chosen to fit hippocampal CA3

pyramidal neuron data from various sources, the primary source being (Hemond et al., 2008). In order

to fit the right action potential halfwidth, Dur-e-Ahmad et al. (2012) required the value of k to switch

depending on the relationship between V (t) and VT . As this complicates matters somewhat (via an added

level of discontinuity), we have instead chosen a single, intermediate value for k. Dur-e-Ahmad et al. (2012)

numerically explored the parameter regions for which their model displays bursting. The techniques of the

previous sections will allow us to study the bifurcations associated with the transition to bursting in this

network.

The dimensionless form of the model is given by

v′i = vi(vi − α)− wi + I + g(er − vi)s (50)

w′i = a(bvi − wi) (51)

s′ = − s

τs
+ sjumpj(t) (52)

vi(t
−
spike) = vpeak ⇒

vi(t
+
spike) = vreset

wi(t
+
spike) = wi(t

−
spike) + wjump,

(53)

for i = 1, . . . , N , where

vi = 1 +
Vi
|VR|

, wi =
Wi

k|VR|2
.
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Dimensional Parameters Dimensionless Parameters

C 250 pF α = 1 + VT
|VR|

0.62

k 2.5 nS/mV b = η
k|VR|

0.006

VR -65 mV I =
Iapp
k|VR|2

0.14

VT Vr + 40− b
k

= 41.7mV g =
gsyn
k|VR|

1.23

Vpeak 30 mV a =
(
τW k|VR|

C

)−1
0.015

Vreset -55 mV τs =
τsynk|VR|

C
1.3

Wjump 200 pA wjump =
Wjump
k|VR|2

0.0189

τW 100 ms

η -1 nS

Iapp 1500 pA

gsyn 300 nS

sjump 0.8

τsyn 2 ms

N 1000

Table 1: Parameters (from Dur-e-Ahmad et al. (2012)) for the all-to-all coupled Izhikevich network in

numerical example 1. These parameters apply unless otherwise indicated.

The dimensionless parameters are defined in Table 1. Applying the theory in the previous section, we have

the following system of switching ordinary differential equations for s, 〈w〉:

〈w〉′ = −〈w〉
τw

+ wjump〈Ri(t)〉 (54)

s′ = − s

τs
+ sjump〈Ri(t)〉 (55)

〈Ri(t)〉 =


(∫

V

dv

v(v − α)− 〈w〉+ I + g(er − v)s

)−1

, I ≥ I∗(〈w〉, s)

0 I < I∗(〈w〉, s)
(56)

I∗(〈w〉, s) = 〈w〉+
(α+ gs)2

4
− gers. (57)

Note that in this case, we can evaluate 〈Ri(t)〉 explicitly:

〈Ri(t)〉 =



√
I − I∗(〈w〉, s)

arctan

(
vpeak−α+gs

2√
I−I∗(〈w〉,s)

)
− arctan

(
vreset−α+gs

2√
I−I∗(〈w〉,s)

) , I ≥ I∗(〈w〉, s)
0 I < I∗(〈w〉, s)

(58)

Simulation of this system of equations was done using MATLAB’s ODE45 function (MATLAB, 2012),

with the default numerical integration parameter values. The model parameters for all simulations are
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found in Table 1, unless otherwise specified in a figure. As can be seen in Figure 3, equations (54)-(57)

provide an excellent approximation to the behaviour of the full network, including the transition from tonic

firing to bursting. Note that as the synaptic and adaptation time constants are biophysically derived, they

cannot be made larger to satisfy the requirements of the quasi-steady state approximation. This is the major

contributer the error in the mean-field equations, which we have confirmed via numerical solution of the

PDE/ODE system (35)-(37). The error takes the form of shorter bursts then the actual network (see Figure

3(c)).

The simulations in Figure 3 display damped oscillations, indicative of an Andronov-Hopf bifurcation.

Using the numerical continuation software MATCONT (Dhooge et al., 2003), we were able to determine

that there is a subcritical-Andronov-Hopf bifurcation at I = IAH . An unstable limit cycle emerges from this

bifurcation for I > IAH . This limit cycle corresponds to a spiking solution with periodically varying, nonzero

firing rate. Using direct numerical simulations of the system of ODE’s, we showed that the unstable limit

cycle undergoes a grazing bifurcation with the switching manifold at I = IGB , and becomes a non-smooth

limit cycle for I > IGB . Non-smooth limit cycles are limit cycles which cross the switching boundary. They

correspond to bursting solutions in the full network. Shortly after, the unstable limit cycle collides with the

stable non-smooth limit cycle in a saddle-node collision of limit cycles for some I = ISNC > IGB . Figure 4

contains the bifurcation diagram generated by a mixture of MATCONT and direct simulations of the full

network, using I as the bifurcation parameter.

