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Abstract

We consider a ring of identical elements with time delayed, nearest neighbour cou-
pling. The individual elements are modelled by a scalar delay differential equation
which includes linear decay and nonlinear delayed feedback. The linear stability of
the trivial solution is completely analyzed and illustrated in the parameter space of
the coupling strength and the coupling delay. Conditions for global stability of the
trivial solution are also given. The bifurcation and stability of nontrivial synchronous
solutions from the trivial solution is analyzed using a centre manifold construction.

Keywords: delay differential equations, neural networks, stability, Dn symme-
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1 Introduction

The work of Golubitsky, Stewart and Schaeffer [9, Chapter XVIII], shows that rings of

identical cells can lead to many interesting patterns of oscillation, which are predictable
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based on the theory of equivariant bifurcations. In a series of papers [18, 19, 26] Wu et al.

extended the theory of equivariant Hopf bifurcation to delay differential equations. Recently,

there has been interest in applying these results to neural networks, primarily to models

related to the Hopfield-Cohen-Grossberg neural networks [6, 10, 11, 15, 16] with time delays

[20, 21]. Most of these studies have concerned lower dimensional systems (e.g [2, 22, 27])

and/or systems with a single time delay [26, 27].

In this paper, we consider the generalization to arbitrary n of the model studied by [4, 22].

That is, we consider system of n identical elements with time delayed nearest-neighbour

coupling. The individual elements are represented by a scalar equation, consisting of a

linear decay term and a nonlinear, time delayed self connection (feedback). The architecture

of the model is given in Figure 1.
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Figure 1: Architecture of a network of n neurons with two different time delays

This model can be described by the following delay differential equations:

ẋi(t) = −xi(t) + α f(xi(t − τs)) + β [g(xi−1(t − τ)) + g(xi+1(t − τ))] ,

(i mod n) (1)

where f , g are adequately smooth, e.g. f, g ∈ C3, and satisfy the following normalization,

monotonicity, concavity and boundedness conditions:
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(C1) f(0) = g(0) = 0, f ′(0) = g′(0) = 1, and f ′(x) > 0, g′(x) > 0 for all x ∈ IR;

(C2) x f ′′(x) < 0 and x g′′(x) < 0 for all x 6= 0;

(C3) −∞ < lim
x→±∞

f(x), g(x) < ∞;

(C4) f ′′′(0) < 0 , g′′′(0) < 0.

Remark 1.1 i) For example, we can choose f(x) = g(x) = tanh(x), which we will do for

the numerical simulations and the center manifold construction.

ii) The model clearly possesses Dn symmetry.

iii) Note that when n = 2, the model is not in the “natural” setup, however, it can be trans-

formed to this by scaling 2β to β.

We note that, when isolated, the individual elements satisfy the scalar delay differential

equation

ẋi(t) = −xi(t) + α f(xi(t − τs)). (2)

It is well known (see e.g. [2]) that for f satisfying conditions such as those above, the trivial

solution always exists and is locally stable if

−1 < α < 1 and τs > 0

α < −1 and τs < 1√
α2−1

Arccos( 1
α
)

def
= τH

s

(3)

Further, there is a steady state bifurcation at α = 1 and a Hopf bifurcation at τ = τ H
s when

α < −1. We can thus consider our model as a system of n coupled oscillators with time

delayed, nearest neighbour coupling.

Let h = max{τ, τs} and denote by C the Banach space of continuous mappings from

[−h, 0] to IRn equipped with the usual super-norm. Let x(t) be a solution of (1) and define

xt(θ) = x(t + θ), −h ≤ θ ≤ 0. If x(t) is continuous, then xt(θ) ∈ C. C is the standard phase

space of the semiflow defined by equation (1).

There are two main goals of this paper: (i) to study the local stability of the trivial

solution of (1); (ii) to study the existence and stability of synchronized solutions of (1).
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The former is the content of Sections 2-5, the latter of sections 6 and 7. Section 2 derives

the characteristic equation of the linearization of (1) about the trivial solution. Section 3

uses this to derive some local stability results which are independent of one or both of the

delays. Section 4 determines curves, in the β, τ plane, along which the characteristic equation

has a zero root or pair of pure imaginary roots, and describes how the geometry of these

curves changes as the parameters α and τs are varied. Section 5 uses these results to give

a complete description of the region of linear stability of the trivial solution of (1). Section

6 uses Lyapunov functionals to establish global stability and synchronization conditions for

(1). Section 7 studies the bifurcation of nontrivial synchronous solutions from the trivial

solution. Finally, Section 8 presents a summary of our current work and a discussion of

future work.

2 Characteristic Equation

The linearization of (1) at the equilibrium point (x∗, x∗, . . . , x∗) is

u̇i(t) = − ui(t) + α f ′(x∗) ui(t− τs) + β g′(x∗)[ui−1(t− τ) + ui+1(t− τ) ] (i mod n) . (4)

In vector form, this can be written as

u̇(t) = − I u(t) + α f ′(x∗) I u(t − τs) + β g′(x∗) M u(t − τ) , (5)

where I is n × n identity matrix and

M =















0 1 0 · · · 1
1 0 1 · · · 0
0 1 0 · · · 0
...

...
... · · · ...

1 0 0 · · · 0















n×n

. (6)

From condition (C1) it is clear that (1) admits the trivial solution, x∗ = 0. The characteristic

matrix of the linearization of (1) at this equilibrium is

Mn(0, λ) = (λ + 1 − α e−λ τs) I − β e−λ τ M . (7)
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Let

χ = e
2π
n

i, vj = (1, χj, χ2j , . . . , χ(n−1)j) (j = 0, 1, . . . , n − 1) . (8)

Since

χnj = e2π j i = 1 ,

χ(n−1)j = e
2π(n−1)

n
j i = e(2π− 2π

n
)j i = e−

2π j

n
i = χ−j ,

χ(n−2)j = e
2π(n−2)

n
j i = e(2π− 4π

n
)j i = e−

4π j

n
i = χ−2j ,

...

It follows that

M vj =















χj + χ(n−1)j

1 + χ2j

χj + χ3j

...
1 + χ(n−2)j















= (χj + χ−j) vj . (9)

Hence,

Mn(0, λ) vj = (λ + 1 − α e−λ τs − β e−λ τ (χj + χ−j)) vj

= (λ + 1 − α e−λ τs − 2 β e−λ τ cos
2π j

n
) vj , (10)

and the characteristic equation is

detMn(0, λ) =
n−1
∏

j=0

(λ + 1 − α e−λ τs − 2 β e−λ τ cos
2π j

n
)

= (a − 2b)

n−1
∏

j=1

(a − 2 b cos
2π j

n
) = 0 , (11)

where

a = λ + 1 − α e−λ τs , b = β e−λ τ . (12)
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We observe that eq. (12) can be simplified, further elucidating the structure of the charac-

teristic equation. When n is an odd number, we obtain

detMn(0, λ) = (a − 2b) [ (a − 2 b cos
2π

n
) (a − 2 b cos

4π

n
) · · · (a − 2 b cos

(n − 1)π

n
) ]2

= ∆0(λ)

n−1
2

∏

j=1

∆2
j(λ)

