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Abstract We consider a closed Nutrient-Phytoplankton-Zooplankton(NPZ) model
that allows for a delay in the nutrient recycling. A delay-dependent conservation law
allows us to quantify the total biomass in the system. With this, we can investigate
how a planktonic ecosystem is affected by the quantity of biomass it contains and
by the properties of the delay distribution. The quantity ofbiomass and the length of
the delay play an significant role in determining the existence of equilibrium solu-
tions, since a sufficiently small amount of biomass or a long enough delay can lead to
the extinction of a species. Furthermore, the quantity of biomass and length of delay
are important since a small change in either can change the stability of an equilib-
rium solution. We explore these effects for a variety of delay distributions using both
analytical and numerical techniques, and verify results with simulations.

Keywords Plankton· Delay· Nutrient Recycling· Closed ecosystem

Mathematics Subject Classification (2000)37N25

Matt Kloosterman
Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada N2L 3G1
Tel.: (519) 888-4567 ext. 33471
Fax: (519) 746-4319
E-mail: mklooste@uwaterloo.ca

Sue Ann Campbell
Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada N2L 3G1
Tel.: (519) 888-4567 ext. 35461
Fax: (519) 746-4319
E-mail: sacampbell@uwaterloo.ca

Francis Poulin
Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada N2L 3G1
Tel.: (519) 888-4567 ext. 32637
Fax: (519) 746-4319
E-mail: fpoulin@uwaterloo.ca



2 Matt Kloosterman et al.

1 Introduction

Plankton are at the bottom of most oceanic food webs, and therefore it is important to
understand the dynamics of planktonic ecosystems. Typically, the first trophic level
consists of phytoplankton, which uptake nutrient through photosynthesis. The sec-
ond trophic level is formed by zooplankton, which feed on phytoplankton. It is con-
venient to study the interaction of phytoplankton and zooplankton using a predator-
prey based model. These models can range from very simple Lotka-Volterra mod-
els (Murray, 1989) to very complicated equations that consist of not only reaction
type terms but also advection, diffusion and even size-structure. Typically, the more
complicated the model, the more parameters need to be chosen, and, consequently,
overly-complex models are harder to learn from than simplerones.

Using a three compartment Nutrient-Phytoplankton-Zooplankton (NPZ) model,
we focus on how the existence and stability of equilibrium solutions depend on two
properties: (1) the total biomass in the system (measured indissolved nitrogen), and
(2) the delay that characterizes the recycling of nutrients.

In order to investigate the effects of the total biomass, we assume a closed system
where nutrient is conserved for all time. Consequently, there will be a fixed constant,
NT , that represents the amount of dissolved nitrogen in the system in time. A good
introduction to NPZ models in this form is given inFranks(2002), and has been stud-
ied inGentleman and Neuheimer(2008) andWroblewski et al(1988) and references
within. Other closed ecosystem models can be found inUlanowicz(1972) andKmet
(1996).

An alternative to having a closed system would be to have one where there are
sources and sinks, which are typically referred to as washout rates, where biomass
flows in and out of the system at some rate. These are often usedin chemostat mod-
els. Our model may be seen as the limiting case where the washout rate tends to zero.
In an open system, the total biomass in the system usually tends to the concentration
flowing in, while without a washout rate the total biomass is fixed by the initial con-
dition. The washout rate may be important in some ecosystems, but can be ignored
when considering a large, self-contained ecosystem. An example of this is a closed
lake.

In Beretta et al(1990), the authors state that since the washout rate is much
smaller in a natural system than in a chemostat situation, nutrient recycling must be
considered. When plankton die, the remains are not immediately ready to be uptaken
by phytoplankton; there is an interval of time during which nutrient recycling takes
place. The length and other characteristic features of the delay can affect stability, and
we will analyze this along with the total nutrient in the system. This type of delay has
been studied frequently in chemostat-type models, (He and Ruan, 1998; Ruan, 1998,
2001). However, the inclusion of delay in a closed system brings forth an alternative
structure in the governing equations that requires a different perspective that has re-
ceived much less attention. The amount of biomass in a systemwith washout rates is
characterized by an explicit parameter: the concentrationof nutrient flowing into the
system. In the closed model that we will consider, the total biomass is not an explicit
parameter found in the equations, but rather is implicit within the initial conditions.
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2 Model

The dynamics of our planktonic ecosystem model are governedby a three compart-
ment NPZ model. Respectively, these compartments represent the dissolved nutrient,
the amount of phytoplankton, and the amount of zooplankton.Each compartment is
measured by its content of the limiting biomass, which is usually nitrogen. Following
the lead ofFranks(2002), we assume that five basic processes govern the ecosystem:
(1) the phytoplankton nutrient uptake, (2) the zooplanktongrazing on phytoplankton,
(3) the death of phytoplankton, (4) the death of zooplankton, and (5) nutrient recy-
cling. We assume that there is a delay in nutrient recycling.The state equations then
take the following form:

dN(t)
dt

=λ
∫ ∞

0
P(t − u)η(u)du+ δ

∫ ∞

0
Z(t − u)η(u)du

+(1− γ)g
∫ ∞

0
Z(t − u)h(P(t− u))η(u)du− µP(t) f (N(t)), (1a)

dP(t)
dt

=µP(t) f (N(t))− gZ(t)h(P(t))−λ P(t), (1b)

dZ(t)
dt

=γgZ(t)h(P(t))− δZ(t). (1c)

Here, phytoplankton reproduce at a rate proportional to their population size and
to a general function of the available nutrient,f (N). Similarly, zooplankton repro-
duce at a rate proportional to their population size and to a function of the available
phytoplankton,h(P). The parameter,γ, sets the ratio of the biomass lost from the
phytoplankton variable because of grazing and the biomass gained in the zooplankton
variable. The rest is returned to the dissolved nutrient variable. We assume the death
rates are proportional to the population sizes, and all the nutrient then returns to the
dissolved nutrient field. This recycling of nutrient is not necessarily instantaneous,
but occurs after some delay according to the distributionη , which is non-negative
and normalized so that

∫ ∞
0 η(u)du = 1.

The functional form of the phytoplankton nutrient uptake,f (N) ∈ C2, will be
assumed to have the following properties:

f (0) = 0, f ′(N)> 0, f ′′(N) < 0, lim
N→∞

f (N) = 1. (2)

The most common functional response (Franks, 2002) is the Michaelis-Menten for-
mulation:

f (N) =
N

N + k
, (3)

which is one choice that satisfies these properties.
The functional responses of the zooplankton grazing on phytoplanktonare usually

characterized by a particular type, as described inHolling (1966). A Type I response
depends linearly on the population density (e.g.h(P) = aP). A Type II response has
a “negatively accelerated rise to a plateau” (Holling, 1966) and a Type III response is
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sigmoidal shaped. We will focus on the latter two and assume the following proper-
ties:

h(0) = 0, h′(P)> 0, lim
P→∞

h(P) = 1. (4)

Similar properties are found inRuan(2001) andHale and Somolinos(1983). We will
also assumeh ∈C1. The particular choice of how zooplankton graze on phytoplank-
ton is a very important aspect of the model, as it has a significant impact on the
stability of the ecosystem (Gentleman and Neuheimer, 2008).

The closure termδZ incorporates not only the natural death of zooplankton, but
also the effects of higher predation. Consequently, it is often taken to be quadratic
(δZ2), which approximates a Type III response of predation, while a linear terms
is better at approximating a Type II response. An important feature (Franks, 2002)
is that a quadratic closure term makes the system much more stable. However, it
is much easier to analyze the existence of equilibrium solutions using a linear clo-
sure term since the rate of change of zooplankton can be made zero independently
of the value ofZ. Furthermore, intuitively it seems the closure term shouldbe lin-
ear as the zooplankton population tends to zero, as we might expect predation to be
negligible compared to the natural death process in this limit. Because of this, in
Caswell and Neubert(1998) they use a closure term with both a linear and nonlinear
part. For simplicity we will choose a linear closure term, and will perhaps address in
future work the impact of quadratic closure schemes.

The reason for the delay in the nutrient recycling is that there is a period of de-
composition when a plankter dies, so treating this as an instantaneous process differs
from the true dynamics. This recycling comes from three processes: the phytoplank-
ton deaths, the zooplankton deaths, and the inefficiency of the grazing. As a starting
point, it will be assumed that these three processes have thesame delay distribution.
This is not true in reality, but the effect that the delay has on the system would become
much harder to understand if we were to consider three different distributions, so it
is worth seeing what results can be obtained from the assumption that they are all the
same. In future work it would be of interest to consider separate delay distributions
but that is beyond the scope of this work.