We can also determine the bifurcation manifolds numerically in the I, gsyn parameter space as shown in

Figure 5. The parameters that correspond to bursting in the network lie below the curves shown in this

figure, thus we will refer to this region in the parameter space as the “bursting region”. For the mean field

system, the Andronov-Hopf curves are computed in MATLAB by using a root finding package to determine

the equilibrium values of 〈w〉 and s and then numerically evaluating the Jacobian. The curve where the full

network transitions from tonic firing to bursting is determined as follows. A network of 1000 neurons and is

simulated for 1000 ms over a 50× 50 mesh in the parameter space. The variance in the interspike intervals

is used to automatically classify the simulation for each mesh point as either bursting or tonically firing. A

cubic spline is fit to the points that form the boundary between the two states. Initial conditions are chosen

using a uniform distribution over [vreset, vpeak] for vi(0) and si(0) = wi(0) = 0, i = 1, . . . , N .
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Note that the numerical continuation results for the mean field system show that for IAH < I < ISNC , the

network displays bistability between the stable bursting limit cycle and the equilibrium point corresponding

to tonic firing. Direct simulations of the network with varying initial conditions in s and w have verified

this, as shown in Figure 6, although it appears that the network has a smaller region of bistability than the

equations (54)-(57). Due to this bistability, it is difficult to accurately determine the bifurcation manifold

associated with the transition to bursting via direct numerical simulations of the network. Despite this, and

the other sources of error, the Andronov-Hopf manifold generated by the quasi-steady state approximation

is still a good approximation to the boundary of the bursting region for the full network.

3.2 Example 2: An Excitatory Coupled Pair of Izhikevich Networks with Differing Adaptation Properties

Experimental work of Hemond et al. (2008) showed that pyramidal neurons in hippocampal area CA3 can

be grouped into different populations based on the amount of spike frequency adaptation they exhibited,

with 37% classified as strongly adapting and 46% as weakly adapting. The remainder were classified as

intrinsically bursting. The work of Dur-e-Ahmad et al. (2012) and the previous section shows how the

strength of adaptation in the single neuron relates to the existence of bursting in a homogeneous network.

However, the biological network contains both weakly and strongly adapting neurons and in the work of

Hemond et al. (2008) synaptic coupling was blocked, so the dominant firing pattern of this network is

unknown. Thus it is of interest to study the firing patterns in a model of such a network. In this section we

show how the techniques developed in this paper can be applied to this problem.

We consider a network consisting of two distinct, homogeneous populations, one which is strongly

adapting and one which is weakly adapting. Since there are two populations, we require four maximal

synaptic conductances gmj , and two synaptic gating variables, sj . Here j denotes the presynaptic network

and m denotes the postsynaptic network, with j = SA indicating the subnetwork with strong adaptation

and j = WA is the subnetwork with weak adaptation, and similarly for m. The equations for the network
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are

CV̇i,m = k(Vi,m − VT )(Vi,m − VR)−Wi,m + Iapp,m (59)

+ (1− p) gsyn,mSA(Er − Vi,m)sSA + p gsyn,mWA(Er − Vi,m)sWA

Ẇi,m =
η(Vi,m − VR)−Wi,m

τW,m
(60)

ṡSA = − sSA
τsyn

+ sjumpjSA(t) (61)

ṡWA = −sWA

τsyn
+ sjumpjWA(t) (62)

jSA(t) =
1

NSA

NSA∑
j=1

∑
tj,k,SA<t

δ(t− tj,k,SA)

jWA(t) =
1

NWA

NWA∑
j=1

∑
tj,k,WA<t

δ(t− tj,k,WA)

for i = 1, . . . Nm, with the same discontinuities as the model in section 3.1. Here p = NSA/(NSA +NWA) is

the proportion of strongly adapting neurons in the network. The parameters can be found in Table 2. Aside

from gsyn,mj and Iapp,m, the only other parameters that differ between the two populations are those that

govern the adaptation levels, τW,m and Wjump,m.

After transforming equations (59)-(62) to dimensionless form, we can apply the ideas of the previous

sections by considering the strongly adapting and weakly adapting populations to be described by their own

distinct population density equation. The moment closure reduced population density equations are coupled

together by the two coupling variables, two adaptation variables and the following fluxes:

JSA(v) = ρSA(v)(v(v − α)− 〈w〉SA + ISA + (1− p) gSA,SA(er − v)sSA,SA + p gSA,WA(er − v)sSA,WA)

JWA(v) = ρWA(v)(v(v − α)− 〈w〉WA + IWA + p gWA,SA(er − v)sWA,SA + (1− p) gWA,WA(er − v)sWA,WA).

