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Abstract

The inverted pendulum is frequently used as a starting point for discussions of how human bal-

ance is maintained during standing and locomotion. Here we examine three experimental paradigms

of time–delayed balance control: 1) the mechanical inverted time–delayed pendulum, 2) stick bal-

ancing at the fingertip, and 3) human postural sway during quiet standing. Measurements of

the transfer function (mechanical stick balancing) and the two–point correlation function (Hurst

exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the

center of pressure (postural sway) demonstrate that the upright fixed-point is unstable in all three

paradigms. These observations imply that the balanced state represents a more complex and

bounded time-dependent state than a fixed–point attractor. Although mathematical models indi-

cate that a sufficient condition for instability is that the time delay to make a corrective movement,

τn, be greater than a critical delay, τc, that is proportional to the length of the pendulum, this

condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested

that a common cause of instability in all three paradigms stems from the difficulty controlling both

the angle of the inverted pendulum and the position of the controller simultaneously using time-

delayed feedback. Considerations of the problematic nature of control in the presence of delay

and random perturbations (“noise”) suggests that neural control for the upright position likely

resembles an adaptive–type controller in which the displacement angle is allowed to drift for small

displacements with active corrections made only when θ exceeds a threshold. This mechanism

draws attention to an overlooked type of passive control that arises from the interplay between

retarded variables and noise.

PACS numbers: 87.85.gj, 87.85.ff, 02.30.Ks
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Corporation, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi 212-8582, JAPAN
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A high proportion of falls in the elderly occur while walking [1]. Although

some of these falls can be attributed to “slips and trips”, for many the immediate

cause is unknown. A first step towards the development of strategies to mini-

mize the risk of falling in the elderly is to understand how balance is maintained

during locomotion. The question of how best to stabilize the upright position of

an inverted pendulum, an unstable fixed–point, is a classic problem in control

theory [2] with applications ranging from the Segway [3] to missile guidance sys-

tems [4] to lifting cranes [5]. Typically overlooked in biomechanical applications

of the inverted pendulum to human balance control are the effects of time-delays

[6–11]. These delays arise because there is a significant time interval between

when a variable is measured and when corrective forces are applied. Here we

review issues that arise in determining the stability of the time-delayed inverted

pendulum and compare the observations to three paradigms of balance control:

1) the mechanical inverted time–delayed pendulum [12–16], 2) stick balancing

at the fingertip [17–25], and 3) postural sway during quiet standing [26–32]. It is

argued that misconceptions about balance control arise when the effects of time

delay are ignored [33–35]. We draw attention to a novel “passive control” mech-

anism for maintaining balance that arises from the interplay between random

perturbations (“noise”) and delay [35–38]. Thus it is possible that interactions

between the sole of the foot and the walking surface can, on the one hand, be the

cause of the fall and, on the other, be a stabilizing mechanism for minimizing

the risk of falling.

I. INTRODUCTION

Concepts derived from considerations of the inverted pendulum arise frequently in dis-

cussions of the control of human balance [30, 31, 39] and walking [40–43]. This approach has

been particularly successful in understanding the changes in the kinetic and potential energy

that occur during human locomotion [44, 45]. However applications to the study of human

gait and balance stability are made difficult because the precise identity of the controller is

not known, and hence the full dynamical system can not be written down. Consequently the

approach has been to use experimental observations to try to determine the nature of the
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control strategies. Typically these findings are interpreted in the context of models having

the general form of an inverted pendulum, such as

θ̈(t) + βθ̇(t)− αθ(t) = Fcontrol(t) (1)

where α, β are positive constants chosen so that in the absence of control the fixed point is

unstable, θ is the vertical displacement angle (θ = 0 corresponds to the upright position,

hence the “−”), and Fcontrol describes the proposed feedback controller. Particular attention

has been given to the fact that neural feedback control mechanisms are time-delayed (neural

latencies are ∼ 100− 500ms) [6–8, 10, 11, 46]. Consequently (1) becomes

θ̈(t) + βθ̇(t)− αθ(t) = Fcontrol(t− τ) (2)

where τ is the time delay. Moreover, it is increasingly being recognized that uncontrolled

perturbations (“noise”), likely related to muscle activity [47, 48], can play important roles in

maintaining balance [35–38]. Although it is permissible to ignore the effects of time delays

when considering issues related to the energetics of locomotion, considerations of the effects

of time delays and noise are essential for understanding the stability of balance and gait [6].

To date there have been no attempts to directly compare the dynamics of mechanical

pendulums stabilized by delayed feedback [13, 14, 16] to those observed for well studied

human paradigms of balance control, namely, stick balancing at the fingertip [17–25] and

postural control during quiet standing [26–32]. Such comparisons are essential in order to

identify those aspects of the control that are in common, and hence are understood, from

those aspects of control that are different and hence require further attention. Here we

explore whether the balanced state represents a fixed–point attractor or a more complex

and bounded time–dependent state.

