
SIAM J. APPL. MATH.
Vol. 54, No. 5, pp. 1402-1424, October 1994

1994 Society for Industrial and Applied Mathematics
012

STABILITY AND BIFURCATIONS OF EQUILIBRIA IN A
MULTIPLE-DELAYED DIFFERENTIAL EQUATION*

JACQUES BILAIRt AND SUE ANN CAMPBELLt

Abstract. The influence of multiple negative delayed feedback loops on the stability of a
single-action mechanism are considered. A characteristic equation for the linearizcd stability of the
equilibrium is completely analyzed, as a function of two parameters describing a delay in one loop
and a ratio of the gains in the two feedback loops. The bifurcations occurring as the linear stability
is lost are analyzed by the construction of a centre manifold. In particular, the nature of Hopf and
more degenerate, higher codimension bifurcations are explicitly determined.
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1. Introduction. Many biological and physical systems involving feedback
mechanisms incorporate delays in their actions. This is particularly noteworthy in
the regulation of physiological functions: the time required for a cell to mature, the
time for the nerve impulse to travel along the axon and across the synapse, or the
time for the hormonal signals to travel from their site of production to target organs
by diffusion and/or passage through the circulation are but a few examples of such
delays.

In this paper, we consider a delay-differential equation arising in a second attempt
to understand the behavior of subjects trying to perform a "simple" motor control
task (see [3] for a first attempt, and [2] for more details on this model). We study the
equation

(1.1) it(t) fl(x(t- T1)) + f2(x(t- T2)),

where fi(u) -Ai tanh(u), 1, 2 (Ai are positive constants), and first determine
the asymptotic stability of the (unique) equilibrium solution x 0. As long as we
are only looking at the local (linearized) stability, it matters little what the actual
functions fi are, whenever their first derivatives at the origin are both negative. To
determine the nature of a Hopf bifurcation (if any), however, we need derivatives of
higher orders, and we thus have to use particular forms for the functions.

Computing f(0) -Ai, 1, 2, and substituting, as is usual, x(t) eat in

(1.1) we obtain the characteristic equation

(1.2) -Ale-T1 A2e-T2.

By scaling the time in (1.1), it is possible to let one of the delays be equal to unity:
we then have to investigate an equation in which only the ratio of the original delays
appear. We do not consider this entirely appropriate in our context, however, since
there is a significant loss of simplicity in the analysis using this normalization (more
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precisely, there are nontrivial complications in the determination of the full stability
regions when this particular scaling is employed).

By scaling the variable z(t), it is possible to let either one of the coefficients Ai
be equal to unity in (1.1), to obtain the (normalized) characteristic equation

(1.3) A -e-1 Ae-2

where, in terms ofthe original parameters of (1.1), t Alt, 7. A1Ti and A A2/A1.
Equation (1.3) now contains the three parameters A, 7.1, and 7.2. We can thus com-
pletely determine the region of stability in a two-parameter space by fixing the value of
the remaining parameter, as has been accomplished recently in a similar problem [1].

For the current situation, there are three possible choices for the parameter to be
fixed. We chose to fix 7-1 and consider the stability regions in the parameter plane
(A, 7-2). This approach appears most natural to us in the context of modeling regula-
tory systems with multiple delayed feedback loops: given one such loop containing a
time delay 7-1, the parameters A and 7-2 can be interpreted as the gain and the delay
in an additional loop added to the original system. With this interpretation in mind,
we concentrate our analysis on the values of A such that IAI _< 1. By taking A _> 0,
the first part of the analysis will hold for the general case of negative feedback loops.

In the next section, we present a detailed analysis of the linear stability of (1.1).
Nonlinear terms are considered in 3, at parameter values where one (in 3.1) or two
(in 3.2) pairs of purely imaginary eigenvalues exist" possible secondary bifurcations
are discussed, and numerical simulations illustrating them are presented. Related
work is discussed in 4, where we compare our analysis with alternative ones recently
used in the literature.

Our results are neither the most elegant nor the most general ones that can be
obtained about (1.1). They are applicable to a specific system, however, and illus-
trate remarkably both the difficulties arising in the investigation of delay differential
equations with multiple time delays, and how some of them can be overcome.

The problem we .address is intrinsically multidimensional: scale changes reduce
it to at best a three-parameter problem. Our analysis is one more illustration that
"... a two-parameter problem is very different from a one-parameter problem" [9].

2. Local analysis. In this section, we determine, at a fixed value of 7-1, the
values of the parameters A and 7-2 for which all roots of (1.3) satisfy Re(a) < 0.
We consider mainly the value of A in the interval [0, 1], for the reasons given in
the previous section. We employ a previously successful version of the method of D
subdivision [13].

The case when 7-1 0 is well understood, being a particular case of a result
of Hayes [12]. The technical motivation for the calculations of this section rely on
the following basic Lemma, which generalizes one found in [5], both of which are
special cases of a much more general result [8]. It is presented here for reasons of
completeness.

LEMMA 2.1. Consider the function g(A, 7-) A + -.j= aje-j where aj are
real numbers, and 7-j >_ 0, 1 <_ j <_ rn. Then as the value of any one of the numbers

varied, th u.br ofo of th ftio g(. ) ith () > O. onti
multiplicities, can change only by a passage of A through the imaginary axis.

Proof. Denote A A(7-) a solution of the equation g(A, 7-) 0 such that 0 <
Re(A) < oc. Since A(u) is an analytic function of u, RouchS’s theorem implies that
there exists an e > 0 such that for IU- T] < e, there exists a root A(T), of the same
multiplicity as A(U). Denote by M(U) the total multiplicity of zeros in the open
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right half plane, and suppose that M(U) changes without a root appearing on the
imaginary axis" this can only occur if there is a root at infinity, in which case there
exists U and a sequence {U(i) } such that

(2.1) lim U(i) 5 and lim IA(U(i))l- o
i--*o i--oo

where denotes complex modulus, with Re(A(U()) _> 0. Then, since, for 1 _< j <_
m, ]e-Ja() _< 1,

(2.2) 9(/’ -)
1 -t- E aJ’\-le--J’x

j=l

and thus lg(k, r)/.]-- 1 as ]k]-- oc, contradicting
Remark. It is apparent from the proof of this Lemma that a similar result holds,

for advanced equations (rj <_ 0), to describe the crossing of eigenvalues in the left half
plane.