Applying the quasi-steady state approximation, as before, the resulting system of ordinary differential

equations is:

〈w〉′SA = −aSA〈w〉+ wjump,SA〈Ri(t)〉SA (63)

〈w〉′WA = −aWA〈w〉+ wjump,WA〈Ri(t)〉WA (64)

s′SA = −sSA
τs

+ sjump〈Ri(t)〉SA (65)

s′WA = −sWA

τs
+ sjump〈Ri(t)〉WA. (66)
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Here we have :

〈Ri(t)〉SA =


(∫

V

dv

v(v − α)− 〈w〉+ ISA + gSA,WA(er − v)sWA + gSA,SA(er − v)sSA

)−1

, ISA ≥ I∗SA

0 ISA < I∗SA

(67)

and

I∗SA(〈w〉SA, sSA, sWA) = 〈w〉SA +
(α+ gSA,SAsSA + gSA,WAsWA)2

4
(68)

− er(gSA,SAsSA + gSA,WAsWA), (69)

with a similar equation holding for 〈Ri(t)〉WA. As in numerical example 1, each 〈Ri(t)〉m can be evaluated

explicitly and is a slight modification of 〈Ri(t)〉 for numerical example 1. These explicit expressions are used

in the numerical studies. Note that the dimensionless parameters, Im, gmj etc have the same scaling as

shown in Table 1.

The mean field model is accurate quantitatively and qualitatively in the tonic firing (Figure 7) and

bursting (Figure 8) regimes. Note that in the “bursting” state, only the strongly adapting population bursts,

while the weakly adapting population has an oscillatory firing rate that peaks in synchrony with the bursts

in the strongly adapting population.

For this type of network we find a very similar bifurcation diagram to that of the single network of

strongly adapting Izhikevich neurons studied in numerical example 1. The bifurcation sequence consists of

a subcritical Andronov-Hopf bifurcation followed by a grazing bifurcation and a saddle-node collision of

limit cycles, as shown in Figure 9. However, the size of the bursting region depends on the relative sizes of

the two populations. To allow for a direct comparison, we use as our bifurcation parameters Iapp,SA and

gsyn,SA,SA and fix all the other parameters at the values in Table 2. Direct simulations are run over a mesh

and compared to the bifurcations of the system (63)-(66). The Andronov-Hopf manifold for the ODE’s is

solved for numerically in MATLAB, as described in example 1. Once again we can conclude that the mean

field system of switching ODE’s is an adequate quantitative and qualitative descriptor of the behavior of

the full network.

Figure 10 shows the results of a series of simulations where the proportion, p, of strongly adapting neurons

in the network is varied. The network consists of 1000 neurons with NSA = 1000p strongly adapting and

NWA = 1000(1− p) weakly adapting. The boundary of the bursting region was computed for the mean field

model and the full network as described in the previous subsection. For a higher proportion, this boundary

is shifted into the low synaptic conductance region, while for a lower proportion, the manifold is shifted to

19



Wjump,SA 200 pA

Wjump,WA 100 pA

τW,SA 100 ms

τW,WA 10 ms

Iapp,SA 1000-2000 pA

Iapp,WA 1200 pA

gsyn,mj 200 nS

NSA 800

NWA 200

Table 2: Parameters for the two coupled Izhikevich networks in numerical example 2. All parameters that

are not mentioned in this table can be found in Table 1. These parameters apply unless otherwise indicated.

the high synaptic conductance region. Not surprisingly, we can conclude that networks with more weakly

adapting neurons stabilize the tonic firing behavior of the full network for smaller synaptic conductances.

The mean field model seems to be a worse approximation of the full network when the proportion of weakly

adapting neurons is low. This may be due to the fact for these neurons, the perturbation approximation

(b = 0) is not as accurate.

3.3 Example 3: A Coupled Pair of Adaptive Exponential Networks with Excitation and Inhibition

The parameters for an AdEx neuron have recently been fitted to both excitatory and inhibitory cortical

neurons (Naud et al., 2008). We use these parameters to simulate a coupled network consisting of a population

of inhibitory neurons and one of excitatory neurons. The equations for the network are:

CmV̇i,m = −gL,m(Vi,m − EL,m) + gL,m exp

(
Vi,m − VT,m

∆T,m

)
−Wi,m + Im

+
∑
k

pkgmk(Vi,m − ER,k)sk (70)

Ẇi,m = a (b (Vi,m − EL,m)−Wi,m) (71)

ṡk = − sk
τR,k

+ hk (72)

ḣk = − hk
τD,k

+
1

τR,k τD,k
jk(t), (73)

where i = 1, 2 . . . Nm and pk = Nk/(NI +NE). Here m, k = E for the excitatory network, and m, k = I for

the inhibitory network. Note that this model incorporates double exponential synapses. The parameters for
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this model are given in Table 3. Following Markram et al. (2004), we assume that the network consists of

80% excitatory neurons and 20% inhibitory neurons.