= (λ + 1 − αe−λτs − 2βe−λτ )

n−1
2

∏

j=1

(λ + 1 − αe−λτs − 2βe−λτ cos
2πj

n
)2 , (13)

whereas when n is an even number, we obtain

detMn(0, λ) = (a − 2b) (a + 2b)[ (a − 2 b cos
2π

n
) (a − 2 b cos

4π

n
) · · · (a − 2 b cos

(n − 2)π

n
) ]2

= ∆0(λ)∆n
2
(λ)

n
2
−1

∏

j=1

∆2
j(λ)

= (λ + 1 − αe−λτs − 2βe−λτ )(λ + 1 − αe−λτs + 2βe−λτ)
n
2
−1

∏

j=1

(λ + 1 − αe−λτs − 2βe−λτ cos
2πj

n
)2 . (14)

The case when n is even, i.e. n = 2m, may be further simplified into two subcases. When

m is an odd number we have

detMn(0, λ) = ∆0(λ)∆n
2
(λ)

m−1
2

∏

j=1

∆2
j(λ)∆2

m−j(λ) (15)

= (λ + 1 − αe−λτs − 2βe−λτ )(λ + 1 − αe−λτs + 2βe−λτ)
m−1

2
∏

j=1

(λ + 1 − αe−λτs − 2βe−λτ cos
πj

m
)2(λ + 1 − αe−λτs + 2βe−λτ cos

πj

m
)2 .

whereas when m is an even number we have

detMn(0, λ) = ∆0(λ)∆n
2
(λ)∆2

n
4
(λ)

m
2
−1

∏

j=1

∆2
j(λ)∆2

m−j(λ) (16)

= (λ + 1 − αe−λτs − 2βe−λτ )(λ + 1 − αe−λτs + 2βe−λτ)(λ + 1 − αe−λτs)2

m
2
−1

∏

j=1

(λ + 1 − αe−λτs − 2βe−λτ cos
πj

m
)2(λ + 1 − αe−λτs + 2βe−λτ cos

πj

m
)2 .
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3 Delay Independent Linear Stability Results

Recall that an equilibrium solution of a delay differential equation is locally asymptotically

stable if all the roots of the corresponding characteristic equation have negative real parts

and unstable if at least one root has positive real part [14, 17]. Based on this result and

the expression for characteristic equation of the trivial solution of (1) obtained in the last

section, we will develop three results which are independent of one or both of the delays τ, τs.

These describe subsets of the full region of linear stability. The proofs of the theorems are

extensions of those found in [4] for the case n = 3, [23] for the case n = 2 with no symmetry

and [1] for the case n = 1.

Theorem 3.1 If the parameters satisfy |β| < 1
2
(1− |α|), the trivial solution of (1) is locally

asymptotically stable for all τs ≥ 0 and τ ≥ 0.

Proof. From (13) and (14) for each ∆j(λ) , (j = 0, 1, · · · , [n
2
])† we have

∆j(λ) = a − 2 b cos
2π j

n
= λ + 1 − α e−λ τs − 2 β e−λ τ cos

2π j

n
. (17)

Let λ = v + i w, v, w ∈ IR, and ∆j(λ) = Rj(v, w) + i Ij(v, w) , then

Rj(v, w) = v + 1 − α e−vτs cos(wτs) − 2β e−vτ cos
2π j

n
cos(wτ) ,

Ij(v, w) = w + α e−vτs sin(wτs) + 2β e−vτ cos
2π j

n
sin(wτ) . (18)

Therefore, one can obtain

Rj(v, w) ≥ v + 1 − |α| e−vτs − 2 |β| e−vτ . (19)

Denoting the right-hand side of (19) by R(v), it is easy to see that

R(0) = 1 − |α| − 2 |β| > 0 (20)

under the assumption of the theorem. In addition,

dR

dv
= 1 + |α| τs e−vτs + 2 |β| τ e−vτ > 0 , (21)

†[m] denotes the integer part of m.
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so R(v) > 0 for all v ≥ 0, and Rj(v, w) > 0 for all v ≥ 0, w ∈ IR.

Now let λ = v + i w be an arbitrary root of the characteristic equation, then Rj(v, w) =

Ij(v, w) = 0. It follows from the discussion above that v < 0. Therefore all roots of the

characteristic equation have negative real parts, which means that the trivial solution of (1)

is locally asymptotically stable for any delay τs ≥ 0 and τ ≥ 0.

Remark 3.1 Note that this theorem includes the result for the uncoupled oscillators, i.e.

the trivial solution is locally asymptotically stable when β = 0, |α| < 1 and τs ≥ 0, τ ≥ 0.

Theorem 3.2 If the parameters satisfy α < −1, |β| < −α
2
, 0 ≤ τs < − 1

2α
and τ ≥ 0, then

all the roots of the characteristic equation (11) have negative real part.

Proof: From eq. (17), let ∆j(λ) = 0 and λ = v + iw, then

v = −1 + α e−vτs cos(wτs) + 2β e−vτ cos
2π j

n
cos(wτ) ,

w = −α e−vτs sin(wτs) − 2β e−vτ cos
2π j

n
sin(wτ) . (22)

Rearranging, squaring and adding these two equations yields a necessary condition for exis-

tence of such v and w

(v+1)2+w2−2αe−vτs [(v+1) cos(wτs)−w sin(wτs)]+α2e−2vτs −4β2e−2vτ cos2 2πj

n
= 0. (23)

Denoting the left-hand side of (23) by M(v), we have

M(0) = 1 − 2α cos(wτs) + α2 + w2 + 2αw sin(wτs) − 4β2 cos2 2πj

n

≥ 1 − 2α cos(wτs) + α2 + w2 + 2αw sin(wτs) − 4β2 , (24)

and

dM

dv
= 2{4τβ2e−2vτ cos2 2πj

n
− αwτse

−vτs sin(wτs) + (v + 1)[1 + ατse
−vτs cos(wτs)]

−αe−vτs [cos(wτs) + ατse
−vτs ]}. (25)

The rest of the proof is essentially the same as that found in the proof of [23, Theorem 2]

and hence we omit it.
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Theorem 3.3 If the parameters satisfy α > 1 and β ∈ IR or α = 1 and β 6= 0, then the

trivial solution of (1) is unstable for all τs ≥ 0 and τ ≥ 0.

Proof. From (17), we have

∆j(0) = 1 − α − 2 β cos
2π j

n
, (j = 0, 1, · · · , [n

2
]) . (26)

Note that cos 2π j

n
≥ 0 , j = 0, 1, . . . , [n

4
] and cos 2π j

n
≤ 0 , for j = [n

4
] + 1, . . . , [n

2
]. Thus

for any value of β there exists a value j̄ ∈ {0, 1, . . . , n
2
} such that ∆j̄(0) < 0. Further, for

λ ∈ IR,

lim
λ→+∞

∆j̄(λ) = lim
λ→+∞

(λ + 1 − α e−λ τs − 2 β e−λ τ cos
2π j̄

n
) = +∞ . (27)

Since ∆j̄(λ) is a continuous function, there exists a λ∗ ∈ (0, +∞) such that ∆j̄(λ
∗) = 0.

Thus the characteristic equation has a positive real root for all β under the conditions

τs ≥ 0, τ ≥ 0 and α > 1. The proof for α = 1 and β 6= 0 is similar.

4 Curves of Characteristic Roots with Zero Real Part

As the parameters are varied, stability may be lost by a real root of the characteristic equation

passing through zero or by a pair of complex conjugate roots passing through the imaginary

axis. To determine the full region of stability of the trivial solution, we need to describe

the regions in parameter space where this occurs. This is the content of the present section.

