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ABSTRACT

From modelling studies it has been known for over ten years that purely inhibitory
networks can produce synchronous output given appropriate balances of intrinsic and synap-
tic parameters. Several experimental studies indicate that synchronous activity produced by
inhibitory networks is critical to the production of population rhythms associated with var-
ious behavioural states. Heterogeneity of inputs to inhibitory networks strongly affect their
ability to synchronize. In this paper, we explore how the amount of input heterogeneity to
two-cell inhibitory networks affects their dynamics. Using numerical simulations and bifur-
cation analyses, we find that the ability of inhibitory networks to synchronize in the face of
heterogeneity depends non-monotonically on each of the synaptic time constant, synaptic
conductance and external drive parameters. Because of this, an optimal set of parameters
for a given cellular model with various biophysical characteristics can be determined. We
suggest that this could be a helpful approach to use in determining the importance of dif-
ferent, underlying biophysical details. We further find that two-cell coherence properties are
maintained in larger ten-cell networks. As such, we think that a strategy of “embedding”
small network dynamics in larger networks is a useful way to understand the contribution of
biophysically-derived parameters to population dynamics in large networks.
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1 Introduction

Interneurons, or inhibitory GABAergic cells in the hippocampus and cortex represent
about 10-20% of the total neuronal population. They are known to be very diverse in terms of
their biochemical content, morphology, electrophysiological characteristics and neuromodu-
lator sensitivites [McBain and Fisahn, 2001]. Importantly, networks of these inhibitory cells
have been found to be responsible for the generation and control of rhythmic brain acitivities,
moulding the appropriate temporal output of pyramidal cells [Buzsiki and Chrobak, 1995,
Freund and Buzsaki, 1996]. For example, oscillatory activity in the hippocampus in the theta
(8-12 Hz) and gamma (20-80 Hz) frequency bands occur during memory consolidation and
spatial navigation [Bragin et al., 1995, Buzsaki, 2002]. Several experimental studies indicate
that population (network) rhythms arise as a result of coherent activities in interneurons
(e.g., [Traub et al., 1999, Whittington et al., 1995, Wu et al., 2002]). Extensive work on in-
terneurons in recent years is giving rise to well-defined characteristics of interneurons with
potential functional significance. For example, parvalbumin-containing basket cells seem to
make up a relatively unmodifiable inhibitory network population responsible for generat-
ing gamma and theta rhythms [Freund, 2003]. To understand the generation and control
of population rhythms, we need to know what are the important controlling factor(s) (i.e.,
biophysical constraints) or cellular mechanism(s) underlying interneuron coherence.

It was over a decade ago that modelling studies showed that it is possible to ob-
tain synchronous output from purely inhibitory networks [Wang and Rinzel, 1992]. Since
then, several modelling and theoretical studies of inhibitory networks have been performed
(e.g., [Skinner et al., 1994, vanVreeswijk et al., 1994, Wang and Rinzel, 1993]). The inclu-
sion of heterogeneous inputs to inhibitory networks has been considered in later studies
[Bartos et al., 2001, Bartos et al., 2002, Maex and De Schutter, 2003, Neltner et al., 2000,
Tiesinga and José, 2000, Wang and Buzsdki, 1996, White et al., 1998], and from them, it
is clear that heterogeneity is a significant factor that strongly affects the ability of in-
hibitory networks to synchronize. However, an exploration of how much heterogeneity
can be tolerated by inhibitory networks under a range of synaptic conductance and time
constant conditions has not been done. This is an important consideration since recent
work by Bartos and colleagues (2001, 2002), in which inhibitory synaptic characteristics
were directly measured, showed that the decay time constants were smaller (< 5 ms)
than what is typically used in inhibitory network models. Re-doing simulations similar
to Wang and Buzsdki (1996), they found that their coherent network oscillations exhib-
ited higher frequencies and were more robust to heterogeneities. Since the modelling stud-
ies [Bartos et al., 2001, Bartos et al., 2002, Wang and Buzsdki, 1996] were performed using
large (100-cell) networks along with the consideration of other issues (such as amount of
connectivity and electrical coupling), it is difficult to determine the underlying mechanisms
that give rise to the different network characteristics (frequency and coherence). However,
as shown by White and colleagues (1998), using smaller (two-cell) networks is helpful in
understanding larger network dynamics. Specifically, they identified two different ways in
which coherence could be lost. This occurred in two different regimes, termed phasic and
tonic, as identified by different values of the ratio of time constant and network period. Their
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work shed light on why optimal synchronization at particular frequencies might be obtained
in the larger networks. However, White et al.’s (1998) studies were restricted to regions of
mild heterogeneity (< 5% difference in intrinsic frequencies).

In this paper, we explore how the amount of input heterogeneity to two-cell inhibitory
networks affects their dynamics. We find that heterogeneity can be used to determine an
optimal set of model parameters for coherent rhythms. Further, we show that coherence
properties are preserved in larger (10-cell) networks suggesting that a strategy of “embed-
ding” small network dynamics in larger networks might be a useful way to understand the
contribution of biophysically-derived parameters to population dynamics in large networks.

2 Model and methods

We use a single compartment model developed by Wang and Buzséki (WB) (1996) to
represent the intrinsic properties of a hippocampal interneuron cell. The equations for each
cell are given by:

dv

C% = Topp — gNamioh(V — VNa) — gKn4(V —Vk)
~gu(V ~ Vi) (1)
= 6en(V)(1 = ) = Bu(V)h) )
T = bleaV)(1 =) = B(V)n) )

where V' is the cell membrane voltage in mV, A is the inactivation of the sodium current, n is
the activation of the potassium current, and ¢ is time in ms. m,, is the steady state activation
of the sodium current and is given by: My = am/(m + Bm), Where o, (V) = —0.1(V +
35)/(exp(—0.1(V+35))—1), B (V) = 4exp(—(V+60)/18). ap(V) = 0.07 exp(—(V +58)/20),
Br(V) = 1/(exp(—0.1(V +28)) +1), o (V) = —0.01 exp(—(V + 34)/ exp(—0.1(V + 34)) — 1),
Bn(V) = 0.125exp(—(V + 44)/80), ¢ = 5. Maximal sodium, gy,, potassium, gx, and leak,
g1, conductances are: 35, 9 and 0.1 mS/cm? respectively. Reversal potentials, Viyq, Vi, Vi,
are 55, -90 and -65 mV respectively, and the capacitance, C, is 1 uF/cm?.