While it is true that in reality there must necessarily existan upper bound on the
length of delay, it is sometimes convenient to allow for unbounded delay distributions.
While we will consider distributions with bounded delay, wewill not restrict our
attention to them completely.

We can view the distribution of delays,η(u), as the probability that an amount
of nutrient will take timeu to be recycled. If there is a large range of possible times
over which an amount of nutrient is recycled, then the distribution is wide with large
variance. On the other hand, if the nutrient recycling always takes roughly the same
amount of time, the distribution is narrow with small variance. Furthermore, one
could assume a discrete delay, where the recycling takes a fixed amount of time with
100% probability. This distribution can be seen as the limitof a sequence of distri-
butions whose variances become smaller and smaller. In thiscase, the distribution is
η(u) = δ (u− τ), whereδ (x) is the Dirac delta distribution. This then leads to the
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equations

dN(t)
dt

=λ P(t − τ)+ δZ(t − τ)+ (1− γ)gZ(t− τ)h(P(t − τ))− µP(t) f (N(t)),

(5a)

dP(t)
dt

=µP(t) f (N(t))− gZ(t)h(P(t))−λ P(t), (5b)

dZ(t)
dt

=γgZ(t)h(P(t))− δZ(t). (5c)

An NPZD model is a variant of an NPZ model that includes an additional variable:
detritus, which represents the faecal pellets of zooplankton and dead phytoplankton
and zooplankton. As we now show, an NPZD model can be equivalent to an NPZ
model with delayed nutrient recycling. This is a result of the common “linear chain
trick,” although the context here is special in that the extra variable, detritus, has a
clear physical meaning. Denoting the detritus asD, a typical NPZD model takes the
form:

dN
dt

=αD− µP f (N), (6a)

dP
dt

=µP f (N)− gZh(P)−λ P, (6b)

dZ
dt

=γgZh(P)− δZ, (6c)

dD
dt

=λ P+ δZ+(1− γ)gZh(P)−αD. (6d)

This system is equivalent to (1) if we chooseη(u) = αe−αu, which can be seen by
letting

D(t) =
1
α

∫ ∞

0
[λ P(t − u)+ δZ(t− u)+ (1− γ)gZ(t− u)h(P(t − u))]η(u)du.

A detritus model applied to an open ecosystem was analyzed inEdwards(2001). By
studying systems with general delay distributions, we are including systems such as
(6) as a special case in our analysis.

2.1 Mathematical Properties

We now consider some mathematical properties of the model (1). First, since the
model is closed, there is no biomass lost or gained in the ecosystem. Consequently,
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there is a conservation law, which is obtained by adding the equations in (1) to yield

d
dt
[N(t)+P(t)+Z(t)]

=

∫ ∞

0
[λ P(t − u)+ δZ(t− u)+ (1− γ)gZ(t− u)h(P(t − u))]η(u)du

−λ P(t)− δZ(t)− (1− γ)gZ(t)h(P(t)),

=
∫ ∞

0
[λ P(t − u)+ δZ(t− u)+ (1− γ)gZ(t− u)h(P(t − u))

−λ P(t)− δZ(t)− (1− γ)gZ(t)h(P(t))]η(u)du,

=− d
dt

∫ ∞

0

∫ t

t−u
[λ P(v)+ δZ(v)+ (1− γ)gZ(v)h(P(v))]η(u)dvdu,

so that the quantity

NT = N(t)+P(t)+Z(t)

+

∫ ∞

0

∫ t

t−u
[λ P(v)+ δZ(v)+ (1− γ)gZ(v)h(P(v))]η(u)dvdu (7)

is conserved in time. The total biomass in the system,NT , is thus given by the sum
of the nutrient in the three compartments plus that in the process of being recycled.
If we ignore the delay (setη(u) = δ (u)), we recover the simpler conservation law
NT = N(t)+P(t)+Z(t) found inFranks et al(1986).

Next, we write the model (1) in the general form

dx(t)
dt

= F(xt) for t > 0, (8)

wherex = (N,P,Z)T and

xt(θ ) = x(t +θ ) for θ ≤ 0.

An appropriate initial condition is then

x0 = φ . (9)

Since (8) is a delay differential equation with infinite delay, an appropriate phase
space for the problem is C0,ρ((−∞,0],R3) where ρ > 0
(Hino et al, 1991; Kolmanovskii and Myshkis, 1999; Diekmann and Gyllenberg, 2012).
This is the Banach space of functionsψ : (−∞,0]→R

3 such thateρθ ψ(θ ) is contin-
uous and

lim
θ→−∞

eρθ ψ(θ ) = 0.

This space is equipped with the norm

‖ψ‖∞,ρ = sup
θ≤0

eρθ ψ(θ ).
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Table 1 Parameter values used for all computations

Parameter Value
µ 5.9 day−1

λ 0.017 day−1

g 7 day−1

γ 0.7
δ 0.17 day−1

f (N) N
N+k

h(P) P
P+K

k 1.0µM
K 1.0µM

Then,F : C0,ρ((−∞,0],R3) → R
3, and with the above assumptions onf andh, for

anyφ ∈C0,ρ((−∞,0],R3) there exists a unique solution. In this phase space, we need
the following condition to hold:

∫ ∞

0
eρuη(u)du < ∞. (10)

For the purposes of numerical computations, the values in Table 1 will be used.
These were taken fromPoulin and Franks(2010).

3 Equilibrium Solutions

Substituting a time-independent solution,(N(t),P(t),Z(t)) = (N∗,P∗,Z∗) for all t ∈
R, into (1), we see that the system is in equilibrium if the following equations are
satisfied:

µP∗ f (N∗)− gZ∗h(P∗)−λ P∗ = 0, (11a)

γgZ∗h(P∗)− δZ∗ = 0. (11b)

If these two equations hold, then the growth rates of each variable is zero, regard-
less of the delay distribution. Hence, we have one degree of freedom when finding a
steady state solution. That is, equilibrium solutions comein sets due to the conserva-
tion law (7). However, we can consider the total biomass,NT , to be a fixed parameter
of the system. Then an equilibrium solution(N∗,P∗,Z∗) must also satisfy

NT = N∗+P∗+Z∗+[λ P∗+ δZ∗+(1− γ)gZ∗h(P∗)]τ, (12)

whereτ is the mean delay:

τ =
∫ ∞

0
uη(u)du.

From the conservation law (12), we see a relationship between the total biomass
and the length of delay. If we consider the equilibrium solution as given, the total
nutrient is a linear function of the mean delay. This is because a longer delay means
that at a given time there is more nutrient in the process of being recycled, so there is
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necessarily more nutrient in the system. Alternatively, wecan consider the total nu-
trient to be fixed, and the equilibrium solutions to be functions of the mean delay and
total nutrient. While it is often true that the equilibrium solutions of delay differential
equations do not depend on the delay, if the total nutrient isa fixed parameter then
the equilibrium solutions in our model do indeed have delay dependence. Increasing
the delay then decreases the equilibrium values, since at a given time a larger portion
of the total nutrient is in the process of being recycled.

There are three types of equilibrium solutions. Since the state variables represent
physical quantities, only non-negative solutions are meaningful, therefore an equilib-
rium solution does not exist if it has negative values.

The first equilibrium solution is the trivial equilibrium. Setting P = Z = 0 sat-
isfies (11a) and (11b). Then, from the conservation law, we get thatN∗ = NT . This
steady state solution will be referred to as(NT ,0,0), or simply as the trivial solution.
Biologically this represents the states where there is no life in the ecosystem.

The second type of equilibrium is in the form(N̂, P̂,0), with N̂ > 0 andP̂ > 0. By
settingZ = 0, (11b) is satisfied. A necessary condition for (11a) to be satisfied is

µ > λ , (13)

which means the maximum growth rate of phytoplankton must begreater than its
death rate. If this is true, then equation (11a) is satisfied by settinĝN = f−1(λ/µ).
Since f is an increasing function with 0≤ f (N) < 1, this value is well-defined and
unique ifµ > λ . From the conservation law (12), we get

P̂ =
NT − f−1(λ/µ)

1+λ τ
. (14)

Thus, this equilibrium point exists if and only ifNT > NT 1, where

NT1 = f−1
(

λ
µ

)

. (15)

Finally, we now consider the equilibrium point of type(N∗,P∗,Z∗), with all three
components positive. A necessary condition for (11b) to be satisfied withZ∗ 6= 0 is

γg > δ , (16)

which means that the maximum growth rate of the zooplankton must be greater than
its death rate. If (16) is satisfied, then

P∗ = h−1
(

δ
γg

)

. (17)

Then from (11a):

Z∗ =
γP∗

δ
[µ f (N∗)−λ ]. (18)

Now N∗ must satisfy the conservation law (12), which leads to the implicit expression
for N∗:

NT = N∗+ h−1
(

δ
γg

)[

1− γλ
δ

+
( γ

δ
+ τ

)

µ f (N∗)

]

. (19)
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Note thatNT is a continuous increasing function ofN∗. SettingN∗ to f−1(λ/µ), we
see thatNT = NT2, where

NT2 = f−1
(

λ
µ

)

+(1+λ τ)h−1
(

δ
γg

)

. (20)

Again, sinceh is an increasing function, this value is unique and well-defined ifγg >
δ , which we assume to be true for the same reason we assumeµ > λ . If NT > NT 2,
thenN∗ > f−1(λ/µ), which impliesZ∗ > 0. This shows the equilibrium point exists
if NT > NT 2. Conversely,Z∗ < 0 if NT < NT2, so then the equilibrium point does not
exist.