The reduction procedure for this model is similar to that for the example 2. Without nondimensionalizing

the equations, we define a population density equation for each population. The reason for not applying

the nondimensionalization is that applying it to populations with two completely different parameter sets

results in a messier system of equations. The non-dimensional equations and the dimensional equations

remain equivalent however. With that in mind, the quasi-steady state approximation is then applied to

both population density equations, yielding a system of six autonomous, switching ODE’s:

sI
′ = − sI

τR,I
+ hI (74)

hI
′ = − hI

τD,I
+
〈Ri(t)〉I
τR,IτD,I

(75)

sE
′ = − sE

τR,E
+ hE (76)

hE
′ = − hE

τD,E
+
〈Ri(t)〉E
τR,EτD,E

(77)

〈w〉′E = −〈w〉E
τW,E

+ wjump,E〈Ri(t)〉E (78)

〈w〉′I = −〈w〉I
τW,I

+ wjump,I〈Ri(t)〉I , (79)

where the firing rates are given by

〈Ri(t)〉m =



∫
V

Cm dv

−gL,m(Vi,m − EL,m) + gL,m exp
(
Vi,m−VT,m
∆T,m

)
− 〈w〉m + Im +

∑
k pkgmk(Vi,m − ER,k)sk

−1

, Im ≥ I∗m

0 Im < I∗m

The integrals cannot be evaluated explicitly, thus they are evaluated numerically using the trapezoidal

method. The equations for the switching manifold are somewhat lengthy, but they can be easily derived

merely by evaluating v′ at the point

v∗m = VT,m +∆T,m log

(
1 +

∑
k pkgmksk
gL,m

)
,

and subsequently solving for Im = I∗(sE , sI , 〈w〉m).

We begin by removing the synaptic coupling within each population (gEE = gII = 0) for the sake of

simplicity and for the purpose of eliminating the adaptation induced bifurcation seen in the previous two

numerical examples. In this case, the switching manifolds only depend on one of the gating variables. For

example, the excitatory population switching manifold is IE = I∗(sI , 〈w〉E). Comparisons of the behaviour

of the mean field model and the full network are given in Figures 11 and 12. Corresponding voltage traces
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CE 104 pF CI 59 pF

gL,E 4.3 nS gL,I 1.7 nS

EL,E -65 mV EL,I -62 mV

VT,E -52 mV VT,I -42 mV

∆T,E 0.8 mV ∆T,I 3.0 mV

IE 1000 pA II 100 pA

τ1,E 0.1 ms τ1,I 1 ms

τ2,E 2 ms τ2,I 20 ms

aE 0.01 (ms)−1 aI 0.1 (ms)−1

bE -0.8 nS bI 2.0 nS

Vpeak,E 0 mV Vpeak,I 0 mV

Vreset,E -53 mV Vreset,I -54 mV

Wjump,E 200 pA Wjump,I 50 pA

ER,E -25 mV ER,I -50 mV

NE 800 NI 200

Table 3: Parameters (from Naud et al. (2008)) for the two coupled AdEx networks in numerical example 3.

These parameters apply unless otherwise indicated.

of random neurons from the network are shown in Figure 13 (a) and (b). In Figure 11, the mean field model

indicates the system is tonically firing. However Figures 11 and 13(a) indicate the full network is in a mixed

state, with the excitatory population tonically firing and the inhibitory population bursting. In Figure 12,

the mean field model indicates the system has an oscillatory firing rate, while Figures 12 and 13(b) indicate

the full system is in a bursting state. We have also used numerical continuation to study the bifurcations of

the mean field model and found that there is not a good correspondence with the bifurcations of the full

network.

If we consider nonzero recurrent synaptic coupling (gEE , gII 6= 0), other interesting oscillatory firing

rates can occur. For example, in one parameter regime, multi-phase bursts appear. In this firing regime, the

excitatory network fires regular bursts, while the inhibitory network fires a two-phase burst, as shown in

Figure 13(c). The mean field model replicates these multi-phase bursts both quantitatively and qualitatively

(Figure 14).

For the E/I AdEx network, whether or not the mean field model adequately represents behaviour of the

full network is parameter dependent. A possible reason for the poor approximation of the mean field model
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is that the network is synchronized in the examples above. It is known that mean field approximations may

not be valid in this case (Nesse et al., 2008).

4 Discussion

Starting from a population density equation, we rigorously derived a mean field approximation to a large

network of two-dimensional neurons based on a separation of time scales. We then applied the resulting

switching ODE’s to different examples of large networks where the forces of inhibition, adaptation, and

excitation interact. The differential equations were used to determine bifurcation manifolds and types for the

networks in question. Such bifurcation studies can be in turn used to make predictions about the biological

networks being studied as we illustrate below.

One of the striking features of networks of neurons in area CA3 is their tendency to burst. However,

experimental data shows that when all synaptic input is blocked, only a minority of the neurons in the CA3b

region of the hippocampus are observed to be intrinsically bursting (Hemond et al., 2008). The majority can

be grouped into strongly adapting and weakly adapting subpopulations (Hemond et al., 2008). In section

3.2 we proposed a model which is an extension of that of Dur-e-Ahmad et al. (2012) to a network which

contains both weakly and strongly adapting neurons. The mean-field model we derived, (63)-(66), allowed us

to compute the bifurcation manifolds for an all-to-all coupled network with various proportions of strongly

and weakly adapting neurons.

Based on the work of Ho et al. (2009), we can estimate biologically relevant ranges of gsyn to be on the

order of 10’s of nS, which is on the lower side of the bursting region diagrams (Figures 5 and 10). We note

that these synaptic values from Ho et al are estimated during spontaneously generated population activities

in CA3 networks. As such, they are the most directly applicable measurements to aid in the interpretation

of our bifurcation diagrams.

