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FRUSTRATION, STABILITY, AND DELAY-INDUCED
OSCILLATIONS IN A NEURAL NETWORK MODEL*

JACQUES BILAIRt, SUE ANN CAMPBELL$, AND P. VAN DEN DRIESSCHE

Abstract. The effect of time delays on the linear stability of equilibria in an artificial neural
network of Hopfield type is analyzed. The possibility of delay-induced oscillations occurring is char-
acterized in terms of properties of the (not necessarily symmetric) connection matrix of the network.
Such oscillations are possible exactly when the network is frustrated, equivalently when the signed
digraph of the matrix does not require the Perron property. Nonlinear analysis (centre manifold
computation) of a three-unit frustrated network is presented, giving the nature of the bifurcations
taking place. A supercritical Hopf bifurcation is shown to occur, and a codimension-two bifurcation
is unfolded.
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1. Introduction. In 1984, Hopfield [11] introduced a continuous version of a cir-
cuit equation for a network of n saturating voltage amplifiers (neurons). The system
of ordinary differential equations describes the time evolution of the voltage on the in-
put of each neuron. Updating and propagation are assumed to occur instantaneously.
A few years later in a series of papers, the processing time in each neuron was incorpo-
rated into Hopfield’s (by then well-known) equations. The resulting delay-differential
equation system has been the starting point of several recent investigations (see, for
example, [1], [2], [4], [8], [16]-[18], [20]).

In 2, we give the circuit equations as in [18] together with a careful analysis of
their normalisation. This leads to a matrix equation governing linear stability of the
equilibria. Under certain assumptions, this uncouples to a set of n scalar equations.
If an equilibrium solution of a delay-differential system is linearly stable when the
delay is zero but there exists a value of the delay for which this solution becomes
linearly unstable, then delay-induced instability occurs. We review the linearized sta-
bility analysis [2], [18] and study delay-induced instability of the uncoupled system
expressing results succinctly in terms of properties of the connection matrix. In gen-
eral, we do not need to assume symmetry of the connection matrix, an assumption
often made in neural network models (but see [12]). The literature on these models
is substantial (almost formidable); we cite only references directly relevant for our
purposes and refer the reader to the recent survey book [10].

In describing a network configuration, it is convenient to work with the signed
directed graph of its connection matrix. The directed graph (digraph) of a real n x
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rt matrix A [Aj] consists of a set of vertices {1, 2,...,rt} and a set of directed
edges, with edge set {(j,i)lA # 0}. Here, each vertex corresponds to a neuron,
and note that a nonzero Aij is represented as an arrow from j to and is thus
the appropriate direction for our purposes (although the opposite direction is more
common in the matrix literature). A cycle of length k in this digraph is a set of edges
(il, i2), (i2, i3),..., (i, ia) with vertices il, i.,..., i distinct. The signed digraph of
A, D(A), is obtained from the digraph by attaching to each edge (j, i) the sign of
The cycle is positive (resp., negative) according as the product Ai2il, Ai3i2,...,
is positive (resp., negative). As in [17], [18], a network is called frustrated if the signed
digraph of its connection matrix has a negative cycle: a negative loop is an example
of a frustrated network.

These graph-theoretic ideas are used in 3 to prove our main result, namely,
that frustration is essential for delay-induced instability leading to oscillation, a re-
sult suspected for symmetric networks in [18]. However, not all frustrated networks
exhibit delay-induced oscillation. To discuss them further, we use a "converse" of
the Perron-Frobenius theorem [6]. Finally in 4, we consider nonlinear aspects of a

frustrated system to illustrate possible complicated behaviour which can result from
delay-induced instability.

2. The model equations. Hopfield’s circuit equations [11] with no signals from
outside but with time delay as in [18] are

These give the time evolution of try(t), the voltage on the input of neuron with input
capacitance C. The (real) connection matrix T ITs.i] has T 0, and for = j,
Tj _R (resp., -/.) when the noninverting (resp., inverting) output of neuron j is
connected to the input of neuron through a resistance R.. Thus/i- (y..i ITil)-is the parallel resistance at the input of neuron i. The matrix T is assumed to be
irreducible. The transfer function fi(ui) C C is sigmoidal, strictly increasing, odd,
with lim_++o fi(zt) +1, and f[(0) _> f[(zti). The time delay T.i _> 0 is incorporated
to account for the finite processing time (updating and propagating inside the unit)
in neuron i.

All neurons are assumed to be identical; thus Ci C, Ti T and fi f for all i.
In this case, time can be nondimensionalized by setting t/RC, - T/IC, where
/ is a constant resistance, say, R R/n. As noted in [17], it is the quantity
T/RC that is important for stability.