Since the parameter space is four dimensional, it is difficult to visualize these regions. Thus

we will focus on fixing the cell parameters α and τs and describing curves in the β, τ plane

where the characteristic equation has a zero root or a pair of pure imaginary roots. In the

first subsection, we define these curves. In the second subsection we describe the geometry

of these curves and how this geometry changes as α and τs are varied.

4.1 Definition of the curves

When β =
1 − α

2
, the characteristic equation has a simple zero root (from ∆0(0) = 0) for

any n, while when n is an even number, the characteristic equation has another simple zero
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root (from ∆n
2
(0) = 0) when β =

α − 1

2
. When β =

1 − α

2 cos 2πj

n

, (j = 1, 2, · · · , [n−1
2

]), the

characteristic equation has a double zero root except when n = 2m, with m being an even

integer, and j = n
4

(see ∆n
4
(λ) in eq. (16)). In this case, the characteristic equation has a

double zero root when α = 1 for any value of β (from ∆ n
4
(0) = 1 − α).

The characteristic equation has a simple pair of pure imaginary roots ±i ω when ∆0(±i ω) =

0, i.e. when ω, α, β, τs, τ satisfy

1 − α cos(ωτs) = 2 β cos(ω τ) ,

ω + α sin(ωτs) = −2 β sin(ω τ) . (28)

For fixed α and τs this occurs along the curves (β±
H0(ω), τ±

H0k(ω)) in β, τ plane where ω acts

as a parameter. Define

Tl(ω) =
1

ω

{

Arctan

[−ω − α sin(ωτs)

1 − α cos(ωτs)

]

+ lπ

}

. (29)

Then these curves are given by

β±
H0(ω) = ±1

2

√

1 + α2 + ω2 + 2αω sin(ωτs) − 2α cos(ωτs) , (30)

τ+
H0k(ω) =

{

T2k, 1 − α cos(ωτs) > 0
T2k+1, 1 − α cos(ωτs) < 0

, (31)

τ−
H0k(ω) =

{

T2k+1, 1 − α cos(ωτs) > 0
T2k, 1 − α cos(ωτs) < 0

. (32)

When n is even, another simple pair of pure imaginary roots exists when ∆ n
2
(±iω) = 0, i.e.

when

1 − α cos(ωτs) = −2 β cos(ω τ) ,

ω + α sin(ωτs) = 2 β sin(ω τ) . (33)

This occurs along curves (β±
Hh(ω), τ±

Hhk(ω)) = (β±
H n

2
(ω), τ±

H n
2
k(ω)) given by

β±
Hh(ω) = β±

H0(ω) , (34)

τ+
Hhk(ω) =

{

T2k, 1 − α cos(ωτs) < 0
T2k+1, 1 − α cos(ωτs) > 0

, (35)

τ−
Hhk(ω) =

{

T2k+1, 1 − α cos(ωτs) < 0
T2k, 1 − α cos(ωτs) > 0

. (36)
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The characteristic equation has a repeated pair of pure imaginary roots λ = ±iω for

parameters such that ∆j(±iω) = 0, (j = 1, 2, · · · , [n−1
2

]), i.e. when

1 − α cos(ωτs) = 2 β cos
2π j

n
cos(ω τ) ,

ω + α sin(ωτs) = −2 β cos
2π j

n
sin(ω τ) . (37)

When j 6= n
4
, this occurs along curves (β±

Hj(ω), τ±
Hjk(ω)) given by

β±
Hj(ω) = β±

H0(ω)/| cos(
2π j

n
)| , (38)

τ+
Hjk(ω) =



























T2k, 1 − α cos(ωτs) > 0,

T2k+1, 1 − α cos(ωτs) < 0,

T2k+1 1 − α cos(ωτs) > 0,

T2k, 1 − α cos(ωτs) < 0,

j = 1, 2, . . . [n−1
4

]

j = [n
4
] + 1, . . . , [n−1

2
]

, (39)

τ−
Hjk(ω) =



























T2k+1, 1 − α cos(ωτs) > 0,

T2k, 1 − α cos(ωτs) < 0,

T2k, 1 − α cos(ωτs) > 0,

T2k+1, 1 − α cos(ωτs) < 0,

j = 1, 2, . . . [n−1
4

]

j = [n
4
] + 1, . . . , [n−1

2
]

. (40)

When j = n
4
, from ∆n

4
(±iω) = 0 we have

1 − α cos(ωτs) = 0, ω + α sin(ωτs) = 0 . (41)

Note that this occurs for α2 = 1 + ω2 > 1 and any β.

4.2 Geometry of the curves

In this subsection we describe the geometry of the curves defined in the previous subsection

and how this geometry changes as α and τs are varied. We begin with three lemmas which

give some basic limits and bounds of the curves.
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Lemma 4.1

lim
ω→0+

β±
H0(ω) = lim

ω→0+
β±

Hh(ω) = ±|1 − α|
2

, lim
ω→0+

β±
Hj(ω) = ± |1 − α|

2 | cos 2πj

n
|
,

lim
ω→0+

τ±
H0k(ω) = lim

ω→0+
τ±
Hhk(ω) = lim

ω→0+
τ±
Hjk(ω) = ∞, k > 0, j = 1, 2, . . . , [n−1

2
] (42)

lim
ω→0+

τ+
H00(ω) = lim

ω→0+
τ+
Hj0(ω) =







1+ατs

α−1
α < 1

−∞ α = 1
∞ α > 1

, j = 1, 2, . . . , [n−1
4

]

lim
ω→0+

τ−
H00(ω) = lim

ω→0+
τ−
Hj0(ω) =

{

1+ατs

α−1
α > 1

∞ α ≤ 1
, j = 1, 2, . . . , [n−1

4
]

lim
ω→0+

τ−
Hh0(ω) = lim

ω→0+
τ−
Hj0(ω) =







1+ατs

α−1
α < 1

−∞ α = 1
∞ α > 1

, j = [n
4
] + 1, . . . , [n−1

2
]

lim
ω→0+

τ+
H00(ω) = lim

ω→0+
τ+
Hj0(ω) =

{

1+ατs

α−1
α > 1

∞ α ≤ 1
, j = [n

4
] + 1, . . . , [n−1

2
] (43)

and

lim
ω→∞

β±
H0(ω) = lim

ω→∞
β±

Hh(ω) = ±∞ , lim
ω→∞

τ±
H0k(ω) = lim

ω→∞
τ±
Hhk(ω) = 0 ,

lim
ω→∞

β±
Hj(ω) = ±∞ , lim

ω→∞
τ±
Hjk(ω) = 0 , j = 1, 2, · · · , [n−1

2
], j 6= n

4
.

Proof. The proof follows from straightforward calculations.

From these limits and the definitions of the τ±
Hjk it is clear that the curves (β+

Hj(ω), τ+
Hj0(ω)),

j = 0, 1, . . . , [n−1
4

] and the curves (β−
Hj(ω), τ−

Hj0(ω)), j = [n
4
]+1, . . . , [n

2
] only lie in the (phys-

ically relevant) region τ ≥ 0 if α > 1 or α < 0 and τs > − 1
α

def
= τ ∗.