Given the biological constraints on the magnitude of the synaptic conductance, we can predict how an

actual network of neurons would behave. The analysis of section 3.1 (see Figure 5) predicts that for currents

just over rheobase, a network composed entirely of strongly adapting neurons will burst, confirming the

analysis of Dur-e-Ahmad et al. (2012). However, once weakly adapting neurons are added, the intersection

of the bifurcation manifold with the rheobase current shifts toward the right for increasing proportions of

weakly adapting neurons (see Figure 10). In fact, only for networks where a majority of neurons are strongly
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adapting does the network have a bursting region inside the biologically reasonable range of conductance

values. However, estimates from actual CA3 pyramidal cells indicate that 37% of the neurons were strongly

adapting and 46% were weakly adapting, with the remaining 16% being intrinsically bursting (Hemond

et al., 2008). Our results indicate that a network with this proportion of strongly to weakly adapting neurons

would be tonically firing. This means that something more is needed in the model to obtain the bursting

seen experimentally. One possibility is that the small proportion of intrinsically bursting neurons is critical

for network bursting. Adaptation may thus only facilitate rhythmic bursting in the networks, while a small

subset of intrinsically bursting neurons acts as the spark to start the rest of the network. A mean-field

approach with the addition of an intrinsically bursting subpopulation of Izhikevich neurons would allow us

to determine if the bifurcation region expands outward to low conductance values. Exploring this hypothesis

further is an area for future work.

4.1 Sources of Error

The validity of our mean field approximation is based on a series of assumptions/requirements that are

imposed during the derivation. We list them in order of appearance

1. 〈w|v〉 = 〈w〉 (First order moment closure method, fast firing rates)

2. 〈w〉 � wjump (Mean adaptation is much greater then individual jump sizes.)

3. b� O(1) (Perturbation arguement to decouple 〈w〉 from 〈v〉.)

4. τs, τw � O(1) (Quasi-steady state approximation)

5. 〈Ri(t)〉 = 0 if I ≤ I∗(s, 〈w〉). (The residual firing rate past the switching manifold is negligible.)

Of these five requirements, only the fourth is truly indispensible. Without it, the quasi-steady state

approximation is no longer valid. However, even when τs and τw are only moderately larger then 1, the

approximation is still fairly good. For example, in numerical example 1, τs = 2 ms and the accuracy of the

approximation in that example is still satisfactory. However, it is simply not possible to eliminate this as a

source of error for biophysically derived time constants that are not large. The application of this approach

should be limited to those cases as we have numerically found the quasi-steady state approximation to be

the largest contribution to the error in the mean-field equations when the conditions on the time constants

are not satisfied. The other four requirements for applicability of this approach may be dealt with in different

ways.
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One way to improve on the first order moment closure assumption is to use a higher order moment

closure method (Ly and Tranchina, 2007). That is, to use the approach of section 2.2, but approximate the

kth conditioned moment as a linear combination of the first k − 1 conditioned moments, and the first k

unconditioned moments. It is unclear whether or not such a higher order moment closure method, when

used in conjunction with the quasi-steady state approximation, would yield a greater degree of accuracy

than the lowest order method. Investigation of this is an area for future work.

We used the second assumption to justify dropping the O(w2
jump) terms in the equation for 〈w〉′. This

approximation may be improved by trying to estimate the higher order terms in the Taylor expansion in

equation (31).

The perturbation argument was used to eliminate the term involving the unknown 〈v〉. However, when the

quasi-steady state approximation is used it is possible to compute 〈v〉 (and thus not employ the perturbation

argument) via the relationship

〈v〉 =

∫
V

vJ(s, 〈w〉), dv
F (v)− w + I + gs(er − v)

. (80)

This will result in an extra term in equation for 〈w〉′ (equation (44)). We have computed this in the case

that b� 1 to verify that the perturbation argument is valid. Note that (80) is only valid for I > I∗(s, 〈w〉),

since for I ≤ I∗(s, 〈w〉), the the quasi-steady state approximation breaks down as discussed in section 2.3.

As discussed in section 2.3, when I = I∗(s, 〈w〉), the emergence of fixed points in equation (40) causes

the flux to change direction in different regions of the phase space of v, which means the quasi-steady state

assumption ∂J
∂v = 0 breaks down. This breakdown makes it difficult to compute the residual firing rates

for I ≤ I∗(s, 〈w〉). However, we have found this contribution to be small and not worth the added effort

required to determine the residual firing rate.

4.2 Comparison with Other Mean-Field Equations

Seldom is a mean-field system of equations analytically derivable from the original network equations.

However, it has been done in the literature for a few cases, which we now describe and compare with our

work.