We consider neuronal networks formed due to coupling via inhibitory synapses that
are described by first order kinetics. The inhibitory synaptic current, I,,, which would be
added to the current balance equation of the postsynaptic cell, is given by:

Isyn = gsynS(V - V:s’yn) (4)
where
ds
o = AT (Vipre)(1 — 8) — 5/ Tsyn (5)
1
T (Vpre) (6)

1+ exp(—Vpre/2)
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and V. is the voltage of the presynaptic cell, gy, is the maximal inhibitory synaptic con-
ductance, V,, = —75 mV is the synaptic reversal potential, & = 6.25 ms™' is the rate
constant of the synaptic activation taken from [Bartos et al., 2001}, and 74y, is the synaptic
decay time constant. 7, values as low as 1 ms were measured between hippocampal basket
cells [Bartos et al., 2002], and so we explore a Ty, range of 1 to 10 ms in our simulations,
with a 1 ms resolution. gs,, values of 0.05, 0.15, 0.25, 0.35 and 0.5 mS/cm? are used since

they encompass physiological values as measured in [Bartos et al., 2001, Bartos et al., 2002].

1., represents the applied or external drive to the cell, and we use this parameter to
introduce heterogeneity into the system. We consider two-cell networks that are reciprocally
coupled and ten-cell all-to-all coupled networks.

For the two-cell networks, the external drive to cell 1 or 2 is:

Iapp,l = Iu—e or

Toppp = I,+ce

respectively, so that their external drives differ by 2e. We define the percent heterogeneity,

%Het, as:
LF. at Ip,5) — (I.F. at I,,,)

I.F. at Iapp,2

where I.F. is the intrinsic frequency of the isolated cell. I, values of 1, 2 and 3 pA/cm? are

%Het = (

x 100% (7)

explored systematically, as well as I, values of 4 yA/cm? using g, values of 0.25 mS/cm?.
%Het values exceeding 30% are examined systematically in simulations to determine the
robustness of coherent oscillations. In summary, parametric variations of gy, Tsyn, I, and €
are examined.

For the ten-cell networks, the I,,,’s are randomly chosen from a uniform distribution in
the interval [—%Het, +%Het]. All-to-all coupled networks are simulated and gs,, values are
normalized so that each presynaptic cell “delivers” a maximal inhibition of gs,/9.

A measure based on [White et al., 1998] is used to determine network “coherence” or the
level of synchrony present in the ten-cell networks. This measure approximates the amount
of overlap that exists between two spiking cells where the amount of overlap used is 20%
of the period of the faster firing cell. Briefly, the spike trains of each pair of neurons are
approximated by a series of square pulses of unit height and fixed width of 20% of the period
of the faster firing cell. The shared area of the square pulses from each train that overlap
in time is calculated for a given duration. This is equivalent to taking the cross correlation
at zero time lag. The average between all pairs is taken, and the last 2 seconds of the ten-
cell simulations (which were 5 seconds in total) were used as the duration to calculate the
coherence measures presented in the paper. Gaussian noise is included in some of the ten-
cell simulations by adding it to the current balance equation of each cell (i.e., equation (1)).
Zero mean and standard deviations (SDs) from half to twice the amount of heterogeneity in
the system is used.

Network simulations are performed using a modified version of our in-house soft-
ware, NNET [Murray, 2004, Skinner and Liu, 2003], which integrates the system of differen-
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tial equations using CVODE [Cohen and Hindmarsh, 1996]. Unless otherwise stated, initial
conditions (ICs) for the two-cell network simulations are: V; = —58.7249, V, = —55.0456,
hi = hy = 0.9379, ny = ny = 0.1224, s; = sy = 0.1386. In some cases these values were
varied, but this was not done systematically.

A dynamical systems approach for studying nonlinear ordinary differential equations,
such as equations (1)-(3), involves bifurcation analyses, in which the dependence of solutions
to the differential equations on various parameters is examined. Solutions include steady
states and oscillations. A well-known feature of nonlinear systems is its ability to express
multiple stable solutions, i.e., multistability. For a fixed set of parameters, one can deter-
mine equilibrium points for the system. For example, V' values that do not change with time,
dV/dt = 0 (see equation (1)) and so on. It is the stability of these equilibrium points that de-
termines the particular solution(s) that the system expresses (steady states, oscillations etc.).
A dynamical system is said to undergo a bifurcation if the qualitative dynamics of the system
are different above and below a particular value of a parameter. The value where the change
occurs is called a bifurcation value. For example, the WB model ([Wang and Buzséaki, 1996])
has an I,,, bifurcation value close to 0.2 pA/cm? in that below this I, value, the model
system expresses a steady state voltage output, and above this value, the model system
produces an oscillatory output, i.e., repetitive firing. Bifurcations are considered local or
global depending on details regarding the number of equilibrium points and their stability
characteristics. Common local bifurcations are Hopf bifurcations and saddle-node bifurca-
tions, and common global ones are homoclinic bifurcations and saddle node of limit cycles
bifurcations. Knowing the specific type of bifurcation that a system expresses as particular
parameters are varied can allow one to predict the presence of multistable patterns. For
example, a subcritical Hopf bifurcation arising in a bifurcation analysis using a particular
parameter means that bistability exists for a range of values of the particular parameter.
So, for a given parameter value in that range, the system expresses two stable patterns, say
oscillations and steady states. A bifurcation diagram is a way to illustrate the stability of
equilibirum points and periodic solutions as a particular parameter is varied (e.g., see Figure
6). Since it is hardly ever possible to perform these calculations analytically, numerical tech-
niques must be employed. A numerical continuation refers to using numerical approaches to
find equilibrium points and periodic solutions, and to examine how their stability changes
as parameters are varied. Although challenging to set up and run, numerical continuations
have the advantage over numerical simulations of easily finding multistability and finding
highly accurate bifurcation values. Numerical solutions from simulations can only produce
stable solutions. If multistability is present, the solution produced depends on the initial
conditions.