Letting gi()= ni(t)and dropping , (2.1) becomes

(2.2) ui(t)
Rui(t)

[- jijf(j(t_ T)), 1,...,r,
j=l

where &i 0, J/j RTij, 7 j, with
If, as is done in most investigations, it is also assumed that each neuron has equal

input resistance, then R =/i for all i, and (2.2) becomes

(2.3) ui(t) -ui(t) + Jijf(uj(t- T)), 1,...,.
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The normalisation condition is

j=l

Thus in the normalised connection matrix, each row has the sum of the absolute values
of entries equal to one. As a neural network model, independent of a physical real-
ization, (2.3 holds without the normalisation condition. Matrix J is the connection
matrix, with nonzero Jij positive (resp., negative according as edge (j, i) is excitatory
(resp., inhibitory}. We work mainly with this more general connection matrix, that
is, (2.3 with J assumed to be irreducible and with all main diagonal entries zero.
For certain results, we specify that J also satisfies the above normalisation condition
(.4).

If initial conditions for the functions ui are specified on the interval [--, 0], then
basic existence-and-uniqueness theorems [5, 26], [9, 2.2, 2.3] ensure that a unique
solution to (2.3 exists for all positive times.

Equilibrium solutions of (2.3), denoted by u, are given by the solutions to the
transcendental system of equations u }-.j Jdf(u). As f(0) 0, the null solution

n 0 for all is always an equilibrium. For any stationary solution u, its linear
stability is determined by the equations

(2.5) zli(t) -zi(t) + E Jijf’(u)zj(t- -), i- 1,..., n,
j=l

where J is the irreducible connection matrix with no self-connection. Thus, setting
zi ciezt, the linear stability of the solution n is governed by the matrix equation

(2.6) zI -I + e-ZF,

where the matrix F has entries Fij Jjf’(n.) and I is the n x n identity matrix.
In the special case of the null solution, when n 0 for all values of i, then f’(u)
f1(0) _= > 0, which is the gain of the transfer function, and the matrix equation has
a nontrivial solution (at least one c not zero) exactly when

det[zI + I e-z/J] O.

The null solution of (2.5) is asymptotically stable exactly when Re(z) < 0 for
every root of (2.7). This equation is considered in [2], [18], where use is made of the
fact that it uncouples to give n scalar equations

(2.8) z -1 +/3Ajc

for each eigenvalue Aj E or(J), where (J) denotes the spectrum of the matrix J.
Consider (2.8) in the limiting cases of small and large delay. The null solution

of (2.5) is asymptotically stable for - 0 if and only if s(J) < 1//, where s(J)
max{Re(A.) 5 E or(J)} is the spectral abscissa of J, and it is asymptotically stable
for all values of the delay - if and only if p(J) < 1/8, where p(J) max{lal a
or(j)} is the spectral radius of the matrix J.

For a fixed value of -, the stability region in the complex plane of the parameter
j lies inside a teardrop-shaped region (symmetric about the real axis), giving the
half plane in the limit as - -- 0+ and the circle of radius 1/ as - -- oc [2], [18]. For
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a finite value of -, the teardrop crosses the positive real axis at 1/ (independent of
-) and crosses the negative real axis at a point to the left of-1/, given implicitly as
the root of Aj -(w + 1)1/2/ with tan(w-) -w and < w- < 7c; see Fig. 2.1.
This teardrop decreases in size as - increases, giving the possibility of delay-induced
instability. In many neural network models, the connection matrix J is assumed to
be symmetric, in which case each element of or(J) is real; only the real axis in Fig. 2.1
needs to be studied in this case.

FIG. 2.1. Values in the complex plane of the real and imaginary parts of the parameter find for
which (2.8) has no root with nonnegative real part: only half the region (which is symmetric with
respect to the z coordinate axis) is shown for - .5. Boundaries for the limiting cases - oc

(interior of the unit circle) and - 0 are also represented.

3. Delay-induced instability. As seen in the last section, it is possible for the
delay - to destabilize an equilibrium which is asymptotically stable in the absence of
time delay.

A necessary and sufficient condition for the occurrence of delay-induced instability
of the null solution of (2.5) in terms of c(d) can be stated from the previous discussion
[2, Cor. 2.8] as

1
< <

By contrast, if s(J) > 1//3, then the null solution is unstable for all -; if 1/ > p(J),
then the null solution is asymptotically stable for all r; see g 2.

We use the following definition [13]. Matrix A has the Perron property if p(A) E
a(A); that is, p(A) s(A). Using (a.1), we have the following result.