Nesse et al. (2008) derived mean-field equations for networks of fully coupled, linear integrate and fire

neurons containing synaptically filtered noise and two different models for adaptation. The structure of
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the equations derived is the same as ours, consisting of a closed system of non-smooth ordinary differential

equations for the moments of the adaptation and synaptic variables. While their networks are stochastic,

and they use different adaptation model than us, they derive a similar equation for the mean-adaptation for

one of their networks (Equations (25)-(26) in Nesse et al. (2008)). Additionally, we have verified that if the

stochastic inputs are removed from their model and our derivation is used, the same mean-field systems for

both kinds of adaptation will result. Note, however, that the interpretation of the network averaged firing

rate, 〈Ri〉, changes between the deterministic and stochastic network.

La Camera et al. (2004, 2008) derived mean-field equations for an uncoupled network of linear integrate

and fire neurons with the same adaptation model as us and containing synaptically filtered noise. The mean

adaptation equations presented by La Camera et al. (2004, 2008) are the same as our differential equation

for the first moment of the adaptation current w in our networks (compare Equation (44) with Equation

(3.3) in La Camera et al. (2004)). Again, there is a different interpretation of what the network averaged

firing rate is under the case of noise. We note that it should be possible to derive precisely the same set

of equations as in La Camera et al. (2004) for our network of two-dimensional neurons with synaptically

filtered noise, by using the first order moment-closure and quasi-steady state approximations together, in

conjunction with a diffusion approximation. In fact, the first order moment closure approximation may be

better under cases of low firing rates when one adds noise. The reason for this is that adding noise to the

voltage variable of a neuron (either synaptically filtered or otherwise) should decouple it from the adaptation

variable.

Vladimirski et al. (2008) have derived mean field equations for a network of linear integrate and fire

neurons with synaptic depression and input currents which are either heterogeneous and deterministic or

homogeneous and noisy. For the heterogeneous network, they note that one cannot use a single variable for

the average depression to predict the behavior of the network. However, for their homogeneous network,

they derive a mean-field equation for their mean synaptic depression, in terms of their network averaged

firing rate (Equation (17),Vladimirski et al. (2008)). This equation is analogous to the equation for the mean

adaptation variable in our model and those described above. Unlike our mean-field model and that of Nesse

et al. (2008), the mean-field model of Vladimirski et al. (2008) has no differential equation for the mean

synaptic gating variable. They use a time scale separation argument to derive an expression for the average

of this variable over one oscillation period. This is equivalent to applying a quasi-steady state approximation
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to the equation for s in our model. Further, since Vladimirski et al. (2008) represent depression using a

kinetic model Destexhe et al. (1998) the derivation of the mean field equation is done by time averaging the

fast gating variable over an oscillation period, as opposed to the approach used by Nesse et al. (2008); La

Camera et al. (2004, 2008) and us. Finally, Vladimirski et al. (2008) note that adaptation and depression

work through two different mechanisms, yet both can yield rhythmic bursting. It would be interesting to

derive the mean-field system for both depressing and adapting two-dimensional networks and compare how

these two mechanisms differ analytically.

4.3 Extending the Technique to More Realistic Networks

A natural extension to consider is to networks of conductance based neurons. The primary difficulty in

applying the theory to this situation is determining the relationship between the flux and the firing rate.

Since neuron firing in conductance based models is not caused by a reset but occurs through a natural

oscillation, the discussion of section 2 and the appendix does not apply. A natural first case to consider

is simple two dimensional oscillator such as the Fitzhugh-Nagumo model (Fitzhugh, 1952). Once this is

overcome in a simple two-dimensional model, it should be possible to extend the theory to more realistic

conductance based models.

To further the applicability of this approach, more realistic network topologies should be considered.

Seldom are networks of neurons all-to-all coupled in the real world. The networks are often sparsely connected,

with the level of sparsity possibly acting as a bifurcation parameter itself. Fortunately, Omurtag et al. (2000)

have developed some extensions of population density methods to networks of linear integrate and fire

neurons with sparse coupling. Preliminary work we have carried out indicates that these extensions should

be applicable to higher dimensional neurons.

Furthermore, kinetic modeling of synapses, as pioneered by Destexhe et al. (1998), is the most biologically

plausible approach to modeling the synaptic interaction between neurons. The kinds of synapses we have

considered do not fall into this class. Thus, the technique will need to be extended to these more realistic

models of synaptic dynamics. It will be interesting to compare this approach to that used be Vladimirski

et al. (2008) to deal with kinetically modelled variables.
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Appendix

Relationship Between the Flux and the Firing Rate

Here we show that in the limit that N →∞, the quantity

j(t) =
1

N

N∑
j=1

∑
tj,k<t

δ(t− tj,k) (81)

converges to the network averaged instantaneous firing rate. We then relate this firing rate to a flux described in section 2.1.

We will think of j(t) and its limit as distributions.