From this last lemma, because it is applicable to (1.3), we can delineate the
boundaries of the stability regions in the plane of the parameters as being those
values for which there exists a purely imaginary root A iw (including ca 0). It is
thus essential to identify some region in which all the roots of eq.(1.3) have negative
real parts. This is the content of the following

1. then all solutionsLEMMA 2.2. Assume that, in (1.3), 0 _< A < 1 and 0 <_ T < -,
A of (1.3) satisfy Re(A) < 0.

Proof. Since A > 0, it is clear that (1.3) has no positive real root. Letting
A # + iw and separating real and imaginary parts of the resulting equation, we
obtain

(2.3a) # --e -tt-I COScaT1 Ae-- cos ca-.,

(2.3b) ca e-rl sincaz-1 + Ae--Assume that (2.3) have roots p and such that > 0 (without loss of generality since
complex roots of (1.3) come in complex conjugate pairs), and > 0. It is obvious
from (2.3a) that, since A < 1, p < 2; it is equally clear from (2.3b) that < 2.
In view of 7 < , we have 0 < w < 2 < 1/71 and therefore 0 < 7w < 1, so that
0 < cos i cos71 and 0 < sinT1 sin 1.

Write (2.3a) as p + e-" cos71 -Ae-" cos7. Since cos71 > 0, it follows
that cos wT < 0, and thus that p < 1. Isolating the last terms in the right hand side
of each of (2.3a) and (2.3b), squaring the resulting equations and then adding them
yields the necessary condition

(2.4) A2 2,T2 [-2,T1 @ 2 + 2 @ 2-,71 ( COS.T1 W sinwwl)]

for a solution of (2.3) to exist. For fixed values of a, 1 and , call M() the right-
hand side of the last equation. Since < , it is clear that M(0) k 1. Compute the
derivative M’(p) as

dM 2e2 [22 + p + 2pW2e-,rl COST1 + T2( 2e-1 sinw71)

It is obvious that M’(0) 217w(w 2 sinwT1)+ (cosw +wT1 sinw71) + 72 71] > 0,
since 71 < < cos(l) coswT. We have (1- TI)COST1 + T1 sinw71 + (72-
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T1)e-ttrl (1--T1) COS00T1 +00T1 sin00T1 nt-(T2--T1)e-tt’ri - N(#). Define the auxiliary
function h(z) x sin z + (1 7-1) cos z, so that h’(z) x cos x + rl sin x and thus
h’(0) 0. For 0 < z _< 1, it is not difficult to show that both h(x) and h’(z) are
positive-valued, so that h(z) >_ h(0) > 9-1 ) 7-le-ttrl It is thus clear that -Xh-aM is always
positive when # is nonnegative and so there can be no root of (2.3) when A < 1.

THEOREM 2.3. The values of the parameters A and 2 for which (1.3) has a root
with zero real part are given by

A v/1 + w2 2w sin w-i v/cos2 w-i + (w sin w-1)2 and

(2.6b) 72

sin w-arctan
COS 02T

Pro@ Since A is nonnegative, it is clear that (1.3) can have no real positive
solution. Let # 0 in (2.3) so that A is a purely imaginary root iw of (1.3), and write
these equations as

COS 007-1 --A cos 00-2,

(2.7b) w sin 00T A sin

Squaring each side of both of these last equations and adding yields (2.6a). Dividing
(2.7b) by (2.7a) in turn gives

(2.8) tan(w-2)
sin WZl 00

COS 00T

from which (2.6b) follows.
With the boundaries of the stability region given by the "simple" (2.6), it remains

to determine which branches of the inverse tangent functions must be taken in (2.6b),
and how the imaginary roots change as the parameters A and ’2 are varied. For this,
we have to study in detail each of the expressions defined by (2.6), as a function of 00.

From (2.6a) it is clear that

dA
(2.9)

dw
[00 007-1 COS(00T1 sin(00T1)]/A.

By differentiating each member of (1.3) with respect to -2, all the other parameters
staying constant, we obtain

which yields, when evaluated at a purely imaginary value A i00, after using (2.7)
and taking the real part of the ensuing equality,

(2.11)
dReA C0(00 007-1 COS(00T1) sin(007"1))

[1 -1-(T2 T1) COS(00T1)] 2 -}-[00T2 --(T2 T1)sin(w7-1)] 2"

From this, we readily obtain
LEMMA 2.4. The eigenvalues of (1.3) enter the right-half of the complex plane

when -2 increases and crosses one branch of the curve defined by equations (2.6) along
which A is increasing as a function of 00.
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Proof. From (2.9) and (2.11), it follows that when A(w) is increasing along a
curve defined by (2.6), a purely imaginary eigenvalue moves from the left-half to the
right-half of the complex plane, when 7. is increased (and vice-versa).

Consider, at a fixed value of7., the function f(co) (sinai7.1- co)/cosa7., the
right-hand side of (2.8), which we also write as f(co)/cosw7.1. It is not too difficult
to see, from (2.9) that the function A is monotone increasing when 7.1 < 1/2: this
follows most easily, remembering that 7"1 is fixed, from a comparison of the functions

fl (w) and g(w) COT1 COS(COT1).
It is also clear that when 7.1 > 1/2, the function A(co) can be either decreasing

or increasing (in w), since it has extrema at all roots of g(co) -fl (co). (For use in
Theorem 2.7, denote by a0 the value of A at such a root, in the interval (0, r/7.1).)

To study the function defining 7.2 by (2.6b), let us first denote, for a positive
integer j, by rj the solution r rj E (2rj, (4j + 1)7r/2) of the transcendental equation
r tanr.

LEMMA 2.5. For a fixed positive value of 7.1, the function fl(co) sinco7.1 -co
is negative for w > 1, and has a finite (possibly zero) number of sign changes for co
in the interval [0, 1]. This number of sign changes is modified (and increases with
increasing 7.1) when 7-1 has a value v/1 + r, where r rj (j any positive integer).

