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Abstract We consider a closed Nutrient-Phytoplankton-ZooplankdiZ) model
that allows for a delay in the nutrient recycling. A delaypdadent conservation law
allows us to quantify the total biomass in the system. With, tlve can investigate
how a planktonic ecosystem is affected by the quantity ofrfaiss it contains and
by the properties of the delay distribution. The quantitpiimass and the length of
the delay play an significant role in determining the exiséeaf equilibrium solu-
tions, since a sufficiently small amount of biomass or a lamzugh delay can lead to
the extinction of a species. Furthermore, the quantity ofrfziss and length of delay
are important since a small change in either can change adbditst of an equilib-
rium solution. We explore these effects for a variety of g@estributions using both
analytical and numerical techniques, and verify resulth wimulations.
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1 Introduction

Plankton are at the bottom of most oceanic food webs, andfthrerit is important to
understand the dynamics of planktonic ecosystems. Typithe first trophic level
consists of phytoplankton, which uptake nutrient througbtpsynthesis. The sec-
ond trophic level is formed by zooplankton, which feed ontopjankton. It is con-
venient to study the interaction of phytoplankton and zankton using a predator-
prey based model. These models can range from very simplai\aiterra mod-
els Murray, 1989 to very complicated equations that consist of not only tieac
type terms but also advection, diffusion and even sizeztira. Typically, the more
complicated the model, the more parameters need to be chasgnconsequently,
overly-complex models are harder to learn from than simmhers.

Using a three compartment Nutrient-Phytoplankton-Zoakten (NPZ) model,
we focus on how the existence and stability of equilibriunusons depend on two
properties: (1) the total biomass in the system (measurdisgolved nitrogen), and
(2) the delay that characterizes the recycling of nutrients

In order to investigate the effects of the total biomass, sgime a closed system
where nutrient is conserved for all time. Consequentlyghell be a fixed constant,
Nr, that represents the amount of dissolved nitrogen in thiesys time. A good
introduction to NPZ models in this form is givenkmanks(2002, and has been stud-
ied in Gentleman and Neuheim@&008 andWroblewski et a(1988 and references
within. Other closed ecosystem models can be fourldlamowicz(1972 andKmet
(1996.

An alternative to having a closed system would be to have dmrevthere are
sources and sinks, which are typically referred to as wastades, where biomass
flows in and out of the system at some rate. These are oftenisbémostat mod-
els. Our model may be seen as the limiting case where the wassdte tends to zero.
In an open system, the total biomass in the system usualiig terthe concentration
flowing in, while without a washout rate the total biomassxedi by the initial con-
dition. The washout rate may be important in some ecosystentsan be ignored
when considering a large, self-contained ecosystem. Ampleaof this is a closed
lake.

In Beretta et al(1990, the authors state that since the washout rate is much
smaller in a natural system than in a chemostat situatiamniemt recycling must be
considered. When plankton die, the remains are not immedglisgady to be uptaken
by phytoplankton; there is an interval of time during whialtnient recycling takes
place. The length and other characteristic features ofetaydan affect stability, and
we will analyze this along with the total nutrient in the st This type of delay has
been studied frequently in chemostat-type modéls,dnd Ruan1998 Ruan 1998
2001). However, the inclusion of delay in a closed system brimgthfan alternative
structure in the governing equations that requires a diffeperspective that has re-
ceived much less attention. The amount of biomass in a systénwashout rates is
characterized by an explicit parameter: the concentrationtrient flowing into the
system. In the closed model that we will consider, the tainass is not an explicit
parameter found in the equations, but rather is implicihimithe initial conditions.
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2 Model

The dynamics of our planktonic ecosystem model are govdigedthree compart-
ment NPZ model. Respectively, these compartments regrésedissolved nutrient,

the amount of phytoplankton, and the amount of zooplankEach compartment is
measured by its content of the limiting biomass, which isaligunitrogen. Following

the lead ofFranks(2002), we assume that five basic processes govern the ecosystem:
(1) the phytoplankton nutrient uptake, (2) the zooplankf@azing on phytoplankton,

(3) the death of phytoplankton, (4) the death of zooplank&mo (5) nutrient recy-
cling. We assume that there is a delay in nutrient recycliing state equations then
take the following form:

dﬁ—t(t) =A /()OOP(t—u)n(u)du+5/()°°Z(t—u)n(u)du

+(1-yg [ ZE-whPE-w)ndu- kPOTNGD).  (La)

PO P f(NW) — gZONP(D) - AP() (1b)
Y gz (e - 52(0). (10)

Here, phytoplankton reproduce at a rate proportional to gapulation size and
to a general function of the available nutriefitN). Similarly, zooplankton repro-
duce at a rate proportional to their population size and tanatfon of the available
phytoplanktonh(P). The parametely, sets the ratio of the biomass lost from the
phytoplankton variable because of grazing and the bionaisgd in the zooplankton
variable. The rest is returned to the dissolved nutrieritbde. We assume the death
rates are proportional to the population sizes, and all theent then returns to the
dissolved nutrient field. This recycling of nutrient is n&aessarily instantaneous,
but occurs after some delay according to the distributjpmvhich is non-negative
and normalized so thg§’ n(u)du= 1.

The functional form of the phytoplankton nutrient uptakélN) < C?, will be
assumed to have the following properties:

f(0)=0, f(N)>0, f”(N)<0O, hIlim f(N)=1. 2
—»00
The most common functional respongegnks 2002 is the Michaelis-Menten for-
mulation:
N
N ={rw

which is one choice that satisfies these properties.

The functional responses of the zooplankton grazing onggighkton are usually
characterized by a particular type, as describedailing (1966. A Type | response
depends linearly on the population density (&@d) = aP). A Type Il response has
a “negatively accelerated rise to a plateadbdlling, 1966 and a Type lll response is

®3)
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sigmoidal shaped. We will focus on the latter two and assumaddllowing proper-
ties:

h(0)=0, N(P)>0, lim h(P)=1 @)

Similar properties are found Ruan(200]) andHale and Somolino§l983. We will
also assumb € Ct. The particular choice of how zooplankton graze on phytalpla
ton is a very important aspect of the model, as it has a sigmifionpact on the
stability of the ecosysten@entleman and Neuheim&008.

The closure terndZ incorporates not only the natural death of zooplankton, but
also the effects of higher predation. Consequently, it tsrofaken to be quadratic
(6Z2), which approximates a Type Il response of predation, evhillinear terms
is better at approximating a Type Il response. An importeature Franks 2002
is that a quadratic closure term makes the system much maléesHowever, it
is much easier to analyze the existence of equilibrium Bpistusing a linear clo-
sure term since the rate of change of zooplankton can be nedarmdependently
of the value ofZ. Furthermore, intuitively it seems the closure term shdddin-
ear as the zooplankton population tends to zero, as we nxgleice predation to be
negligible compared to the natural death process in thig.liBecause of this, in
Caswell and Neube(L.998 they use a closure term with both a linear and nonlinear
part. For simplicity we will choose a linear closure termgawill perhaps address in
future work the impact of quadratic closure schemes.

The reason for the delay in the nutrient recycling is thatehe a period of de-
composition when a plankter dies, so treating this as aantasheous process differs
from the true dynamics. This recycling comes from three gsses: the phytoplank-
ton deaths, the zooplankton deaths, and the inefficiendyeogtazing. As a starting
point, it will be assumed that these three processes hawathe delay distribution.
This is not true in reality, but the effect that the delay hasiee system would become
much harder to understand if we were to consider three diffedistributions, so it
is worth seeing what results can be obtained from the assomipat they are all the
same. In future work it would be of interest to consider sefgadelay distributions
but that is beyond the scope of this work.

While it is true that in reality there must necessarily eristupper bound on the
length of delay, itis sometimes convenient to allow for umhded delay distributions.
While we will consider distributions with bounded delay, wal not restrict our
attention to them completely.