Note that one needs to be careful in defining a mean or average firing rate, as there are at least three definitions in the

literature. See Gerstner and Kistler (2002) for a good discussion of this. To define the appropriate rate for our purposes, we

first define the function ni(t) to be the number of spikes fired by the ith neuron in the time interval [0, t]. One can then

relate j(t) to the average of 〈ni(t)〉 across the network:

〈ni(t)〉 = lim
N→∞

1

N

N∑
i=1

∫ t

0

∑
ti,k<t

δ(x− ti,k) dx = lim
N→∞

∫ t

0
j(x) dx. (82)

Then we define 〈Ri(t)〉 as

〈Ri(t)〉 = lim
∆t→0

1

∆t
lim
N→∞

1

N

N∑
i=1

ni(t+∆t)− ni(t)
N

. (83)

Thus, the network averaged firing rate in this sense is the limit of the population activity as ∆t→ 0. However, rearranging

the limits, this may also be written

〈Ri(t)〉 = lim
∆t→0

〈ni(t+∆t)〉 − 〈ni(t)〉
∆t

=
d

dt
〈ni(t)〉. (84)

Thus, in the limit N →∞, we can replace j(t) in the synaptic coupling equation with 〈Ri(t)〉.

Now, all that remains is to relate the firing rate to the flux. For the integrate and fire models we are considering, there

is a surface F = 0 which defines when a neuron has fired. As the flux is a kind of directional flow rate of the proportion of

neurons at a particular point in phase space, the firing rate can be computed by integrating the flux vector over this “firing

boundary”:

〈Ri(t)〉 =

∫
F
J · n dS,

where n is the outward normal to the firing boundary. For example, the flux for a system of one dimensional neurons, J(v, t)

is merely the proportion of neurons that flow across the point v in phase space per unit time at time t. Now for a network

of linear integrate and fire neurons the firing boundary is the point v = vt in the v phase space, thus the firing rate is

J(vt, s, t), the flux through the threshold. For the class of neurons we are dealing with, however, the firing boundary is

given by the line v = vpeak in the v, w phase space. Thus the surface integral reduces to integrating the v component of the

flux, evaluated at v = vpeak, over the entire range of w in phase space:

〈Ri(t)〉 =

∫
W
JV (vpeak, w, s, t) dw. (85)
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Fig. 1: The saddle-node bifurcation of the mean neuron equation (40) results in two fixed points. Note

that these fixed points only exist in the mean sense. The stable point attracts density within its basin of

attraction and its peak becomes increasingly sharp. The unstable node repels density towards the stable

node either directly, or indirectly through vpeak. Density that leaves through vpeak is reabsorbed through

vreset and then lies within the basin of attraction of the stable node. This means there is a residual firing

rate, i.e., 〈Ri(t)〉 6= 0 when I ≤ I∗(〈w〉, s).
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Fig. 2: The network topology for the three numerical examples studied in this paper. Numerical example 1

is an all-to-all coupled network of Izhikevich neurons. Numerical example 2 consists of two all-to-all cross

coupled networks of Izhikevich neurons. One of them is weakly adapting, and the other is strongly adapting.

Numerical example 3 consists of two cross-coupled networks of AdEx neurons. One network is inhibitory,

while the other is excitatory.
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Fig. 3: Comparison of behaviour from numerical simulation of a network of 1000 Izhikevich neurons (46)-(49)

and of the corresponding mean field model (54)-(57). Show in blue are the network average synaptic

conductance, g(t), and the adaptation current of a random neuron, W (t), from the full network. Shown in

red are the corresponding variables in the mean field model, gsyns(t) and 〈w〉. Iapp varies from panel to

panel as shown while gsyn = 300 nS for every panel. The rest of the parameter values can be found in Table

1.
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Fig. 4: A combination of numerical simulation and numerical continuation determines the bifurcations

that occur in the mean field model (54)-(57). The parameters can be found in Table 1. A subcritical Hopf

bifurcation occurs at Iapp ≈ 1983 pA which causes the emergence of a unstable limit cycle. As Iapp is

increased, the unstable limit cycle grows in amplitude (blue surface), eventually touching the switching

manifold in a grazing bifurcation at Iapp = IGB (red curve) and becomes a non-smooth limit cycle, which

corresponds to bursting (green surface) in the full network. For a narrow region past the grazing bifurcation,

the unstable limit cycle persists, eventually colliding with the stable non-smooth limit cycle at Iapp ≈ 2075

pA (not shown, near red curve). The equilibrium point corresponding to tonic firing is stable for Iapp > 1983

and unstable otherwise.
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Fig. 5: The bifurcation manifolds associated with the transition from tonic firing to bursting for three

different Wjump values. Larger Wjump corresponds to stronger adaptation in the neural model. The Hopf

manifold for the reduced system (54)-(57), calculated using numerical continuation, is shown as a solid

blue line. A spline approximation to the boundary computed through direct simulations of the full network

(46)-(49) of 1000 neurons is shown as a dotted black line. The red line is rheobase for the uncoupled neuron.