THEOREM 1. Delay-induced instabilitl for the null solution, of (2.5) is impossible
if and only if the connection matrix J has the Perron property.

Using the qualitative definitions of [13], the signed digraph D(J) requires (resp.,
allows) the Perron property if every (rcsp., some) matrix A with D(A) D(J) has
the Perron property. This leads to the following qualitative characterization.
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THEOREM 2. Consider the network linearized as in (2.5) with connection rnatriz
J having signed digraph D(J). Then the following statements are equivalent.

i. The network is not frustrated.
ii. D(J) requires the Perron property.
iii. Delay-induced instability of the null solution of (2.3) is impossible.

Proof. If the connection matrix has all cycles positive (such a matrix is called
cyclically nonnegative in [6]), then the network is not frustrated. The equivalence of
i. and ii. is proved in [6, Thm. 1.1]. Assume ii.; then iii. follows from (3.1). The
converse also holds, since p(A) > s(A) for any matrix A. S

This result shows that frustration is essential for delay-induced instability, con-
firming the numerical observation in [18]. Note that the connection matrix is not
assumed to be symmetric; rather it is the Perron property that is important for this
result. For example, any nonnegative matrix has this property. The contrapositive of
this theorem is illustrated by the following.

Ezarnple 3. Let the signed digraph of the n x n connection matrix J be a directed
cycle of length n (a ring) with an odd number of negative edges, giving rise to a
frustrated network. Let the product of entries of J on the cycle be -k, k > 0. The
eigenvalues of J are the nth roots of-k. Thus, delay-induced instability for the null
solution of (2.3) is possible exactly when sec(Tr/n) >/3k1/ > 1. Note that D(J) does
not allow (and so does not require) the Perron property.

If the signed digraph of the connection matrix allows but does not require the
Perron property (in which case the matrix is frustrated), then delay-induced instability
of the null solution of (2.3) is possible for some magnitudes of the connection strengths.
This is illustrated by the following example.

Ezarnple 4. Let

j
0 1 0 )-a 0 1-a
0 1 0

where 0 < a < 1, be the connection matrix of a frustrated three-neuron system. Here J
satisfies tile normalisation condition (2.4), the network is frustrated, and D(J) allows
but does not require the Pcrron property. For general a, or(J) {0,+- 2a}.
When a 0.5, or(J) {0}; thus J has the Perron property for this value of a,
and the null solution of (2.3) is linearly asymptotically stable for all delays. When
a .25, or(J) {0,+x//2}, and thus for all -, when < x/, the null solution of
(2.3) is linearly asymptotically stable, and when/3 > x/, it is unstable (see Fig. 2.1).
By contrast, when a .75, or(J) {0,-+-ix//2}; thus J does not have the Pcrron
property, and delay-induced instability of the null solution of (2.3) occurs for
at some value of - > 0.

A network in which every cycle in the connection matrix is negative is called fully
frustrated [18]. The example below gives a flllly frustrated network.

Ezarnple 5. Let the signed digraph of the n n network connection matrix J
consist of a single neuron (labeled 1) connected by negative 2-cycles to each of n- 1
other neurons (labelled 2,..., n). The product of each 2-cycle, namely JlkJkl, k
2,...,n, is negative and a(J) {0,i-.=2 IJlJll}. Thus D(J) does not allow
the Perron property, and so any network with this connection matrix exhibits delay-
induced instability for/3 > 1/E.=2 [JJl. In fact, D(J) requires all pure imaginary
cigcnvalucs [7].
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When the connection matrix J is normalised as in (2.4), we have further quanti-
tative results for a network that is not frustrated.

THEOaEM 6. Assume that the network described by (2.3), (2.4) is not frustrated.
Then if < 1, the null solution of (2.3) is linearly asymptotically stable for all delays;
if > 1, it is unstable for all delays.

Proof. If the network is not frustrated, then, by Theorem 2, delay-induced in-
stability is impossible. Furthermore, the connection matrix J has all cycles positive.
Thus, there exists a signature matrix S(= S-I) so that SJS is nonnegative [6]. Hence
or(J) cr(SJS), and SJS is row stochastic. Thus p(J) s(J) 1. The result follows
from statements in 2; see also Fig. 2.1. [

Example 7. As an example of Theorem 6, consider an all-excitatory connection
matrix, with Jj 1/(n- 1), j; thus J is a symmetric circulant matrix (see
[18], [20]). For this example, Wu [20] proves for the nonlinear equation (2.3) that
when/ < 1, the null solution is a global attractor, whereas when > 1, two nonzero

asymptotically stable equilibria appear.