We can view the distribution of delayg,(u), as the probability that an amount
of nutrient will take timeu to be recycled. If there is a large range of possible times
over which an amount of nutrient is recycled, then the distion is wide with large
variance. On the other hand, if the nutrient recycling alviakes roughly the same
amount of time, the distribution is narrow with small vaian Furthermore, one
could assume a discrete delay, where the recycling takes@dimount of time with
100% probability. This distribution can be seen as the lwhid sequence of distri-
butions whose variances become smaller and smaller. licdisis, the distribution is
n(u) = o(u— 1), whered(x) is the Dirac delta distribution. This then leads to the



A Closed NPZ Model with Delayed Nutrient Recycling 5

equations

dN(t) =AP(t—1)+0Z(t— 1)+ (1—y)gZ(t— 1)h(P(t— 1)) — uP(t) F(N(t)),

dt
(5a)
—— —HPMOF(N()) —gZ(t)h(P(t)) — AP(), (Sb)

——> =ygZ(t)h(P(t)) — 6Z(t). (5¢)

An NPZD modelis a variant of an NPZ model that includes antimtthl variable:
detritus, which represents the faecal pellets of zooptanknd dead phytoplankton
and zooplankton. As we now show, an NPZD model can be equividean NPZ
model with delayed nutrient recycling. This is a result af tommon “linear chain
trick,” although the context here is special in that the &xtariable, detritus, has a

clear physical meaning. Denoting the detritu£as typical NPZD model takes the
form:

dN

s =aD — uPf(N), (6a)
dpP
o =uPf(N)—gzh(P) — AP, (6b)
c;—f =ygZh(P) — 8Z, (6c)
dD
e =AP+0Z+ (1-y)gzZh(P) — aD. (6d)

This system is equivalent td)if we choosen (u) = ae ", which can be seen by
letting

D(t) :% /Om[)\ Pt —u)+3Z(t—u)+ (1— y)gZ(t — u)h(P(t — u))|n (u)du.

A detritus model applied to an open ecosystem was analyzédwards(200]). By
studying systems with general delay distributions, we ac&iding systems such as
(6) as a special case in our analysis.

2.1 Mathematical Properties

We now consider some mathematical properties of the mddeF{rst, since the
model is closed, there is no biomass lost or gained in theysters. Consequently,
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there is a conservation law, which is obtained by adding thuagons in {) to yield

N+ P + ()

_/ IAP(t— U) + 8Z(t — ) + (1— y)gZ(t — Wh(P(t — u))]n (u) du
—AP(t) = 0Z(t) — (1—y)gZ(t)h(P(t)),

_/ IAP(t—U) + 8Z(t —u) + (1— y)gZ(t — Wh(P(t — u))
—AP(t) - 52() (1=y)gz(t)h(P(t))]n (u)du,
5 [ nPw)+ 5200 + (1 ygznPIn () dveu

so that the quantity
Nr = N(t) +P(t) + Z(t)
o tiu“ P(V) +8Z(v) + (1~ Y)gZWh(P(v)In(wdvdu  (7)

is conserved in time. The total biomass in the systdim,is thus given by the sum
of the nutrient in the three compartments plus that in thegss of being recycled.
If we ignore the delay (sef(u) = d(u)), we recover the simpler conservation law
Nt = N(t) + P(t) + Z(t) found inFranks et a{1986.

Next, we write the modell]) in the general form

0]

a F(x) fort >0, (8)

wherex = (N,P,2)T and
% (0) =x(t+6) for 6 <O0.
An appropriate initial condition is then
X0 = 9. )

Since @) is a delay differential equation with infinite delay, an epgriate phase
space for the problem is Cop((—,0,R% where p > 0
(Hino et al 1991 Kolmanovskii and Myshk|,§1999 Diekmann and Gyllenberg012.
This is the Banach space of functiogis (—,0] — R3 such thae®? () is contin-
uous and

lim e”®y(6)=0.

6——o0

This space is equipped with the norm

[@]e0,p = SUp”E (6).
6<0
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Table 1 Parameter values used for all computations

Parameter Value
59 day T
0.017 day?
7 dayt
0.7
0.17 day *
N

Ng*

PIK
1.0uM

1.0uM

Xx’::’:ol >
TzZzo~e>=

—

Then,F : Co,((—,0],R®) — R3, and with the above assumptions brandh, for
any@ € Co o ((—0,0],IR®) there exists a unique solution. In this phase space, we need
the following condition to hold:

/0oo €n(u)du < co. (10)

For the purposes of numerical computations, the valueshiteTawill be used.
These were taken frofoulin and Frank§2010).

3 Equilibrium Solutions

Substituting a time-independent solutigh(t), P(t),Z(t)) = (N*,P*,Z*) for all t €
R, into (1), we see that the system is in equilibrium if the followinguations are
satisfied:

PP f(N*) — gZ*h(P*) — AP* =0, (11a)
yoZ*h(P*) — 5Z* = 0. (11b)

If these two equations hold, then the growth rates of eaciamaris zero, regard-
less of the delay distribution. Hence, we have one degreeetibm when finding a
steady state solution. That is, equilibrium solutions cameets due to the conserva-
tion law (7). However, we can consider the total biomass, to be a fixed parameter
of the system. Then an equilibrium solutigh*, P*, Z*) must also satisfy

Ny =N+ P +Z"+ AP+ 0Z" + (1— y)gZ"h(P*)|, (12)
wherert is the mean delay:
T= / un (u)du.
0

From the conservation lawl®), we see a relationship between the total biomass
and the length of delay. If we consider the equilibrium solutas given, the total
nutrient is a linear function of the mean delay. This is beeaallonger delay means
that at a given time there is more nutrient in the process ioighecycled, so there is
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necessarily more nutrient in the system. Alternatively,o&a consider the total nu-
trient to be fixed, and the equilibrium solutions to be fuos of the mean delay and
total nutrient. While it is often true that the equilibriumlstions of delay differential
equations do not depend on the delay, if the total nutrieatfiged parameter then
the equilibrium solutions in our model do indeed have delgyahdence. Increasing
the delay then decreases the equilibrium values, sinceiata yme a larger portion
of the total nutrient is in the process of being recycled.

There are three types of equilibrium solutions. Since thgestariables represent
physical quantities, only non-negative solutions are nregul, therefore an equilib-
rium solution does not exist if it has negative values.

The first equilibrium solution is the trivial equilibrium.eBingP = Z = 0 sat-
isfies (L19 and (L1b). Then, from the conservation law, we get thdt= Nr. This
steady state solution will be referred to(&& ,0,0), or simply as the trivial solution.
Biologically this represents the states where there isfaarlithe ecosystem.

The second type of equilibrium is in the foriN, P, 0), with N > 0 andP > 0. By
settingZ = 0, (11b) is satisfied. A necessary condition fdrl@ to be satisfied is

U>A, (13)

which means the maximum growth rate of phytoplankton musgreater than its
death rate. If this is true, then equatidrl§ is satisfied by settin§l = 1A /).
Sincef is an increasing function with € f(N) < 1, this value is well-defined and
unique ifu > A. From the conservation lavt?), we get

5 Nr—f1(A/p)
P= 1A (14)
Thus, this equilibrium point exists if and onlyMr > Ny1, where
A
M-:f‘1<—). 15
1 m (15)

Finally, we now consider the equilibrium point of type*, P*, Z*), with all three
components positive. A necessary condition fidth) to be satisfied witlZ* £ 0 is

yg> 9, (16)

which means that the maximum growth rate of the zooplanktostiine greater than
its death rate. If16) is satisfied, then

* _ p—1 é)
P*=h (yg . a7
Then from (19: .
Z" = Vg [Uf(N*)—=A]. (18)

Now N* must satisfy the conservation lad2), which leads to the implicit expression

for N*: 5 A
NT:N*+hl<@> {1—%+(§+r)uf(N*)]. (19)



A Closed NPZ Model with Delayed Nutrient Recycling 9

Note thatNt is a continuous increasing function Nf. SettingN* to (A /i), we
see thalNt = Ny, where

Npp=f1 (%) +(1+Ar)h‘1(%>. (20)

Again, sinceh is an increasing function, this value is unique and wellyokdiif yg >

d, which we assume to be true for the same reason we asgume. If Ny > Nro,
thenN* > f~1(A /u), which impliesZ* > 0. This shows the equilibrium point exists
if Nt > Nr2. ConverselyZ* < 0 if Nt < Nr2, so then the equilibrium point does not
exist.