We perform several bifurcation analyses using AUTO [Doedel, 1981] in the XPPAUT soft-
ware package [Ermentrout, 2002]. Depending on the particular set of parameters, step sizes
are adjusted to allow continuation of solutions along the various branches. However, the
maximum stepsize used to obtain the results shown in Tables 3 and 4 is 0.001 (thus deter-
mining the resolution).
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3 Results

3.1 Dynamic patterns in two-cell heterogeneous networks

In homogeneous, two-cell inhibitory networks, in-phase (synchronous) and anti-
phase oscillations are possible depending on the particular parameters in operation
[Lewis and Rinzel, 2003, Skinner et al., 1994, Wang and Rinzel, 1992]. When mild hetero-
geneity is introduced into the two-cell system, harmonic locking and asynchronous states are
also obtained [White et al., 1998|. For the ranges of parameters explored (see Methods), we
obtained five distinct patterns in our two-cell network simulations. These observed patterns
are: (i) near-synchronous, (ii) near-antiphase, (iii) varied phase-locking with small phase lags
(i.e., one-to-one, but period varies, and phase lags are < 10%), (iv) suppressed states, and
(v) harmonic locking. Examples of each of these are shown in Figure 1A-E. In addition, we
obtained dynamic states that did not express any clear pattern, referred to as asynchronous
behaviour. We considered the pattern to be asynchronous if we did not observe any of pat-
terns (i)-(v) after at least one second of simulation time when transients should no longer be
apparent (given the time constants involved in the model). We examined at least 25 spikes
after transients before concluding that there was no clear pattern. An example is illustrated
in Figure 1F. Multistable patterns were uncovered in some parameter ranges when different
initial conditions were explored. We also obtained patterns that are mixtures of the above
patterns. Since these mixture variants did not occur in any obvious fashion, we did not ex-
amine them further here. Assuming that closely aligned firing of cells in inhibitory networks
are necessary for generating population rhythms, one expects that patterns (i) (Figure 1A)
and (iii) (Figure 1C) are the most relevant.

In Figure 2, we show two examples of the occurrence of these different patterns as
Tsyn and %Het are varied for given g, and I, values. As g,,, Was increased, the amount
of the %Het—7y,, plane that is represented by suppressed states increased. For smaller gy,
values, harmonic locking states dominated the plane. We also found that for smaller I, values
more suppressed states occurred over the %Het—7,, plane (not shown). The expression of
suppressed states in the plane can be somewhat understood by results obtained in previous
modelling studies by [White et al., 1998]. Although they did not specifically discuss how
their network dynamics changed with variations in the amount of heterogeneity in the system,
they did find that there are two different mechanisms by which networks could lose coherence
in the presence of mild heterogeneity (< 5% difference in intrinsic frequencies). For one of
the mechanisms, in their so-called phasic regime, 7y,,/T has smaller values relative to the
tonic regime (where T refers to the network period). Coherence occurs in this regime, and
is lost via suppressed states for smaller I,,, and larger gs,, values (see Figure 2, bottom).

3.2 Robust network oscillations

Since we are assuming that closely aligned firing of the cells in the inhibitory networks
are important for generating population rhythms, we define the robustness of a two-cell
network as its ability to express near-synchronous network oscillations (i.e., “coherence”) in



Heterogeneity in Inhibitory Networks 7

the face of heterogeneity of external inputs received (i.e., € # 0). A stronger robustness means
that the network can express coherence for larger amounts of heterogeneity. In Figure 2 (top),
we see that the robustness of the two-cell system increased as 7y, was increased up to just
under 7%Het for 7, = 10 ms. We can consider a measure of the robustness of an inhibitory
network system as the maximal %Het expressed for a given set of parameters. Therefore,
in Figure 2 (top), the robustness or maximal %Het for 7, = 1 is 4%. Interestingly, our
simulations indicate that there might be an optimal set of parameters that maximizes the
network robustness. In particular, Figure 2 (bottom) shows that for 7,, =5 — 6 ms (with
I,=3 pA/cm?, g,,=0.25 mS/cm?), the system still expresses near-synchronous oscillations
in the face of more than 11%Het — for larger and smaller values of 7y,, the robustness is
weaker.

In Table 1, we show parameter sets (I, Tsyn, gsyn) for which robust oscillations were
obtained in our simulations. We only list cases for which the robustness or maximal %Het
exceeded 7%, and this maximal %Het for each parameter set is shown. In addition, network
frequency and phase information is indicated. For all the cases shown in Table 1, the net-
work pattern at the maximal %Het is the near-synchronous described pattern (i) (see Figure
1A for illustration). With heterogeneity beyond this maximal %Het, harmonic locking or
suppressed states occurred, and asynchronous states (as defined above) sometimes preceded
the suppressed states as the heterogeneity was increased. For most of the parameter sets,
%Het values less than the maximal %Het shown in Table 1 also resulted in near-synchronous
oscillations. However, near-antiphase, varied phase-locking and asynchronous patterns some-
times occurred at lower %Het values (see Figure 3), as well as bistable patterns (see Figure
4). There would be an additional three cases to include in Table 1 from our simulations if
we also encompassed maximally robust oscillations with varied phase-locking patterns (iii)
(see Figure 1B for illustration). In those cases, a further increase in heterogeneity gave way
to suppressed behaviours at larger %Het values. These observations are naturally limited by
the resolution of the simulations performed (see Methods).

Not surprisingly, the phase lag in the near-synchronous states increased as the het-
erogeneity was increased (not shown). This is mainly responsible for the observed decrease
in network frequency as the heterogeneity increases for a given parameter set. That is, with
more heterogeneity, the closeness of the aligned spikes in the two cells (when it occurs) in-
creases, and the network period is larger. As expected (observed in previous modelling stud-
ies of [Wang and Rinzel, 1992, White et al., 1998]), the network frequency increased with
decreasing Tyy,. Any two rows (with different 7y,,) in Table 1 where the %Het is the same
can be compared to see that this is the case.

Since it was found that 7y, /7 values separated tonic and phasic regimes (i.e., in
reference to different ways in which coherence is lost [White et al., 1998]), we also calculated
Tsyn/ T for our network oscillations. This is shown in Table 1 for the robust oscillations with
> 7%Het. We found 7,,,/T to have “small” values in accordance with [White et al., 1998]
who found that 7, /T was smaller (< 1, for their cellular model) for the phasic (as opposed
to the tonic, > 2) regime where coherence occurs. Together with the observation from
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our simulations that there seems to be an optimal set of parameters (I, gsyn, Tsyn) that
maximizes the network robustness, one can define a window of 7y,,/T values for which
maximal robustness occurs.