The uniqueness of each type of equilibrium point follows from the fact thatf and
h are increasing functions.

In Levin et al(1977), the authors state that if the prey population in the absence
of predators is large enough to support predators, in our case zooplankton, then the
positive equilibrium exists, which is precisely the case here. Indeed, ifP̂ > P∗, then
there is enough nutrient to support both populations. This equilibrium solution is
more ecologically diverse and also more relevant to what is observed in the world’s
oceans and lakes.

In the following sections, we will assume the conditions (13) and (16) are satis-
fied, and focus on the effects of the total biomass,NT , and delay on the stability of
the equilibria.

4 Characteristic Equation

The differentiability conditions onf andh in (2) and (4) with the condition onη
in (10) assure thatF in (8) is Fréchet differentiable. The Fréchet derivative at an
equilibrium solution,x∗ = (N∗,P∗,Z∗)T , is

DF(x∗)ψ = A0ψ(0)+A1

∫ ∞

0
ψ(−u)η(u)du, (21)

where

A0 =





−µP∗a −µc 0
µP∗a µc−λ − gZ∗b −gd

0 γgZ∗b γgd− δ



 , (22)

A1 =





0 λ +(1− γ)gZ∗b δ +(1− γ)gd
0 0 0
0 0 0



 . (23)

anda = f ′(N∗),b = h′(P∗),c = f (N∗), andd = h(P∗).
The linearized equation around an equilibrium solution is then:

dx(t)
dt

= DF(x∗)(xt − x∗), (24)

= A0(x(t)− x∗)+A1

∫ ∞

0
(x(t − u)− x∗)η(u)du. (25)
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Taking the Laplace transform of (24) gives the characteristic equation:

det[sI −A0−A1η̂(s)] = 0, (26)

whereη̂ is the Laplace transform ofη :

η̂(s) =
∫ ∞

0
e−suη(u)du. (27)

The equilibrium solution is locally asymptotically stableif all the rootss that solve
det(sI−A0−A1η̂(s)) = 0 have negative real parts and unstable if there is at least one
root with positive real part (Diekmann and Gyllenberg, 2012).

Note that if we add all the rows ofA0 with all the rows ofA1 we obtain(0,0,0),
and hences = 0 is always a solution to the characteristic equation, sinceη̂(0) = 1.
Thus, to determine the stability of any equilibrium solution, one must consider the
center manifold associated with this zero eigenvalue. In the case where the system
has bounded delay it can be shown that this center manifold issimply the curve of
equilibrium solutions that can be parameterized by the total biomass. This is because
the zero eigenvalue is a consequence of the conservation lawobeyed by the system.
As a result, if all the other eigenvalues have negative real parts, then this manifold is
locally attracting, meaning initial conditions that are sufficiently close to the chosen
equilibrium will asymptotically go towards a nearby point on the line of equilibria. In
particular, the solution will approach the equilibrium solution with the total biomass
that is determined by the initial condition. This makes equilibrium solutions stable,
but not asymptotically stable. While center manifold theory has not yet been devel-
oped for the case where the delay is infinite, we will assume that it is true that an
equilibrium solution is stable if the zero eigenvalue caused by the conservation law
is the only root with nonnegative real part.

We will now consider the stability of each of the three types of equilibrium points.
Our investigation will begin with the system without delay (η(u) = δ (u)), and then
will continue with non-zero delays.

5 Stability of Solutions without Delay

Much of the work in this section has been done elsewhere, but for completeness we
present the results here, as the results for the system with delay depend on those for
the system without. We discuss now how the quantity of biomass affects the stability
of the equilibrium solutions.

With no delay, the system becomes

dN
dt

=λ P+ δZ+(1− γ)gZh(P)− µP f (N), (28a)

dP
dt

=µP f (N)− gZh(P)−λ P, (28b)

dZ
dt

=γgZh(P)− δZ. (28c)
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Since the conservation law yieldsNT = N(t)+P(t)+ Z(t), we can substituteN =
NT −P−Z into equation (28b) and remove equation (28a). Then we have the follow-
ing reduced system:

dP
dt

=µP f (NT −P−Z)− gZh(P)−λ P (29a)

dZ
dt

=γgZh(P)− δZ. (29b)

Then, given a solution,P(t) and Z(t), we can determine the amount of dissolved
nutrient viaN(t) = NT −P(t)−Z(t). If an equilibrium point of the reduced system
is asymptotically stable, then the corresponding equilibrium point of the full system
is stable. This is because the reduced system has the total nutrient fixed for all ini-
tial conditions, while in the full system the total nutrientvaries for initial conditions
within a neighbourhood of an equilibrium point.

We will denote the phase space asD = {(P,Z) : P ≥ 0,Z ≥ 0,P+Z ≤ NT }. This
space is positively invariant, which follows from the invariance of the axes, and the
fact that d

dt (P+Z) is negative on the lineP+Z = NT .
The equilibrium points of the reduced system are the same as those for the full

system, but with theN component discarded. The trivial equilibrium of the reduced
system becomes(0,0).

Proposition 1 If NT < NT 1 (if the equilibrium (P̂,0) does not exist), then the equi-
librium solution (0,0) of system (29) is globally asymptotically stable on D.

Proof Linearizing around this point yields the Jacobian matrix
(

µ f (NT )−λ 0
0 −δ

)

. (30)

Here, the eigenvalues are simply the entries on the diagonal. Therefore this point is
asymptotically stable ifµ f (NT )− λ < 0. Equivalently, this point is asymptotically
stable ifNT < NT 1, whereNT 1 is given in (15). Furthermore, since this is the only
equilibrium in D, and it occurs on the boundary, there are no periodic orbits in D.
Therefore, this equilibrium is globally asymptotically stable onD. �

This means that if there is not sufficient nutrient to sustainthe phytoplankton
population, then both phytoplankton and zooplankton become extinct. Furthermore,
recall that asymptotic stability of(0,0) in system (29) implies stability of(NT ,0,0)
in (28).

Proposition 2 If NT1 < NT < NT2 (if the equilibrium (P̂,0) exists, but (P∗,Z∗) does
not), then the equilibrium solution (P̂,0) of system (29) is globally asymptotically
stable on D, except for the Z axis.

Proof From the linearization of(0,0), NT1 < NT implies that(0,0) is unstable. Lin-
earizing around(P̂,0) yields the Jacobian matrix

(

−µP̂ f ′(NT − P̂) −µP̂ f ′(NT − P̂)− gh(P̂)
0 γgh(P̂)− δ

)

. (31)
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Fig. 1 Equilibrium values of phytoplankton and zooplankton as a function of total nutrient. The solid lines
represent asymptotically stable points, while the dotted lines show unstable points

Again, the eigenvalues are simply the diagonal entries. Thefirst eigenvalue is negative
since f is increasing. Since we assume thatδ < γg, the second eigenvalue is negative
if and only if P̂ < h−1(δ/γg). This condition is met ifNT < NT 2, whereNT 2 is given
in (20) with τ = 0. Furthermore, since there are no equilibrium points on theinterior
of D, there are no periodic orbits, so(P̂,0) globally attracts all trajectories, except
those on theZ axis, which obviously go to the origin.�

Therefore, if there are enough nutrients to sustain the phytoplankton population,
but not the zooplankton population as well, the zooplanktonbecomes extinct, while
the phytoplankton persist. SincêP is positive only if the zero solution is unstable, if
we increase the total nutrient pastNT 1, this equilibrium would exist as soon as the
trivial equilibrium becomes unstable.

We now consider the positive equilibrium. Linearizing around (P∗,Z∗), the fol-
lowing Jacobian matrix is obtained:

( δZ∗
γP∗ − µP∗a− gbZ∗ −µP∗a− δ

γ
γgbZ∗ 0

)

, (32)

wherea = f ′(NT −P∗−Z∗) andb = h′(P∗). These values are both positive sincef
andh are increasing functions.