The uniqueness of each type of equilibrium point followsrirthe fact thaf and
h are increasing functions.

In Levin et al(1977), the authors state that if the prey population in the absenc
of predators is large enough to support predators, in o zasplankton, then the
positive equilibrium exists, which is precisely the caseehéndeed, if° > P*, then
there is enough nutrient to support both populations. Thislérium solution is
more ecologically diverse and also more relevant to whabseoved in the world’s
oceans and lakes.

In the following sections, we will assume the conditiod8)(and (L6) are satis-
fied, and focus on the effects of the total biomaés, and delay on the stability of
the equilibria.

4 Characteristic Equation
The differentiability conditions orf andh in (2) and @) with the condition omn

in (10) assure thaF in (8) is Fréchet differentiable. The Fréchet derivative at an
equilibrium solutionx* = (N*,P*,Z*)T is

DF (<) = Ao(0) +As | (~upn(u)du @y
where

—uP*a —uc 0

Ao=| pPa puc—A-gz*b —qgd , (22)

0 yaZ*b ygd — o

0A+(1-y)gZ*b 0+ (1—y)gd

Ail=1(0 0 0 ) (23)
0 0 0

anda= f'(N*),b=H(P*),c= f(N*), andd = h(P*).
The linearized equation around an equilibrium solutiorént
dx(t
P oF ey x), (24)

= Aolx(t) = x)+Av | (x(t—w) —x)n () du (25)
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Taking the Laplace transform o24) gives the characteristic equation:
det[sl —Ag—A11(s)] =0, (26)

whereq is the Laplace transform af:

Ae) = [ e=nudu (27)

The equilibrium solution is locally asymptotically stalifell the rootss that solve
det(sl — Ap—A1f(s)) = 0 have negative real parts and unstable if there is at least on
root with positive real partlliekmann and Gyllenber@012.

Note that if we add all the rows @ with all the rows ofA; we obtain(0,0,0),
and hences = 0 is always a solution to the characteristic equation, siE® = 1.
Thus, to determine the stability of any equilibrium solati@one must consider the
center manifold associated with this zero eigenvalue. énciise where the system
has bounded delay it can be shown that this center manifaohiply the curve of
equilibrium solutions that can be parameterized by thd itemass. This is because
the zero eigenvalue is a consequence of the conservatiooldayed by the system.
As a result, if all the other eigenvalues have negative ragkpthen this manifold is
locally attracting, meaning initial conditions that ardfiiently close to the chosen
equilibrium will asymptotically go towards a nearby poimtihe line of equilibria. In
particular, the solution will approach the equilibriumwstidbn with the total biomass
that is determined by the initial condition. This makes &htium solutions stable,
but not asymptotically stable. While center manifold theloas not yet been devel-
oped for the case where the delay is infinite, we will assurag ithis true that an
equilibrium solution is stable if the zero eigenvalue calisg the conservation law
is the only root with nonnegative real part.

We will now consider the stability of each of the three typesauilibrium points.
Our investigation will begin with the system without delay(¢) = d(u)), and then
will continue with non-zero delays.

5 Stability of Solutions without Delay

Much of the work in this section has been done elsewhere dowtdmpleteness we
present the results here, as the results for the system elily depend on those for
the system without. We discuss now how the quantity of bienadfects the stability
of the equilibrium solutions.

With no delay, the system becomes

dN

ot =AP+0Z+(1-y)gZh(P) — uP(N), (28a)
?TT =uPf(N)—gZh(P) - AP, (28b)
9 _yoznp) - oz (28c)
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Since the conservation law yieldd = N(t) + P(t) + Z(t), we can substitut®l =
Nr — P—Z into equation28h) and remove equatio28g. Then we have the follow-
ing reduced system:

dpP

o —HPT(Nr—P—2)—gzZh(P) - AP (29a)
?j_f =ygzh(P) — 5Z. (29b)

Then, given a solutionR(t) andZ(t), we can determine the amount of dissolved
nutrient viaN(t) = Ny — P(t) — Z(t). If an equilibrium point of the reduced system
is asymptotically stable, then the corresponding equuliarpoint of the full system
is stable. This is because the reduced system has the totemdixed for all ini-
tial conditions, while in the full system the total nutriesatries for initial conditions
within a neighbourhood of an equilibrium point.

We will denote the phase spacels- {(P,Z) : P> 0,Z> 0,P+Z < Nr}. This
space is positively invariant, which follows from the iniaarce of the axes, and the
fact that$ (P + Z) is negative on the lin@+ Z = Nr.

The equilibrium points of the reduced system are the sambaase tfor the full
system, but with th&l component discarded. The trivial equilibrium of the redlice
system become®,0).

Proposition 1 If Ny < Nty (if the equilibrium (I5, 0) does not exist), then the equi-
librium solution (0O, 0) of system (29) is globally asymptotically stable on D.

Proof Linearizing around this point yields the Jacobian matrix

(uf(N(T))—/\ —05>' (30)

Here, the eigenvalues are simply the entries on the diag®hatefore this point is
asymptotically stable if1f(Ny) — A < 0. Equivalently, this point is asymptotically
stable if Nt < Nr1, whereNy; is given in (L5). Furthermore, since this is the only
equilibrium in D, and it occurs on the boundary, there are no periodic orit3. i
Therefore, this equilibrium is globally asymptoticallabte onD. (]

This means that if there is not sufficient nutrient to sustaim phytoplankton
population, then both phytoplankton and zooplankton bexertinct. Furthermore,
recall that asymptotic stability di0,0) in system 29) implies stability of(Ny,0,0)
in (28).

Proposition 2 If Nr1 < Ny < Ny2 (if}he equilibrium (I5, 0) exists, but (P*,Z*) does
not), then the equilibrium solution (P, 0) of system (29) is globally asymptotically
stable on D, except for the Z axis.

Proof From the linearization of0,0), Nr1 < Nr implies that(0,0) is unstable. Lin-
earizing aroundP, 0) yields the Jacobian matrix

—uPT'(Nr —P) —uPf/(Nr —P) —gh(P)
( 0 yoh(B) & ) | (1)
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0.08 T 20

0.06 15

0 0.02 (}\?4 0.06 0.08 0 0.02 %4 0.06 0.08
T T

Fig. 1 Equilibrium values of phytoplankton and zooplankton asrefion of total nutrient. The solid lines
represent asymptotically stable points, while the dofitees| show unstable points

Again, the eigenvalues are simply the diagonal entriesfif$teeigenvalue is negative
sincef is increasing. Since we assume that yg, the second eigenvalue is negative
if and only if P< h=%(5/yg). This condition is met ifNt < N2, whereNy is given

in (20) with T = 0. Furthermore, since there are no equilibrium points onrttegior

of D, there are no periodic orbits, $é, 0) globally attracts all trajectories, except
those on the axis, which obviously go to the origifl

Therefore, if there are enough nutrients to sustain thegugikton population,
but not the zooplankton population as well, the zooplanktiecomes extinct, while
the phytoplankton persist. Sinéxis positive only if the zero solution is unstable, if
we increase the total nutrient padst1, this equilibrium would exist as soon as the
trivial equilibrium becomes unstable.

We now consider the positive equilibrium. Linearizing andyP*,Z*), the fol-
lowing Jacobian matrix is obtained:

oZ* * * * o)
- — UP*a—gbz* —uPa—¢
(e Ry, 2)

wherea = f/(Nr — P* — Z*) andb = W (P*). These values are both positive sinfce
andh are increasing functions.

Defining T as the trace anb as the determinant of the matrix, it can easily be
seen that the equilibrium solution is asymptotically staibland only if T < 0 and
D > 0. Itis easy to see th& > 0. Thus, stability depends on the value of the trace:

h(P*)
P*

=7

Immediately, we can see that for sufficiently sméllthe trace is negative and
(P*,Z*) is therefore asymptotically stable. Since the equilibri(Ph,Z*) exists if
Nr > Nyo, if we increase the total nutrient pdsi,, the equilibrium(ﬁ, 0) becomes
unstable as soon &B*,Z*) exists and is stable.