As derived from several simulations, a non-monotonic dependence of robustness on
each of the parameters gsy,, I, and 7,4, occurs. This is shown in Figure 5. The exact values
for maximal %Het and 7,,,/T of Figure 5 are given by the boldfaced values in Table 1
for maximal %Het values or robustness measures exceeding 7%. These data indicate that
it might be possible to determine a set of model parameters that give rise to maximally
robust network oscillations. However, our simulations also show that the dynamics in these
two-cell networks express much complexity. For example, Figure 4 shows an example of
bistability, and Figure 3 shows how several dynamic patterns can be expressed for small
changes in heterogeneity. The patterns shown in Figure 3 were obtained for a chosen set
of initial conditions (see Methods). However, given the nonlinearity of the system, other
stable patterns likely exist for these same parameter values. For the set of initial conditions
used, Figure 3 shows that increasing the heterogeneity can be helpful in bringing about
“coherence” or near-synchronous solutions.

3.3 Bifurcation analysis of two-cell heterogeneous networks

To establish the validity of our simulation observations regarding the existence of
maximal robustness, we embarked on a bifurcation analysis (see description in Methods).
Our observations might depend on the nonlinear relationship between I,,, and the intrinsic
frequency, but it is not obvious that a non-monotonic dependence of robustness on param-
eters as shown in Figure 5 should exist. We performed a series of numerical continuations
of the two-cell heterogeneous network system. Our simulations led us to focus mainly on
Gsyn = 0.15,0.25,0.5 mS/cm? values as where the most robust network oscillations were
present (see Table 1). Continuations using either I, or € as the bifurcation parameter (see
Tables 2 and 3) for a range of 7,,, values were done. We were able to determine the exis-
tence and stability of both the equilibria and periodic solutions of the system as the I, or €
parameter was varied while the other parameters remained fixed. This allowed us to obtain
the precise dependence of coherence in the model network system on variations in specific
parameter values.

In Figure 6A we show a typical bifurcation diagram with I, as the bifurcation param-
eter. Recall that a bifurcation diagram is an illustration of the dependence on a particular
parameter of the stability of equilibrium points and periodic solutions (see further description
in Methods). The stable equilibria are represented by thin solid lines and unstable equilibria
by thin dashed lines. Periodic solutions are represented by lines showing their maximum
amplitude at each parameter value. Stable periodic solutions are denoted by thick solid
lines whereas unstable periodic solutions are given by thick dashed lines. We followed three
distinct sets of oscillations: two suppression oscillations (either cell 1 suppressing cell 2 or
vice versa) which emanated from two Hopf bifurcations (marked by an open box in Figure
6A), and a near-synchronous oscillation. In terms of stability, for large I, (> 25 pA/cm?)
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there was only a stable steady state solution, as illustrated by the thin solid line. This
means that the cells remained at a steady voltage value (e.g., at I, = 30, this value for cell
1 is about -30 mV, see Figure 6A). For mid range values of I, (10 — 25 pA/cm?), only a
near-synchronous oscillation was stable. For I, values explored in the simulations above (i.e.,
1 - 4 pA/cm?), the two suppression oscillations and the near-synchronous oscillation were
sometimes all stable. This can be seen in Figure 6B which is an expansion of the relevant
region of the bifurcation diagram of Figure 6A. For small I,, the suppression oscillations
were lost via a homoclinic bifurcation and the near-synchronous oscillations lost stability via
a period doubling bifurcation (marked by an open circle in Figure 6A,B) and then disap-
peared either in a homoclinic bifurcation or a saddle node of limit cycles bifurcation. For
large values of 7y, (as in Figure 6A,B), the system went to a suppression oscillation when the
near-synchronous oscillations lost stability. For smaller values of 7,,, the region of stabil-
ity of the suppression oscillations decreased and when the near-synchronous oscillations lost
stability the system exhibited either asynchronous or harmonically-locked oscillations. We
summarize the results from several numerical continuations in Table 2. All these particular
continuations were performed using € = 0.05 uA/cm?. Note that these continuations were
performed with I, as the bifurcation parameter, and so the other parameters (including e)
were fixed at particular values as indicated in Table 2. For each case, the minimum I, for
which near-synchronous behaviour is present is indicated (e.g., see Figure 6B example). This
I,, together with e determines the %Het for the system and this is also shown in Table 2.
Note that decreasing I, corresponds to increasing the %Het in the system because of the
nonlinear relationship between I,,, and the intrinsic frequency of the isolated WB model
cell [Wang and Buzséki, 1996]. For this choice of € and with gy, = 0.25 mS/cm? we can see
that as 7, decreases, one obtains a %Het that increases until it reaches a maximum and
then decreases. In other words, for a fixed difference in external input (as given by €), the
minimal required amount of external drive to give rise to near-synchronous oscillations can
both increase and decrease with increasing Tgyy,.

Near-synchronous and suppression solutions were found and followed in our numerical
continuation studies. Other solutions such as varied phase-locking and antiphase oscillations
are present in various parameter regimes (as shown from simulation studies), but were not
systematically followed in the studies performed here. A typical bifurcation diagram with
€ as the bifurcation parameter is shown in Figure 6C. As € (and hence %Het) was increased,
the stable near-synchronous oscillations were lost in one of two ways. They either ceased
to exist via a saddle node of limit cycles (as shown in Figure 6C) or they lost stability in a
period doubling bifurcation before the saddle node of limit cycles. For large 7,,, when the
stable near-synchronous oscillations were lost, the system exhibited suppression oscillations.
As 74y, was decreased, the region of existence of the suppression oscillations was diminished.
For 7, small enough (e.g., see Figure 6C), this region no longer overlapped with the region
of stability of the near-synchronous oscillations. The system exhibited either harmonically-
locked or asynchronous oscillations when the stable near-synchronous oscillations were lost,
and suppression oscillations at larger values of € or %Het as shown in Figure 6C. In Table
3, we indicate the largest value of € for which stable near-synchronous oscillations exist for



Heterogeneity in Inhibitory Networks 10

each given set of parameter values, as determined from several numerical continuations. As
Tsyn decreases, it is clear that a maximal %Het exists. Specifically, for g5y, = 0.25 mS/cm?
I, = 3 pA/em?, and 74y, = 5 ms, there is a maximal %Het of 12.5%. We conclude that
the non-monotonic dependence of robustness on different parameters as observed in the
simulations (see Figure 5) is a well-defined phenomenon.