Theorem 4.2 If |α| < 1, then

(i) The curves (β+
H0, τ

+
H0k) and (β+

Hh, τ
+
Hhk) are bounded on the left by the line β = 1−|α|

2
;

(ii) The curves (β−
H0, τ

−
H0k) and (β−

Hh, τ
−
Hhk) are bounded on the right by the line β = |α|−1

2
;

(iii) Each curve (β+
Hj, τ

+
Hjk) (j = 1, 2, · · · , [n−1

2
], j 6= n

4
) is bounded on the left by the

corresponding line β = 1−|α|
2 | cos 2πj

n
| . These curves are all bounded on the left by the line

β = 1−|α|
2 | cos (n−1)π

n
|

when n is an odd number and by the line β = 1−|α|
2 | cos 2π

n
| when n is an

even number with n 6= 4.
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(iv) Each curve (β−
Hj, τ

−
Hjk) (j = 1, 2, · · · , [n−1

2
], j 6= n

4
) is bounded on the right by the

corresponding line β = |α|−1

2 | cos 2πj

n
| . These curves are all bounded on the right by the line

β = |α|−1

2 | cos (n−1)π
n

|
when n is an odd number, and by the line β = |α|−1

2 | cos 2π
n
| when n is an

even number with n 6= 4.

Proof: The proofs of (i) and (ii) are the same as in [4, Lemma 1].

Proof of (iii). For n = 4, only the curves (β±
H0, τ

±
H0k) and (β±

Hh, τ
±
Hhk) exist. For any

other n, clearly β+
Hj =

β+
H0

| cos 2πj

n
|
≥ 1 − |α|

2 | cos 2πj

n
|
. For n odd, | cos 2πj

n
| ≤ | cos (n−1)π

n
| and hence

β+
Hj ≥

1 − |α|
2 | cos (n−1)π

n
|
≥ 1 − |α|

2
, j = 1, 2, . . . ,

n − 1

2
.

For n even with n 6= 4, | cos 2πj

n
| ≤ | cos 2π

n
| and hence

β+
Hj ≥

1 − |α|
2 | cos 2π

n
| ≥

1 − |α|
2

, j = 1, 2, . . . ,
n

2
− 1, j 6= n

4
.

The proof for (iv) is similar to that for (iii).

It follows from this theorem that for α ≥ 0 we have β+
Hj(ω) ≥ β+

Hj(0) = 1−α
2

and

β−
Hj(ω) ≤ β−

Hj(0) = α−1
2

, j = 0, 1, . . . , [n
2
], j 6= n

4
.

Theorem 4.3 Let

τ (1)
s =

1

(1 +
√

1 + 1
|α|) |α|

.

If 0 ≤ τs ≤ τ
(1)
s , then the curves of pure imaginary roots have the property that the β+

Hj are

all monotone increasing functions of ω and satisfy β+
Hj >

|1 − α|
2| cos 2πj

n
|

while the β−
Hj are all

monotone decreasing functions of ω and satisfy β−
Hj < − |1 − α|

2| cos 2πj

n
|
, for j = 0, 1, · · · , [n

2
], j 6=

n
4

and ω > 0. When α < 0, the converse is also true.

Proof: The proof for the case j = 0 can be found in [2, Lemma 2] or [23, Lemma 1]. Note

that when n is even βH n
2

is what we call βHh. Now for j = 1, 2, . . . , [n
2
], j 6= n

4
we have

β±
Hj =

β±
H0

| cos 2πj

n
|
,

dβ±
Hj

dω
=

1

| cos 2πj

n
|
dβ±

H0

dω
. (44)

13



Thus the results for these values of j follow directly from the result for j = 0.

It follows from this Theorem, the limits of Lemma 4.1 and the definitions that for

0 ≤ τs ≤ τ
(1)
s the various curves of pure imaginary roots never intersect themselves, each

other, or the lines, β = ± α−1

2| cos( 2πj

n
)| , where there are zero roots. For τs > τ

(1)
s , various types

of intersections can occur. The following two theorems describe two of these.

Theorem 4.4 For j = 1, 2, . . . , [n
2
], let ω(2j) and τ

(2j)
s be the smallest positive numbers

satisfying the equations

ω + α (1 + τs) sin(ωτs) + αωτs cos(ωτs) = 0 (45)

1 + α2 + ω2 + 2αω sin(ωτs) − 2α cos(ωτs) = (1 − α)2 | cos
2πj

n
|2. (46)

(i) When τs = τ
(2j)
s , the minimum value of β+

Hj(ω) is β+
Hj(ω

(2j)) = α−1
2

, and the maximum

value of β−
Hj(ω) is β−

Hj(ω
(2j)) = 1−α

2
.

(ii) For each j, τ
(2j)
s and ω(2j) exist only if α > 1 or if α <

| cos 2πj

n
| − 1

| cos 2πj

n
| + 1

. They exist for

every j if α <
| cos 2πj∗

n
| − 1

| cos 2πj∗

n
| + 1

def
= α∗ where j∗ = [n+1

4
] when n is odd and j∗ = [n−1

4
]

when n is even.

Proof: (i) From the definitions of the β±
Hj it is clear that, for any fixed τs, a solution ω of

(45) corresponds to a value of ω where
dβ±

Hj

dω
= 0 for j = 1, 2, . . . , [n

2
]. From Theorem 4.3

the smallest positive such ω must correspond to a minimum of β+
Hj and a maximum of β−

Hj.

Similarly a solution ω of (46) corresponds to a value of ω where β±
Hj = ±α−1

2
. It is clear,

then, that simultaneous solving of these two equations for ω and τs yields the result.

(ii) When |α| < 1, we know from Theorem 4.2 that β+min
Hj >

1 − |α|
2| cos 2πj

n
|
>

1 − |α|
2

. When

0 ≤ α ≤ 1, β+min
Hj > 1

2
(1 − α), so it is impossible for (46) to be satisfied for any ω > 0.

When −1 ≤ α < 0, from
1 − |α|

2| cos 2πj

n
|

=
1 + α

2| cos 2πj

n
|

≤ 1 − α

2
, we can obtain the condition

α <
| cos 2πj

n
| − 1

| cos 2πj

n
| + 1

. Since the function h(x) =
x − 1

x + 1
is an increasing function and h < 0 when

x = | cos 2πj

n
|, we can find the common condition described in the statement of the theorem

since the minimum value of x occurs when j = j∗.
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Theorem 4.5 Let α be fixed, if |α| < 1 then β±
Hj 6= 0 , (j = 0, 1, · · · , [n

2
], j 6= n

4
) for any

τs ≥ 0 and any ω > 0. If |α| > 1, there exists a countable infinity of values of τs for which

β±
Hj(ω) = 0 for some ω > 0.

Proof: Setting β = 0 in eqs. (28), (33) and (37), we have

α cos(ωτs) = 1, α sin(ωτs) = −ω , (47)

then α2 = 1 + ω2 ≥ 1.

From eq. (47), we obtain

τs =















1√
α2 − 1

[Arccos
1

α
+ 2 n π], if α < −1

1√
α2 − 1

[− Arccos
1

α
+ (2 n + 2) π], if α > 1

(48)

and the result follows.

Since the trivial solution is unstable for α > 1 we focus on the case α < −1 and denote

by τ
(3)
s the minimum value of τs for which β±

Hj = 0, that is, τ
(3)
s = 1√

α2−1
Arccos 1

α
.