Proof. The first statement is obvious. The sign changes in fl are best seen by
considering fixed, successively increasing values of the parameter 7.1.

Comparing the graphs of sin co7.1 and co reveals that
(i) for 7.1 < 1, sinco7.1 < co for all values of
(ii) for 1 < 7.1 < r/2, fl (CO) is positive when co E (0, col), where col (0, 7r/27.1)

is defined as the solution of col sin Cd1T1, and fl(co) > 0 for co > col;

(iii) an additional (pair of) root(s) of sincoT.1 co appear(s)in the interval
(27r/7.1,5r/27.1), when the straight line co is tangent to the function sinai7.1: this
means that both equations sin w7.1 co and 7.1 cos w7.1 1 are simultaneously satis-
fled, which is equivalent to tan w7.1 w7.1. Thus when w7.1 rl satisfies r tan r,
7.1 V/1 + rl2. It is equally clear that for V/1 + r < 7.1 < 57r/2, there are two roots
w2 and w3 in (2r/7.1,5r/27.1)satisfying sincoi7.1 coi (i 2,3), that w3 1 when
7.1 5r/2 and that for all 7.1 > 5r/2, co e (2r/7.1,5r/27.1) and a3 e (5r/27.1,3r/7.1);

(iv) as 7.1 increases further, two new roots of sin w7.1 co appear when 7.1 reaches

a value 1 + r, these roots are in the interval (2jTr/7.1, (4j + 1)7r/27.1) for 1 + rj <
7.1 < (4j + 1)7r/2 and for 7.1 > (4j + 1)r/2, there is one root cz2j in (2jTr/7.1, (4j +
1)7r/27.1), and another root co,j+1 in ((4j + 1)r/27.1, (2j + 1)r/7.1). Obviously, the
zeros of the function f coincide with those of the function fl (w), and the poles of
f(w) are located precisely at the zeros of coscoT.1.

When rl < 1, the function f therefore only possesses poles. Since f(O) O, and
f’(O) 7.1 1, f(w) will be monotone decreasing when co is between 0 and rc/27.1. In
each interval ((2j + 1)r/2q, (2j + 3)r/27.1) (j a positive integer), f(co) has a unique
extremum (a maximum for even values of j and a minimum for odd values of j), and
its value at these extrema is monotonically and unboundedly increasing (in absolute
value). More generally, when 7.1 > 1, and for each value of 7.1, we can precisely describe
the behaviour of the function f: it suffices to consider the successive occurrence on
the w positive axis, of the poles and zeros of the function f(w), as summarized in the
following.

LEMMA 2.6. Assume that 1 < 7-1 i8 fized, and recall the definitions given above
of rj and cot (j and positive integers). Then, as a function of w, according to the
value of 7.1, the function f(w) is
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(i) -1 < r/2" positive and continuous for w e (0, wl), negative and continuous

for w E (w1,w/27-), and successively positive and negative for w in each interval
(kTr/2-1, (k + 2)r/2-), k an odd integer, with a pole at the endpoints of each of the
intervals and no zeros in their interiors;

(ii) 7c/2 < < 1 + r" positive and continuous for w e (0, /21), monoton-
ically increasing from - to for w (/21,3/2), and successively negative
and positive for in each interval (k/21, (k + 2)/21), 3 k an odd positive
integer, with a pole at the endpoints of each of the intervals and no zeros in their
interiors;

(iii) 1 + r < < 5/2: positive and continuous for w e (0,/2), mono-
tonically increasing from - to for (/2, 3/21), negative and continuous

for (3/21,2), positive for (2,w3), and continuously decreasing from 0
to - for w (w3,5/2v), and successively positive and negative for w in each
interval (k/2, (k + 2)/21), 5 k an odd integer, with a pole at the endpoints of
each of the intervals and no zeros in their interiors;

(iv) ((Up- 3)/2, 1 + r), with p a positive integer" monotonically in-

creasing on each of the intervals (0, /27) and (k/2, (k+2)/2), k 1,... ,p-l,
and successively negative and positive for in each interval (k/2, (k + 2)/2),
p + 1 k an odd positive integer, with a pole at the endpoints of each of the intervals
and no zeros in their interiors;

(v) (1 + r, (4p + 1)/2), with p a positive integer: monotonically in-

creasing on each of the intervals (0, /21) and (k/2l, (k+2)/2), k 1,..., p-l,
negative and continuous for w ((p + 1)/271,W2p), positive for w (W2p,W2p+l),
and continuously decreasing from 0 to - for (p+, (p+ 2)/2), and succes-
sively positive and negative for in each interval (n/2l, (n + 2)/2), p + 2 n
an odd integer, with a pole at the endpoints of each of the intervals and no zeros in
their interiors.

Since the parameter A is positive-valued, (2.7a) implies that the functions coswl
and coswu must be of opposite signs, and (2.7b) forces the functions - sinful and
sin7 to have the same sign. The signs of the functions f(), cos and sinw are
thus somewhat restricted for to be a root of (2.7). Therefore, from the two lemmas
above, we can infer, with a0 as defined just after Lemma 2.4, the following.

THEOREM 2.7. For a fixed, positive value of , let

siwarctan

where the arctangent takes its value in the interval (2j, (2j + 1)). Then the non-
negative values of the parameters A and 2 for which all roots of (1.3) satisfy Re(A) <
0 are given, according to the value of 1, by:

(2.13)
T1 < 1/2: A < 1, or

1/2 < - < r/2: A < ao, or

71-/2 < T < f/] -1
t- rl

2" 0 < T2 < TO,

il+r <-x" 0 < 7-2 < To,

where p is any positive integer.