3.4 From two to ten-cell heterogeneous networks

Now that we have established that there exists a set of parameters which give rise
to maximally robust oscillations, we would like to determine whether coherence properties
observed in the two-cell networks are borne out in larger networks. That is, are the parameter
regimes for robust oscillations in two-cell networks similar to parameter regimes in larger
networks? Consider the simplified view that if one uniformly distributes the amount of
heterogeneity up to a maximal amount between a set of cells, then the possible patterns that
the network expresses would include those observed in the two-cell network for the given
heterogeneity. Therefore, parameter values that give rise to coherent oscillations in larger
(> two-cell) networks could be predicted from what is known about coherent oscillations in
the two-cell networks.

In Table 4 we show coherence measure values obtained from several ten-cell network
simulations. For the top part of Table 4, the simulations used parameter values of gy, =
0.25 mS/cm?, I,=3 pA/cm?, and 74, = 1 or 5 ms. Using these same parameters, two-cell
network simulations produced coherent oscillations up to 5.8%Het with 7, = 1 ms, and
up to 11.4%Het with 75, = 5 ms. Furthermore, near-synchronous solutions were obtained
when smaller %Het values were used in the two-cell simulations (using initial conditions
given in the Methods). With 7,,,=1 ms, the ten-cell network simulations produced coherent
oscillations with 3%Het, but not with 8%Het as given by their coherence values shown in
Table 4. When 7y, was increased to 5 ms, the ten-cell networks with 3%Het were still
very coherent, but now the ten-cell networks with 8%Het were also coherent. That is, using
8%Het, the coherence measure value obtained with 7y, = 5 ms is larger than with 7, =1
ms. However, as with 7, = 1 ms, the coherence value obtained with 8%Het is smaller
than with 3%Het, but to a lesser extent. Given that the two-cell networks show “coherence”
up to 5.8%Het with 7y, = 1, but up to 11.4%Het with 7., = 5, it would appear that
the coherence properties of two-cell heterogeneous networks are “preserved” in the larger
networks. The ten-cell simulations were re-done with the addition of noise (see Methods).
We used Gaussian noise with standard deviations (SDs) that were half of, equal to, and twice
that of the level of heterogeneity in the system. In all cases, the difference in coherence, as
“predicted” from the two-cell simulations was maintained (see Table 4).

As shown in Figures 4 and 6B, bistable patterns can occur in the two-cell hetero-
geneous network system. The bistable pattern illustrated in Figure 4 was obtained using
parameters of gg,, = 0.25 mS/cm?, [,=1 pA/cm?
were such that the initial voltages were either: (i) different by about 4 mV, as given in the
Methods, or (ii) the same for the two cells, V3 = V5 = —59.5567. The initial values for the

, and Ty, = 1 ms. The initial conditions
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other variables (h,n, s) of each model cell were the same for the two cases and are given in
the Methods (see Figure 4 legend). With increasing heterogeneity, for the first case of initial
conditions, we obtained near-antiphase patterns (up to 4%Het), then varied phase-locking,
and then near-synchronous patterns up to a 8%Het. Harmonic locking patterns arose with
further increases in heterogeneity. For the second case of initial conditions, we obtained
varied phase-locking and then near-synchronous patterns with increasing heterogeneity up
to 8%Het, and then harmonic locking as in the first case of initial conditions. (The partic-
ular patterns for the case of 4%Het are shown in Figure 4.) Using these parameter values
in a ten-cell network configuration, we find again that the two-cell dynamics “predict” the
coherence properties of the ten-cell networks. Consider two different initial conditions for
the ten-cell networks that are derived from the two cases of initial conditions for the two-cell
networks. They are either (i) the initial voltages for the ten cells were different (but within
5 mV of each other), or (ii) the initial voltages were all the same value. As in the two-cell
network simulations, the initial values for the other variables (h,n,s) of each model cell
were the same for the two cases. We will refer to the first and second case of initial con-
ditions (IC's) for the ten-cell networks as ICss and ICsp respectively, and they are given
with Table 4. The bottom part of Table 4 provides coherence values obtained from ten-
cell network simulations with IC's4 and ICsg. Since the heterogeneity is spread uniformly
among the ten cells, and if the dynamic behaviours seen in the two-cell networks occur in the
larger networks, then one might expect to see larger coherence values with /Csp than with
I1Cs4. We found this to be the case with 5%Het. At and below this level of heterogeneity,
the two-cell network dynamics mostly included near-antiphase (i.e., non-coherent) patterns
with initial conditions given by the first case, and so the vast difference in coherence values
observed in the ten-cell simulations is supportive of the predictive nature of the two-cell
network dynamics for larger networks. However, when we increased the heterogeneity fur-
ther to 8%Het in the ten-cell simulations, this large difference in coherence values using the
two different /C's was no longer apparent. Since at and below this amount of heterogeneity,
both sets of IC's now mostly involve near-synchronous patterns in two-cell networks, this
does not negate the predictive aspect of the two-cell dynamics for larger (ten-cell) network
coherence. It suggests that non-coherent patterns (such as antiphase) need to dominate the
two-cell network dynamics (at the particular level of heterogeneity) to manifest their effect
in larger networks. Interestingly, when noise is added to the simulations (e.g., see the last
column of Table 4 which is boldfaced), the dependence on the exact level of heterogeneity is
removed. For both 5%Het and 8%Het, the ten-cell networks have a much lower coherence
value when ICs,4 are used as near-antiphase patterns occur in the two-cell networks using
the first case of initial conditions described above. The above results support the possibil-
ity that coherence properties in larger networks can be predicted from dynamic patterns
obtained in two-cell networks. However, one should caution that such observations would
depend in some fashion on the particular choices of initial conditions, noise levels and the
dynamic constraints on different stable patterns expressed by nonlinear systems, as has been
examined for homogeneous inhibitory networks [Golomb and Rinzel, 1994].
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4 Discussion