We organize our discussion as follows. In Section II we briefly review the feedback stabi-

lization of a pendulum attached to a cart at a pivot point and then, in Section III, include

a time delay in the feedback. An important concept in these mathematical studies is the

relative magnitude of the feedback delay, τn, versus a critical delay, τc, which is proportional

to one–half the length of the pendulum. Although τn > τc is sufficient to guarantee insta-

bility, τn < τc does not necessarily guarantee stability. In Sections IV and V we examine

three paradigms of balance control: the mechanical inverted pendulum with time–delayed

feedback (Sections IVA and VA), stick balancing at the fingertip (Sections IVB and VB),
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(a) (b)

FIG. 1: a) Schematic representation of inverted pendulum stabilized by the movements of a cart.

M is the mass of the cart and P is the pivot point of the pendulum. See text for definition of other

parameters. b) Implementation of delayed feedback control of an inverted pendulum that utilizes

the carriage mechanism of a DC–motor–operated plotter [14] (see METHODS for details).

and postural sway during quiet standing (Sections IVC and VC). In each case we conclude

that the upright fixed–point is unstable; however, only in the case of human stick balancing

is τn ≥ τc. These observations strongly support previous suggestions that the balanced posi-

tion does not simply represent a noisy fixed–point attractor, but rather a more complex and

bounded behavior [20, 26–30, 32, 49–54]. Finally in Section VI we argue that the differences

between human and mechanical control of balance because the presence of time delays and

random perturbations (“noise”) place severe restrictions on the nature of feasible control

strategies. In this way we draw attention to a number of fundamental problems for balance

control with time–delayed feedback that, up until this time, have been overlooked by the

neuroscience and bio–mechanics communities.

II. INSTANTANEOUS CONTROL (τ = 0)

The standard engineering approach to the problem of stabilizing an inverted pendulum

is depicted schematically in Figure 1(a). The pendulum is attached to a cart by means of

a pivot, which allows the pendulum to rotate freely in the xy plane. Neglecting friction in

the pivot, the equations of motion for the full system are:

(m+M)ẍ+ Ffric +m`θ̈ cos θ −m`θ̇2 sin θ = Fcontrol

m`ẍ cos θ + 4
3
m`2θ̈ −mg` sin θ = 0.

(3)
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where M is the mass of the cart, ` is half the length of the pendulum, i.e., the distance from

the pivot to the center of mass of the pendulum, and Fcontrol represents the force that is

applied to the cart in the x direction for the purpose of keeping the pendulum upright. The

term Ffric represents friction between the cart and the track and can be quite complicated

for some experimental setups [13, 16]. In the following we will take Ffric = δẋ, i.e. simple

viscous friction, for concreteness.

When Fcontrol is chosen based on the current values of the system variables, it can be

shown that one can always find a linear feedback law which depends on all four degrees of

freedom that will stabilize the pendulum in the inverted position [2]. This can be seen as

follows. Let

Fcontrol = k1x+ k2θ + k3ẋ+ k4θ̇, (4)

where the kj are to be determined. Then the characteristic equation of the linearization

of the equations of motion (3) about the equilibrium point corresponding to the upright

position of the pendulum is

∆(λ) = `(m+ 4M)λ4 + (3k4 − 4`k3 + 4`δ)λ3 + (3k2 − 4`k1 − 3(m+M)g)λ2

+3(k3 − δ)gλ+ 3k1g.
(5)

The Routh-Hurwitz criterion states that a necessary condition for all the roots of the

above polynomial to be in the left-half-plane is that all the coefficients of λ be non-zero and

have the same sign [2]. The coefficient of the fourth-order term of characteristic equation

(5) is positive. Therefore stability of the upright position requires that the coefficients of all

the lower terms also be positive. This observation leads to the following constraints on the

state-feedback gain parameters [7, 10]:

k1 > 0, k3 > δ, (6)

and k2 and k4 are bounded by k1 and k3:

k2 >
4`

3
k1 + (m+M)g, k4 >

4`

3
(k3 − δ). (7)

A variety of methods have been developed to determine the “optimal” choices of the kj

which satisfy these criteria (see, e.g. [2]). Note that for this model, when the feedback

control stabilizes the pendulum in the upright position (θ = 0) the position of the cart

is fixed at x = 0. It is not possible to stabilize the pendulum at θ = 0 with the cart in
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an arbitrary position. In the terminology of control theory, the system (3) with feedback

control (4) is stabilizable but not controllable.

Two approaches can be taken to simplify the analysis for stabilization of the upright

position of the inverted pendulum. First, we can neglect the dynamics of the cart. This

corresponds to taking k1 = 0, k3 = δ in the feedback law and assuming the mass of the cart

is much less than that of the pendulum, M +m ≈ m, and produces the model [7]

(4− 3 cos2 θ) θ̈ +
3

2
sin 2θ θ̇2 − 3g

`
sin θ = − 3

m`
cos θFcontrol (8)

with feedback force:

Fcontrol = k2θ + k4θ̇.

The constraints (7) for stabilizing the pendulum in the inverted position become

k2 > mg, k4 > 0. (9)

which agree with those derived in [11]. For the discussion that follows (see RESULTS) we

note the equation for the cart becomes

ẍ = g tan θ − 4

3
` sec θ θ̈.

Thus when the pendulum is at the inverted position, θ = 0, θ̇ = θ̈ = 0, the cart is not at a

fixed position but moves with some constant speed.