DefiningT as the trace andD as the determinant of the matrix, it can easily be
seen that the equilibrium solution is asymptotically stable if and only if T < 0 and
D > 0. It is easy to see thatD > 0. Thus, stability depends on the value of the trace:

T =
δZ∗

γP∗ − µP∗a− gbZ∗ = gZ∗
(

h(P∗)
P∗ − h′(P∗)

)

− µP∗a. (33)

Immediately, we can see that for sufficiently smallZ∗ the trace is negative and
(P∗,Z∗) is therefore asymptotically stable. Since the equilibrium(P∗,Z∗) exists if
NT > NT2, if we increase the total nutrient pastNT2, the equilibrium(P̂,0) becomes
unstable as soon as(P∗,Z∗) exists and is stable.

It can be seen thatNT1 andNT2 are transcritical bifurcation points, where solution
branches intersect and the stability of each branch changesat the intersection. Using
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Fig. 2 A Type II functional response (left) in the formh(P) = P
P+K and a Type III functional response

(right) in the formh(P) = P2

P2+K2 . A sufficient condition for stability for this Type III response is that

P∗ ≤ K, which means thath′(P∗)≥ h(P∗)/P∗. Equivalently,δ/γg should be less than 1/2

the parameter values in Table1, Figure1 shows the equilibrium values ofP andZ as
a function of total nutrientNT , and demonstrates the stability changes.

To look for further bifurcations we consider the sign of (33). If h′(P∗)≥ h(P∗)/P∗,
the equilibrium point is always stable. This condition saysthat the slope of the secant
line from the origin to the point on the graph at the equilibrium point must be less than
or equal to the slope of the tangent line at the equilibrium. InGentleman and Neuheimer
(2008), the authors use this idea to argue that a Type III zooplankton grazing response
is more stable than Type II. Ifh is a Type II response, the conditionh′(P∗)≥ h(P∗)/P∗

is never true, but if it is of Type III, then this condition canbe satisfied forP∗ below
some critical value. This critical value is the value ofP where a line through the origin
intersectsh(P) tangentially. Figure2 illustrates this idea.

We now investigate the case whereh′(P∗) < h(P∗)/P∗, as is the case in Type II
responses and in Type III responses whereδ/γg is sufficiently close to 1. IfNT =NT 2,
thenZ∗ = 0 andT <0. Thus we conclude that ifNT is sufficiently close to, and greater
than,NT 2, we have stability. The following proposition then shows how the stability
is affected asNT is increased fromNT2.

Proposition 3 If h′(P∗) < h(P∗)/P∗, then there exists a unique value of total nutri-
ent, NT3 > NT2, such that the point (P∗,Z∗) is asymptotically stable if NT2 < NT <
NT3 and unstable if NT > NT3.

Proof Recall that(P∗,Z∗) is asymptotically stable ifT < 0, and unstable ifT > 0
whereT is the trace in (33). Let T = T (NT ). We will prove the existence of a unique
NT3 such thatT (NT3) = 0. Note thatP∗ and thusb are independent ofNT . However,
Z∗ and thereforea are functions ofNT . Taking the limit asNT goes to infinity, and
noting thatZ∗ → γP∗(µ −λ )/δ anda → 0 in this limit yields the result

Tmax =
γg
δ

P∗(µ −λ )
(

h(P∗)
P∗ − h′(P∗)

)

> 0, (34)

sinceµ−λ > 0 SinceT (NT2)< 0, the existence ofNT3 follows from the Intermediate
Value Theorem.
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Fig. 3 Steady state values of available nutrient (solid line), phytoplankton (dashed line), and zooplankton
(dotted line). When the steady states become unstable, limit cycles occur, and the maximum and minimum
values of the periodic orbit are plotted

To prove uniqueness, we show thatT is an increasing function ofNT :

dT
dNT

=

(

h(P∗)
P∗ − h′(P∗)

)

g
dZ∗

dNT
− µP∗ da

dNT
. (35)

We now show that this is positive for allNT by showing thatdZ∗/dNT > 0, and
da/dNT < 0, since we have assumedh′(P∗)≥ h(P∗)/P∗.

The proof thatdZ∗/dNT > 0 follows from (18) and the Implicit Function Theo-
rem. Differentiating (18) with respect toNT yields

dZ∗

dNT
=

γµP∗

δ
f ′(NT −P∗−Z∗)

(

1− dZ∗

dNT

)

. (36)

Rearranging fordZ∗/dNT and noting thatf is increasing yields the result. It can also
be seen thatdZ∗/dNT < 1.

Now considera = f ′(NT −P∗−Z∗). Differentiating with respect toNT yields

da
dNT

= f ′′(NT −P∗−Z∗)

(

1− dZ∗

dNT

)

, (37)

which is negative sincef has negative second derivative, and sincedZ∗/dNT < 1.�

Therefore, ifh′(P∗) < h(P∗)/P∗, there exists a third critical value of total nutri-
ent, NT3, where the equilibrium point(P∗,Z∗) switches from stable to unstable as
NT is increased. Since this value is unique, stability cannot be regained by further
increasing the total nutrient. At this value,NT 3, there is a Hopf bifurcation. For the
parameters in Table 1, numerical simulations suggest that this is a supercritical Hopf
bifurcation, where stable periodic orbits exist forNT > NT3. In Figure3 the steady
states are plotted when they are stable, and then the maximumand minimum val-
ues of the limit cycles whenNT > NT3 are plotted. A similar figure can be found in
(Wroblewski et al, 1988), though they do not include stability analysis and they only
include equilibrium solutions, not limit cycles.

In Franks et al(1986), numerical simulations using a Type II response produced
periodic orbits, while a Mayzaud-Poulet type response, which does not saturate and
has positive second derivative, led to stable equilibrium solutions. Consequently, as
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pointed out inGentleman and Neuheimer(2008), it was mistaken that it is the sat-
uration that causes instability, when in truth it is the relation betweenh′(P∗) and
h(P∗)/P∗. In fact, the shape of the response forP > P∗ is unimportant and the satu-
ration has no effect on a fixed equilibrium point. Since the Mayzaud-Poulet response
has positive second derivative,h′(P∗)≥ h(P∗)/P∗, the positive equilibrium is always
stable. As well, a Type II response will lead to periodic orbits for initial conditions
such thatNT > NT3, so those numerical results are consistent with our analysis.

In Gentleman and Neuheimer(2008), the authors assume the dissolved nutrient
is saturated (i.e. settingf (N) = 1) in their analysis, which misses some of the details.
For a Type III response, this does not change the analysis, but for a Type II response,
it implies that the positive equilibrium is always unstable. This is not true since the
destabilizing effects of the zooplankton grazing responsecan be overcome by the
stabilizing process of the nutrient uptake by phytoplankton. That is, the growth rate
per unit biomass of phytoplankton decreases with increasing phytoplankton. This
is because the more biomass there is within the phytoplankton population, the less
biomass there is that is available to be uptaken by phytoplankton, which decreases the
growth rate. This stabilizing influence becomes less important as the total biomass in
the system increases.

In Ruan(2001), the author analyzes a similar chemostat-type model that includes
a washout rate. This model includes nutrient of concentrationN0 flowing in at a rate
of D. The parameterN0 is analogous to ourNT , and the author obtains similar re-
sults, including those for the existence and stability of the three different types of
equilibrium for different values ofN0. In the chemostat model, for example, the con-
centration of nutrient must be sufficiently large to sustainthe plankton populations.
As well, using a Type II response, the author proves the existence of a Hopf bifur-
cation. These similarities suggest that the amount of biomass in the system plays a
significant and consistent role regardless of the specific form of the model equations.

6 Stability of Solutions with Delay

While conserved NPZ models have been studied without delay in nutrient recycling,
and non-conservative models have been studied with this delay, to our knowledge,
no one has studied a conserved NPZ model with delay in nutrient recycling. We now
investigate the effect that the delay in nutrient recyclinghas on the three different
types of equilibrium points. In the case of the trivial equilibrium, the presence of
delay does not change the characteristic equation:

det





s µ f (NT )−λ η̂(s) −δ η̂(s)
0 s− µ f (NT )+λ 0
0 0 s+ δ



= 0. (38)

The requirements for stability are the same as in the case with no delay. That is, the
point (NT ,0,0) is stable ifNT < NT 1, and unstable ifNT > NT1. In fact, if the trivial
equilibrium is stable, it is globally stable, since

d
dt
(P+Z) = (µ f (N)−λ )P− (1− γ)gZh(P)− δZ ≤−m(P+Z) (39)
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wherem = min(λ − µ f (NT ),δ ) > 0. This implies thatP andZ both asymptotically
approach zero, and the conservation law therefore implies thatN asymptotically ap-
proachesNT .