A> 1 and - <To;

A>ao and -2<To

or T2p-1 < T2 < T2p;

or T2p- < T2 < T2p
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The main results of the previous paragraphs are illustrated in Figs. 2.1-2.4, where
the parameter values in the plane (A, 7.9.) for which the null solution of (1.1) is linearly
asymptotically stable are shown (in the hatched region). The boundary of each of
these regions is given by the different branches of the curve defined by (2.6), for
positive values of cv. In all cases, lim_0 A(c) 1 and lim__,c A(c) oc also,
for 7.1 < 7c/2, lim_0 7.9.(c) oc and lim__,c 7.9.(a) 0 along all branches of the
arctangents. The different curves are thus different paths joining the points (1, oc)
and (oc, 0)in the plane of the parameters (A, 7.9.).

3o

20

10

0 A
0.95 1.05 1.1

Fc. 2.1. Region of stability for the null solution of (1.1)" local asymptotic stability holds for
parameter values in the hatched region. Here, 7"1 O, but the diagram is qualitatively unchanged for
-1 between 0 and 1/2. Solid lines indicate a supercritical Hopf bifurcation and are given by (2.6).

The stability region is shown for 7"1 0 in Fig. 2.1. For values of the gain A > 1,
a sufficiently large delay 7"9. will destabilize the stationary solution; for values of A less
(or equal) to 1, however, the steady state is always stable (i.e., for all values of A in
this range and all positive values of 7"2).

When 0 _< 7"1 < 1/2, the structure of the region of stability does not change
qualitatively, although it quantitatively and continuously evolves" the convex curve
representing, for A > 1, the upper bound 7". of the stability region is lowered as 7"1
increases.

A significant modification occurs (Fig. 2.2), however, when 7"1 becomes slightly
greater than 1/2. The boundary of the stability region is now made up of infinitely
many arcs of curves, given by (2.6) and associated with the different branches of the
inverse tangent function of (2.6b). The most remarkable effects of this change are that
(i) there are now values of A < 1 for which destabilization of the null solution can
occur (so that a lower relative gain is needed in the second loop to induce oscillations)
and (ii) as the delay 7"9. is increased, many stability switches may occur, for a fixed
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30

20

10

0 A
0.85 0.9 0.95

FIG. 2.2. Same as in Fig. 2.1, except now 7"1 0.65; the diagram is qualitatively unchanged for
7"1 between 1/2 and v/2.

FIG. 2.3. Same as in Fig. 2.1, except now T] 1.5; the diagram is qualitatively unchanged
for 7"1 between 1/2 and 7v/2. Solid lines indicate the Hopf bifurcation is supercritical, dashed lines
indicate it is subcritical, according to the sign of a in (3.21).
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40

30

20

10

0 0.2 0.4 0.6 0.8

FIG. 2.4. Same as in Fig. 2.1, except now 7"1 1.75; the diagram is qualitatively unchanged for
between r/2 and /1 + r where rl i8 dejfted it 2. Solid lite8 itdicate the Hopf biftrcatio’t i8T1

supercritical, dashed lines indicate it is subcritical, according to the sign of a in (3.21). Notice that
the stability region is now multiply connected.

value of the gain A (< 1). This is in sharp contrast with the previous (-1 < 1/2) case,
where increasing either -. or A lead to a destabilization, but further increases could
not induce restabilization of the stationary solution.

When -1 is increased past the value r/2, another significant change of the region
of asymptotic stability takes place: it is substantially reduced in area, and it becomes
multiply connected, as shown in Fig. 2.4. There are now values of A (those smaller
than -cosco-l, where co is the smallest positive root of co sin 027"1) for which the
null solution of (1.1) is unstable for arbitrarily low values of -2. For all other values
of A, this stationary solution can always be stabilized by decreasing the value of -2
and keeping A fixed. Contrary to the previous cases, decreasing the value of A cannot
always restabilize the null steady state. These strategies of how to restabilize an
otherwise unstable equilibrium have been discussed in the context of modeling motor
control [2].

A noticeable consequence of the changes occurring when -1 is greater than 1/2 is
that there are parameter values of A and - for which two pairs of imaginary (complex
conjugate) eigenvalues coexist. These correspond to the coincidence of fixed but
particular values of A and -, from (2.6) for two different values of co. This coincidence
requires the nonmonotonicity of A as a function of co, and also the multiplicity of the
inverse trigonometric function defining -. These degenerate points will be further
discussed in the next section.

We have described in detail the parameter values at which, and the mechanism
by which, in the plane of the parameters (A, -e), (1.3) acquires one or more roots
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with positive real parts. In the least degenerate case, a Hopf bifurcation may take
place as the stability of the null solution of (1.1) is lost. The determination of the
exact nature of this bifurcation (for example, whether it is degenerate, subcritical
or supercritical) entails nontrivial computations, even for delay-differential equations
much simpler than the one studied here: among other things, higher-order terms of
the Taylor expansions of the functions fi of (1.1) must be taken into account. These
computations are done on a specific (but motivated [2]) example in the next section.

3. Centre manifold analysis. We consider a general differential delay equation
expressed, in standard notation [8] as a functional differential equation

(3.1) ic- Lx + f(x,),

with xt x(t + 0), -h <_ 0 <_ O, C C([-h, 0], a), L" C -- R a linear operator, and
g E C (C, R), r > 1. L may be expressed in integral form as

(3.2) L [d(O)](O),
h

where r I-h, 0] - R is a function of bounded variation. We assume that any
parameters in the model are such that the linear part of the equation

(3.3) k(t) Lxt

has rn eigenvalues with zero real parts, all other eigenvalues having negative real parts.
In such a situation, Hale [10] has shown that there exists in the state space C an m-
dimensional invariant manifold, the centre manifold, and that long term behavior of
solutions to the nonlinear equation is well approximated by the flow on this manifold.
We outline the steps involved in calculating this manifold in the following paragraphs
and then apply it to our equation in 3.1-3.2.

At a point in parameter space where the linear equation (3.3) possesses rn eigen-
values with zero real parts, there exists a splitting of the space C P (R) Q. P is
an m-dimensional subspace spanned by the solutions to (3.3) corresponding to the rn
zero real part eigenvalues, and P and Q are invariant under the flow associated with
eq.(3.3). Further, the centre manifold introduced above is given by

Mf { E C" (I)z + h(z, f), zin a neighbourhood of zero in P’}.