4. Centre manifold computation. In this section, we present an example of
a frustrated network containing three units, and we consider the nature of the bifur-
cations taking place when the stability of the null solution is lost. Whereas all results
of the previous sections concerned linearizations of system (2.3) in the form of (2.5),
we now have to consider the effects of the nonlinear terms in the original equation:
these calculations indicate the nature of the Hopf bifurcations taking place when the
null solution of (2.5) loses its stability through a pair of pure imaginary eigenvalues
acquiring positive real parts.

Consider a network of three units governed by (2.3) with f(u) =/ tanh(u), and
connection matrix J with no self-connection (Jii 0, 1, 2, 3). We do not assume
that the normalisation condition (2.4) is satisfied.

The stability of the equilibrium z 0 in this system is regulated by (2.7), which is
reducible in this case to three scalar transcendental equations. Here, however, we are
able to directly analyze the cubiclike characteristic equation. Indeed, by expanding
the above determinant, we obtain

(.1) dt[ + --] ( + ) r- Z( +)- 0,

where the coefficients F and arc computed from the entries of the matrix J as
F J12J23J31 + J13J32J21 and = J23J3. + Jl3J3l + J2J. This equation has
recently been completely analyzed from a stability point of view [3]. For our purposes,
it suffices to know the values of the coefficients F and E for which all roots of (4.1)
have negative real parts as illustrated in Fig. 4.1. The upper boundary of the stability
region is the straight line / 1- F/a, where z 0 is a root of (4.1), and the lower
boundary is the trace of the curve for z ia, c > 0, given in parametric form by

r(w) [2(1 + w2)(w sin(w-) cos(cw-))]/3,
(4.2) E(w) [1 + w2 + 2(1- w2) cos(2w-)- 4wsin(2w7)]/.
(See [3] for a derivation.) The nature of the bifurcations taking place as the stability
of the null solution is lost at these parameter values can now be determined. For this,
we need some terminology and notation.

Consider a system of n differential delay equations written, in standard notation

(4.3) +/- Lxt + g(xt),
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-1-

-2 -i

r
FIG. 4.1. Linear stability region for the three-unit network with no self-connection. Three

eigenvalues have zero real parts at the point P*, including one zero eigenvalue. The case q- 7r is

illustrated.

with xt x(t + 0), -h _< 0 _< 0, C C([-h,O],Rn), L" C -- R a linear operator,
and g E C (C, R), r _> 1. L may be expressed in integral form as

(n.n) L
h

where r] [-h, 0] - I is a function of bounded variation. We assume that parameters
in (4.3) are such that the linear part of the equation,

(4.5)

has m eigenvalues with zero real parts, all other eigenvalues having negative real parts.
It can be shown in this case that there exists in the state space C an m-dimensional
invariant manifold, the centre manifold, and that long-term behaviour of solutions to
the nonlinear equation is well approximated by the flow on this manifold [9].

At a point in parameter space where the linear equation (4.5) possesses m eigcn-
values with zero real parts, there exists a splitting of the space C P (R) Q. Here P is
an m-dimensional subspace spanned by the solutions of (4.5) corresponding to the m
zero real-part eigenvalues, and P and Q arc invariant under the flow associated with

(4.5). Further, the centre manifold introduced above is given by

MI { E C" (I)z + h(z, g), z in a ncighbourhood of zero in R}.

The flow on this centre manifold is

xt (I)z(t)+ h(z(t), g),
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where (I) (a set of m n-dimensional column vectors represented as an n x m matrix)
is a basis for P, h E Q, and z satisfies the ordinary differential equation

i Bz + bg((I)z + h(z, g)).

In (4.7), B is the m x m matrix of eigcnvalues of (4.5) with zero real part, and b is
determined from the solution to the equation adjoint to (4.5). Specifically, if we let 9
(a set of m n-dimensional row vectors represented by an m x n matrix) be the basis
for the invariant subspace of the adjoint problem corresponding to P, then b 9 (0).

is normalised by

(4.8) (, (I))--I,

where I is the m x m identity matrix,

O) ,(o)) Jo O)[dv(O)]() d{

is the bilinear form associated with (4.5), and (,) represents the usual scalar (dot)
product of two vectors. If we let the elements of be linear combinations of those
of q), i.e., K(I)T (K is an m x m matrix of constants), then K
or 9 /(I)T, )-1(I). Thus the problem of describing the long-term behaviour of
solutions to the n-dimensional system of delay-differential equations (4.3) has been
reduced (locally) to the problem of describing the behaviour of solutions to the m-
dimensional system of ordinary differential equations (4.7).