Our results show that the robustness of network oscillations has a non-monotonic
dependence on synaptic time constant, synaptic conductance and mean external drive. This
suggests that there is an optimal set of parameters for which robust “coherent” network
oscillations occur. One can consider determining this set of parameters which then defines the
network output for the particular cellular model being used. Our bifurcation and simulation
studies using a WB cellular model show that an optimal set of parameters occurs when
Gsyn = 0.25 mS/cm? I, = 3 pA/cm?, and 7y, = 5 ms, where robust network oscillations with
> 12%Het occur (see Figure 2 and Table 3). With these values, the two-cell heterogeneous
network exhibits oscillations of about 90Hz frequency and with about a 10% phase lag
between the two cells. Although a direct comparison with the 100-cell network simulation
results of [Bartos et al., 2001, Bartos et al., 2002, Wang and Buzsdki, 1996] cannot be made,
our results go some way in explaining the more robust and higher frequency oscillations
observed by Bartos et al. (2001, 2002) in their simulations as compared to simulations
performed by Wang and Buzsdki (1996). In addition, our simulations show that two-cell
coherence properties are maintained in larger ten-cell networks. Together with other studies
by White et al. (1998) showing similar qualitative behaviours in 2, 10 and 100-cell networks,
our work suggests that using the amount of heterogeneity (i.e., €) as a parameter in (two-
cell) network studies allows the determination of optimal parameter values which in turn are
predictive of coherent regimes in larger networks.

4.1 Biophysical detail and external input

In developing mathematical models of neuronal networks that include some sort of
biophysical characteristics, it is useful to have constraints on a chosen model’s parame-
ters. Questions regarding model detail naturally arise: how much and what? For in-
hibitory network models targeted towards hippocampal cortex, there are network model
explorations using cellular inhibitory models that are: detailed multi-compartment repre-
sentations (e.g., [Maex and De Schutter, 2003, Traub and Bibbig, 2000]), single compart-
ment representations (e.g., [Baker et al., 2002, Jalil et al., 2004, Tiesinga and José, 2000,
Wang and Buzsédki, 1996, Wang, 2002, White et al., 1998]), or simpler integrate-and-fire
units (e.g., [Brunel and Wang, 2003, Neltner et al., 2000]). To a large extent, the amount of
biological detail that makes sense to include in a neuronal model depends on the question
being asked. While analyzing and determining underlying cellular mechanisms in network
models give rise to constraints on some parameters for given dynamic outputs, one is still
often faced with few or no constraints on other model parameters. A problem faced by all
modellers is how best to both incorporate biophysical detail and do mathematical analyses to
understand and predict the model output. The intrinsic cellular properties of a model always
make a difference to the network output, but it may not be a critical difference. While an
examination of time constant values and active voltage ranges for particular ion currents is
suggestive of the importance of particular intrinsic properties, this is a qualitative estima-
tion that is subject to non-intuitive, nonlinear outcomes. We suggest that our criterion of
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maximal heterogeneity could be used as a basis for evaluating how much of a “difference”
various intrinsic details make to network coherence. That is, would the optimal gy, I, Tsyn
values change with, say, using three (rather than two) types of potassium currents?

A critical parameter in network models is the external or applied current, I,,,. How-
ever, there is no well-defined way to measure this parameter value as it represents the
summation of synaptic and background current (noise and heterogeneities) in the dendritic
tree, which in turn depends on the integration properties of the particular cell and the
network in which it resides. Depending on whether the individual cell model includes a
dendritic component and on what network size is being considered, the input could be de-
scribed by a tonic current or Poisson statistics with or without noise, heterogeneities and
correlations [Brunel and Wang, 2003, Destexhe et al., 2003, Maex and De Schutter, 2003,
McMillen and Kopell, 2003]. Interestingly, Maex and DeSchutter (2003) show that the dif-
ference between using tonic or afferent fiber input (Poisson statistics) is not important in
extracting a resonant synchronization in their inhibitory networks. A modification of our
suggestion above would be to determine the I, (i.e., I,,,) value that gives the most robust
oscillations for the given cellular model. In this way, the choice of I,,, would be less arbitrary
than simply using values that give rise to certain network frequencies.

4.2 Network modelling strategies and related works

The best strategy to use if one wants to understand network dynamics in which
the biophysical details are not ignored is unclear. However, strategies for particular
problems have been developed [Ermentrout and Chow, 2002]. For example, for prob-
lems involving long-distance synchronization, a mapping strategy was introduced by
[Ermentrout and Kopell, 1998] in which the biophysical equations can be reduced to a one-
dimensional map in terms of spike timings of different neurons. The subsequent map is
then easily analyzed and its predictions verified with simulations (e.g., [Acker et al., 2003]).
A geometric approach, in which several trajectories (each corresponding to one cell) move
around in a lower dimension phase space has been used to understand thalamic oscillations
[Rubin and Terman, 2000]. Otherwise, one can test predictions from simpler (integrate-and-
fire) models using more detailed biophysical models (e.g., see [Wilson et al., 2004]). A more
general strategy using the theory of weakly coupled oscillators [Kuramoto, 1995] allows one
to mathematically reduce the network system to a set of equations only involving phases.
These equations are then straightforward to analyze. While this approach is powerful and has
been used to analyze networks of coupled cells (e.g., [Chow, 1998, Lewis and Rinzel, 2003,
Neltner et al., 2000]), it is limited to neuronal units that exhibit stable limit cycles and which
have sufficiently weak coupling.

The ability to continue solutions when doing bifurcation analyses is constrained by
the complexity of the set of nonlinear equations. As shown in our work here, this is feasible
using two-cell networks, but is clearly impractical for large networks. However, since it
seems that the coherent properties in two-cell networks can be preserved in larger networks,
it might be a useful small-to-large network modelling strategy to determine optimal external
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input and/or intrinsic biophysical parameters from two-cell network analyses via the maximal
heterogeneity criteria suggested above. Depending on what experimental data is available, it
might also be reasonable to determine some optimal synaptic parameters in this way. Then,
in performing larger network simulations, one would already have intuition from the two-cell
network dynamics so that it may be possible to fundamentally understand any observed
changes in coherence patterns of the large networks. In addition, one could attempt to
mathematically reduce the intrinsic cell model with its optimal parameters to subsequently
use in larger network simulations.

Our results are in accordance with other modelling studies of heterogeneous, inhibitory
networks. In the 100-cell simulation studies by Bartos et al. (2001, 2002) and Wang and
Buzsdki (1996), a Gaussian distribution of heterogeneities was used and different amounts
were explored for specific parameter values (e.g., see Figure 5 in [Wang and Buzsédki, 1996]).
Neltner et al. (2000) defined robustness of synchrony as the critical disorder at which the
asynchronous state becomes linearly stable. With this definition, they obtained a maxi-
mal robustness using WB neurons when synaptic conductance was varied, for a given time
constant and mean frequency. In another modelling study, Tiesinga and José (2000) sug-
gest that stochastic weak synchronization (as opposed to strong synchronization), in which
the particular cycle in which each cell fires is random, might underlie robust oscillations in
inhibitory networks.