The flow on this centre manifold is

(3.4) xt (I)z(t)+ h(z(t), f),

where (I) is a basis for P, h Q, and z satisfies the ordinary differential equation

(3.5) Bz + bf(ff)z).

In (3.5), B is the (rn x rn) matrix of eigenvalues with null real part of (3.3), and b is
determined from the solution to the equation adjoint to (3.1). Specifically, if we let

be the basis for the invariant subspace of the adjoint problem corresponding to P,
then b (0), where is normalized by

(3.6) (, (I)) I,
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where I is the m x m identity matrix and

(3.7) fo
is the bilinear form associated with (3.3). If we let the elements of be linear
combinations of those of (I), i.e., KOT (K an m x m matrix of constants), then

or 9 <(I)T, (I)} -1 (I). Thus the problem of describing the long term
behaviour of solutions to the delay differential (1.1) has been reduced (locally) to
the problem of describing the behaviour of solutions to the m-dimensional system of
ordinary differential equations (3.5).

Although straightforward in principle, the practical implementation of this pro-
cedure, especially in the case of a center manifold of dimension greater than 2, is far
from trivial: we had to rely on the algebraic manipulation language MAPLE [18] to
perform the calculations of 3.2. A description of the program with a simple illus-
tration appears in [4]. Even then, simplifications based upon such relations as (2.7)
must be explicitly used for the calculations to be accomplished on a computer with
finite memory.

3.1. Single Hopf. We return to the full (1.1) with the scalings of 1 incorpo-
rated. Near the equilibrium x(t) 0, the hyperbolic tangent m.ay be expanded in a
Taylor series giving

X3(t- T1)
nc-Ac(t) -[x(t- 71)) + Ax(t- 72)] + 3 3

(3.8) + O(z5(t- -l),xs(t- 72))

Lxt + f(xt) + O(xS),

which defines our functional differential equation. We note that in the case of discrete
delays the function r(0) which expresses L as an integral operator is just the Dirac
delta "function," i.e.,

(3.9) x(t- 7) 5(0 + r)xt dO.

Section 2 analyzed in detail the location of the eigcnvalues of the linearized equation
showing the destabilization of the trivial solution through a Hopf bifurcation. On
each branch of this Hopf bifurcation, there are two eigenvalues with zero real parts:
+ice, where ce varies along the branch. To understand the behaviour of solutions near
this bifurcation, and in particular to investigate the stability of the resulting periodic
orbits, we need to include the effects of the nonlinear terms of the equation. We
follow the procedure outlined above, calculating the centre manifold near an arbitrary
Hopf bifurcation point as a function of ce. This accomplished, we may obtain the
appropriate centre manifold for any given point on a branch of the Hopf bifurcation
curve by simply substituting in the value of ce corresponding to the point.

In the case of the single Hopf bifurcation, there are two eigenvalues with zero real
parts, and the elements needed to write (3.5) are

(3.10)
(I) ((1, (2) (sin(wO), cos(wO)), z (x, y)T,

and thus Oz sin(ceO)x + cos(wO)y,
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(/11(1(0)--/12q2(0) ) 1
(3.12) b (0) K21ql(0) +/(22*2(0) det (T, } (2, 2}

Using (3.9) we see that the inner product for the problem is

(a.a) (, e) (o)0(o) ( + rl)O()d- A ( + r)()d.
T1 W2

The elements of (OT, O} may thus be calculated as functions of , so that

1
[1 + (T2 T1) COS(TI)],(a.14) (1, 1) (,)

1
[-72 + ( 7) sin(w)]

The function f in (3.8) thus yields

1 A
f(z) [- sin(7)x + cos(7)y]3 + [- sin(7)x + cos(7)y] a

(3.15) fx3 + fxy + fxy + fy3,
1
[si3(W71)+ Asin3(w72)where e.g. f111

Substituting (3.10), (3.12), and (3.15) in (3.5) gives, for the dynamical system on the
centre manifold, the explicit expression

--y + F11x3 + F12x2y + f22xY2 + f22Y3,
(a.l) za Fxy + Fy$ z+FI +FIzy+

where fl bjflll, etc. These equations can be simplified by a near-identity trans-
formation, to the normal form, to third order [7, 3.3]

a(x +) ( + v( + )),
(a.)

9 ( + v( + )) + a( + ).

Expressed in polar coordinates, this degenerate system becomes

(3.18) ar, + br

and its unfolding is well known [7] to be

(3.19) r + ar3, + br,
where p is an unfolding parameter. The r61e of this unfolding parameter is that all
possible behaviors of systems close to (3.18) must be contained in a system of the
form of (3.19). Analysis of these equations [7, 3.4] reveals that there are two distinct
cases depending on the sign of the cubic coefficient a (see Fig. 3.1). If a < 0 then
the Hopf bifurcation gives rise to a stable limit cycle and it is called supercritical; if
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(a) (b)
FIG. 3.1. Criticality of a Hopf bifurcation, according to the sign of the a from (3.21). A

solid line indicates stability of either the equilibrium point or the limit cycle, dashed line indicates
instability of the same: (a) supercritical (a < 0) (b) subcritical (a > 0). The horizontal axis is a

bifurcation parameter, the vertical coordinate is the amplitude of a limit cycle.

a > 0, the bifurcation gives rise to an unstable limit cycle and is called subcritical.
The coetficient a in these equations is given by

a-- 1 [3Fll1 -- Fl122 -+- F1212 + 3F2222]
For our particular case, a may be given explicitly as a function of co and the

parameters of (3.15), namely,

1
[3blf111 + blf122 -+- b2f112 -t- 3b2f222]a

(3.20) 1
{--51 [sin(w7.1) -+- A sin(coT.2)]-t- b2[cos(co7.1) + A cos(w7.2)]}.

8

Using (2.7b),(3.12), and (3.14), this last equation can be further reduced to

(3.21) a
8 8 d-(i) 16D2 [7.2(sin(w7.1)-w)- 7.1 sin(w7.1)],

which allows us to study the criticality of the bifurcation as a function of co and the
parameters. This leads to the following.