An alternate approach is to assume that the inverted pendulum is stabilized not by the

application of forces at the base, but by the direct application of torque at the pivot. In this

case the model is very simple

4

3
m`2θ̈ −mg` sin(θ) = Tcontrol (10)

where the linear feedback control torque is

Tcontrol = q2θ + q4θ̇.

The linearization of equation (10) about θ = 0, is very similar to that of equation (8). Thus

the analysis of [6, 11] may be easily restated for this equation. In particular, the pendulum

will be stabilized in the upright position for any choice of feedback satisfying

q2 < −mg`, q4 < 0.
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It is important to note that in all of these approaches the criteria are derived using

linearization and hence the control is applied locally. Thus for stabilization of the inverted

position to be possible it is necessary to first bring the pendulum close to the upright position

(θ is small). If a perturbation pushes the pendulum sufficiently far from the upright position

the feedback control will fail. This is also true when the feedback is time-delayed.

III. STABILIZATION WITH DELAYED FEEDBACK

From the point of view of the human body, the only way to implement the feedback

control, Fcontrol, instantaneously is to assume that it is due to the biomechanical properties

of the joints, connective tissues, etc. Indeed, historically it was thought that balance control

could be entirely due to these biomechanical properties [30, 31, 55]. However, subsequent

measurements demonstrated that these forces alone were not sufficient to effectively maintain

balance [56, 57]. Neural feedback control mechanisms for balance are time-delayed. In other

words there is a significant time interval between when the variables are measured and when

the forces are applied. Consequently the force applied to the cart becomes

Fcontrol = k1x(t− τ) + k2θ(t− τ) + k3ẋ(t− τ) + k4θ̇(t− τ), (11)

where it is assumed that the measurements all occur at the same time. The approaches

taken to choose the kj to stabilize the pendulum depend on the magnitude of τ .

A. Small delay

If the delay, τ , is small, then one may anticipate that it will have little effect on the

system. In this situation, the following approach is commonly used in engineering/control

theory:

1. Choose the kj as if there were no delay, using standard control theory techniques.;

2. With the chosen kj, determining the minimum delay, τd which causes instability.;

3. Check that τ < τd.

This is the approach taken in [13, 16]. We will refer to τd as the destabilizing delay.
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B. Large delay

The time delays involved in the control of human balance are long [28, 29, 46]. In this

case it is necessary to design the control by taking the delay into account. One way to do

this is by analyzing the characteristic equation of the linearization of the model with the

delayed feedback. For the full cart-pendulum model (3) with the feedback (11) this is:

∆(λ) = `(m+ 4M)λ4 + 4`δλ3 − 3(m+M)gλ2 − 3δgλ+

e−λτ ((3k4 − 4`k3)λ
3 + (3k2 − 4`k1)λ

2 + 3k3gλ+ 3k1g).
(12)

This equation has the same form as (5); however some terms are modified because of the

presence of the time delay. Thus the stability problem becomes that of determining, for a

given set of the physical parameters M,m, δ, `, g, how to choose the kj so as to maximize the

delay for which the upright position becomes unstable. To do this, one needs to determine

how the stability of the upright equilibrium point depends on the choice of kj as well as

the time delay τ . Since this is a 5 parameter problem, a full analysis is difficult. A more

tractable problem is to reduce the number of parameters to 3 (two of the kj and the delay).

This will give a characteristic equation that can be analyzed, but the result will not be

optimal. One way of making this reduction is to decouple the dynamics of the cart from the

pendulum by neglecting friction between the cart and the pendulum and taking k1 = k3 = 0

and M + m ≈ m. An alternative is to choose two of the kj’s so that two of the necessary

conditions for stability with zero delay are satisfied. The problem then becomes to determine

the region of stability in terms of the other two kj’s and the delay. The former approach

was taken by [6, 11] and the latter by [12]. Both analyses yielded similar results, which we

now describe. For fixed values of the physical parameters, there exists a critical delay, τc,

such that

1. If τ > τc there are no control parameters that stabilize the pendulum in the upright

position.

2. If τ < τc there are always values of the control parameters that stabilize the pendulum

in the upright position. The size of the set of control parameters that stabilize the

pendulum decreases as the delay increases.

To illustrate these results consider the characteristic equation (12). Choosing

k2 =
4`

3
k3 + 5(m+M)g, k4 =

4`

3
k3, (13)
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(a) (b)

FIG. 2: Stability of the upright fixed–point for the model (3) with parameters corresponding to the

experimental setup in [13] and k2, k4 chosen according to (13). (a) The stability region is terms

of k1, k3 for τ = 0.01 (dashed), τ = 0.05 (dotted) and τ = 0.1 (solid). (b) Effect of changing the

length ` on the critical delay τc.

ensures that that conditions (7) are satisfied. Thus stability for τ = 0 is guaranteed for

any choice of k1, k3 satisfying (6). By analyzing (12) with τ 6= 0 one can determine, for

any τ sufficiently small, a region in the k1, k3 plane where the upright position is stable.