It can be seen tha&ty; andNy; are transcritical bifurcation points, where solution
branches intersect and the stability of each branch chatdhe intersection. Using

T

— uP*a—ghz* = gz* ( - h’(P*)) — uP*a. (33)
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Fig. 2 A Type Il functional response (left) in the formP) = WPK and a Type Il functional response

(right) in the formh(P) = sz:Kz- A sufficient condition for stability for this Type Ill respse is that

P* <K, which means that'(P*) > h(P*)/P*. Equivalently,d/yg should be less than 1/2

the parameter values in TaldleFigurel shows the equilibrium values & andZ as
a function of total nutrieniNr, and demonstrates the stability changes.

To look for further bifurcations we consider the sign 88). If ' (P*) > h(P*) /P*,
the equilibrium point is always stable. This condition sthat the slope of the secant
line from the origin to the point on the graph at the equililbmipoint must be less than
or equal to the slope of the tangent line at the equilibrium&éntleman and Neuheimer
(2008, the authors use this idea to argue that a Type Il zooptangtazing response
is more stable than Type Il. iis a Type Il response, the conditibf{P*) > h(P*) /P*
is never true, but if it is of Type ll1, then this condition che satisfied foP* below
some critical value. This critical value is the valueRoivhere a line through the origin
intersectd(P) tangentially. Figure illustrates this idea.

We now investigate the case whér¢P*) < h(P*)/P*, as is the case in Type Il
responses and in Type Ill responses whetgg is sufficiently close to 1. INy = Ny,
thenzZ* =0 andT < 0. Thus we conclude thaty is sufficiently close to, and greater
than,Ny», we have stability. The following proposition then showsvttbe stability
is affected ad\t is increased fronNto.

Proposition 3 If W (P*) < h(P*)/P*, then there exists a unique value of total nutri-
ent, Nr3 > N2, such that the point (P*,Z*) is asymptotically stable if Nro < Ny <
Ntz and unstable if Nt > Nr3.

Proof Recall that(P*,Z*) is asymptotically stable iT < 0, and unstable i > 0
whereT is the trace in83). Let T = T(Ny). We will prove the existence of a unique
Nr3 such thafl (Ny3) = 0. Note thatP* and thush are independent dfyr. However,
Z* and therefore are functions ofNy. Taking the limit adNy goes to infinity, and
noting thatZ* — yP*(u — A)/d anda — 0 in this limit yields the result

Torex = %gp*(u —A) <@ —h’(P*)) >0, (34)

sincey — A > 0 SinceT (Ny2) < 0, the existence diir3 follows from the Intermediate
Value Theorem.
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Fig. 3 Steady state values of available nutrient (solid line),tpplankton (dashed line), and zooplankton
(dotted line). When the steady states become unstablé ciwies occur, and the maximum and minimum
values of the periodic orbit are plotted

To prove uniqueness, we show tAats an increasing function d¥y:

dT  (h(P) .\ .dZ' _ da

We now show that this is positive for ar by showing thatdZ*/dNr > 0, and
da/dNr < 0, since we have assumb@P*) > h(P*)/P*.

The proof thadZ* /dNr > 0 follows from (18) and the Implicit Function Theo-
rem. Differentiating {8) with respect td\lr yields

dz* _yuP* ., o e [, 92
e f'(Nr — P z><1 dNT). (36)

Rearranging fodZ* /dNt and noting thaf is increasing yields the result. It can also
be seen thadZ*/dNy < 1.
Now consideia = f’(Ny — P* — Z*). Differentiating with respect tblr yields

da
dNt

" * * dz*
=ft"(Nr—P —Z)(l—dNT>, (37)

which is negative sincé has negative second derivative, and sidgé&/dNr < 1.0

Therefore, ift/ (P*) < h(P*)/P*, there exists a third critical value of total nutri-
ent, Nr3, where the equilibrium pointP*,Z*) switches from stable to unstable as
Nr is increased. Since this value is unique, stability canmotdgained by further
increasing the total nutrient. At this valusrs, there is a Hopf bifurcation. For the
parameters in Table 1, numerical simulations suggesthisist a supercritical Hopf
bifurcation, where stable periodic orbits exist fdf > Nt3. In Figure3 the steady
states are plotted when they are stable, and then the maxandnminimum val-
ues of the limit cycles wheNt > Nr3 are plotted. A similar figure can be found in
(Wroblewski et al 1988, though they do not include stability analysis and theyonl
include equilibrium solutions, not limit cycles.

In Franks et a(1986, numerical simulations using a Type Il response produced
periodic orbits, while a Mayzaud-Poulet type responsectvidioes not saturate and
has positive second derivative, led to stable equilibriemtsons. Consequently, as
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pointed out inGentleman and Neuheimé008), it was mistaken that it is the sat-
uration that causes instability, when in truth it is the tiela betweenh(P*) and
h(P*)/P*. In fact, the shape of the response or- P* is unimportant and the satu-
ration has no effect on a fixed equilibrium point. Since theykéaud-Poulet response
has positive second derivatié(P*) > h(P*)/P*, the positive equilibrium is always
stable. As well, a Type Il response will lead to periodic tslfor initial conditions
such thafNt > Nr3, so those numerical results are consistent with our arglysi

In Gentleman and Neuheimé008, the authors assume the dissolved nutrient
is saturated (i.e. settinffN) = 1) in their analysis, which misses some of the details.
For a Type lll response, this does not change the analygisoiba Type Il response,
it implies that the positive equilibrium is always unstabl@is is not true since the
destabilizing effects of the zooplankton grazing respasese be overcome by the
stabilizing process of the nutrient uptake by phytoplankithat is, the growth rate
per unit biomass of phytoplankton decreases with incrgaghytoplankton. This
is because the more biomass there is within the phytoplargapulation, the less
biomass there is that is available to be uptaken by phyt&pdanwhich decreases the
growth rate. This stabilizing influence becomes less ingrdras the total biomass in
the system increases.

In Ruan(200Y), the author analyzes a similar chemostat-type modeltichides
a washout rate. This model includes nutrient of concewimd flowing in at a rate
of D. The parameteNC is analogous to ouNy, and the author obtains similar re-
sults, including those for the existence and stability @& three different types of
equilibrium for different values ail°. In the chemostat model, for example, the con-
centration of nutrient must be sufficiently large to susthim plankton populations.
As well, using a Type Il response, the author proves the &xigt of a Hopf bifur-
cation. These similarities suggest that the amount of bgsnrathe system plays a
significant and consistent role regardless of the specifin fuf the model equations.

6 Stability of Solutions with Delay

While conserved NPZ models have been studied without dalautrient recycling,
and non-conservative models have been studied with thaydie our knowledge,
no one has studied a conserved NPZ model with delay in ntuteegcling. We now
investigate the effect that the delay in nutrient recyclas on the three different
types of equilibrium points. In the case of the trivial edarium, the presence of
delay does not change the characteristic equation:

s uf(Nr)—AR(S) —B(s)
det[ O s—puf(Nr)+A 0 =0. (38)
0 0 s+

The requirements for stability are the same as in the casenwsidelay. That is, the
point (Ny,0,0) is stable ifNt < N1, and unstable iNr > Nyj. In fact, if the trivial
equilibrium is stable, it is globally stable, since

%(P+Z) =(uf(N)=A)P—(1-y)gZh(P) —3Z< —m(P+2) (39)
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wherem=min(A — uf(Ny),0) > 0. This implies thaP andZ both asymptotically
approach zero, and the conservation law therefore imgitd\t asymptotically ap-
proached\t.

The delay does change the characteristic equation for ke two types of equi-
librium points. Since the equilibrium points come in lineg@meterized by the total
nutrient, we will study the stability both in terms of eqbifium values and mean
delay, as well as total nutrient and mean delay. First weaggghe equilibrium point
with no zooplankton.