The delay does change the characteristic equation for the other two types of equi-
librium points. Since the equilibrium points come in lines parameterized by the total
nutrient, we will study the stability both in terms of equilibrium values and mean
delay, as well as total nutrient and mean delay. First we explore the equilibrium point
with no zooplankton.

6.1 Stability of Equilibrium with No Zooplankton

Substituting(N̂, P̂,0) into A0 andA1 yields

A0 =





−µP̂a −λ 0
µP̂a 0 −gd

0 0 γgd− δ



 , A1 =





0 λ δ +(1− γ)gd
0 0 0
0 0 0



 , (40)

sincec = f (N̂) = λ/µ . The characteristic equation is then:

det





s+ µP̂a λ (1− η̂(s)) −[δ +(1− γ)gd]η̂(s)
−µP̂a s gd

0 0 s− γgd+ δ



 , (41)

= (s− γgd+ δ )[s2+ µP̂as+ µP̂aλ (1− η̂(s))], (42)

= 0. (43)

The roots = γgd − δ is negative ifNT < NT2, whereNT2 is given by (20). We
therefore see the same transcritical bifurcation pointsNT 1 andNT2 here as we did
in the model with no delay. IfNT < NT2, stability then depends on the roots of
s2+ µP̂as+ µP̂aλ (1− η̂(s)).

Proposition 4 If the total biomass, NT , and the mean delay, τ , are such that

f−1
(

λ
µ

)

+
2λ (1+ τλ )

µa
≤ NT < f−1

(

λ
µ

)

+(1+ τλ )h−1
(

δ
γg

)

≡ NT 2, (44)

then (N̂, P̂,0) is stable.

Proof The inequalityNT < NT2 is necessary and sufficient so that the eigenvalue
γgd−δ is negative. Using the definition of̂P in (14) the other inequality can be shown
to be equivalent to 2λ ≤ µP̂a. Using Rouché’s Theorem (Churchill and Brown, 1984),
we now show that if 2λ ≤ µP̂a, then all the non-zero roots ofs2+µP̂as+µP̂aλ (1−
η̂(s)) have negative real part. This theorem says that iff1 and f2 are analytical func-
tions,| f1(s)| ≥ | f2(s)| on some simple closed contourC, and neither function reduces
to zero at any point onC, then f1(s) and f1(s)+ f2(s) have the same number of zeros
insideC.
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Let f1(s) = s2 + µP̂as+ µP̂aλ and f2(s) = −µP̂aλ η̂(s). Let the contourC =
C1∪C2 be given by

C1 : s = Reiθ , θ ∈
[

−π
2
,

π
2

]

, (45)

C2 : s = iy, y ∈ [−R,R]. (46)

We wish to show that| f1(s)| ≥ | f2(s)| onC. Since| f2(s)| ≤ µP̂aλ it is sufficient
to show that| f1(s)|2 ≥ (µP̂aλ )2 onC.

OnC1, | f1(Reiθ )|2 =(R2cos2θ +µP̂aRcosθ +µP̂aλ )2+(R2sin2θ +µP̂aRsinθ )2 ≥
(µP̂aλ )2, for R sufficiently large.

On C2, | f1(iy)|2 = (µP̂aλ − y2)2 + (µP̂ay)2. Under the assumption that 2λ ≤
µP̂a, a simple computation shows that the minimum value| f1(iy)|2 takes with respect
to y is aty = 0. That is,| f1(iy)|2 ≥ (µP̂aλ )2. However, if 2λ > µP̂a, the minimum
value occurs aty2 = µP̂a(λ − 1

2µP̂a), and it can be seen that the value of| f1(s)|2 at
this point is less than(µP̂aλ )2.

Therefore, if 2λ ≤ µP̂a, then by Rouché’s Theorem,f1(s) and f1(s)+ f2(s) have
the same number of zeros insideC. LettingR → ∞, the interior ofC is the same as the
open righthand plane. Sincef1(s) has no roots with positive real parts,s2+ µP̂as+
µP̂aλ (1− η̂(s)) also has no roots with positive real parts.�

For this result to be useful, from (44) it is required that 2λ/µa < h−1(δ/γg).
If this is true, then for anyNT ≥ 2λ/µa we can find a range of values forτ such
that (N̂, P̂,0) is stable. In this case, the stability only has delay-dependence through
the mean, and the general shape of the distribution does not matter (although we do
require that its Laplace transform is analytic in the closedrighthand plane).

Using equations (14) and (17), NT <NT2 is equivalent toP̂< P∗. From an ecolog-
ical perspective, Proposition4 shows that the phytoplankton equilibrium value must
be less than that needed to sustain the zooplankton population, otherwise a small
amount of zooplankton will grow in time instead of decaying to zero. Additionally,
since the other inequality in Proposition4 is equivalent to 2λ ≤ µP̂a the results says
that the equilibrium point is stable if the death rate of phytoplankton is sufficiently
small compared to the maximum growth rate. Additionally, increasing the equilib-
rium value of phytoplankton,̂P, (as long aŝP < P∗ holds) or decreasing the equilib-
rium value of dissolved nutrient (which increasesa: the slope of the phytoplankton
uptake functional response at the equilibrium), has a stabilizing effect.

In Jang and Baglama(2005), the authors state a similar result for a model that
includes washout rates. They find an inequality that guarantees local asymptotic sta-
bility that is independent of the delay distribution for theequilibrium solution without
zooplankton. Their result is more complicated because of the nature of their model,
but it can be seen to be identical to our condition as the washout rate approaches zero.

We can explore this type of equilibrium further in the case ofa discrete delay.
Letting η(u) = δ (u− τ), the characteristic equation becomes

(s− γgd+ δ )[s2+ µP̂as+ µP̂aλ (1− e−sτ)] = 0. (47)

Setting the real part ofs to zero allows us to solve for possible delays where sta-
bility might switch. That is, it gives us values forτ where there are eigenvalues on
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the imaginary axis. Substitutings = iω into the second factor of the characteristic
equation and separating the real and imaginary parts gives the equations:

−ω2+ µP̂aλ [1− cos(ωτ)] = 0, (48a)

ω +λ sin(ωτ) = 0. (48b)

From these equations, we can isolate cos(ωτ) = 1−ω2/(µP̂aλ ) and sin(ωτ) =
−ω/λ . Squaring both sides and adding the equations then yields:

ω2[ω2−2µP̂aλ +(µP̂a)2]= 0. (49)

The zero solution is the inherent one. For other solutions toexist, we require

2λ > µP̂a, (50)

sinceω is real. Thus, if 2λ ≤ µP̂a, then no other solutions exist. Therefore changing
the value of the delay while keepinĝP fixed cannot move eigenvalues across the
imaginary axis. Therefore if the equilibrium point is stable without delay, it remains
stable for any value of delay. We emphasize that we are assuming thatP̂ is fixed
while the total biomass increases with the delay. On the other hand, if we assume the
total biomass is fixed, then increasing the delay decreasesP̂, so the equilibrium point
remains stable as long as (50) still holds. It can be seen that this is a specific case of
Proposition4.

Otherwise, if 2λ > µP̂a there are critical eigenvaluess = ±iωc, whereωc =
√

2µP̂aλ − (µP̂a)2. Solving for for the corresponding critical delay from (48b) gives:

τc =
1

ωc
sin−1

(−ωc

λ

)

, (51)

with proper care to ensure that the correct solutions are taken. That is, (48a) must be
satisfied, so cos(ωcτc) must have the same sign as 1−ω2

c /(µP̂aλ ). Another detail is
making sure thatωc ≤ λ so that (51) has solutions. In fact, this is always true since

λ 2−ω2
c = λ 2−2µP̂aλ +(µP̂a)2 = (λ − µP̂a)2 ≥ 0. (52)

Equation (51) can be non-dimensionalized in a useful way. Lettingτ̂c = λ τc and
x = µP̂a/λ , we get the following equation for a critical delay:

τ̂c =
1√

2x− x2
sin−1

(

−
√

2x− x2
)

, (53)

with

cos(ωcτc) = 1−ω2
c/(µP̂aλ ), (54)

= 1− 1
x

ω2
c

λ 2 , (55)

= x−1. (56)
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Fig. 4 A plot of non-dimensional critical delay against non-dimensional phytoplankton equilibrium. By
inspection of the graph, the minimum value is approximately4.6, indicating thatτc ≥ 4.6/λ

Then, taking the range of the inverse of sine to be in[− π
2 ,

π
2 ] we get

τ̂c =







1√
2x−x2

[

π − sin−1
(

−
√

2x− x2
)]

if 0 < x ≤ 1

1√
2x−x2

[

2π + sin−1
(

−
√

2x− x2
)]

if 1 < x < 2
. (57)

Of course there are other solutions, but we have concerned ourselves with the
smallest positive one. A plot of this function is shown in Figure 4. It can be seen
from this graph that the minimum value ofτ̂c is approximately 4.6, which indicates
that τc ≥ 4.6/λ . Thus,τ < 4.6/λ is a sufficient condition for local stability when
NT1 < NT < NT 2.