As τ increases the region shrinks, until for τ = τc it disappears entirely. These results

are illustrated for the parameter values corresponding to the experimental setup of [13] in

Figure 2(a). A similar illustration for (8) with delayed feedback given by (11) can be found

in [11]. Stépán has also shown analytically [6, 11] that the critical delay for (8) is given by

τc =
√

2`
3g

. Restating the analysis of [6, 11] for (10), shows that the critical delay for the

torque control model is τc =
√

8`
3g

. These results show mathematically that the critical delay

increases as the length increases, which is consistent with the experimental observation that

long sticks are easier to balance at the fingertip than short ones. The corresponding analysis

of (3) is more difficult, but a numerical investigation shows that τc increases as ` increases

[12] (Figure 2(b)).
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C. Two delays

For any real system it is possible to obtain instantaneous estimates of the force and

displacement but not the velocity. Approximating speed requires that measurements be

made at two distinct points in time, i.e.

θ̇(t) ∼ θ(t)− θ(t− τ1)
τ1

(14)

where τ1 > 0 is the time interval, or delay, between the two measurements. Atay [9] has

pursued this point in the context of a pendulum model similar to (10) where

Tcontrol = T (θ(t− τ), θ̇(t− τ2))

where τ2 = τ+τ1. Controllers of this form depend on the state at two different times and are

sometimes referred to as proportional minus delay control [58]. When τ2 = 2τ Atay derived

a result similar to those discussed above: for (10) there is a critical delay, τc =
√

4`
3g

, such

that if τ < τc, then it is always possible to choose the parameters to stabilize the pendulum

in the upright position.

D. Over–damping

A starting point for investigating the effects of the interplay between noise and delay is to

reduce (1) to a first–order delay differential equation and assume that the effects of noise are

additive, i.e. the effects of noise are independent of the state variable. Since postural sway

mechanisms are likely to be over–damped in healthy individuals [29, 59], we have γθ̇ � m`2θ̈

and hence, for small θ, we have

θ̇ − γθ + σ2ξ(t) = f(θ(t− τ)) (15)

where the additive gaussian white noise term, ξ(t), satisfies

〈ξ(t)〉 = 0,

〈ξ(t)ξ′(t)〉 = σ2δ(t− t′)

where σ2 is the variance and δ is the Dirac–delta function. Furthermore by taking into

account the switch–like properties of the sensory and motor neurons involved in postural
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FIG. 3: The result of simulations of the first passage time distribution for a discretized equation

x(t + 1) = x(t) + dt(µx(t − τ) + ξ) where ξ is a gaussian white noise with variance σ2. We have

set the threshold at X = 5.0. The parameters are dt = 1.0, µ = 0.1, σ2 = 0.3 The statistics are

averaged from 5000 realizations.

control [29, 32] we have

f(θ(t− τ)) =

 0 if |θ| ≤ Π

−K otherwise
(16)

This reduces the analysis of (15) to considerations of a first–passage time problem for an

unstable fixed point (left–hand side of (15)) with re-injection into the interval −Π ≤ θ ≤ −Π

wherever the threshold, Π is crossed.

Current interest has focused on the possibility that the left-hand side of (15) also contains

a time delay. This gives rise to a unstable delayed random walk [32, 35, 38]. As is shown

in Figure 3, the interplay between noise and delay can transiently stabilize the unstable

fixed point, i.e. prolong the first passage time. These effects are interesting in light of

measurements of the reaction time and response time when posture is perturbed [46]. In

this study it was observed that the neural time delay, i.e. the time interval between the

onset of a 3 cm postural displacement and the initiation of electromyographic activity, is

∼ 116ms (range 93–137ms depending on which muscle is recorded). However, the latency

to reverse the perturbed movement is much longer, ∼ 320ms (range 177–492ms). Thus a

passive control mechanisms that “fills in the gap” between the time the neural signal arrives
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(a)

(b)

FIG. 4: Block diagrams for a) PID control and b) the delay control. For more details see [14].

at the neuro–muscular junction and the time to make a corrective movement would be useful

for maintaining balance. This implies that passive control of this form can be part of the

control of balance and, by implication, gait stability.

IV. METHODS

A. Delayed controller for inverted pendulum

We used a low friction time–delayed inverted pendulum controller that takes advantage

of the properties of the carriage mechanism of DC–motor–operated plotters (Figure 1(b)).

Previous implementations employing a mechanical cart are described in [13, 16]. Our sys-

tem was designed to be capable of controlling both the vertical angle and x–position of

the pendulum using separate proportional–integral–derivative (PID) controllers (see below)

(Figure 4). The stick length was 0.39m and the track length was 0.29m. A potentiome-

ter placed at the fulcrum of the pendulum detects the vertical displacement angle. A DC

servomotor drives the slider on the rail using a timing belt, and the position of the slider

is detected by a multi–rotational potentiometer. The timing belt compliance is very small
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FIG. 5: The effects of changing the time delay on the transfer function of the PID controller: a)

gain and b) phase.

and does not introduce unwanted poles within the bandwidth of the servomechanism. The

error output signals of the PID controllers are added to produce the input signal for the

motor driver. The DC motor is driven by a power amplifier similar to that used as an audio

amplifier. The signal delay was introduced by first A/D converting it and writing it to a

static RAM (Figure 4(b). The contents of the RAM were read out after a specified time,

τ , and then D/A converted to produce an output signal. The delay time, τ , was controlled

by an outside PC using the Ethernet. The current sampling period is 1ms, the maximum

signal delay is approximately 4s, and the granularity of the control is 1ms.