6.1 Stability of Equilibrium with No Zooplankton
Substituting(N, P, 0) into Ay andA; yields
—uPa—A 0 0Ad+(1-y)gd
Ao=| puPa 0 —gd ) Al=|00 0 , (40)
0 O ygd—9o 00 0

sincec = f(N) = A /u. The characteristic equation is then:

s+ uPaA(1-1(s) —[6+ (1—-y)gdlA(s)
det| —uPa s gd , (41)
0 0 s—ygd+ o
= (s— ygd+ 3)[s* + pPas+ pPaA (1—A(9))], (42)
=0. (43)

The roots = ygd — d is negative ifNy < Nr2, whereNr2 is given by @0). We
therefore see the same transcritical bifurcation pdiits and Ny, here as we did
in the model with no delay. INy < Nrp, stability then depends on the roots of
& + pPas+ uPaA (1—f(s)).

Proposition 4 [f the total biomass, Ny, and the mean delay, 1, are such that

f1<%> L2111

A 5
<N <fl<—>+ 1+1A hl<—>EN . (44
i T U ( ) v 2, (44)

then (N,P,0) isstable.

Proof The inequalityNr < Nt is necessary and sufficient so that the eigenvalue
ygd — & is negative. Using the definition &fin (14) the other inequality can be shown
to be equivalentto.2 < pPa. Using Rouché’s TheorenChurchill and Brown1984),

we now show that if 2 < pPa, then all the non-zero roots et + pPas+ pPal (1—
f(s)) have negative real part. This theorem says thét #nd f, are analytical func-
tions,|f1(s)| > | f2(s)| on some simple closed contdDyand neither function reduces
to zero at any point o€, thenfy(s) andfi(s) 4 f2(s) have the same number of zeros
insideC.
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Let f1(s) = &>+ puPas+ pPaA and fo(s) = —uPaA A (s). Let the contouC =
C1UGC;, be given by

. _ pdif _nn

Ci: s=Réf, ee{ 2,2}, (45)

Cy: s=iy, ye[-RR. (46)

We wish to show thaltf(s)| > | f2(s)| onC. Since| f2(s)| < pPaA it is sufficient
to show that f1(s)|2 > (uPaA )2 onC.

OnCl | f1(RE®)[? = (R?cos B + pPaRcosh 4 pPal )2+ (R?sin 20 + pPaRsing)? >
(uPah)?, forR sufficiently large.

On Gy, | f1(iy)|2 = (uPaA —y?)2 + (uPay)2. Under the assumption thaf 2<
uPa, a simple computation shows that the minimum valigéiy) |? takes with respect
toyis aty=0. Thatis, |fl(|y)|2 > (uPa))2. However, if 24 > pPa, the minimum
value occurs ay* = uPa()\ uPa) and it can be seen that the valug &f(s)|? at
this point is less thafyuPaA )2.

Therefore, if A < uPa, then by Rouché’s Theorerfy,(s) and fy(s) + f2(s) have
the same number of zeros insidelLettingR — o, the interior ofC is the same as the
open righthand plane. Sindg(s) has no roots with positive real part,+ pPas+
uPai (1—f(s)) also has no roots with positive real paffs.

For this result to be useful, from#4) it is required that 2 /ua < h=%(5/yg).

If this is true, then for anfNt > 2A /ua we can find a range of values farsuch
that(N, P, 0) is stable. In this case, the stability only has delay-depand through
the mean, and the general shape of the distribution does attémgalthough we do
require that its Laplace transform is analytic in the closghdthand plane).

Using equationsl(d) and (L7), Ny < Nr» is equivalent td® < P*. From an ecolog-
ical perspective, Propositichshows that the phytoplankton equilibrium value must
be less than that needed to sustain the zooplankton papulatiherwise a small
amount of zooplankton will grow in time instead of decayingzero. Additionally,
since the other inequality in Propositidris equivalent to 2 < pPa the results says
that the equilibrium point is stable if the death rate of pipyankton is sufficiently
small compared to the maximum growth rate. Additionallgreasing the equilib-
rium value of phytoplanktor®, (as long a$® < P* holds) or decreasing the equilib-
rium value of dissolved nutrient (which increaseghe slope of the phytoplankton
uptake functional response at the equilibrium), has alsaty effect.

In Jang and Baglam@&005, the authors state a similar result for a model that
includes washout rates. They find an inequality that guasmibcal asymptotic sta-
bility that is independent of the delay distribution for #uilibrium solution without
zooplankton. Their result is more complicated becauseehtture of their model,
but it can be seen to be identical to our condition as the watslate approaches zero.

We can explore this type of equilibrium further in the caseafiscrete delay.
Letting n(u) = 6(u— 1), the characteristic equation becomes

(s—ygd + 6)[$* + pPas+ puPaA (1 —e )] = 0. (47)

Setting the real part of to zero allows us to solve for possible delays where sta-
bility might switch. That is, it gives us values farwhere there are eigenvalues on
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the imaginary axis. Substituting= iw into the second factor of the characteristic
equation and separating the real and imaginary parts dieesguations:

—w?+ pPai |1 - codwr)] =0, (48a)
w+Asin(wt) =0. (48b)

From these equations, we can isolate(ams = 1 — w?/(uPa)) and sifwr) =
—w/A. Squaring both sides and adding the equations then yields:

w? [w® — 2uPa) + (uPa)?] = 0. (49)
The zero solution is the inherent one. For other solutiorexist, we require
2\ > uPa, (50)

sincew is real. Thus, if 2 < uPa, then no other solutions exist. Therefore changing
the value of the delay while keepirig fixed cannot move eigenvalues across the
imaginary axis. Therefore if the equilibrium point is sealithout delay, it remains
stable for any value of delay. We emphasize that we are assuthatP is fixed
while the total biomass increases with the delay. On therdithed, if we assume the
total biomass is fixed, then increasing the delay decréasasthe equilibrium point
remains stable as long &0 still holds. It can be seen that this is a specific case of
Propositiord.

Otherwise, if 2 > ulsa there are critical eigenvalues= +iw;, wherew, =

\/2uPaA — (uPa)2. Solving for for the corresponding critical delay frod8p) gives:
1 -
To = asm*1 (Twc) , (51)

with proper care to ensure that the correct solutions aentakhat is, 483 must be
satisfied, so cdsa.7c) must have the same sign as 1?2/ (uPaA ). Another detail is
making sure thaty < A so that 61) has solutions. In fact, this is always true since

A% — w2 =2A%2—-2uPa) + (uPa)? = (A — uPa)? > 0. (52)

Equation p1) can be non-dimensionalized in a useful way. Lettipg- A 1. and
x= uPa/A, we get the following equation for a critical delay:

A 1 )
Tc = \/ﬁ Sin (— 2X— XZ) 5 (53)
with
coarTe) = 1 - g/ (uPar), (54)
g 12
—1-2%, (55)

=x—1 (56)
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AT

pPa/\

Fig. 4 A plot of non-dimensional critical delay against non-dirsiemal phytoplankton equilibrium. By
inspection of the graph, the minimum value is approximade6; indicating that. > 4.6/A

Then, taking the range of the inverse of sine to bg-i§, 7] we get

. \/2x1——x2 [rr—sin‘l(—\/m)] ifo<x<1

\/ﬁ [27T+sin‘1 (— 2x—x2)} ifl<x<2
Of course there are other solutions, but we have concernestloas with the
smallest positive one. A plot of this function is shown in trig4. It can be seen
from this graph that the minimum value @f is approximately 4.6, which indicates
that e > 4.6/A. Thus,7 < 4.6/A is a sufficient condition for local stability when
Nr1 < Nt < Nro.
In terms of the original parameter§7j is

(57)