In terms of the original parameters, (57) is

τc =

{

1
ωc

[

π − sin−1(−ωc
λ
)]

if 0 < µP̂a ≤ λ
1

ωc

[

2π + sin−1(−ωc
λ
)]

if λ < µP̂a < 2λ , (58)

which gives the critical delay for a fixed value ofP̂. However, we wish to know what
the maximum value of the delay is before stability is lost fora given value of total
nutrient. This was done for the parameter values in Table1. In the computation we in-
creaseP̂ from zero to 2λ/(µa) in small increments. For eacĥP, τc is calculated from
(58). Finally, we computeNT = f−1(λ/µ)+ (1+λ τc)P̂. The results are shown in
Figure5. This figure illustrates regions in theτ −NT plane where different behaviour
occurs. In this figure, region 1 is stable, meaningτ < τc. This critical delay separates
region 1 from region 2. While there may be areas within region2 that are stable, we
did not concern ourselves with them, as any such region wouldbe relatively small
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Fig. 5 Regions in theτ −NT plane that exhibit different behaviour for the(N̂, P̂,0) solution. Region 1a
is stable regardless of the delay distribution, while region 1b is stable for the discrete delay. Region 3 is
unstable. The boundary between region 1 and 2 represents a switch in stability for the model with discrete
delay, although there may be areas within region 2 that are stable. Region 4 is where the equilibrium does
not exist

in the parameter space and therefore not interesting enoughto warrant a more thor-
ough investigation (at least within the context of this paper). Note that 4.6/λ ≈ 270,
which corresponds to the left-most point of this boundary. Region 3 is unstable, as it
corresponds toNT > NT2, where it was shown there is a positive eigenvalue. Region
4 corresponds to the region where the equilibrium does not exist, and the(NT ,0,0)
solution is stable.

6.2 Stability of Equilibrium with Zooplankton

For the equilibrium(N∗,P∗,Z∗), the characteristic equation is

det









s+ µP∗a µc−
(

λ +
(1−γ)γgbP∗(µc−λ )

δ

)

η̂(s) − δ
γ η̂(s)

−µP∗a s− µc+λ + γgbP∗(µc−λ )
δ

δ
γ

0 − γ2gbP∗(µc−λ )
δ s









= 0, (59)

wherea = f ′(N∗), b = h′(P∗), andc = f (N∗). This equation is sufficiently compli-
cated that general analytical results were not found. However, in the case of the dis-
crete delay, wherêη(s) = e−sτ , we can make some progress. Substituting ins = iω
leads to two equations: one such that the real part of the equation is zero, and one
such that the imaginary part is. These equations are in the form

B(ω)

(

cos(ωτ)
sin(ωτ)

)

= y(ω), (60)
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Fig. 6 Regions in theτ −NT plane that exhibit different behaviour for the(N∗,P∗,Z∗) solution using the
Type II responseh(P) = P

P+K . Region 1 is where the equilibrium solution does not exist, and where the

(N̂, P̂,0) is stable. Region 3 is where the equilibrium solution existsand is stable, but where(N̂, P̂,0) is
unstable. The curve separating region 3 and region 5 corresponds to an eigenvalue with zero real part, so
the assurance of stability is lost in region 5

whereB is a two by two matrix, andy ∈ R
2, both with entries that are polynomials

in ω . If x(ω) = B−1(ω)y(ω), andx1 andx2 are the components ofx, then

x1(ω)2+ x2(ω)2 = 1, (61)

which can then be rearranged into a cubic polynomial inω2. The procedure so far
can be done symbolically, though it leads to a polynomial with unwieldy coefficients.
Consequently we must switch to a numerical approach. Numerically, the roots of the
polynomial are easily solved for. Since the polynomial is inω2 andω must be real
valued, only positive roots are of concern. If there are no positive roots, there does
not exist a critical delay where stability switches. Otherwise, we can obtain for each
positive root a value of the delay:

τi =
1
ωi

sin−1(x2(ωi)), (62)

with
sign(cos(ωiτi)) = sign(x1(ωi)), (63)

for i = 1, .., p, wherep is the number of positive roots. The critical delay,τc, is then
the smallestτi.

To compute a curve in theτ −NT plane where there is an eigenvalue with zero
real part, we begin by increasingN∗ in increments from some value slightly larger
thanNT2. Thenτc is calculated and thenNT is found from (19) with τ = τc. Figure
6 shows the results of the computation when the functional form of the zooplankton
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Fig. 7 Regions in theτ −NT plane that exhibit different behaviour for the(N∗,P∗,Z∗) solution using the

Type III responseh(P) = P2

P2+K2 . Region 1 is where the equilibrium solution does not exist, and where the

(N̂, P̂,0) is stable. Region 3 is where the equilibrium solution existsand is stable, but where(N̂, P̂,0) is
unstable. The curve separating region 3 and region 5 corresponds to an eigenvalue with zero real part, so
the assurance of stability is lost in region 5

grazing,h(P), is of Type II. In some cases, it was necessary to compute the two
smallest critical delays in order to complete the curve. Region 1 and 3 are the same as
before, although from the perspective of the equilibrium solution (N∗,P∗,Z∗) region
1 corresponds to the equilibrium solution not existing, andregion 3 is where it exists
and is stable. The curve separating region 3 and region 5 indicates where there is a
pair of eigenvalues with zero real part, so the assurance of stability is lost in region 5.
Interestingly, for some values of total biomass,NT , we see that the delay can have a
stabilizing effect for relatively short delays. After the equilibrium undergoes a Hopf
bifurcation atNT = NT c ≈ 1, increasing the delay to an appropriate amount can make
the equilibrium stable in some cases.

In Section5 it was shown that a Type III response can imply that the equilibrium
is always stable when there is no delay, so we might expect that increased stability
is also present when there is delay. We compute a curve as we did before, but with
h(P) = P2

P2+K2 , which is of Type III. Figure7 shows the results. It is seen that the
delay has to be significantly longer to cause instability in this case when compared to
Figure6 where the functional response was of Type II.

Since the characteristic equation is difficult to handle in ageneral setting, we
consider specific delay distributions. A common class of distributions is the gamma
distribution, given by

η(u) =
up−1α pe−αu

Γ (p)
, (64)
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wherep andα are non-negative real numbers and

Γ (p) =
∫ ∞

0
up−1e−u du. (65)

An attractive feature of this distribution is that its Laplace transform is a rational
function:

η̂(s) =
α p

(s+α)p . (66)

Thus, in the case wherep is an integer, the characteristic equation can be rearranged
into a polynomial with a finite number of roots. The mean of thedistribution function
is τ = p/α, so we can replaceα in the distribution withp/τ so as to have the mean
delay as a parameter. It can be seen that smallp values characterize a wider distribu-
tion with more variance, while largerp values result in a more narrow distribution.
As p → ∞ with τ fixed,η approaches the delta distribution; that is, a discrete delay.

Recall that in the casep = 1, the system is equivalent to (6). We then have the
following proposition:

Proposition 5 For the delay distribution η(u) = αe−αu, if h′(P∗) ≥ h(P∗)/P∗, then
(N∗,P∗,Z∗) is stable when it exists.

Proof We show that all the roots of the characteristic equation have negative real
parts. To make the equation simpler, we define the following quantities: ˆa = µP∗a,
b̂ = µc−λ , ĉ = γgbP∗/δ , andd̂ = δ/γ. These are all positive numbers. The charac-
teristic equation is then

det







s+ â b̂+λ −
(

λ +(1− γ)b̂ĉ
) α

s+α − α d̂
s+α

−â s+ b̂(ĉ−1) d̂
0 −γ b̂ĉ s






= 0, (67)

which implies
s(s3+ c2s2+ c1s+ c0) = 0, (68)

where

c2 =α −T, (69)

c1 =−αT + γ b̂ĉd̂+λ â+ âb̂ĉ, (70)

c0 =αγ âb̂ĉ+αγ b̂ĉd̂+ γ âb̂ĉd̂, (71)

and T = b̂(1− ĉ)− â, which is the trace in (33). The assumption thath′(P∗) ≥
h(P∗)/P∗ (i.e. ĉ ≥ 1) implies thatT < 0 andT + â < 0. The Routh-Hurwitz stability
criteria for a cubic polynomial in the present form requiresc2 > 0,c1 > 0,c0 > 0,
andc1c2 − c0 > 0 as necessary and sufficient conditions for all three roots to have
negative real part. It can be easily seen that each coefficient is then positive. As well,

c1c2− c0 =−Tα2+[T 2+λ â+(1− γ)âb̂ĉ]α − (âb̂ĉ+λ â)T − (â+T )γ b̂ĉd̂, (72)

which is positive.�
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This proposition does not apply to Type II responses, since thenh′(P∗)< h(P∗)/P∗.
However, this assumption is not necessary for stability. Inthe limit asα becomes
large, we can see that the Routh-Hurwitz stability criteriais met if and only ifT < 0,
which is the same condition for stability with no delay. Thisis expected since the
mean delay here isτ = α−1.