We used PID controller to regulate the angle of the stick and the position of the cart [60].

A PID controller is a three–term feedback controller: the P component is proportional to

the error, i.e. the difference between the current angle and the target angle of the stick or

the current and target position of the cart, the I component is proportional to the integral

of the error over some time interval, and the D component is proportional to the derivative

of the error. In our case the P component greatly reduced the error; however, because of

inertial effects the error could not be reduced to zero. Therefore we included an I component

to make the error zero: by summing over a long enough time interval even a small error

can produce a big enough drive signal to reduce the error. Finally the D component, which

does not effect the error, was adjusted to minimize overshot. Figure 5 shows the open–loop
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transfer function of the delayed pendulum controller with and without delay. A time delay

is not expected to effect the gain of the transfer function, but adds a contribution −fτ to

the phase, where f is the frequency. When τ = 0, the amplitude of the transfer function

has a peak of about 3 db at ∼ 9.5 Hz which is related to the damping ratio of the second–

order transfer function. When τ 6= 0 this peak increased in magnitude and was shifted to

a lower frequency, suggesting that the response of the PID controller is limited by its slew

rate (proportional to frequency times the gain). However, over the range of delay between

1− 10ms the slew rate was approximately constant and did not itself affect the stability of

the delayed pendulum controller.

B. Stick balancing at the fingertip

Stick balancing was performed while the subject was seated comfortably in a chair as

described previously [20, 21]. The subjects, ages 18–58 years, were required to keep their

back in contact with the chair at all times with their arm extended in front of them. In this

position the subject could not see both the position of the tip of the stick and the fingertip at

the same time in their field of view. Sticks were wooden dowels with diameter 6.35 mm and

length ∼ 0.55m (i.e. ` = .275m). Reflective markers were attached to each end of the stick

and three specialized motion cameras (Qualisys Oqus, Model 300) detected infrared light

reflected from these markers. The image detected by each camera determines two of the

spatial coordinates: the third coordinate is determined by triangulation methods involving

at least two of the cameras. Subjects reported in this communication had moderate skill

levels had increased their stick balancing skill with practice by about 2–fold (typically from

a mean survival time of 8− 12s to 17− 25s for 25 consecutive trials).

We calculated the change in speed of the fingertip, ∆Vf , using the bottom marker at-

tached to the stick as follows [21]: The change in the position of the marker, ∆~r(t), in

one time step ∆t is ∆~r(t) = ~r(t + ∆t) − ~r(t), where the notation ~r denotes the position

vector. All vectors were measured from a common reference point provided by the Qualisys

measurement system. The magnitude of the mean speed, V , is

V (t) =

∥∥∥∥∥∆~r(t)

∆t

∥∥∥∥∥
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where the notation ‖.‖ denotes the norm, and hence

∆Vf (t) = V (t+ ∆t)− V (t) (17)

C. Human postural sway

Measurements of the center of pressure (COP) were obtained by having subjects stand

in stocking feet on a pressure platform (Accusway, AMTI). Subjects were asked to look

straight away with eyes closed while remaining as still as possible. The sampling frequency

was 200 Hz and the data was re–sampled at 100 Hz. For postural sway K(s) was calculated

using only the displacements in th anterior–psoterior (AP), y, and medio–lateral (ML), x,

directions.

We analyzed the fluctuations in COP in the context of a correlated random walk [26, 27,

32]. The two–point correlation function, K(s), was calculated as [32]

K(s) =
1

N − n

N−n∑
i=1

[(x(ti)− x(ti + s))2 + (y(ti)− y(ti + s))2] (18)

For each s = |t1−t2|, the two–point correlations are calculated from N data points spanning

N−n data intervals of length ns and where x indicates the displacements of the fluctuations

in the anterior–posterior direction, and y the displacements in the medial-lateral direction.

For a correlated random walk [26, 27]

K(s) ∼ s2H

where H is a scaling factor such that H > 0.5 indicates positive correlation (persistence) and

H < 0.5 indicates negative correlation (anti–persistence). For stick balancing we calculated

K(s) for the movements of the fingertip in the same way except the fluctuations in the

vertical direction, z, were also included.

All of the experiments involving human subjects were performed according to the prin-

ciples of the Declaration of Helsinki and informed consent was obtained. Experimental

protocols for human postural sway and stick balancing at the fingertip received separate

approval by the institutional review board at Claremont McKenna College.
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FIG. 6: Response of the delay controller (dashed line) to a 2 Hz input input frequency (solid line)

for different time delays: a) 5 ms and b) 15 ms. See [14] for more details.

V. RESULTS

A. Mechanical stick balancing

We first examined the behavior when the PID controller related to the x–position was

omitted. Since the transfer function is known (Figure 5), we can determine the dynamics by

simply injecting sinusoidal inputs. From this perspective, stability of the upright fixed–point

means that the input and response frequencies are the same, and instability that the fre-

quencies are different. Figure 6 shows that the delayed inverted pendulum controller exhibits

two behaviors depending on the choice of the delay and frequency of the input. Instability

of the upright position was characterized by a difference between the input and response

frequencies. For example, when f = 2Hz we have stability when τ = 5 ms (Figure 6a) and

closed–loop instability, i.e. “hunting”, when τ = 15ms (Figure 6b). However, for τ = 15ms

we observed that stability could be achieved by increasing the input frequency to 4− 10 Hz.