For use in the next section, we now summarize the transitions and when they occur.

• At the transition point τ
(1)
s the curves of pure imaginary roots may become non-

monotone.

• At the transition point τ ∗
s = − 1

α
the curves (β+

Hj(ω), τ+
Hj0(ω)), j = 0, 1, . . . , [n−1

4
] and

(β−
Hj(ω), τ−

Hj0(ω)), j = [n
4
] + 1, . . . , [n

2
] enter the region τ ≥ 0.

• At the transition point τ
(2j)
s the minimum value of β+

Hj crosses the line β = 1−α
2

and

the maximum value of β−
Hj crosses the line β = α−1

2
.

• At the transition point τ
(3)
s the curves (β±

H0, τ±
H0k), (β±

Hh, τ±
Hhk) and (β±

Hj, τ±
Hjk) touch

the τ axis for the first time.

• When 0 ≤ α < 1 only the transition at τ
(1)
s occurs. When α < 0, all four types of

transitions may occur, depending on the value of α. Using similar arguments to those

15



in [4, Lemma 5], it may be shown that the relative ordering of the transition points is

τ (1)
s < τ (2 j)

s < τ (3)
s and τ (1)

s < τ ∗
s < τ (3)

s

Remark 4.1 For the system (1) the transition points τ
(1)
s , τ

(3)
s and τ ∗

s are the same as those

in [4], and the transition points τ
(2 j)
s , (j = 1, 2, · · · , [n−1

2
], j 6= n

4
) are the generalizations

of the transition point τ
(2)
s in [4].

5 Full Stability Region

The stability regions with n odd are similar to that for n = 3 which was discussed in [4], we

thus focus on the stability regions with n even.

Consider the cases n = 2, 4. The characteristic equations are

detM4(0, λ) = (λ + 1 − α e−λτs − 2 β e−λτ ) (λ + 1 − α e−λτs + 2 β e−λτ ) (λ + 1 − α e−λτs)2

= [detM2(0, λ)](λ + 1 − α e−λτs)2. (49)

Thus the stability region in the β, τ plane will the same for both cases. The lines of simple

zero roots are β = ± 1 − α

2
, the curves of simple pairs of pure imaginary roots are (β±

H0, τ±
H0k)

and (β±
Hh, τ±

Hhk). There are no repeated pairs of pure imaginary roots for either case and

no double zero roots for n = 2 or for n = 4 with α 6= 1. It follows that there are no τ
(2j)
s

transitions. A detailed analysis follows.

I. α > 1: There is no stability region.

II. α = 1: The trivial solution is unstable if β 6= 0. If β = 0 the stability is not determined

by the linearization.

III. 0 ≤ α < 1: (See Figure 2)

The stability region is the strip bounded by the lines β = 1−α
2

and β = α−1
2

.
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n=4, alpha=0.5, tau_s=0.7
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(a) 0 ≤ τs < τ
(1)
s

n=4, alpha=0.5, tau_s=2.0

0

2
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6

8

10

12

14

τ

–3 –2 –1 1 2 3

β

(b) τs > τ
(1)
s

Figure 2: Region of local stability of the trivial solution of eq. (1) with n = 2, 4, 0 ≤ α < 1
and other parameter values as indicated.

IV. − 1 ≤ α < 0: (See Figure 3)

(a) 0 ≤ τs < τ
(1)
s . The stability region is the strip bounded by the lines β = 1−α

2
and

β = α−1
2

.

(b) τ
(1)
s < τs < τ ∗

s . Let ωint be such that β−
H0(ω

int) = −β+
Hh(ω

int) = α−1
2

and define

τ int = τ−
H00(ω

int) = τ+
Hh0(ω

int). The stability region is the union of the region

α − 1

2
< β <

1 − α

2
, 0 ≤ τ ≤ τ int ;

and the region (with τ > τ int) with boundary formed by pieces of the curves (β+
H0, τ

+
H0k),

(k > 0), (β+
Hh, τ

+
Hhk), (k ≥ 0) on the right, and pieces of the curves (β−

H0, τ
−
H0k),

(k ≥ 0), (β−
Hh, τ

−
Hhk), (k > 0) on the left.

(c) τs > τ ∗
s . The right boundary of the stability region is made up of pieces of the line

β =
1 − α

2
and pieces of the curves (β+

H0, τ
+
H0k), (β+

Hh, τ
+
Hhk), (k ≥ 0). Symmetrically,

the left boundary is made up of pieces of the line β =
α − 1

2
and pieces of the curves

(β−
H0, τ

−
H0k), (β−

Hh, τ
−
Hhk), (k ≥ 0); The right/left boundary may include the multiple
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parts of (β+
Hh, τ

+
Hh0)/ (β−

H0, τ
−
H00).

n=4, alpha=–0.3, tau_s=1.0

0

2

4

6

8

10

12

14

τ

–3 –2 –1 1 2 3

β

(a) 0 ≤ τs < τ
(1)
s

n=4, alpha=–0.3, tau_s=3.0

0

2

4

6

8

10

12

14

τ

–3 –2 –1 1 2 3

β

(b) τ
(1)
s < τs < τ∗

s

n=4, alpha=–0.5, tau_s=5.0

0

2

4

6

8

10

12

14

τ

–3 –2 –1 1 2 3

β

(c) τs > τ∗
s

Figure 3: Region of local stability of the trivial solution of eq. (1) with n = 2, 4, −1 ≤ α < 0
and other parameter values as indicated.

V. α < −1: (See Figure 4)

(a) 0 ≤ τs < τ
(1)
s . Same as case IV(a).

(b) τ
(1)
s ≤ τs < τ ∗

s . Same as case IV(b).
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(c) τ ∗
s < τs < τ

(3)
s . Same as case IV(c).

(d) τs > τ
(3)
s . There is no stability region.

n=2,4, alpha=–1.5, tau_s=1.0

0
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(a) 0 ≤ τs < τ
(1)
s

n=2,4, alpha=–1.5, tau_s=1.0
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6

8

10

12

14

τ
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β

(b) τ
(1)
s < τs < τ∗

s

n=2,4, alpha=–1.5, tau_s=1.0
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8
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14

τ

–3 –2 –1 1 2 3
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(c) τ
∗
s

< τs < τ
(3)
s

n=2,4, alpha=–1.5, tau_s=2.2

0
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12

14

τ

–3 –2 –1 1 2 3

β

(d) τs > τ
(3)
s

Figure 4: Region of local stability of the trivial solution of eq. (1) with n = 2, 4, α < −1 and
other parameter values as indicated.

Now consider the case n = 6. The lines of simple zero roots and curves of simple pairs

of pure imaginary roots are the same as in the cases n = 2, 4. Since | cos( 2 π j

n
)| = 1

2
, j = 1, 2,
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the lines of double zero roots are β = ±(1 − α), while the curves of repeated pairs of pure

imaginary roots are (β±
Hj, τ±

Hjk), (j = 1, 2). The transition at τ (21) = τ (22) = τ (2) occurs if

α > 1 or α < − 1
3
, (as for the n = 3 case). The descriptions of the stability regions for α > 1,

α = 1 and 0 ≤ α < 1 are the same as for n = 2, 4. The other subcases are different due to

the transition at τ
(2)
s .

VI. −1
3
≤ α < 0: (See Figure 5)

(a) 0 ≤ τs < τ
(1)
s . Same as case IV(a).