[0

) A [m-sint(=%)] ifo<pPa<A -
Te= & [2m+sint (—42)] if A < puPa<2X’ (°8)

which gives the critical delay for a fixed value Bf However, we wish to know what
the maximum value of the delay is before stability is lostdagiven value of total
nutrient. This was done for the parameter values in Tablie the computation we in-
creasé from zero to 2 /(pa) in small increments. For eaéh 7. is calculated from
(59). Finally, we computéNt = f (A /u) + (1+ A 1)P. The results are shown in
Figure5. This figure illustrates regions in the— Nt plane where different behaviour
occurs. In this figure, region 1 is stable, meaning 1¢. This critical delay separates
region 1 from region 2. While there may be areas within re@idhat are stable, we
did not concern ourselves with them, as any such region woelcelatively small
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Fig. 5 Regions in ther — Nyt plane that exhibit different behaviour for tt(\Sl,Is,O) solution. Region la
is stable regardless of the delay distribution, while radid is stable for the discrete delay. Region 3 is
unstable. The boundary between region 1 and 2 representitch swstability for the model with discrete
delay, although there may be areas within region 2 that at#estRegion 4 is where the equilibrium does
not exist

in the parameter space and therefore not interesting enougarrant a more thor-
ough investigation (at least within the context of this payote that 46/A =~ 270,
which corresponds to the left-most point of this boundaggi@n 3 is unstable, as it
corresponds tdlr > Nr2, where it was shown there is a positive eigenvalue. Region
4 corresponds to the region where the equilibrium does rist,eand the(Nt,0,0)
solution is stable.

6.2 Stability of Equilibrium with Zooplankton

For the equilibriumN*,P*, Z*), the characteristic equation is

s+ pP*a pc— (/\ + %W) () —2A(s)
det| —puPa S— pic+ A 4 YoPkeA) 9 =0, (59)
0 _ yngP*éuc—/\) .

wherea = f'(N*), b= H(P*), andc = f(N*). This equation is sufficiently compli-
cated that general analytical results were not found. Heweén the case of the dis-
crete delay, wher@(s) = e, we can make some progress. Substituting-#icw
leads to two equations: one such that the real part of thetiequa zero, and one
such that the imaginary part is. These equations are in tine fo

B(w) (“’S(‘*’”) —y(w) (60)

sin(wr)
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Fig. 6 Regions in ther — Ny plane that exhibit different behaviour for tfi*, P*,Z*) solution using the
Type Il responsé\(P) = WPK. Region 1 is where the equilibrium solution does not existl ehere the
(N,P,0) is stable. Region 3 is where the equilibrium solution existd is stable, but wher@\,P,0) is
unstable. The curve separating region 3 and region 5 camelspio an eigenvalue with zero real part, so
the assurance of stability is lost in region 5

whereB is a two by two matrix, ang € R?, both with entries that are polynomials
in w. If x(w) = B~}(w)y(w), andx; andx, are the components &f then

x1 (@) +x2(w)? =1, (61)

which can then be rearranged into a cubic polynomiabfi The procedure so far
can be done symbolically, though it leads to a polynomighwitwieldy coefficients.
Consequently we must switch to a numerical approach. Nwaléy;j the roots of the
polynomial are easily solved for. Since the polynomial isifandw must be real
valued, only positive roots are of concern. If there are nsitp@ roots, there does
not exist a critical delay where stability switches. Othiseywe can obtain for each
positive root a value of the delay:

T = %sin‘l(xz(m)), (62)

with
sign(cog @ ) = sign(x(a)), (63)

fori=1,..,p, wherep is the number of positive roots. The critical delay, is then
the smallest;.

To compute a curve in the— Ny plane where there is an eigenvalue with zero
real part, we begin by increasimgf in increments from some value slightly larger
thanNr2. Thentg is calculated and theNy is found from @9) with T = 1. Figure
6 shows the results of the computation when the functionahfof the zooplankton
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Fig. 7 Regions in ther — Ny plane that exhibit different behaviour for tfi*, P*,Z*) solution using the
Type Il responsé(P) = %ZKZ. Region 1 is where the equilibrium solution does not exist, @here the

(N,P,0) is stable. Region 3 is where the equilibrium solution existd is stable, but wher@,P,0) is
unstable. The curve separating region 3 and region 5 camelspto an eigenvalue with zero real part, so
the assurance of stability is lost in region 5

grazing,h(P), is of Type Il. In some cases, it was necessary to computevibe t
smallest critical delays in order to complete the curve.i®ed and 3 are the same as
before, although from the perspective of the equilibriutuson (N*, P*, Z*) region

1 corresponds to the equilibrium solution not existing, egglon 3 is where it exists
and is stable. The curve separating region 3 and region 6dteli where there is a
pair of eigenvalues with zero real part, so the assurandability is lost in region 5.
Interestingly, for some values of total biomalls, we see that the delay can have a
stabilizing effect for relatively short delays. After thgwlibrium undergoes a Hopf
bifurcation atNt = Ny¢ = 1, increasing the delay to an appropriate amount can make
the equilibrium stable in some cases.

In Section5 it was shown that a Type Il response can imply that the dgyiuim
is always stable when there is no delay, so we might expetirtheeased stability
is also present when there is delay. We compute a curve asdaeetbire, but with
h(P) = %ZKZ, which is of Type lll. Figure7 shows the results. It is seen that the
delay has to be significantly longer to cause instabilityhis tase when compared to
Figure6 where the functional response was of Type II.

Since the characteristic equation is difficult to handle igemeral setting, we
consider specific delay distributions. A common class dfithistions is the gamma
distribution, given by

upflapefau
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wherep anda are non-negative real numbers and

r(p) = /O “ uP-Te Uy, (65)

An attractive feature of this distribution is that its Lagéatransform is a rational
function:
R aPf
§)=——.
(s (s+a)P

Thus, in the case wheris an integer, the characteristic equation can be reardange
into a polynomial with a finite number of roots. The mean ofdistribution function
is T=p/a, so we can replace in the distribution withp/t so as to have the mean
delay as a parameter. It can be seen that spnadllues characterize a wider distribu-
tion with more variance, while larggr values result in a more narrow distribution.
As p — o with 1 fixed, n approaches the delta distribution; that is, a discreteydela
Recall that in the casp = 1, the system is equivalent t6)( We then have the
following proposition:

(66)

Proposition 5 For the delay distribution n (u) = ae~ Y, if W'(P*) > h(P*)/P*, then
(N*,P*,Z*) isstablewhen it exists.

Proof We show that all the roots of the characteristic equatiorehasgative real
parts. To make the equation simpler, we define the followingnjties:a’= uP*a,

b= pc—A, €= yghP*/9, andd = 0/y. These are all positive numbers. The charac-
teristic equation is then

Sl a  sta
det| -a s+b(c-1) d | =0 (67)
0 —ybé S

which implies

(s> + Cp8* + 15+ Cg) = 0, (68)
where

Co =0 — T, (69)
cy=—aT + ybed + A4+ abe, (70)
co =a yabé+ aybéd + yabéd, (71)

and T = b(1—¢&) — &, which is the trace in33). The assumption that' (P*) >
h(P*)/P* (i.e.¢ > 1) implies thaflT < 0 andT + a < 0. The Routh-Hurwitz stability
criteria for a cubic polynomial in the present form requices> 0,¢; > 0,¢o > 0O,
andc;c, — cp > 0 as necessary and sufficient conditions for all three rantsave
negative real part. It can be easily seen that each coeffisiien positive. As well,

C1Cr—Co= —Ta?+ [T?+ A4+ (1—y)abe]a — (abe+ A&)T — (4+T)ybed, (72)

which is positive ]
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This proposition does not apply to Type Il responses, sineett (P*) < h(P*) /P*.
However, this assumption is not necessary for stabilitythkn limit asa becomes
large, we can see that the Routh-Hurwitz stability critésimet if and only if T < O,
which is the same condition for stability with no delay. Tiesexpected since the
mean delay here is=a 1.

We can apply a similar analysis to other gamma distributibos settingp > 2
in (64) yields much more complicated characteristic equatiotis increasingly dif-
ficult Routh-Hurwitz criteria. Conditions for stability tdined from looking at the
characteristic equation symbolically are less likely tonbeaningful as the expres-
sions get complicated. As well, we would like to considerentiypes of distributions
with less pleasant Laplace transforms, so we will turn to edcal methods.