If we take τc =
√

2`
3g
∼ 115ms, then for these delays the upright fixed–point can be stable.

However, we observed that even in the ”hunting” regime the stick remained upright albeit

with oscillatory dynamics.

We next examined the behavior of the time-delayed inverted pendulum controller when

both the PID controller for the angle and position were activated. The I loop of the angle–
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PID is absolutely necessary to balance the inverted pendulum since the average error to the

right and left is zero only at the balanced angle. This occurs when the control works to make

the angle–PID integration error zero. However, the PID–distance controller (negative feed-

back) for the position stabilizer of the slider functions like a positive feedback for the inverted

pendulum and vice versa. In other words, whenever we increase the slider position error so

that the position shift is effective in activating the PID–distance controller, we necessarily

destabilize the PID–angle controller. On the basis of these experimental results we conclude

that we cannot control both the vertical angle and the position of an inverted pendulum, at

least when using PID–controllers restricted to the horizontal plane (see DISCUSSION).

B. Human stick balancing

For stick balancing at the fingertip, there are two ways the stick can fall, and hence, as

for mechanical stick balancing, two control problems: 1) the vertical displacement angle,

θ, becomes too large; and 2) the position of the hand drifts out of reach of the arm. Our

focus here on the first control problem and, in particular, on the nature of the control that

occurs on time scales equal to or less than the neural latency [20, 25]. Figure 7(a) compares

the movements of the vertical displacement angle, θ, calculated as ∆z/`, to the changes in

speed, ∆VR, made by the fingertip. Clearly the relationship between controlled variable (θ)

and controller (∆Vf ) is very different than seen for mechanical stick balancing (Figure 7(a)).

Whereas for mechanical stick balancing the controlling forces vary sinusoidally, those for stick

balancing occur intermittently. Indeed it has been shown that the times between successive

corrective (upward) movements obey a −3/2–power law [20]. Power laws with this exponent

can be accounted for by assuming that one of the control parameters is stochastically forced

back and forth across a stability boundary [20]. In other words the balance control system is

tuned near or at the “edge of stability”. This interpretation is consistent with the observation

that τn ∼ τc =
√

2`
3g
∼ 140ms where τn is estimated using the cross–correlation between the

movements of the fingertip and tip of stick (estimates of τn using different techniques yield

larger values [19, 24].) An alternate interpretation is that these power laws arise because of

a time-delayed optimal control mechanism [61].

Figure 7(b) shows the two–point correlation function for the movements of the fingertip.

For small displacements H > 0.5 (observed for 9 subjects) and hence there is persistence.
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(a) (b)

FIG. 7: Dynamics of stick balancing at the fingertip: (a) compares the time series of the cosine of

vertical displacement angle, equal to ∆z/`, to that of the changes in speed, ∆Vf of the fingertip,

and (b) shows K(s) for the movements of the fingertip (lower marker on stick) calculated using

(18). The digitization rate is 1000 Hz. For this subject H ∼ 0.72.

The simplest interpretation of this observation is that the upright fixed–point is unstable and

hence sufficiently close to this fixed–point the system is allowed to drift away. Indeed it has

been suggested that for a system at the edge of stability, the fluctuations resemble a delayed

random walk whose mean displacement is approximately zero [20]. For the mechanical

inverted pendulum, the upright fixed–point in the “hunting” regime is also unstable even

though the stick remains upright. However, in this case the dynamics of the controller

become clearly oscillatory. For stick balancing it is clear that the behavior of ∆Vf is more

complex.

C. Human postural sway

Two concepts are important for understanding the control of human balance during

quiet standing [30, 31]: 1) center of mass (COM), the net location of the center of mass

in 3–D space, and 2) center of pressure (COP), the weighted average of the location of all

downward (action) forces acting on the standing surface. Typically, COM is computed by

making a weighted average of the COM’s of each body segment using a total body model

[30, 31], whereas COP is measured using a force platform [31]. The COP represents the

neuromuscular response to imbalances of the body’s COM, i.e. when the COM is displaced

from the neutral axis of alignment, compensatory changes must be made in COP to re-
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direct the COM back toward the neutral axis. These compensatory changes are related to

neuromuscular forces. Previous studies have shown that on slow time scales (digitization rate

20 Hz) COP regularly oscillates about COM in the AP–direction; however, more complex

behaviors are seen in the ML–direction [30, 31]

Figure 8a shows the fluctuations of the COP in the (x, y) plane for a single subject.

For slightly less than one–third of subjects, K(s) could be described by three scaling regions

demarcated by the ↓ in Figure 8b as described previously [26, 27]. However, for other subjects

K(s) could not be represented by three scaling regions [28, 32]. Of these subjects, two

patterns could be distinguished, an oscillatory K(s) and a non–oscillatory K(s) (Figure 8c).

In all cases, for small displacements we observed that H > 0.5 and for large displacements

H < 0.5. The fact that the difference types of K(s) could be observed in the subject,

recorded at different times, suggests that the variations in K(s) have a dynamic basis. This

interpretation in supported by the fact that all patterns could be reproduced by a simple

model for postural sway, namely (15)–(16), by varying the noise intensity [29, 32] (Figure 8d).