4.3 Basket cell networks in hippocampus

This study was partly motivated out of concern for how to constrain cellular models
used in inhibitory networks. Developing models of individual interneurons in hippocam-
pus that encompass the richness of their intrinsic properties is a major undertaking (e.g.,
[Saraga et al., 2003]). Furthermore, there is usually not enough experimental data for par-
ticular interneurons to warrant developing a very detailed model. However, if one then uses
a simplified model, it is unclear how best to constrain the chosen parameters. Our study
here suggests how optimal parameters might be determined. It is interesting to note that
Bartos et al. (2002) found differences in synaptic time constants and peak synaptic conduc-
tances in DG, CA3 and CA1 regions of hippocampus in inhibitory basket cells. One could
envisage using the particular 7y, and gs,, values to select out an I, value via our maximal
heterogeneity criterion. This I,, value in turn would give rise to a certain network frequency.
One might speculate that particular hippocampal regions are “tuned” to particular frequen-
cies. Basket cell networks are also connected by gap junctions, which adds another layer of
complexity [Freund, 2003, Fukuda and Kosaka, 2000]. This further emphasizes the impor-
tance of trying to understand local inhibitory circuits in the brain from the perspective of
biophysical parameter values. Our work shows how this could be approached.
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FIGURE LEGENDS

Figure 1:

Different Dynamic Patterns Observed in Heterogeneous Two-cell Networks.

(A) Near-synchronous pattern. Parameters are: g, = 0.15 mS/cm?, 7oy, = 6 ms, Loy =
L.9uA/cm?, Ippo = 2.1uA /cm? (T%Het).

(B) Near-antiphase pattern. Parameters are: g, = 0.5 mS/cm?, 7y, = 1 ms, Iy =
0.985uA /em?, Ipyo = 1.015pA /cm? (2.4%Het).

(C) Varied phase-locking pattern. Parameters are: g¢sy, = 0.25 mS/cm?, 7y, = 3 ms,
Tipp1 = 1.86pA /cm?, Iy, 0 = 2.14pA /cm? (9.7%Het).

(D) Suppression pattern. Parameters are: g, = 0.25 mS/cm?, Toyn = 0 MS, Igpn1 =
L.9uA/cm?, Ippo = 2.1uA/cm? (T%Het).

(E) Harmonic locking pattern. Parameters are: g5y, = 0.25 mS/cm?, 75, = 2 ms, Ippp1 =
1.8uA/em?, I, = 2.2pA /cm? (13.6%Het).

(F) Asynchronous pattern. Parameters are: gg, = 0.35 mS/cm?, 7y, = 3 ms, I, =
L.9uA/cm?, Ippo = 2.1uA/cm? (T%Het).

Figure 2:

Percent Heterogeneity-Decay Time Constant (%Het-7,,,) Plane of Dynamic Patterns.
Two examples are shown with parameters g,,, = 0.15 mS/cm? (top), and gy, = 0.25
mS/cm? (bottom), with I, = 3 pA/cm?.

Black regions refers to near-synchronous patterns, white regions to suppressed patterns, grey
regions to harmonic locking patterns, grey checked regions to asynchronous patterns and grey

lined regions to near-antiphase patterns.

Figure 3:

[lustration of Changing Patterns with Changing Percent Heterogeneity (%Het).

As %Het increases from top to bottom, the dynamic patterns shown are: near-antiphase
(2.2%Het), varied phase-locking (4.3%Het), asynchronous (5%Het), near-synchronous (7%Het),
harmonic locking (7.7%Het) and near-synchronous (8.4%Het). With further %Het increases
(up to 31%), harmonic locking patterns are obtained (not shown). In addition, between the
asynchronous and near-synchronous patterns, there is another varied phase-locking pattern
(not shown). Parameters are: gg,, = 0.35 mS/cm?, I, = 2uA /cm?, 74y, = 1 ms.

Figure 4:

Example of Bistability.

Both near-antiphase (top) and varied phase-locking (bottom) patterns exist with 4%Het.
For the near-antiphase pattern, the set of initial conditions used is given in Methods; for
the varied phase-locking pattern, the set of initial conditions used is V; = V, = —59.5567,
and the other variables have initial values as given in Methods. Parameters are: gy, = 0.25
mS/cm?, Iopp1 = 0.975pA /em?, Ioy,0 = 1.025uA /em?, (I, = 1pA/cm?), 7oy, = 1 ms.

Figure 5:
Non-monotonic Dependence of Robustness.
Two-cell network simulations give rise to coherent oscillations whose robustness depends
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non-monotonically on parameters: gs,, (in mS/cm?), and I,=2 pA/cm?, 74,=4 ms (left);
Tsyn (In ms), and g5y, =0.25 mS/cm?, I,=3 pA/cm? (middle); I, (in pA/cm?), and gsy,=0.25
mS/cm?, 7,,,=4 ms (right). For each plot, the solid squares refer to the maximal %Het (for
which coherence occurs) as given by the left hand ordinate axis, and the solid circles refer
to Teyn/1 values as given by the right hand ordinate axis. The maximal %Het values that
exceed 7% can be seen in Table 1. The non-monotonic relationship can be seen clearly by the
solid line joining the squares. The “window” of 7y, /T values that encompass this maximal
robustness can by seen by the dashed line joining the circles. Note that the range of values
shown on the axes for the three plots are not the same.

Figure 6:

Bifurcation Diagrams Showing Different Branches and Stabilities.