We can apply a similar analysis to other gamma distributions, but settingp ≥ 2
in (64) yields much more complicated characteristic equations with increasingly dif-
ficult Routh-Hurwitz criteria. Conditions for stability obtained from looking at the
characteristic equation symbolically are less likely to bemeaningful as the expres-
sions get complicated. As well, we would like to consider other types of distributions
with less pleasant Laplace transforms, so we will turn to numerical methods.

We now introduce two other types of distributions. The first is the uniform distri-
bution, which will be defined as:

η(u) =
{

1
2W , τ −W ≤ u ≤ τ +W
0, elsewhere

, (73)

whereτ ≥W is the mean delay. The variance of this distribution isV =W 2/3.
The second distribution to be considered is what we will refer to as the “tent”

distribution:

η(u) =







u+W−τ
W 2 , τ −W ≤ u ≤ τ

−u+W+τ
W 2 , τ ≤ u ≤ τ +W
0, elsewhere

. (74)

Again,τ ≥W is the mean delay. The variance isV =W 2/6.
As well, it can be seen that the mean delay of the gamma distribution (64) is

τ = p/α, and the variance isV = p/α2. Figure8 shows these three distributions,
with the same mean delay, and the same variance.

The goal now is to find curves in theτ −NT plane where the characteristic equa-
tion has roots with zero real part. The characteristic equation is obtained by finding
the Laplace transform of the distribution of interest and substituting it into (59). Then
we set the real part of the roots to zero by making the substitution s = iω . Separat-
ing the resulting equation into real and imaginary parts yields two equations in three
variables:ω ,τ, andN∗. These equations describe curves in theτ −N∗ plane that are
parameterized byω . Using pseudo-arclength continuation, as described in (Govaerts,
2000), we can compute points(ωi,τi,N∗

i ) that satisfy the two equations. Then we can
transform each(τi,N∗

i ) into (τi,NTi) through equation (19) and plot the results.
For this method to work, we need to start near a solution. If the mean delay is close

enough to zero, then the solutions should be close to that when there is no delay.
This gives a good initial guess. This is not a problem for the gamma distribution,
since for any given variance, the mean delay can be arbitrarily small. However, in the
cases of the uniform and “tent” distributions, the mean delay cannot be made close
to zero unless the variance is also small. To deal with this, in the case of the uniform
distribution, we introduce a similar class of distributions:

η(u) =
{

1
2τ , 0≤ u ≤ 2τ
0, elsewhere

. (75)
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Fig. 8 The uniform, “tent”, and gamma distributions with mean delay τ = 10 and varianceV = 5

Here the mean delay can be made arbitrarily small so there is no problem finding
a starting point. Furthermore, the curve of solutions foundusing this distribution
defines appropriate starting points for the uniform distribution (73) by beginning at
τ =W . A similar approach can be used for the “tent” distribution with:

η(u) =







u
τ2 , 0≤ u ≤ τ

−u+2τ
τ2 , τ ≤ u ≤ 2τ
0, elsewhere

, (76)

Figures9 and10 show the curves obtained using this approach for the uniform
and “tent” distributions respectively. The figures show thecurves in both theτ −N∗

and τ −NT planes. The stable region is located below the curve and the unstable
region above. Comparing these figures with Figure6 for smallτ, it can be seen that
the curves are very similar. This is to be expected since these distributions have small
variance when the mean delay is small, so we expect the behaviour to be similar to
that of a discrete delay. When the mean delay is larger, however, differences become
apparent. The most important difference is that the region of stability becomes larger
in the case of a distributed delay. From equation (19) it can be seen that ifN∗ is
constant, thenNT is a linear function ofτ, which explains the slope upwards in the
NT case when the curve levels off forN∗. SinceNT is the more meaningful parameter,
we will only show plots in theτ −NT plane for the remainder of the manuscript, but
the transformation from equation (19) should be kept in mind when interpreting such
curves. That is, ifNT is fixed, then an increase in the average delay means a decrease
in the equilibrium value of nutrient in the water. Or, equivalently, for a fixed amount
of nutrient in equilibrium, an increase in the delay means anincrease of total nutrient
in the system.
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Fig. 9 Stability regions for the uniform distribution defined in (75). Regions 1,3, and 5 are as described in
Figure6
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Fig. 10 Stability regions for the uniform distribution defined in (76). Regions 1,3, and 5 are as described
in Figure6
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Fig. 11 Stability regions for gamma distributions with fixedp. The dotted line corresponds to the stability
region in the case of the discrete delay. Regions 1,3, and 5 are as described in Figure6
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Fig. 12 Stability regions for uniform distributions with various widths. Regions 1,3, and 5 are as described
in Figure6. The starting point of the curve represents the value ofW in (73). The values here areW =
0.001,1,3,4,5,6. Also plotted is the stability region for the discrete delay, although it is almost identical
to the uniform distribution withW = 0.001 and therefore is hard to see

Figure11 shows the stability regions for various gamma distributions wherep is
fixed. Here and in the figures that follow, region 1 corresponds to where the equilib-
rium point does not exist. Region 3 corresponds to where the equilibrium is stable
and its boundary is defined by the appropriate curve, and region 5 corresponds to
where it is possibly unstable. Increasing the value ofp, which corresponds to making
the distribution more narrow, appears to have a slightly stabilizing effect for small
mean delays, but has a much greater destabilizing effect formean delays in the range
of about 4-10 days. For example, if the mean delay is 8 days, then the total nutrient
must be significantly less ifp = 20 than ifp = 1. The behaviour is less clear for mean
delay larger than approximately 10 days, though the effect of changingp seems to be
less significant asτ gets large.

Figure 12 shows the stability regions for uniform distributions withdifferent
widths. It can be seen that these are very similar to the stability region of the dis-
crete delay forW up to 3. However, atW = 4 we see a qualitative change in that the
curve begins to oscillate. We will discuss why this might be true later. The trend that
a wider distribution is less stable for small mean delays, and more stable for larger
mean delays continues here.

Figure13 shows the stability regions for the “tent” distributions with different
widths. The characteristics of these curves are very similar to those for the uniform
distribution. ForW up to 5, the curves are very similar to that for the discrete delay,
and forW = 6 and above we see a qualitative change.

More precisely, this qualitative change occurs at aboutW = 3.95 in the uniform
case andW = 5.65 in the “tent” case. At these points, the variance of the uniform
distribution isV = W 2/3 = 5.20 and in the “tent” distribution it isV = W 2/6 =
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Fig. 13 Stability regions for “tent” distributions with various widths. Regions 1,3, and 5 are as described
in Figure6. The starting point of the curve represents the value ofW in (74). The values here areW =
0.001,1,3,5,6,7. Also plotted is the stability region for the discrete delay, although it is almost identical
to the “tent” distribution withW = 0.001 and therefore is hard to see

5.32. The variances are very similar, which might be an indication that the curves
depend more on the variance than the actual shape. Hence the distributions were
reparameterized in terms of their mean delay and variance sothat more meaningful
comparisons can be made.

Figure14shows the curve of solutions where an eigenvalue has zero real part for
the gamma, uniform, and “tent” distributions where the variance is fixed at 1 day2.
Also shown for comparison is the curve defining the stabilityregion for the discrete
delay. The curves for the three distributed delays are almost identical where they
are defined. Furthermore, they are very similar to the curve for the discrete delay,
especially for longer mean delays. For short delay, the region of stability is smaller
for the distributed delays than it is for the discrete delay,while the opposite is true for
longer delays.

Figure15 shows the same curves as in Figure14, but where the variance is 5
day2. We can see more variation among the distributed delays, though they are still
very similar where they are defined. The difference between the distributed delays
and the discrete delay is more pronounced here. We still see that for short delay,
the stability region is larger in the case of discrete delay,while it is larger for the
distributed delays for longer mean delays.