The observation that the upright fixed–point for postural sway is unstable is consistent with

the measured latencies. The COM for a standing human is located approximately at the

level of the second sacral vertebrae, i.e. ` ∼ 1m from the standing surface. This gives

τc =
√

2`
3g

= 260ms. Thus τc is shorter that the neural time delay, but longer that the time

delay to reverse the perturbed movement τn (Section III D).

Typically the COP fluctuations are slightly biased in the AP–direction (as shown); how-

ever, some subjects the COP fluctuations are not biased or slightly biased to the left or

right. There was no relationship between the bias in the COP fluctuations and the type of

K(s) pattern observed.

VI. DISCUSSION

Our observations demonstrate that for three paradigms of human balance control, namely

mechanical stick balancing, human stick balancing at the fingertip and postural sway during

quiet standing, the fixed–point for the upright position is unstable. This conclusion is sup-

ported by direct comparisons of the movements of the inverted pendulum and the controller

and, in the case of human balance control, the fact that H > 0.5 for small displacements.

Mathematical studies of time-delayed feedback control emphasize the importance of mea-
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FIG. 8: Dynamics of the fluctuations in the center of pressure (COP) measured during quiet

standing with eyes closed using a force platform. (a) Trajectories of COP projected onto the

anterior–posterior (AP): medial–lateral (ML) plane.; (b) Comparison of the project area of the

fluctuations in COP to the area of the base of support, i.e. the sum of the area under and between

the subject’s feet.; (b)-(c) show different patterns of K(s), and (d) shows that the different patterns

of K(s) can be generated from (15)–(16) by changing the noise intensity. The K(s) are arranged

with the lowest noise intensity on the bottom and the highest on the top. See text for discussion.

suring the relative magnitudes of τc and τn. However, there are several problems associated

with making decisions about stability based solely on measurements of these delays. First,

although τn > τc guarantees instability of the fixed–point, τn < τc does not guarantee sta-

bility. Second, it is difficult to apply these criteria to human data since estimates of τn vary

depending on how you measure them (see Sections VB and VC). Finally, and more impor-

tantly, focusing on τn and τc overlooks the fact that instability can arise simply because of

the inherent difficulties of simultaneously controlling the position of the inverted pendulum

and the controller using delayed feedbacks. In other words the balanced state is stabiliz-

able, but not controllable (see Section II). Several empirical observations support this issue

as a fundamental mechanism for balance instability: our inability to control a mechanical

inverted pendulum with two PIDs controllers, published time series of COM and COP for

postural sway [30, 31] and the observed continual movements of the hand of even an expert

stick balancer.
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Currently it is believed that a better way to view the balanced state is as a state in

which the vertical displacement angle is confined, or bounded, in some manner within an

acceptable range about θ = 0 [20, 26, 35, 54]. One way that this can be accomplished

is through the appearance of bounded, time dependent oscillatory types of attractors, e.g.

limit cycle, quasiperiodic, chaotic, and so on. It is well established that feedback control with

delay can readily generated these behaviors through both supercritical and subcritical Hopf

bifurcations [15, 16, 51]. The ’hunting’ behavior observed for mechanical inverted pendulums

and the COP oscillations about COM recorded in the AP–direction for human postural sway

[30, 31] suggests that oscillatory types of attractors may be part of the solution. However,

there are a number of reasons to believe that the approach taken by the nervous system to

control human balance may be fundamentally different that the approaches typically taken

by engineers to stabilize a mechanical inverted pendulum. We discuss our reasoning in terms

of four additional misconceptions that arise in biomechanical discussions of gait and postural

stability when considerations of time delays are omitted.

First, in the application of control engineering concepts to the nervous system it is often

implicitly assumed that neural feedback operates continuously. Putting aside considerations

of the high costs associated with implementing such strategies, the main problem is that

continuous feedback is not desirable for stabilizing an unstable fixed point in the presence

of noise and delay [33–35]. The problem is distinguishing those fluctuations that need to be

acted upon by the controller from those that do not. This is because, by definition, there is a

finite probability that an initial deviation away from the set point will be counter–balanced

by one towards the set point just by chance. Too quick a response by the controller to a

given deviation can lead to “over control” leading to destabilization, particularly when time

delays are appreciable. On the other hand, waiting too long runs the risk that the control

may be applied too late to be effective. Thus methods based on continuous feedback are

not only anticipated to be very difficult to implement by the nervous system, but are also

unlikely to be effective. One way to achieve effective control in the presence of noise and

delay is to use an “act–and–wait” type of control strategy [33, 34]. An act–and–wait control

strategy is a type of adaptive control in which when a corrective force is generated (‘act’) it is

necessary to ’wait’ sometime before the next corrective force is generated. One possible way

to implement an “act-and–wait” control strategy is to use a switch–like controller, in which

corrective outputs are generated only when the dynamical variables cross pre–set thresholds
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[32, 35, 54]. Switch–like adaptive controllers are well known to engineers and have the

property that they are optimal when the control is bounded [4]. The intermittent controlling

movements observed for both stick balancing at the fingertip (Figure 7(a) and [20]) are

certainly consistent with the notion of discontinuous control. In retrospect, measurements of

the two–point correlation function for human postural sway were the first to draw attention

to the possibility of a act–and–wait control strategy for balance control [26, 27]. Finally the

existence of an adaptive type of controller for postural balance might explain the observation

that although balance instability increases in those elderly subjects who have a prolonged

τn, these subjects nonetheless remain upright most of the time [62]!