THEOREM 3.1. For 7.1 < 1, each branch of the Hopf bifurcation is everywhere
supercritical.

Proof. We need to show that a(co) < 0 for all co on each branch of the Hopf
bifurcation. On each branch, the sign of a(co) will be determined by the sign of

h(co) 7.2 [sin(co7.1 -col- 7-1 sin(co7.1) 7.2fl (co)- 7-1 sin(wT-1 ).

We see that for co E (2(k- 1)7r/7.1, (2k- 1)7r/7-1), a(w) < 0 necessarily as sin(wT-1) > 0
in these intervals and, by Lemma 2.5, fl(w) 0 when 7-1 < 1. When sin(coT-i) > 0
we rewrite g(w) (7-2 -7-1)sin(wT-1)-w7-2 and consider each branch individually. To
do this, we must characterize what we call the distinct branches of the bifurcation set

thewhich we define in terms of branches of the arctangent function. For 0 < 7-1 -nth branch of the bifurcation set (n 1, 2, 3, ...) is given by

A @1 + co2 2co sin(coT.i),

1 sin(a7.1) c
7.2 Arctan

CO COS(COT-I) +{ (2n 2), co E ((4k 3)5, (4k 1) 2-
(2n 1), co (0, --)U ((4k 1)2-- (4k + 1) 2--
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where k 1, 2,... and "Arctan" stands for the principal value of the inverse tangent
function. On the nth branch, 7.. > 7.1 for 03 < (4n- 3)r/27.1 and 7.2 < 7.1 thereafter.
There are thus two cases to consider"

(i) 03 E ((2k- 1)Tr/7.1,2kTr/71), k 1,2,...,n- 1. Here (72- 7.1) > 0, thus
(T2 T1)8in(037.1) < 0, and a(03) < 0 for 03 in these intervals.

(ii) w ((2k--1)Tr/T1,2kTr/71), k rt, Here ((T2 T1)sin(wT1).. wT.)max
T1 --(2n- 1)r/2. Since n > 1, (2n- 1)r/2 > r/2 > 1 and we conclude that a(03) < 0
for all w in these intervals. []

We have analyzed in detail three explicit sets of parameter values" T1 0.65,
7.1 1.5 and 7.1 1.75, the first of which satisfies the condition 7"1% 1 while the
others do not. Evaluation of a(03) shows that for the first set a(03) is always negative
(as Theorem 3.1 predicts !), while for the other two it changes from negative to positive
at some value of 03.

Remark. Theorem 3.1 implies that for 7"1 < 1, a Hopf bifurcation is supercritical
at any point on the stability boundary. Although the theorem does not apply when
1 < 7"1 < r/2, it has been our observation that for 7"1 in this range the entire stability
boundary is still supercritical, although the branches of the Hopf bifurcation set have
parts where subcritical bifurcations would occur based on the sign of a in (3.21). This
is illustrated by the dotted lines in Figs. 2.3 and 2.4.

3.2. Double Hopf. We now consider the situation where two branches of the
stability boundary cross. At such points there are two values of 03 satisfying (2.7) for
the same values of A and 7"2"

A cos(w17.2) cos(w17.1), A cos(w27.2) cos(w27.1),
A sin(0317.2) 031 sin(0317"1), A sin(0327.2) 032 sin(0327"1).

Correspondingly, there are two pairs of pure imaginary eigenvalues --i031,-+-i032. We
can thus study, in a manner similar to that of the previous subsection, the four-
dimensional centre manifold for (1.1) near these points. Once again we keep the
discussion general, for arbitrary values of 031,032. We note that much of the pre-
vious discussion may be generalized to this case by simply letting 03 031 and
03 032 in turn. The basis for the subspace P here is ((1,2,(3,4)
(sin(w1 0), cos(0310), sin(w20), cos(w20)).

The basis for the adjoint problem, (1, 2, 3, 4)T, is found as before with
K now a (4 x 4) matrix given by

where

2Dij det {(I), Oij} and qij (i, Cj).

The scalar products (i,j), i,j 1,2 are as in (3.14) with 03 031, those for
(, Cj}, i,j 3, 4 are as in (3.14) with 03 w2, and the mixed terms (, Cj},
1, 2, j=3,4, (i,j), i=3,4, j l, 2 are all zero.

The centre manifold will again be as in (3.4), with z satisfying the dynamical
system of (3.5) but here

(3.24) z (x, y, u, v)T, Oz sin(wlO)x + cos(0310)y -- sin(w20)u + cos(w20)v,
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0 -021 0 0

]
CO 0 0 0

b- (0)0 0 0 -022
0 0 w2 0

and

/1101(0) +/1202(0) /12
/2101(0) -- K22(2(0) K22
K33(3 (0) --/34(4 (0) K34
/433 (0) -- K444(0) K44

1
f(Oz) [--sin(wlh)x -- COS(021T1)y sin(w2h)u + COS(022 T1)V] 3

A
+-[-- sin(021T2)X + COS(WlT2)y sin(w2T2)u + cos(w2T2)v] 3

Z3f111 + f112x2y + f113X2U + f114X2V +’’"

1
[sin3 (w 7 + A sin3 (w7)]where e.g. fll

Performing the substitutions as before leads to the following dynamical system"

(3.26)

2b --021Y -t- Fl111 x3 -- f1112x2y -- Y1113x2t nt- Y1114x2v --) 021x nk- -1211 x3 -- Y1212x2y nt- x1213x2 --/1214x2v nt-...

t -022v -t- F1311 x3 + F3112x2y -t- F1113x2t -- f1314x2v -t-
) cd2t -- x1411 x3 nt-/1412x2y -- f1213x2t --/1414x2v --where -fill bjf111, etc. The normal form for this system was calculated by Takens

[17], to third order, to be

(3.27)

2 bllr21 bl1 --[allr + al2r2]Xl --[021 + -- 2r22]Y1,
)1 [allr12 -t- a12r22]Y1 --[021 -- b11r21 -- b12P22]x1,

2 [a21r + a22r]y2 + [w2 + 521r + b22r]x2,
2 2 2 This can also be expressed in its polar formwhere rj xj -[- yj.