(b) τ
(1)
s < τs < τ ∗

s . Same as case IV(b).

(c) τs > τ ∗
s . Same as case IV(c).

VII. −1 ≤ α < − 1
3
: (See Figure 6)

(a) 0 ≤ τs < τ
(1)
s . Same as case IV(a).

(b) τ
(1)
s < τs < τ ∗

s . Same as case IV(b).

(c) τ ∗
s < τs < τ

(2)
s . Same as case IV(c).

(d) τs > τ
(2)
s . Same as case IV(c). See note and conjecture below.

VIII. α < −1: (See Figure 7)

(a) 0 ≤ τs < τ
(1)
s . Same as case IV(a).

(b) τ
(1)
s ≤ τs < τ ∗

s . Same as case IV(b).

(c) τ ∗
s < τs < τ

(2)
s . Same as case IV(c).

(d) τ
(2)
s < τs < τ

(3)
s . Same as case VII(d).

(e) τs > τ
(3)
s . There is no stability region.

Remark 5.1 In subcases VII and VIII, we have assumed that τ ∗
s < τ

(2)
s . If the order

is reversed then the curves (β+
Hh, τ

+
Hh0) and (β−

Hh, τ
−
H00) will become part of the stability

boundary after the curves (β+
Hj, τ

+
Hjk). We have observed both orderings for α < −1.
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n=6, alpha=–0.3, tau_s=1. 
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n=6, alpha=–0.3, tau_s=5.
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(c) τs > τ∗
s

Figure 5: Region of local stability of the trivial solution of eq. (1) with n = 6, − 1
3
≤ α < 0

and other parameter values as indicated.

Note that in Figure 6 and in Figure 7 (a),(b),(c), the curves (β±
Hj, τ

±
Hjk), j = 1, 2 always

lie outside of the curves (β±
H0, τ

±
H0k) and (β±

Hh, τ
±
Hhk). Thus only the curves (β±

H0, τ
±
H0k) and

(β±
Hh, τ

±
Hhk) can form part of the boundary of the region of stability of the trivial solution

and the stability region is essentially the same as in the case n = 2, 4. This leads us to the

21
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n=6, alpha=–0.5, tau_s=5.
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Figure 6: Region of local stability of the trivial solution of eq. (1) with n = 6, −1 ≤ α ≤ − 1
3

and other parameter values as indicated.

following conjecture.

Conjecture 5.1 Let α < α∗ be fixed and let n = 2m, m = 1, 2, . . . . There exists τ̄s such

that, when τs < τ̄s for each k = 0, 1, .. the part of the curve (β±
Hj(ω), τ±

Hjk(ω)), j = 1, 2, ...[n−1
4

]

with τ ≥ 0 lies entirely to the right (left) of the corresponding curve (β±
H0, τ

±
H0k). For each
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n=6, alpha=–1.5, tau_s=0.3
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Figure 7: Region of local stability of the trivial solution of eq. (1) with n = 6, α < −1 and
other parameter values as indicated.

k = 0, 1, .. the part of the curve (β±
Hj(ω), τ±

Hjk(ω)), j = [n
4

+ 1], . . . , m− 1 lies entirely to the

right (left) of the corresponding curve (β±
Hh, τ

±
Hhk). When α < −1, τ̄s = τ

(3)
s .

For comparison, we end this section by showing (Figure 8) the stability region for n = 3

in the case corresponding to Case VII.
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Figure 8: Region of local stability of the trivial solution of eq. (1) with n = 3, −1 < α < − 1
3

and other parameter values as indicated. Compare with Figure 6.

6 Global Stability and Synchronization

In this section we use Lyapunov functionals to establish some global stability results for the

trivial solution, and discuss conditions for the synchronization of solutions.
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Theorem 6.1 If |α|+2|β| < 1, then the trivial solution of eq. (1) is globally asymptotically

stable.

Proof: Let

V (x)(t) =
n

∑

j=1

x2
j(t) + |α|

n
∑

j=1

∫ t

t−τs

f 2(xj(v))dv + |β|
n

∑

j=1

[

∫ t

t−τ

g2(xj−1(v))dv +

∫ t

t−τ

g2(xj+1(v))dv]

then

dV

dt
= 2

n
∑

j=1

xj(t)ẋj(t) + |α|
n

∑

j=1

[f 2(xj(t)) − f 2(xj(t − τs))]

+|β|
n

∑

j=1

[g2(xj−1(t)) − g2(xj−1(t − τ)) + g2(xj+1(t)) − g2(xj+1(t − τ))]

( Note: x0 ≡ xn, xn+1 ≡ x1)

= 2

n
∑

j=1

xj{−xj + αf(xj(t − τs)) + β[g(xj−1(t − τ)) + g(xj+1(t − τ))]}

+|α|
n

∑

j=1

[f 2(xj(t)) − f 2(xj(t − τs))]

+|β|
n

∑

j=1

[g2(xj−1(t)) − g2(xj−1(t − τ)) + g2(xj+1(t)) − g2(xj+1(t − τ))]

≤ −2
n

∑

j=1

x2
j + |α|

n
∑

j=1

[x2
j + f 2(xj(t − τs))] + |β|

n
∑

j=1

[x2
j + g2(xj−1(t − τ))]

+|β|
n

∑

j=1

[x2
j + g2(xj+1(t − τ))] + |α|

n
∑

j=1

[f 2(xj(t)) − f 2(xj(t − τs))]

+|β|
n

∑

j=1

[g2(xj−1(t)) − g2(xj−1(t − τ)) + g2(xj+1(t)) − g2(xj+1(t − τ))]

≤ −2

n
∑

j=1

x2
j + |α|

n
∑

j=1

x2
j + 2|β|

n
∑

j=1

x2
j + |α|

n
∑

j=1

f 2(xj(t))

+|β|
n

∑

j=1

[g2(xj−1(t)) + g2(xj+1(t))] , (50)

Rewrite

f(xj(t)) = pj(t)xj(t) g(xj(t)) = qj(t)xj(t) , (51)
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where

pj(t) =

∫ 1

0

f ′(v xj(t))dv qj(t) =

∫ 1

0

g′(v xj(t))dv . (52)

From the conditions (C1)–(C4) on f and g, there exist p∗, q∗ ∈ (0, 1] such that pj(t) ≤
p∗, qj(t) ≤ q∗, (j = 1, 2, · · · , n). Thus we have

dV

dt
≤ −2

n
∑

j=1

x2
j + (|α| + 2|β|)

n
∑

j=1

x2
j + |α|p∗

n
∑

j=1

x2
j + 2|β|q∗

n
∑

j=1

x2
j

≤ (−2 + |α| + 2|β| + |α| + 2|β|)
n

∑

j=1

x2
j

= −2[1 − (|α| + 2|β|)]
n

∑

j=1

x2
j , (53)

and for |α| + 2|β| < 1, the trivial solution of eq. (1) is globally asymptotically stable.

We note that the condition in Theorem 6.1 is the same as that in [4] for n = 3. When

α > 0 and n is even, this theorem shows that the region of local stability of the trivial

solution obtained in the previous section (see case III and Figure 2) is in fact the region of

global stability. In other cases this region of global stability corresponds to the region of

delay independent local stability (see Figures 5,6,8). For α < 0, to get a weaker condition on

α and β which guarantees global stability, we need to have conditions including the delay.