Figure16shows the case when the variance is 8 day2. We see even more variation
among the distributed delays and it can no longer be said thatthe three curves are
similar. The distributed delay curves are now much different than the discrete delay
curve, but we still see that the discrete delay is more stableat smaller mean delays
while the distributed delay is more stable for longer mean delays.
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Fig. 14 Stability regions for the gamma, uniform, and “tent” distributions where the variance is fixed at
1 day2. Regions 1,3, and 5 are as described in Figure6. Here the curves are almost identical in the three
cases. The dotted line represents the curve in the case of thediscrete delay and the line at the bottom is the
line above which the equilibrium exists
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Fig. 15 Stability regions for the gamma, uniform, and “tent” distributions where the variance is fixed at
1 day2. Regions 1,3, and 5 are as described in Figure6. The curve for the gamma distribution starts close
to τ = 0 while the curve for the “tent” distribution starts the furthest right. The dotted line represents the
curve in the case of the discrete delay and the line at the bottom is the line above which the equilibrium
exists
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Fig. 16 Stability regions for the gamma, uniform, and “tent” distributions where the variance is fixed at
1 day2. Regions 1,3, and 5 are as described in Figure6. The curve for the gamma distribution starts close
to τ = 0 while the curve for the “tent” distribution starts the furthest right. The dotted line represents the
curve in the case of the discrete delay and the line at the bottom is the line above which the equilibrium
exists

7 Simulations

The stability results were verified with a number of simulations. Using the parameter
values in Table 1. Solutions were found using MATLAB’s builtin functionsode45
anddde23 for the cases of no delay and discrete delay, respectively. For distributed
delays, a custom-made second order scheme was used to solve the equations. This
scheme included the numerical integration of the convolution in (1) using the trape-
zoidal rule and the time-stepping was done using a second order method so overall
the method has second order accuracy. We tested the accuracyof this scheme on toy
problems with exact solutions, and also on the full problem with the gamma distribu-
tion, which can be compared with the solution of the equivalent system of ODE’s.

Figure17shows some phase portraits in the case with no delay for various values
of total nutrient. The behaviour of the solutions in this figure are consistent with the
results in Figure3. Furthermore, at least for the parameter values being used,the
equilibrium points appear to be globally asymptotically stable when they are stable.
This global stability might be interesting to investigate in the future.

To verify the stability of equilibrium solutions with delay, for a given distribution
we choose values ofNT andτ, then compute the corresponding equilibrium point.
The initial conditions for the simulation are then chosen tobe a small perturbation
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from this equilibrium solution that preserves the total nutrient. For example

N(t) = NT − (P∗+ ε)−Z∗− [λ (P∗+ ε)+ δZ∗+(1− γ)gZ∗h(P∗+ ε)]τ, (77)

P(t) = P∗+ ε, (78)

Z(t) = Z∗, (79)

for t ∈ [−r,0] wherer is the maximum delay being considered1 andε is a small
number. It was assumed that the equilibrium solution was stable if the resulting os-
cillations decayed in time, and unstable if they grew. Whilethis is not a rigourous
conclusion by itself, the fact that all the simulations we performed agreed with the
stability analysis in the previous sections serves as a goodcheck that our methods
were correct.

For example, in Figure18, four simulations are shown using the gamma distribu-
tion with p = 20. The top left is for total nutrientNT = 0.5 and mean delayτ = 5,
and indicates that the equilibrium solution is stable. The top right increases the mean
delay toτ = 8 and keeps the total nutrient atNT = 0.5, and indicates instability. The
bottom left is still forNT = 0.5, and with the mean delay increased further toτ = 12,
and suggests a return to stability. Finally, the bottom right is for the total nutrient
decreased toNT = 0.4 and the mean delay atτ = 8. This indicates stability, although

1 In the case where the delay distribution extends infinitely into the past, the delay distribution must be
approximated by a truncated version for simulation purposes.
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Fig. 18 Simulations for the gamma distribution withp = 20. The top left is for total nutrientNT = 0.5 and
mean delayτ = 5. The top right is forNT = 0.5 andτ = 8. The bottom left is forNT = 0.5 andτ = 12.
The bottom right is forNT = 0.35 andτ = 8

it was unstable for a larger value of total nutrient and the same mean delay. This tran-
sient behaviour agrees with the stability regions in Figure11. Similar tests were done
on with other distributions for other values of total nutrient and mean delay, and no
inconsistencies with the analysis were found.

8 Discussion

We have looked at a simple ecosystem governed by delay differential equations in
order to study how the existence and stability of equilibrium solutions depend on the
quantity of nutrient in the system and the delay characterizing the process of nutri-
ent recycling. While our equations were relatively simple,they do offer insight into
plankton communities. They verified that a sufficient quantity of biomass is needed
in the system in order to sustain a given trophic level. When an additional trophic
level has sufficient nutrient to avoid extinction, the equilibrium solution that excludes
that species becomes unstable. We see that if the nutrient recycling is characterized
by a longer delay, then there is effectively less nutrient inthe system that is used to
sustain the populations. Therefore, the longer the delay, the more nutrient is needed
in the system to sustain a population.

The stability of the equilibrium solution depends on both the amount of biomass
in the system, and the properties of the delay distribution.Our computations show
this relationship can be complicated, since for a fixed amount of biomass, increasing



A Closed NPZ Model with Delayed Nutrient Recycling 33

the delay can change the stability of an equilibrium solution, sometimes switching it
from unstable to stable, or vice versa. This effect was seen mostly in the case of a
Type II response for zooplankton grazing on phytoplankton,suggesting a relatively
narrow range of values for total nutrient and mean delay where the equilibrium so-
lution is stable. In contrast, a Type III response led to a very robust range of these
parameter values where the equilibrium solution is stable,which makes the choice of
this response a very important factor when modelling. Further discussion on the im-
portance of this functional response is in (Gentleman et al, 2003), where the authors
discuss different functional responses for zooplankton grazing and provide criteria
that modelers can use to choose appropriate functional forms.

While our computations primarily focused on a Type II grazing response, this
should not be an indication that this type of response is moresignificant than Type
III. In the case of no delay, the system with a Type III response was always stable,
and results suggest that the system only becomes unstable for relatively large delays,
so this case did not warrant detailed analysis. In fact, the robust stability of the Type
III response might lead one to believe it is more realistic than the Type II response,
so our focus on the latter should not suggest a preference.

With the mortality rate ofδ = 0.17 day−1 in Table1 that was used for our compu-
tations, we can place the time scale of the ecosystem at about6 days. From Figure6,
it can be seen that a typical critical delay value is also of this order. This agrees with
the result in (May, 1973), which says that such critical delays are on the same time
scale as that of the ecosystem. While this appears to be true for the Type II functional
response, Figure7 suggests that this idea might not be true for a Type III response. In
(Edwards, 2001), the author quotes breakdown rates of dead organic matter to be in
the range of 0.004-0.2 day−1, placing a typical delay time between 5 and 250 days.
For the parameters used in Figures6 and7 (see Table1) This would make the sys-
tem with a Type II response unstable in most cases, and a Type III response stable
for delays on the shorter side of this range. However, different species may have dif-
ferent parameter values than what we have used, so more parameter sets need to be
investigated before general comparisons can be made. Nevertheless, we expect the
qualitative shape of the stability region to be similar to those seen in Figures6 and7,
regardless of the parameter values.

There are many other extensions to this work that could be considered. For in-
stance, we could see how the existence and stability of the positive equilibrium is
affected by using a nonlinear closure term. We could also investigate other functional
responses for zooplankton grazing on phytoplankton, such as a non-monotonic re-
sponse (Zhu et al, 2002), (Ruan and Xiao, 2001). As well, delay can be incorporated
into other terms, such as the gestation time.

The global stability of the positive equilibrium remains tobe determined. In the
case of instantaneous nutrient recycling, the simulationsin the bottom left of Figure
17suggest that the positive equilibrium is indeed globally asymptotically stable when
it is asymptotically stable. However, this might not be truefor all parameter values.
The global asymptotic stability may be determined via a Lyapunov function or by
proving that periodic orbits do not exist as in (van den Driessche and Zeeman, 1998).
The global stability of the positive equilibrium in the delayed system could possi-
bly be proved with a Lyapunov functional. In (He and Ruan, 1998), the authors use
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Lyapunov functionals to provide conditions for global stability in a two-compartment
chemostat model that includes a delay in nutrient recyclingand in the gestation time.

Further structure can be added to the model by considering different size classes
of plankton, as in (Poulin and Franks, 2010), (Armstrong, 1994), and (Armstrong,
1999). It may be more realistic for the parameters to have size-dependence, and thus
it would be interesting to see how the delay in nutrient recycling affects such ecosys-
tems.
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