We now introduce two other types of distributions. The fisshe uniform distri-
bution, which will be defined as:

0, elsewhere ’ (73)

1
s, T—W<u<14+W
{3
wheret > W is the mean delay. The variance of this distributio¥ is W? /3.
The second distribution to be considered is what we will réfeas the “tent”

distribution:
u+W-t1 T—W S u S T

V\<,v2 )
nu =4 2, T<Uu<T+W. (74)
0, elsewhere

Again, T > W is the mean delay. The variance/is= W?/6.

As well, it can be seen that the mean delay of the gamma disiib (64) is
T = p/a, and the variance i¥ = p/a?. Figure8 shows these three distributions,
with the same mean delay, and the same variance.

The goal now is to find curves in the— Ny plane where the characteristic equa-
tion has roots with zero real part. The characteristic éqnas obtained by finding
the Laplace transform of the distribution of interest anlois¢ituting it into 69). Then
we set the real part of the roots to zero by making the sulistits = iw. Separat-
ing the resulting equation into real and imaginary partgdgiéwo equations in three
variables:w, T, andN*. These equations describe curves intheN* plane that are
parameterized bg. Using pseudo-arclength continuation, as describe@avéerts
2000, we can compute pointsa, T, N*) that satisfy the two equations. Then we can
transform eaclit;,N*) into (7;, Ny;) through equationl(9) and plot the results.

For this method to work, we need to start near a solutionelfiiean delay is close
enough to zero, then the solutions should be close to thahwiere is no delay.
This gives a good initial guess. This is not a problem for taenma distribution,
since for any given variance, the mean delay can be arlpjtsamiall. However, in the
cases of the uniform and “tent” distributions, the mean ylennot be made close
to zero unless the variance is also small. To deal with thithé case of the uniform
distribution, we introduce a similar class of distributson

1
>, 0<u<2t
210 YU >
n() { OT, elsewhere’ (75)
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Fig. 8 The uniform, “tent”, and gamma distributions with mean gieta= 10 and varianc® =5

Here the mean delay can be made arbitrarily small so there {ablem finding
a starting point. Furthermore, the curve of solutions fousihg this distribution
defines appropriate starting points for the uniform disttitn (73) by beginning at
T =W. A similar approach can be used for the “tent” distributioithw

2z, 0<u<r
n(u)={ B r<u<2r, (76)
0, elsewhere

Figures9 and 10 show the curves obtained using this approach for the uniform
and “tent” distributions respectively. The figures show thieves in both the — N*
and T — Ny planes. The stable region is located below the curve and rik&able
region above. Comparing these figures with Figeifer small 7, it can be seen that
the curves are very similar. This is to be expected sinceetbistributions have small
variance when the mean delay is small, so we expect the hmiraei be similar to
that of a discrete delay. When the mean delay is larger, hemvdifferences become
apparent. The most important difference is that the regiatadility becomes larger
in the case of a distributed delay. From equatitf) (t can be seen that iN* is
constant, theiNr is a linear function ofr, which explains the slope upwards in the
Nr case when the curve levels off fidi*. SinceNy is the more meaningful parameter,
we will only show plots in ther — Ny plane for the remainder of the manuscript, but
the transformation from equatioh9) should be kept in mind when interpreting such
curves. Thatis, ifNy is fixed, then an increase in the average delay means a decreas
in the equilibrium value of nutrient in the water. Or, equérly, for a fixed amount
of nutrient in equilibrium, an increase in the delay meanimarease of total nutrient
in the system.
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Fig. 9 Stability regions for the uniform distribution defined if§j. Regions 1,3, and 5 are as described in
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Fig. 10 Stability regions for the uniform distribution defined ingj. Regions 1,3, and 5 are as described
in Figure6
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Fig. 11 Stability regions for gamma distributions with fix@d The dotted line corresponds to the stability
region in the case of the discrete delay. Regions 1,3, and &sadescribed in Figu@
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Fig. 12 Stability regions for uniform distributions with variouddths. Regions 1,3, and 5 are as described
in Figure 6. The starting point of the curve represents the valug/ah (73). The values here al/ =

to the uniform distribution wittw/ = 0.001 and therefore is hard to see

Figurel1 shows the stability regions for various gamma distribwiamerep is
fixed. Here and in the figures that follow, region 1 corresgaiodvhere the equilib-
rium point does not exist. Region 3 corresponds to where didilerium is stable
and its boundary is defined by the appropriate curve, andmegjicorresponds to
where it is possibly unstable. Increasing the valup,afhich corresponds to making
the distribution more narrow, appears to have a slightlpitang effect for small
mean delays, but has a much greater destabilizing effeatéan delays in the range
of about 4-10 days. For example, if the mean delay is 8 dags, tifie total nutrient
must be significantly less {f = 20 than ifp = 1. The behaviour is less clear for mean
delay larger than approximately 10 days, though the effiechangingp seems to be
less significant as gets large.

Figure 12 shows the stability regions for uniform distributions witifferent
widths. It can be seen that these are very similar to thelgyategion of the dis-
crete delay fokV up to 3. However, &V = 4 we see a qualitative change in that the
curve begins to oscillate. We will discuss why this might heestlater. The trend that
a wider distribution is less stable for small mean delays, miore stable for larger
mean delays continues here.

Figure 13 shows the stability regions for the “tent” distributionstiwvdifferent
widths. The characteristics of these curves are very sirtoléhose for the uniform
distribution. FOW up to 5, the curves are very similar to that for the discretayde
and forw = 6 and above we see a qualitative change.

More precisely, this qualitative change occurs at ab@ut 3.95 in the uniform
case andV = 5.65 in the “tent” case. At these points, the variance of théoumi
distribution isV = W?/3 = 5.20 and in the “tent” distribution it i&/ = W?/6 =
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18

Fig. 13 Stability regions for “tent” distributions with various dths. Regions 1,3, and 5 are as described
in Figure 6. The starting point of the curve represents the valug/ah (74). The values here al/ =

to the “tent” distribution withW = 0.001 and therefore is hard to see

5.32. The variances are very similar, which might be an indcathat the curves
depend more on the variance than the actual shape. Hencasthibutions were
reparameterized in terms of their mean delay and variantiesdanore meaningful
comparisons can be made.

Figurel4 shows the curve of solutions where an eigenvalue has zdrpagdor
the gamma, uniform, and “tent” distributions where the amce is fixed at 1 ddy
Also shown for comparison is the curve defining the stabikityion for the discrete
delay. The curves for the three distributed delays are dlidestical where they
are defined. Furthermore, they are very similar to the cuovete discrete delay,
especially for longer mean delays. For short delay, theoregf stability is smaller
for the distributed delays than it is for the discrete delayile the opposite is true for
longer delays.

Figure 15 shows the same curves as in Figd# but where the variance is 5
day?. We can see more variation among the distributed delaysgththey are still
very similar where they are defined. The difference betweendistributed delays
and the discrete delay is more pronounced here. We still lestefar short delay,
the stability region is larger in the case of discrete delayile it is larger for the
distributed delays for longer mean delays.