(3.28)

1 a11r31 + a12rlr,
2 a21r21r2 + a22r,
1 021 -- b11r +2 W2 + b21r21 + b22r22,

and its unfolding can be taken to be

(3.29)

71 #lrl q- a11r31 -t- a12rlr,
?2 --/Z2r2 + a21rr2 + a2r,
O1 021 nk- b11r21 + bl2r,
02 022 q- 521rl2 -]- b22r22.

From our normal form calculations we find

1 [3F1 -k- Fl122 -}- F1212 -}- 3F222](3.30) all

1
a12 [Fl133 + Fl144 + F2233 + F2244],
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1
a21 [Fla + F.a + F1414 n F2424],

1
a. [3Faa + F244 - F3434 + 3F44].

Substituting in the values for the Fj gives

(3.31)
1

311 {--bl[sin(wlT1)+ Asin(w7)] + b[cos(w17)+ Acos(wlW2)]} 312/2,

1
322 {-b3[sin(w2rl)+ Asin(w272)] + b4[cos(w2wl)+ A cos(w272)]} 321/2,

which can be reduced via (3.22), (3.24), and (3.23) to

@1(0)1 @3(0)2(3.32) all
8 8

As indicated, a12 2311 and 321 2322; also all and a22 take the same value as a in
the single Hopf calculations (see (3.21)), with w w and w w2, respectively. It is
clear that those calculations yield all the information necessary to study the double
Hopf point" in our case, the restrictions on the aij significantly reduce the possible
behavior, but we still have to analyze (3.29).

The investigation of this four-dimensional system is greatly facilitated by noticing
that, to second order, the azimuthal components have constant speed and that the
radial components are independent of the azimuthal ones. It is thus natural to reduce
the system to a two-dimensional one in the radial components. In this reduced system,
a fixed point on one of the axis (either rl 0 or r2 0) corresponds to a limit cycle
in the original system, a fixed point in the interior of the first quadrant corresponds
to a two-dimensional torus, and a limit cycle corresponds to a three-dimensional torus
in the original, four-dimensional system (3.29). Guckenheimer and Holmes [7] have
shown that depending on the values of the cubic coecients aj, there were 12 different
cases possible as phase portraits of the unfolded system.

In the case T1 < 1, Theorem 3.1 shows that a(w) < 0 on each branch for all w, thus
at each of the double bifurcation points we expect to have all the aij < 0. Using this
and the relationship between 311,322 and a12,321 it is a simple matter to verify that
the bifurcation diagram of the unfolding in this case is as pictured in Fig. 3.2, which is
case Ib of Fig. 7.5.2 in [7], with a time reversal (t + -t). In this illustration, different
sectors in the plane of the unfolding parameters (>, >2) give different phase portraits
of the planar system in (r, r2). This is the situation at all intersection points for the
first set of parameter values considered in the previous section. If T > 1 the situation
will depend on how the double bifurcation points line up with the places where a(w)
is positive or negative. For the second set of parameter values considered, although
a(w) > 0 on some region of the curves, the points of intersection correspond to points
where a(w) < 0 on both curves. The unfolding is therefore the same as the previous
set, i.e., that of Fig. 3.2. For the third set of parameter values, some of the double
bifurcation points have 311 > 0 and a22 < 0, and thus the unfolding is as pictured in
Fig. 3.3 (which is case Via of Fig. 7.5.5 of [7]). Although it seems plausible that there
should also exist double Hopf points at which both aii are positive, further numerical
investigations have been futile in finding such points.

The unfoldings illustrated in Figs. 3.2 and 3.3 give us some insight into the dy-
namics of the flll equations, which can be verified with numerical simulations at the
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FIG. 3.2. Bifurcation set of.the unfolding from (3.29): according to the values of #1 and #2
in the different regions, the flow in the rl and r2 plane is locally (rl and r2 small) as shown. The
case shown here is the interaction of two supercritical Hopf bifurcations, for example, at 71 1.5,
near A 0.6 and T2 5.3.

FIG. 3.3. Same as in Fig. 3.2, except the case shown here is the interaction of a supercritical
Hopf bifurcation with a subcritical Hopf bifurcation, for example at 7"1 1.75, near A 0.21 and
7"2 12.5.
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appropriate parameter values. The beauty of these results is that we do not have
to do extensive numerical simulations to find the "interesting" behavior, we already
know where it exists. Two examples of simulations in such regions are shown in
Figs. 3.4-3.5.

Figure 3.4 shows the results for -1 1.5 near the supercritical-supercritical double
Hopf interaction. The simulations were performed at the values A 0.61 and -2=
5.415, which corresponds to the interior wedge region of the first quadrant in Fig. 3.2.
Pictured are two sets of initial conditions: solutions from the first one go to a limit
cycle (depicted in (a)), while solutions to the second one initially exhibit torus-like
transient behavior (shown in (b)), but eventually approach another limit cycle (in
(c)).

Results near the first supercritical-subcritical double Hopf point, at 7" 1.75 are
shown in Fig. 3.5. The parameter values in (a) are A 0.20308 and -. 12.543,
which correspond to values of #1 and #. in the third quadrant in Fig. 3.3. Two
different sets of initial conditions are used, the first one leading to a solution spiraling
into the origin, the other one approaching a limit cycle. The parameter values for (b)
and (c) correspond to the lowest interior wedge of the #1 0 and #2 > 0 quadrant in
Fig. 3.3. Part (b) shows one initial condition which tends to a stable torus, and part
(c) presents a different initial condition leading to a solution approaching a stable
limit cycle. While this analysis may appear to be complete, it is clear from some of
the numerical simulations that the unfoldings have not captured all of the dynamics.
In the case of Fig. 3.4, the coexistence of a stable fixed point and a limit cycle is
demonstrated, but the limit cycle was not expected from the unfolding. Furthermore,
the supercritical-subcritical unfolding of Fig. 3.3 indicates that in a large region of
parameter space near the double bifurcation point no attractor exists. This is clearly
in conflict with our intuition about the solutions we expect for an equation modelling
a physical situation, as well as numerical simulations we have done in such regions.
This is not a failure of the method, but only an indication that we have reached
the limits of its region of validity. In particular, for the parameter values used in
Fig. 3.4, the cubic coefficients are quite small, and it calls into question our neglect
of the "higher order" terms in the centre manifold and normal form calculations.
Preliminary analysis has shown that many of these inadequacies can be dealt with by
including the fifth order terms in our calculations and unfoldings. However, we leave
discussion of the details of this analysis to a future paper.