Although straightforward in principle, the practical implementation of this pro-
cedure, especially in the case of a centre manifold of dimension greater than 2, is
far from trivial. Thus, it was necessary to use the algebraic manipulation language
Maple [19] to perform the calculations leading to the expressions below. To illustrate,
consider

(4.10) J
0 1 0)-1.25 0 1

1.25 1 0

as the connection matrix of a frustrated network, with or(J) {1,-.5 + i}. Then
with f(u) -/3 tanh(u), delay-induced instability of the null solution of (2.5) occurs for
1 >/3 > 2/v, giving rise to a Hopf bifurcation. Specifically, for/- .96, this occurs
at - 4.265, w .3899. Thus at this point, the solutions to the system of three delay
differential equations (2.3) may be approximated by the flow on a two-dimensional
centre manifold governed by a system of two ordinary differential equations whose
normal form in polar coordinates is

dr
-0.541r3,

dt

dO
(4.11)

dt
.3899.

This allows us to conclude that the bifurcation is supercritical and delay-induced
stable periodic solutions of (2.3) occur for - > 4.265.

For the same matrix J given by (4.10), if/ 1, then (2.7) possesses a zero
eigenvalue and a pair of pure imaginary eigenvalues +.5i when - 7r; see (4.2) and
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P* on Fig. 4.1. For these values, there is a three-dimensional centre manifold for the
zero solution of (2.3) at the point (F,) (1.25,-.25). After the centre manifold
computation outlined above and the transformation to normal form, we obtain the
system

dx/dt -.5y + (.0642(x2 + y2) + .4453z)y- (.0304(x + y)+ .3783z)x,
(4.12) dy/dt .5x- (.0642(x2 + ye)+ .4453ze)x- (.0304(xe + y)+ .3783z)y,

dz/dt -.1531(x2 + ye)z- .2513z,
which can also be written in cylindrical coordinates, with r

dr/dt -0.0304r3 .3783rz2,

2 =x2_+_y2, as

(4.13) dO/dr 0.5,

dz/dt 153lzr .2513z3

This system occuring at the coincidence of a pitchfork and a Hopf bifurcation has
been studied [14], [15] and unfolded to

dr/dt cr 0.0304r3 .3783rz,
(4.14) dO/dr=0.5,

dz/dt "z- .1531zr -.2513z3.

All possible behaviours for (2.3) in a neighbourhood of point P* must be contained
in system (4.14). Indeed, Fig. 4.2 shows all possible phase-portraits for this three-
dimensional system. The planar representation is in the (r, z) plane as the zimuthal
coordinate (0) decouples to quadratic order: a rotation about the z-axis must be
added to the portraits for a visualization of the full flow. Stationary solutions on
the z-axis of the planar system correspond to equilibria in (4.14), whereas stationary
solutions off this axis are associated with periodic solutions in (4.14). As indicated
in Fig. 4.2, one of these periodic solutions is stable wherever one exists in (c,y)
parameter space, except for the wedge between the 7-axis and the line labeled LCP.
A secondary bifurcation is possible, for values of (a, /) along the line LCP, giving rise
to a limit cycle not induced by a Hopf bifurcation. This secondary limit cycle, like
the one created in the Hopf bifurcation at c 0 when y is positive, is of saddle type
and as such will not directly affect the observable dynamics.

5. Discussion. We have presented relations between the destabilizing influence
of time lags and the properties of the matrix of connections in a neural network model,
described by (2.3). These results apply to not necessarily symmetric networks, and
the Perron property of the connection matrix of the associated digraph was shown to
be the essence of the "frustration" property of the network: this allows us to settle
the conjecture of [18] that frustration is necessary for delay-induced oscillations to
be possible. This concerns the linear stability of steady states. When the latter
become unstable, a Hopf bifurcation is expected to occur, and nonlinear terms have
to be considered to determine the nature of the bifurcation. We have presented an
example of a three-unit, asymmetric frustrated network with no self-connection and
have unfolded the codimension-two bifurcation occurring in it.

Recently, Lyapunov functionals have been used [4], [8] to obtain sufficient condi-
tions for delay independent global asymptotic stability of equilibria for neural network
models given by (2.3). These results arc complementary to ours.
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pitchfork

Hopf

FIG. 4.2. Unfolding of the degenerate flow near P*. These are phase portraits of (4.14) for
small values of the parameters c and /. The equilibrium points off the z coordinate axis correspond
to limit cy.cles in (2.3). Secondary bifurcations occur along the lines labeled LCP (for limit cycle
pitchfork) and SH (for secondary Hop]).

Our main results show an intimate link between properties of the connection ma-
trix (the distribution of its cigenvalues) and local stability of an equilibrium solution
of (2.3). In a sense, local stability (of the steady state) in time depends on global
properties (of the network) in space.
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