Each diagram shows the maximum value of V; (in mV) for each value of the bifurcation pa-
rameter. Stable/unstable equilibria are denoted by thin solid/dashed lines; stable/unstable
periodic solutions by thick solid/dashed lines. Hopf bifurcations are indicated by an open
box, period doubling by an open circle. (A) I, (in uA/cm?) is the bifurcation parameter;
other parameters are g5, = 0.5 mS/cm?, € = 0.054A/cm?, 74y, = 10 ms. (B) shows a blow
up of (A) for I, in the range of 0 — 5 puA/cm?. Bistable patterns of near-synchrony and
suppression are present beyond I, of = 3, i.e., the open circle. (C) € (in pA/cm?) is the
bifurcation parameter; other parameters are gsy, = 0.25 mS/cm?, I, = 3uA/cm?, 74y, =5
ms. Illustrations in (A,B) and in (C) refer to boldfaced values in Table 2 and in Table 3
respectively.
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Table 1: Robust Oscillations in Two-Cell Model Networks:
Near-Synchronous Oscillatory Solutions with %Het > 7%

Parameters | 7y, | Maximal | Netw.Freq. | %Phase Lag | Toyn/T
(Gsyns 1) | (ms) %Het (Hz)
(0.05,1) 8 7.1 48.9 12.0 0.39
(0.05,1) 9 7.1 47.9 114 0.43
(0.05,1) 10 7.1 47.0 11.2 0.47
(0.15,1) 2 8.0 55.1 4.6 0.11
(0.15,1) 3 10.9 51.1 5.1 0.15
(0.15,2) 3 8.0 86.3 9.3 0.26
(0.15,2) 4 9.0 81.8 8.9 0.33
(0.15,2) 5 9.0 77.9 8.4 0.39
(0.15,2) 6 10.4 72.6 10.3 0.44
(0.15,2) 7 10.4 69.7 10.0 0.49
(0.15,2) 8 10.4 66.8 9.8 0.53
(0.15,2) 9 10.4 64.0 9.8 0.58
(0.15,2) 10 10.4 61.8 9.8 0.62
(0.25,1) 1 8.0 57.3 2.6 0.06
(0.25,2) 2 9.7 88.7 5.5 0.18
(0.25,2) 3 9.0 81.4 4.4 0.24
(0.25,2) 4 7.0 75.2 3.4 0.30
(0.25,3) 2 8.3 116.5 8.4 0.23
(0.25,3) 3 9.6 107.3 8.1 0.32
(0.25,3) 4 10.8 98.0 9.2 0.39
(0.25,3) 5 11.4 90.5 9.5 0.45
(0.25,3) 6 114 85.9 9.2 0.52
(0.25,4) 3 7.4 133.4 8.9 0.40
(0.25,4) 4 7.9 124.5 104 0.50
(0.25,4) 5 7.9 117.8 10.6 0.59
(0.25,4) 6 7.9 112.0 11.1 0.67
(0.25,4) 7 7.9 106.7 11.7 0.75
(0.25,4) 8 7.9 101.8 12.5 0.81
(0.25,4) 9 7.4 99.1 11.5 0.89
(0.25,4) 10 7.4 95.7 11.9 0.96
(0.35,1) 1 10.9 56.7 2.4 0.06
(0.35,2) 1 8.4 95.8 2.9 0.10
(0.35,2) 2 9.0 86.1 3.1 0.17
(0.35,3) 1 7.5 127.3 3.8 0.13
(0.35,3) 2 10.8 112.1 5.9 0.22
(0.35,3) 4 7.1 93.7 3.7 0.37
(0.5,3) 1 10.0 124.4 3.7 0.12

20
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Table 2: I, Bifurcation Parameter Results

Parameters | 7y, || Min I, %Het
(Gsyns €) (ms) || for NS | (Min I, €)
(0.15,0.05) 5 0.526 15.967
(0.15,0.05) | 2.5 0.799 10.656
(0.15,0.05) 1.4 1.212 5.981
(0.15,0.05) 1 1.558 5.354
(0.25,0.05) 10 2.180 3.461
(0.25,0.05) | 6.7 | 1.901 | 3.722
(0.25,0.05) | 5.7 1.808 3.714
( )
( )
( )
( )
( )
)

0.25,0.05) | 5 | 1.743 5.108
0.25,0.05) | 3.3 | 1.683 5.222
0.25,0.05) | 2.5 | 1.755 3.888
0.25,0.05 1.749 3.818
0.25,0.05) | 1 | 0.937 9.925

(0.5,0.05) | 10 || 3.048 | 2.015
(0.5,0.05) | 7.1 | 2.513 3.266
(0.5,0.05) | 6.7 | 2.436 3.298
(0.5,0.05) | 5 | 2.338 3.378

Note: NS = near-synchronous oscillations. Bifurcation diagrams referring to bold-
faced values are shown in Figure 6A,B.
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Table 3: € Bifurcation Parameter Results

Parameters | 7y, || Max € | Max %Het
(gsyn> 1) | (ms) || for NS | (I, Max e)
(0.152) | 5 | 0.146 | 10.386

(0.152) | 25 | 0.109 |  7.076

(0.15,2) | 1.4 || 0075 |  4.732

(0152) | 1 | o062 | 4757

( )

( )

10 | 0.136 5.971
6.7 | 0.192 7.873
(0.253) | 5.7 | 0273 | 11.568
(0.25,3) | 5 | 0.267 | 12.491
(0.253) | 3.3 | 0.240 | 10.677
( ) | 25 || 0.213 8.833
(0.25,3) 2 || 0.190 8.816
( ) 1 | 0.134 5.957
(0.5,5) 10 || o.111 2.729
(0.55) | 5.7 | 0.191 4.472

Note: NS = near-synchronous oscillations. Bifurcation diagram referring to boldfaced
values is shown in Figure 6C.
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Table 4: Coherence Measure Values for Ten-Cell Network Simulations

Parameters | %Het | No | 0.5 xSD |1 x SD |2 x SD
(Gsyns Lus Tsyn) Noise Noise Noise Noise
(0.25,3,1) = 3 0.935 0.934 0.932 0.926
(0.25,3,1) = 8 0.372 0.366 0.331 0.331
(0.25,3,5) * 3 0.931 0.931 0.928 0.921
(0.25,3,5) * 8 0.769 0.762 0.750 0.681
(0251,1) + | 5 | 0438 0436 | 0.435 | 0.411
(0.25,1,1) = ) 0.958 0.954 0.949 0.935
0.251,1) % | 8 |[0902| 0.895 | 0.671 | 0.436
(0.25,1,1) =x 8 0.906 0.903 0.893 0.800

Initial conditions (ICs)

% - using ICsy: V; = —59.5567 + rand(5.0) where rand() is a random number between 0
and 5 taken from a uniform distribution;

x% - using ICsp: V; = —59.5567.

h;, n; and s; initial values are the same for IC's4 and ICspg and are given in the Methods.
1 refers to the cell number, s = 1 - 10.
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