Figure16shows the case when the variance is 8diye see even more variation
among the distributed delays and it can no longer be saidtlleathree curves are
similar. The distributed delay curves are now much diffetban the discrete delay
curve, but we still see that the discrete delay is more stab#naller mean delays
while the distributed delay is more stable for longer medayde
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15

Fig. 14 Stability regions for the gamma, uniform, and “tent” distriions where the variance is fixed at
1 day’. Regions 1,3, and 5 are as described in Figurdere the curves are almost identical in the three
cases. The dotted line represents the curve in the case distirete delay and the line at the bottom is the
line above which the equilibrium exists

15

Fig. 15 Stability regions for the gamma, uniform, and “tent” distriions where the variance is fixed at
1 day’. Regions 1,3, and 5 are as described in Figurghe curve for the gamma distribution starts close
to T = 0 while the curve for the “tent” distribution starts the fuest right. The dotted line represents the
curve in the case of the discrete delay and the line at thernat the line above which the equilibrium

exists
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Fig. 16 Stability regions for the gamma, uniform, and “tent” distriions where the variance is fixed at
1 day’. Regions 1,3, and 5 are as described in Figurghe curve for the gamma distribution starts close
to T = 0 while the curve for the “tent” distribution starts the fuest right. The dotted line represents the
curve in the case of the discrete delay and the line at therat the line above which the equilibrium
exists

7 Simulations

The stability results were verified with a number of simwas. Using the parameter
values in Table 1. Solutions were found using MATLAB's buiiltfunctionsode45
anddde23 for the cases of no delay and discrete delay, respectivetyditributed
delays, a custom-made second order scheme was used tolsslegguations. This
scheme included the numerical integration of the convoluith (1) using the trape-
zoidal rule and the time-stepping was done using a secoret ardthod so overall
the method has second order accuracy. We tested the acafithcy scheme on toy
problems with exact solutions, and also on the full probleith ¥ihe gamma distribu-
tion, which can be compared with the solution of the equiviedgstem of ODE's.

Figurel7 shows some phase portraits in the case with no delay forusvialues
of total nutrient. The behaviour of the solutions in this figare consistent with the
results in Figure3. Furthermore, at least for the parameter values being uked,
equilibrium points appear to be globally asymptoticallgide when they are stable.
This global stability might be interesting to investigatelie future.

To verify the stability of equilibrium solutions with delgfpr a given distribution
we choose values dfiy and 7, then compute the corresponding equilibrium point.
The initial conditions for the simulation are then choset¢oa small perturbation
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Fig. 17 Simulations of equation28) with initial conditions on the lind®>+Z = Nr. The top left is for
Nr =0.001< Nyj. The top right is folNt1 < Ny = 0.025< Ny». The bottom left is folNto < Nr =0.5<
Nr3. The bottom right is folNtz < Ny = 1.25

from this equilibrium solution that preserves the totalriarit. For example

Nt)=Nr—(P"+¢&)—Z"—[A(P"+¢&)+3Z"+ (1—y)gZ*h(P* + &)]T, (77)
P(t)=P" +¢, (78)
Z(t) =2, (79)

for t € [-r,0] wherer is the maximum delay being considerk@nd ¢ is a small
number. It was assumed that the equilibrium solution waslestf the resulting os-
cillations decayed in time, and unstable if they grew. WHtilis is not a rigourous
conclusion by itself, the fact that all the simulations wefpened agreed with the
stability analysis in the previous sections serves as a gbedk that our methods
were correct.

For example, in Figuré8, four simulations are shown using the gamma distribu-
tion with p = 20. The top left is for total nutriertr = 0.5 and mean delay = 5,
and indicates that the equilibrium solution is stable. Tdgertght increases the mean
delay tor = 8 and keeps the total nutrientldf = 0.5, and indicates instability. The
bottom left is still forNy = 0.5, and with the mean delay increased further te 12,
and suggests a return to stability. Finally, the bottomtrigHfor the total nutrient
decreased tby = 0.4 and the mean delay at= 8. This indicates stability, although

1 In the case where the delay distribution extends infinitely the past, the delay distribution must be
approximated by a truncated version for simulation purpose
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Fig. 18 Simulations for the gamma distribution wigh= 20. The top left is for total nutrierity = 0.5 and
mean delayr = 5. The top right is folNy = 0.5 andt = 8. The bottom left is folNy = 0.5 andt = 12.
The bottom right is folNy = 0.35 andr = 8

it was unstable for a larger value of total nutrient and theesenean delay. This tran-
sient behaviour agrees with the stability regions in FidiiteSimilar tests were done
on with other distributions for other values of total nuttiend mean delay, and no
inconsistencies with the analysis were found.

8 Discussion

We have looked at a simple ecosystem governed by delay eliffiat equations in
order to study how the existence and stability of equilibrisolutions depend on the
quantity of nutrient in the system and the delay charadtegithe process of nutri-
ent recycling. While our equations were relatively simplesy do offer insight into
plankton communities. They verified that a sufficient qugrdf biomass is needed
in the system in order to sustain a given trophic level. Wherdditional trophic
level has sufficient nutrient to avoid extinction, the eipilim solution that excludes
that species becomes unstable. We see that if the nutrigydliry is characterized
by a longer delay, then there is effectively less nutrierthi system that is used to
sustain the populations. Therefore, the longer the deh@yrtore nutrient is needed
in the system to sustain a population.

The stability of the equilibrium solution depends on both #mount of biomass
in the system, and the properties of the delay distribut@u. computations show
this relationship can be complicated, since for a fixed arhofiniomass, increasing
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the delay can change the stability of an equilibrium solutebmetimes switching it
from unstable to stable, or vice versa. This effect was seestlynin the case of a
Type Il response for zooplankton grazing on phytoplanksmggesting a relatively
narrow range of values for total nutrient and mean delay wiiee equilibrium so-
lution is stable. In contrast, a Type Ill response led to & vebust range of these
parameter values where the equilibrium solution is statihéch makes the choice of
this response a very important factor when modelling. Farrthiscussion on the im-
portance of this functional response is (Bgntleman et aR003, where the authors
discuss different functional responses for zooplankt@zigg and provide criteria
that modelers can use to choose appropriate functionakform

While our computations primarily focused on a Type Il graginesponse, this
should not be an indication that this type of response is raigmficant than Type
[ll. In the case of no delay, the system with a Type Il resgowas always stable,
and results suggest that the system only becomes unstalédtively large delays,
so this case did not warrant detailed analysis. In fact, dhest stability of the Type
Il response might lead one to believe it is more realistantthe Type Il response,
so our focus on the latter should not suggest a preference.

With the mortality rate o& = 0.17 day* in Table1 that was used for our compu-
tations, we can place the time scale of the ecosystem at &lutayts. From Figuré,
it can be seen that a typical critical delay value is also féinder. This agrees with
the result in May, 1973, which says that such critical delays are on the same time
scale as that of the ecosystem. While this appears to bedrtied Type Il functional
response, Figuré suggests that this idea might not be true for a Type Il respoim
(Edwards 2001, the author quotes breakdown rates of dead organic mattes in
the range of 0.004-0.2 day, placing a typical delay time between 5 and 250 days.
For the parameters used in FiguGand7 (see Tablel) This would make the sys-
tem with a Type Il response unstable in most cases, and a Typsponse stable
for delays on the shorter side of this range. However, difiespecies may have dif-
ferent parameter values than what we have used, so more @i@rasets need to be
investigated before general comparisons can be made. tReless, we expect the
qualitative shape of the stability region to be similar tosh seen in Figuresand?,
regardless of the parameter values.

There are many other extensions to this work that could bsidered. For in-
stance, we could see how the existence and stability of ts#iym equilibrium is
affected by using a nonlinear closure term. We could alsestigate other functional
responses for zooplankton grazing on phytoplankton, ssch @on-monotonic re-
sponseZhu et aJ 2002, (Ruan and Xiap2001). As well, delay can be incorporated
into other terms, such as the gestation time.

The global stability of the positive equilibrium remainstie determined. In the
case of instantaneous nutrient recycling, the simulatiotise bottom left of Figure
17 suggest that the positive equilibrium is indeed globaljynagtotically stable when
it is asymptotically stable. However, this might not be tfaeall parameter values.
The global asymptotic stability may be determined via a lwagy function or by
proving that periodic orbits do not exist as wraf den Driessche and Zeemaf98.
The global stability of the positive equilibrium in the dgéal system could possi-
bly be proved with a Lyapunov functional. IiHé and Ruan1998, the authors use
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Lyapunov functionals to provide conditions for global sli&pin a two-compartment
chemostat model that includes a delay in nutrient recy@imgjin the gestation time.

Further structure can be added to the model by considerffegelit size classes
of plankton, as in Roulin and Franks2010, (Armstrong 1994, and @rmstrong
1999. It may be more realistic for the parameters to have sizeeddence, and thus
it would be interesting to see how the delay in nutrient réngaaffects such ecosys-
tems.
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