Using the conditions given in [24] (for a network of arbitrary size and connection structure),

we have the following result.

Theorem 6.2 If α < 0, |β| < 1−α
2

and 0 < τs <
1

1 − e α

def
= τ g

s , then the trivial solution of

(1) is globally asymptotically stable.

Noting that τ g
s < τ

(1)
s , we see that the region of local stability of the trivial solution, for α < 0

and n even, obtained in the previous section is also a region of global stability for τs small

enough. (See subcases IV(a), V(a), VI(a), VII(a) and VIII(a) and Figures 3(a)–7(a)). For

n odd and α < 0 this region of global stability corresponds to the region of τ independent

local stability (see Figure 8(a)).

Following the definitions in [27], we say that a solution x(t) of (1) is asymptotically

synchronous if the ω-limit set of xt(θ) is contained in the set of synchronous phase points,
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given by

{(φ1, φ2, . . . , φn)
T ∈ C; φ1 = φ2 = · · · = φn} . (54)

If every solution of (1) is asymptotically synchronous, then the system is said to be absolutely

synchronous.

For delay independent synchronization results, we believe that one cannot do better

than the global stability result (the condition in Theorem 6.1.) when n is even. The reason

is that the Hopf bifurcation curves corresponding to ∆ n
2
(λ) will enter any region in the

(β, τ) plane with |β| >
1 − |α|

2
if τs is large enough (we can see this in the figures, it also

follows from the results of Theorems 4.2 and 4.3). Since crossing these curves can lead to

stable asynchronous solutions, we can not have absolute synchronization in any region with

|β| >
1 − |α|

2
.

We may be able to do better when n is odd. In this case the asynchronous Hopf

bifurcation curves always remain outside the region |β| <
1 − |α|

2 | cos (n−1)π
n

|
(when |α| < 1). So

a possible condition is |α| + 2 | cos (n−1)π
n

||β| < 1. This reduces to the condition for n = 3,

|α| + |β| < 1, given in [4] and [27].

Summarizing the above discussion, we have the following conjecture.

Conjecture 6.3 When n is an odd number, system (1) is absolutely synchronous if |α| +
2 | cos (n−1)π

n
||β| < 1; while when n is an even number, system (1) is not absolutely syn-

chronous if |α| + 2 |β| > 1.

We illustrate this conjecture with some numerical simulations of the full model (1) with

f = g = tanh in Figures 9 and 10. The simulations were performed with XPPAUT [7], using

a 4th order Runge-Kutta solver adapted for delay differential equations.

7 Synchronized Bifurcations

In this section we consider the bifurcations which occur along the curves in parameter space

where ∆0 has a root with zero real part. Noting that the solution of (4) corresponding to
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(b) Initial conditions:
x10 = 1, x20 = −0.4, x30 = −1.5

Figure 9: Numerical simulations of eq. (1) with n = 3 showing the co-existence of two
stable synchronous equilibria for α = −0.5, β = 0.8, τs = 2, τ = 1.5. Two different initial
conditions of the form xj(t) = xj0, −τs ≤ t ≤ 0 were used. Parameter values correspond to
the stability diagram of Figure 8(b).
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Figure 10: Numerical simulations of eq. (1) with n = 6 showing the co-existence of a stable
synchronous equilibria with a stable asynchronous (anti-phase) limit cycle for α = −0.5, β =
0.8, τs = 2 τ = 1.5. Two different initial conditions of the form xj(t) = xj0, −τs ≤ t ≤ 0
were used. Parameter values correspond to the stability diagram of Figure 6(b).
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a root λ of ∆0 has the form u(t) = eλt(u, u, . . . , u)T , it is clear that these correspond to

bifurcations of nontrivial synchronized solutions from the trivial solution.

To begin, we verify that the characteristic equation has a simple pair of pure imaginary

roots which cross the imaginary axis with nonzero speed; this means that a Hopf bifurcation

occurs [14, Chapter 11]. We follow with a centre manifold analysis of the criticality of Hopf

bifurcation which will determine the stability of the bifurcating periodic orbits.

Denote by S(λ) the characteristic polynomial, i.e.

S(λ) = detMn(0, λ) =
n−1
∏

j=0

(λ + 1 − α e−λ τs − 2 β e−λ τ cos
2π j

n
) =

n−1
∏

j=0

∆j(λ).

As discussed in section 4, S(±iω) = ∆0(±iω) = 0 when ω, α, β, τs, τ satisfy eq. (28). It is

easy to see that under these conditions ∆j(±iω) 6= 0 for j 6= 0 (cf. eq. (33) and eq. (37)).

Thus we have
∂S

∂λ

∣

∣

∣

∣

λ=iω

=
∂∆0(iω)

∂λ

n−1
∏

j=1

∆j(iω) , (55)

and to check that the roots are simple, it is enough to check that
∂∆0(iω)

∂λ

∣

∣

∣

∣

λ=iω

6= 0. Since

∆0(λ) = λ + 1 − α e−λ τs − 2 β e−λτ , (56)

this leads to the conditions

k11 = 1 + α τs cos(ωτs) + 2βτ cos(ωτ) 6= 0 ,

k12 = ατs sin(ωτs) + 2βτ sin(ωτ) 6= 0 . (57)

Now we fix all the parameters except the delay τ and find conditions to guarantee that

Re(
dλ

dτ

∣

∣

∣

∣

λ=iω

) 6= 0, i.e. that the transversality condition for Hopf bifurcation is satisfied.

Suppose λ = λ(τ), then from the characteristic equation S(λ, τ) = 0 we have

dS

dτ
=

∂S

∂τ
+

∂S

∂λ

dλ

dτ
= 0, (58)

which gives
dλ

dτ
= −∂S

∂τ
/
∂S

∂λ
. (59)
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From the discussion above, it is easy to see that

∂S

∂τ

∣

∣

∣

∣

λ=iω

=
∂∆0(iω)

∂τ

n−1
∏

j=1

∆j(iω) . (60)

Putting this together with (55) gives

dλ

dτ

∣

∣

∣

∣

λ=iω

= − ∂S

∂τ
/
∂S

∂λ

∣

∣

∣

∣

λ=iω

= −∂∆0(iω)

∂τ
/
∂∆0(iω)

∂λ
. (61)

Using (56) we have

Re (
dλ

dτ

∣

∣

∣

∣

λ=iω

) = −2 β ω (sin(ωτ) + α τs sin(ω (τ − τs)))

k2
11 + k2

12

, (62)

where k11 and k12 are defined in (57). It is then clear that the transversality condition is

β ω (sin(ωτ) + α τs sin(ω (τ − τs))) 6= 0 . (63)

We summarize the above results in the following theorem:

Theorem 7.1 For fixed ω > 0, α, τs ≥ 0 and for β satisfying β = β±
H0 as defined by (30),

system (1) undergoes a Hopf bifurcation at τ = τ±
H0k as defined by (31)–(32) if conditions

(57) and (63) hold.

We follow the approach of [8, 13, 22, 25] in calculating the center manifold reduction.