35



0.1 0.15 0.2 0.25 0.3
1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500
Bursting Region

s(0)

w
(0
)

(a) Iapp = 1970 pA

0.1 0.15 0.2 0.25 0.3
1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500
Bursting Region

s(0)

w
(0
)

(b) Iapp = 1960 pA

Fig. 6: Evidence for a bistability in the full network (46)-(49). Numerical simulations of the network were

run using a 50× 50 mesh in the initial values of s(t) and 〈w〉. Black asterisks indicate bursting, with the

white space indicating tonic firing at the mesh point. The conductance parameter is fixed at gsyn = 200

nS, while the applied current is decreased in increments. The applied current is chosen so that the network

is past the bifurcation point to bursting, however remains close to it. A region of bistability is found in

the actual network, and this region decreases as we decrease the Iapp values, eventually disappearing at

Iapp ≈ 1950 pA. The fuzziness in the region of bistability is partly due to the fact that each neuron in the

network is initialized at some resting membrane potential, which has some affect on the region of bistability.
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Fig. 7: Comparison of behaviour from numerical simulation of a network of Izhikevich neurons (59)-(62)

and of the corresponding mean field model (63)-(66). The network consists of two distinct populations: 800

strongly adapting neurons and 200 weakly adapting neurons. Show in green and red are the population

average synaptic conductances, gkm(t), and the adaptation current, Wm(t), of a random neuron from each

population. Shown in black are the corresponding variables in the mean field model, gsyn,kmsm(t) and 〈wm〉.

The the parameter values can be found in Tables 1-2, except ISA = 2000 pA. The network is tonically firing

under these parameter settings
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Fig. 8: Comparison of behaviour from numerical simulation of the network of Izhikevich neurons (59)-(62)

and of the corresponding mean field model (63)-(66). The network consists of two distinct populations: 800

strongly adapting neurons and 200 weakly adapting neurons. Show in green and red are the population

average synaptic conductances, gmk(t), and the adaptation current, Wk(t), of a random neuron from each

population. Shown in black are the corresponding variables in the mean field model, gsyn,mksk(t) and 〈wk〉.

The parameter values can be found in Tables 1-2, except ISA = 1500 pA. The network displays a mixed

bursting/oscillatory firing rate. The strongly adapting population is bursting, while the weakly adapting

population has an oscillatory non bursting firing rate.
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Fig. 9: The bifurcation diagram of the mean field model (63)-(66) for a network consisting of two populations

of Izhikevich neurons, one strongly adapting and one weakly adapting. In this diagram, the proportion of

strongly adapting neurons was fixed at p = 0.6. The subcritical-Hopf limit cycle (blue surface) was computed

in MATCONT using standard continuation algorithms. The stable non-smooth limit cycle (green surface)

was computed using direct simulations initialized within the basin of attraction for the limit cycle. The

tonic firing equilibrium solution is stable for I > IAH and unstable otherwise. A saddle-node collision of

limit cycles occurs for ISNC > IAH (near red curve, not shown).
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Fig. 10: The Hopf manifolds for the mean field model (63)-(66) (solid lines) in comparison with the boundaries

of the bursting region found from direct simulations of the network (59)-(62) over a 2500 point mesh in the

parameter space (dotted lines). The proportion of strongly adapting neurons in the network is varied from

p = 0.5 to p = 0.9. Unsurprisingly, larger proportions result in larger bursting regions in the low conductance

range.
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Fig. 11: Comparison of behaviour from numerical simulation of the E/I network of AdEx neurons (70)-(73)

(green/red) and of the corresponding mean field model (74)-(79) (black). The network consists of 800

excitatory neurons and 200 inhibitory neurons. The maximal conductances are gEE = gII = 0, gEI = 1000

nS and gIE = 2500 nS. All other parameter values are given in Table 3.
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Fig. 12: Comparison of behaviour from numerical simulation of the E/I network of AdEx neurons (70)-(73)

(green/red) and of the corresponding mean field model (74)-(79) (black). The network consists of 800

excitatory neurons and 200 inhibitory neurons. The maximal conductances are gEE = gII = 0, gEI = 3000

nS and gIE = 2500 nS. All other parameter values are given in Table 3.
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(b) gEE = gII = 0, gEI = 3000 nS, gIE = 2500 nS

400 410 420 430 440 450 460 470 480 490 500
−80

−70

−60

−50

−40

−30

−20

−10

0

v m
(t
)

Time (ms)

 

 
v

j,E

v
j,I

(c) gEE = 40 nS, gII = 1000 nS, gEI = 2000 nS, gIE = 2000 nS

Fig. 13: Various firing regimes for the E/I network of AdEx neurons (70)-(73), illustrated by a random neuron

from each population. (a) Excitatory population (red) is tonically firing, while inhibitory population (green)

is bursting. (b) Excitory population fires doublets, while inhibitory population is bursting. (c) Excitatory

population is bursting due to its own recurrent coupling. Inhibitory population exhibits two-phase bursting.

Parameter values, other than those indicated, are given in Table 3.
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Fig. 14: Comparison of behaviour from numerical simulation of the E/I network of AdEx neurons (70)-(73)

(green/red) and of the corresponding mean field model (74)-(79) (black). The network consists of 800

excitatory neurons and 200 inhibitory neurons. The maximal conductances are gEE = 40 nS, gII = 1000 nS,

gEI = 2000 nS and gIE = 2000 nS. All other parameter values are given in Table 3.
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