The second misconception that has arisen in biomechanical discussions of gait and posture

stability as a consequence of neglecting the importance of time delays is the tendency to

equate oscillations with the notion of passive feedback, i.e. feedback that relies solely on the

biomechanical properties of joints and their associated connective tissues (see, for example,

[30, 31]). Indeed the aforementioned oscillations of COP about COM in the AP–direction

during postural sway were initially interpreted in terms of a harmonic oscillator–type model

[30]. This interpretation led to two untenable additional assumptions, namely, 1) damping

was precisely zero (not true [29, 59]), and 2) balance control during quiet standing was

entirely maintained by the biomechanical stiffness of the ankle joint (also not completely

true [56, 57]). In contrast, stable limit cycle oscillations readily arise in models of delayed

inverted pendulums even when they are damped, either because the feedback is switch–like

[29] or because the destabilizing delay is exceeded and hence the equilibrium point becomes

unstable [13, 15, 16, 51]. Thus there is no reason to ignore the effect of damping to account

for the oscillations observed in balance control or, even to assume that the presence of

oscillations eliminates the possibility of active neural feedback control.

A third misconception concerns whether it is possible to control simultaneously both the

angle and the pivot point at an arbitrary position of the pendulum using linear feedback.

The observations in Section II suggest that this is not possible when τ = 0. Our observations

suggest that this cannot be achieved when τ 6= 0, at least by using PID–type controllers.

This is another reason why the dynamics of human balance control are so complex (see, for

example, [20, 30, 52]. A closely related issue concerns how the nervous system estimates

speed (derivative) of moving object since speed is included in the feedback controllers used

by engineers to stabilize the pendulum’s upright position. In order to measure a speed it is
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necessary to obtain measurements at two points in time. Equation (14) implies that there is

likely to be an intimate relationship between the fact that the nervous system is constructed

of delay lines and the estimation of spatial and temporal derivatives. Certainly the visual

system has the ability to estimate speed of moving objects [63] and indeed it has been

possible to construct a silicon retina that measures speed by incorporating features that

mimic those of neurons in the retina [64, 65]. However, it is not known whether this can also

be accomplished by using the non–visual nervous system with sufficient accuracy to enable

an inverted pendulum to be stabilized. This observation may explain why it is much easier

to balance a light stick at the fingertip with eyes open, than with eyes closed. Along these

lines we might speculate that the continued movements of the hand (and hence fingertip) in

the horizontal plane of even a very expert stick balancer arise because the nervous system

has access only to poor information regarding the velocity of hand movements which are not

normally located within the visual field of the balancer during the performance of this task

(see METHODS). Moreover it becomes less clear whether changes observed in gait width

are a stabilizing mechanism [66–68], or simply a reflection of the inability of the nervous

system to simultaneously control both gait width and vertical stability.

A final misconception is the belief that random perturbations (“noise”) have only dele-

terious effects on balance control. It is important for the physically–oriented reader to note

that neuroscientists working on human balance control typically use the term “noise” to

refer to either the noise–like components of muscle activity [48] or to externally generated

vibratory inputs applied to the body [69]. It is becoming clear that these types of noisy

inputs can have beneficial effects on balance control. For example, vibrations applied to the

soles of the feet can stabilize postural sway through the ability of sub-threshold vibrations

to enhance the sensitivity of relevant sensory neurons via a mechanism known as “stochastic

resonance” [69]. Recently attention has focused on the possibility that noise can directly

confine an unstable dynamical system close to the origin in the presence of retarded vari-

ables [35–38]. Thus the observation that postural sway in the elderly is characterized by

both increased muscle activity [48] and the use of open–loop control for longer time intervals

[62] may be a consequence of an increased reliance on passive control mechanisms that arise

from the interplay between noise and delay.

Evaluating control strategies for real dynamical systems requires careful consideration

as to whether it is feasible to implement the strategy given the inherent limitations of the
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resources at hand. Control strategies that involve measurements of displacement and velocity

are useful for mechanical systems, e.g. feedback and feed–forward control, when the time

interval required for the estimation of the velocity can be made sufficiently short; though

even here problems exist [7, 8, 10]. Although these engineering concepts have heavily invaded

the neuroscience literature, it is completely unclear whether the nervous system attempts the

same types of control that engineers attempt to implement. The nervous system may take

advantage, in some way, of the long delays that are present to use novel and perhaps more

robust control strategies (see also [70]). Near the edge of stability, stochastic forms of control

become possible that depend on the interplay between noise and delay [20, 35, 36]. Perhaps

the nervous system uses adaptive “act and wait” control strategies simply because they are

cheaper to implement and maintain. In any case, until issues such as these are resolved, we

suggest that conclusions drawn from the application of control engineering concepts to the

nervous system be interpreted cautiously.
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