4. Discussion. The local stability of (1.1) has been considered by a few authors
in the past, and partial analysis performed in different notations. Our approach pro-
vides unique insight into the stability regions, in parameter space, and their dynamical
evolution as one privileged parameter is altered. We now compare the results of the
previous sections with some earlier and recent work.

In [16], Nussbaum considers the equation

(4.1) z + oe + e-’z O.

In the case 1 < 3‘ <_ 2, the author claims that the problem is equivalent to that of one
delay via the following.

THEOREM 4.1 (Nussbaum [16]). Let 1 < 3’ <- 2. Define r by (a,)
r(sin 0, cos0), 0 _< 0 _< r/2 and rl by

/21

cos 0 sin/21 -- sin 0 sin 3’/21
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(a)

0.44

(b)

"

"%..

(c)
FIG. 3.4. Numerical Simulations of (1.1) for 7"1 1.5, 7"2 5.415, A 0.61. (a) xl 1.0,

x2 =0.0, tf 125; (b) Xl =0.0, x2 1.0, tf 125; (c) xl =0.0, xg, 1.0, tf =625. Points are

dd th doha (x(t- 1), x(t)).
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(a)

(b)

(c)
F. 3.. Nmrical Smulatos o: (1.) :or - .75. () - .543, A 0.0308,

xl 1.0, x2 0.0; xl 0.3, x2 0; (b) - 12.600, A .21583,Xl 0.4, x 0.0; (c) -and A same as in (b), but here xl 0.6, x2 0.0. Points are displayed in the pseudo-phase plane
((t ), (t)).
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where 0 <_ l 7r/2 solves

cos 0 cos tzl + sin 0 cos ’)///1 O.

Consider only those solutions, z, such that 0 < Im(z) < 7r. Then if r > rl (4.1) has
precisely one such solution with positive real part, if r < rl it has no solution with
positive real part, and if r rl it has one such solution with zero real part.

Comparing Nussbaum’s rescaled variables with ours reveals the relationships

v/1 + A2(4.2) 3’ and r T1
T1

Thus the restriction 1 < 3’ _< 2 corresponds, on our stability diagrams (Figs. 2.1 to
2.4), to considering only a strip 7.1 < 7.2 _< 27.1. It is then easy to see why the author
considers this case to be equivalent to the case of one delay. For, within this strip,
there is only one curve of loss of stability as one increases A holding 7.1 fixed, or as
one increases 7" holding A fixed. Nussbaum goes on to show that the case 7 > 2
is, in his words, "considerably more complicated." Our analysis reveals and explains
this phenomena. Although we have chosen a normalization of the coefficients such
that our parameter plane contains one delay and one coefficient, we very clearly see
that the value of the second, fixed, delay has a tremendous influence on the stability
properties of (1.1): as one-dimensional paths are traversed in this parameter plane,
the number of stability switches, if any, is highly dependent upon the value of this
second delay, and, also, on the direction of this path.

More recently, Hale and Huang [11] have considered the stability of

(4.3) it(t) -ax(t) bx(t r) cx(t

in the r- cr plane for various intervals in a, b, c. Their results may be compared with
ours by taking a 0, b 1 and c A > 0. Our studies thus fall into their cases
IA (c= A < 1), IC (c= A 1) andXII (i) (c= A > 1). Comparison then shows
that our results are consistent with theirs. However, their case IA does not show the
situation of Fig. 2.3 where for 7"1 > r/2 and A < 1 the trivial solution is unstable for
7"2 0 and restabilizes for some larger values of 7"2. In fact, they conjectured that
there is only one connected stable region (in the parameter plane of the two delays):
our results seem to show that this is not always the case.

On the more practical side, Mizuno and Ikeda [15] have looked at the stability
properties of

/-lq(t) -(t) 4- r/A[(t- tl) 4- (t- t2)]

to explain the results of some laser experiments. This equation is a version of (4.3)
with the parameters restricted to a / > 0 and b c flA. They see changes
in stability, and a structure on all scales which they analyze using number-theoretic
methods (continued fractions, Farey series). Their approach is quite similar to that
of Hale and Huang [11].

Also in the context of lasers, Grigorieva et al. [6] have studied the system of
equations

it(t) v[k(t) 1 au(t- 7")]u(t) + vuo,

](t) ko k(t) u(t)k(t),
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describing a single time delayed, negative feedback loop. Their diagrams in gain-
delay (c--) space [ibid, Fig. 1] of the loss of stability of the steady states are clearly
reminiscent of our stability plots (cf. Figs. 2.1 and 2.2).

Finally, Mahaffy et al. [14] have studied the equation

(4.6) 5c(t) -A Bx(t 1) Cx(t R)

in the three-dimensional (A, B, C) parameter space for different values of the delay
ratio 0 < R < 1/2. Since our equation is their case A 0, a comparison is restricted
to their Fig. 4.3. In this figure, a path along which B is constant and C increases,
corresponds in our figures to a path where T1 is constant, -2 -1/3 and A increases.
This figure is consistent with our stability results, for example, the drastic change in
the stability region at 71 r/2 in our figures is represented by the crossing of the
first stability surface in their figure.

Each of the above works has filled in some "piece of the puzzle" of the two de-
lay problem. We feel our approach is more transparent than most of the previous
work, since we can obtain a "piecewise global" perception of the bifurcation picture.
In addition, we have studied not only the linear stability of the trivial solution, but
also the criticality of the Hopf bifurcation occurring at its loss of stability: this con-
sideration of nonlinear elements is essential to understand the appearance of such
dynamically sophisticated elements as tori. Finally, we have considered in detail the
possible solutions resulting from the double Hopf points.
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