To begin, we choose a basis for the solutions of the linear DDE (4) corresponding to the

simple pair of pure imaginary roots, ±iω, of ∆0:

Φ(θ) = (φ1(θ), φ2(θ)) , (64)

where

φ1 =











1
1
...
1











eiω θ, φ2 =











1
1
...
1











e−iω θ . (65)

Then from K =< ΦT , Φ > , we can construct the basis in the complement space

Ψ(ξ) = K−1 ΦT (ξ) . (66)
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It can be shown that

Ψ(0) =

(

D1 + i D2 D1 + i D2 · · · D1 + i D2

D1 − i D2 D1 − i D2 · · · D1 − i D2

)

, (67)

where

D1 =
d1

n d
, D2 =

d2

n d
,

d1 = 1 + τ + (τs − τ)α cos ωτs , d2 = −ω τ + (τs − τ)α sin ωτs ,

d = 2 α(τs−τ)[ (1+τ) cos ωτs−ω τ sin ωτs]+α2 (τs−τ)2+(1+τ)2+ω2 τ 2

= (1 + τ − α (τ − τs) cos ωτs)
2 + (α(τ − τs) sin ωτs + ωτ)2 . (68)

Then the “form” of the center manifold is

ż(t) = B z(t) + Ψ(0)f(Φ(θ) z(t)) (69)

where

B =

(

i ω 0
0 −i ω

)

, z = (z, z̄)T . (70)

Since

f(Φ z) = [f1 f2 . . . fn]T (Φ z) ,

the criticality is determined by the nonlinearities f and g in system (1). Using f = g = tanh,

in the neighborhood of the equilibrium (0, 0, · · · , 0), the polynomial approximation of (1)

up to the third order is

ẋi(t) = −xi(t) + α xi(t − τs) + β[xi−1(t − τ) + xi+1(t − τ)]

− 1

3
[α x3

i (t − τs) + β xi−1(t − τ) + β x3
i+1(t − τ)] (i mod n) , (71)

then by setting z = x + i y we obtain

fj(Φ z) = −1

3
[α (z e−iωτs + z̄ eiωτs)3 + 2 β (z e−iωτ + z̄ eiωτ )3]

= −8

3
[α (x cos(ωτs) + y sin(ωτs))

3 + 2 β (x cos(ωτ) + y sin(ωτ))3] ≡ f ∗

(j = 1, 2, . . . , n) . (72)
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To determine the Hopf bifurcation, it is important to obtain the normal form first, and

then determine the sign of parameter. Now the normal form of Hopf bifurcation in polar

coordinates is [12]

ṙ = a r3 , θ̇ = ω + b r2 . (73)

Since all the components in the first row of Ψ(0) are the same, (D1 + D2 i), so are the

components in fj(Φ z). Then

Ψ(0) f(Φz) =











(

d1

n d
+

d2

n d
i

)

n f ∗

(

d1

n d
− d2

n d
i

)

n f ∗











=











(

d1

d
+

d2

d
i

)

f ∗

(

d1

d
− d2

d
i

)

f ∗











. (74)

Therefore, using the general Maple program we have developed, we can find the cubic coef-

ficient

a = − α(τ − τs)(ω sin ωτs − cos ωτs) + τ (1 + ω2) + 1

(1 + τ − α (τ − τs) cos ωτs)2 + (α(τ − τs) sin ωτs + ωτ)2
. (75)

From the above equation, we can observe that:

(i) The criticality of the bifurcation is determined by the sign of

N = − [ α(τ − τs)(ω sin ωτs − cos ωτs) + τ (1 + ω2) + 1 ]

When N < 0, the bifurcation is supercritical, i.e. the Hopf bifurcation yields a stable

limit cycle, while if N > 0, the bifurcation is subcritical and the Hopf bifurcation yields

an unstable limit cycle.

(ii) The bifurcation condition is the same regardless the number of neurons n.

A similar analysis can be used to show that with f = g = tanh a pitchfork bifurcation

of synchronous equilibria occurs at β = 1−α
2

. This bifurcation is supercritical/subcritical if

1 + ατs + τ(1 − α)
>
< 0.

Figure 9 shows the equilibria resulting from a supercritical pitchfork bifurcation.

From Figures 5– 8 it is clear that if τs > τ
(1)
s then interactions of the various synchronous

bifurcations can occur. This can lead to coexistence of various stable synchronous solutions.

We illustrate this with numerical simulations in Figures 11 and 12.
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(a) Initial conditions:
x10 = 1, x20 = 0.4, x30 = 1.5.
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(c) Initial conditions:
x10 = −1, x20 = 0.4, x30 = 1.5.

Figure 11: Numerical simulations of the network with n = 3 showing the co-existence of two
stable synchronous equilibria with a synchronous periodic orbit for α = −0.5, β = 0.8, τs =
2, τ = 4. Three different initial conditions of the form xj(t) = xj0, −τs ≤ t ≤ 0 were used.
Parameter values correspond to the stability diagram of Figure 8(b).
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(b) Initial conditions: x10 =
−1, x20 = 0.4, x30 = 1.5.

Figure 12: Numerical simulations of the network with n = 3 showing the co-existence of
two stable synchronous periodic orbits for α = −0.5, β = −0.8, τs = 2, τ = 6.8. Two
different initial conditions of the form xj(t) = xj0, −τs ≤ t ≤ 0 were used. Parameter values
correspond to the stability diagram of Figure 8(b).

8 Discussion

In this paper, we extend the local and global stability results of [4] for a ring of 3 identical

elements with time delayed nearest neighbour coupling to the case of general n. We also

analyze the (simple) Hopf and steady state bifurcations of synchronous solutions from the

trivial solution, including a centre manifold analysis of the criticality of these bifurcations.

In particular, we have shown that certain regions where there is delay independent local

stability of the trivial solution there is also global stability. We have seen that when there

is an even number of elements in the ring, the region of local stability is the same as for

a ring with just two elements, if the self delay, τs is sufficiently small. We have shown

that synchronous nontrivial equilibria and limit cycles can arise via steady state and Hopf

bifurcations from the trivial solution. Using the nonlinearities f = g = tanh we have shown

that these nontrivial synchronous solutions can be stable and can coexist.

In order to be able to carry out our analysis, we have chosen a specific model for the

elements in our ring. In general terms, each diagram of Figures 3–8 shows the stabil-

ity/bifurcation of the trivial solution in terms of the coupling delay, τ , and the coupling

34



strength β. The sequences of diagrams in each set show how these properties change as we

vary a parameter which is associated with the emergence of periodic solutions in the indi-

vidual elements. We conjecture that qualitatively similar diagrams will occur if a different

model for the elements was used, but the delayed, nearest neighbour coupling was retained.

As evidence of this, we note the work of [3], who studied a “ring” of two elements, each

element being modeled by a systems of three nonlinear ordinary differential equations capa-

ble of oscillating. They obtain a sequence of stability/bifurcation diagrams very similar to

that of Figure 4 and find stable synchronous periodic orbits which bifurcate from the trivial

solution.

Of further interest in this model is the existence and stability of the various asynchronous

solutions which may bifurcate from the trivial solution. This paper represents some progress

in this regard. Under appropriate conditions on the nonlinearities, the curves in our stability

diagrams where the characteristic equation has a double zero root or a repeated pair of pure

imaginary roots will correspond to equivariant steady state and equivariant Hopf bifurca-

tions. It is clear that, when n is even, stable anti-phase solutions can exist, cf. Figure 10.

Also, it has been shown in [4] that for n = 3 other stable asynchronous solutions may exist.

We leave further pursuit of this line of research to a future paper [5].
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