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Conclusions
Homogeneous Two cell network

∗ Phase model gives reasonable prediction of existence,
stability and basins of attraction of synchronous and
antiphase solutions

Heterogeneous Two cell network

∗ Phase model gives reasonable prediction of existence
of near-synchronous and near-antiphase solutions.

∗ Stability/basin of attraction predictions are accurate
for τsyn small enough.

∗ Phase model cannot predict period doubling bifurca-
tions which cause loss of stability at higher τsyn

Homogeneous n cell network

∗All solution types predicted to occur by phase model
are observed in biophysical model.

∗ Phase model predicts that stability of synchronous so-
lution, antiphase solution (n even or n odd and large)
are determined by two cell network. Results from bio-
physical model are consistent with this.

∗ Phase model gives reasonable prediction of existence
and stability of clusters and of phase difference be-
tween clusters.

Homogeneous n Cell Network
Results from biophysical model

All types of predicted solutions are observed
Solutions other than synchronous and antiphase

only occur for n > 16

Example: n = 7
Only antiphase (4/3) solution occurs.

Comparision of cluster phase difference:
τsyn Predicted φ̄ Observed φ̄

0.2 3.91069 3.88080
0.4 3.91442 3.90873
0.6 3.94507 3.93602
0.8 4.02303 3.99840
1.0 - 4.09466

Example: n = 24
τsyn Solution type Number of solutions
1.0 synchronous solution 2146
1.0 antiphase solution (12/12) 207
1.0 2 clusters (11/13) 423
1.0 2 clusters (10/14) 129
1.0 3 clusters (8/8/8) 1
1.5 synchronized solution 1345
1.5 antiphase solution (12/12) 55
1.5 2 clusters (11/13) 98
2.0 synchronized solutions 1488
2.0 antiphase solution (12/12) 12

Homogeneous n Cell Network
Phase Model

dφi

dt
= fi(φ1, . . . , φn−1)

where φi = θi+1 − θi are the phase differences.

Predictions of phase model
Synchronous solution

Condition for stability exactly the same
as for two cell network

Antiphase solution - n even
Network separates into two clusters of

n
2 neurons each

Within cluster neurons are synchronous.
Phase difference between clusters is π.
Condition for stability exactly the same

as for two cell network

Antiphase solution - n odd
Network separates into two clusters of

n+1
2 neurons and n−1

2 neurons
Within cluster neurons are synchronous.

Phase difference between clusters is φ̄(n, τsyn)
For large n, φ̄ → π and stability condition

approaches that for two cell network.
Existence and Stability

τsyn / n 5 7 9 11 17 25 55 105 155 205
0.5 • • • • • • • • • •
1.0 × × • • • • • • • •
1.5 × × × × • • • • • •
1.7 × × × × × • • • • •
1.9 × × × × × × • • • •
2.0 × × × × × × × • • •
2.1 × × × × × × × × • •
2.2 × × × × × × × × × ×
• = stable, × = unstable or non-existent

Other Symmetric Clusters
Network separates into N clusters of

n/N neurons each.
Many choices of clusters.

Within cluster neurons are synchronous.
Phase difference between clusters is 2π

N
Stable clusters only occur for N = 3, τsyn ≤ 0.7

Other Asymmetric Clusters
Network separates into two clusters of

k neurons and n− k neurons
Within cluster neurons are synchronous.

Phase difference between clusters is φ̄(n, τsyn)
Solutions other than antiphase only occur if n > 15.

Sizes of cell groups with stable solutions vs. n
for τsyn = 1.0

Heterogeneous Two Cell
Network
Phase Model

dφ

dt
= ω2(ε)− ω1(ε)− 2gsynHodd(φ)

where ωi is the frequency of neuron i.
Predictions of Phase Model

Heterogeneity can destroy both near-
synchronous and antiphase oscillations.

Bifurcation plot of φ vs ε for τsyn = 1.0 ms:

ε values where near-synchronous and antiphase
oscillations are lost as a function of τsyn:

Since antiphase solution only persists for small ε,
basins of attraction are basically unchanged.

Results from biophysical model
Bifurcation plot of φ vs ε for τsyn = 1.0 ms:

ε values where near-synchronous and
antiphase oscillations are lost as a function of τsyn:

Basins of attraction in V1, V2 space for
τsyn = 1.0 ms and ε = 0.01:

Comparison of Basins of Attraction
(τsyn = 1)

Homogeneous Two Cell
Network
Phase Model

dφ

dt
= −2gsynHodd(φ)

where φ = θ2 − θ1 is the phase difference.

Predictions of phase model

Stable synchronous solution exists for all τsyn

Stable asynchronous (antiphase) solution exists
for τsyn < 2.3

Size of basins of attraction easily found from
bifurcation diagram

Results from biophysical model

Stable synchronous solution exists for all τsyn

Stable asynchronous (antiphase) solution exists
for τsyn < 2.65

Size of basins of attraction were determined by running
many numerical simulations.

Example: Basins of attraction in V1, V2 space for
τsyn = 1.0 ms:

Initial Conditions: V1, V2 as shown, all other variables 0.
Numerical simluations varying initial conditions for all

variables yielded similar results.

Comparison of Basins of Attraction

Blue line shows cut-off for antiphase solutions at
τ ≈ 2.65. Discrepency likely due to transients.

Phase Model Reduction
F.C. Hoppensteadt and E.M. Izhikevich (1997)

Weakly connected neural networks

If couping strength (gsyn) is small enough, each neu-
ron may be represented by a single phase variable θi.

Effect of coupling is given by interaction function H .

G.B. Ermentrout (2002) Simulating, Analyzing and
Animating Dynamical Systems: A Guide to XPPAUT

for Researchers and Students.

Interaction function can be computed numerically.

Biophysical Neural Model
X.J. Wang and G. Busaki (1996)

J. Neurosci., 16: 6402-6413

dVi

dt
= −gNam

3
∞(Vi)hi(Vi − VNa)− gKn4

i (Vi − VK)

−gL(Vi − VL) + Iµ,i +
gsyn

n− 1
(Vi − Vsyn)

n∑
j=1, j 6=i

sij

dhi

dt
= φ[αh(Vi)(1− hi)− βh(Vi)hi]

dni

dt
= φ[αn(Vi)(1− ni)− βn(Vi)ni]

dsij

dt
= αT (Vj)(1− sij)−

sij

τsyn

m∞(V ) =
αm(V )

αm(V )+βm(V )

αm(V ) = −0.1 V +35
e−0.1(V +35)−1

, βm(V ) = 4e−(V +60)/18

αh(V ) = 0.07e−(V +58)/20, βh(V ) = 1.0
e−0.1(V +28)+1

αn(V ) = −0.01 V +34
e−0.1(V +34)−1

, βn(V ) = 0.125e−(V +44)/80

gNa 35 mS/cm2 VNa 55 mV
gK 9 mS/cm2 VK −90 mV
gL 0.1 mS/cm2 VL −65 mV
φ 5 Iµ 1

gsyn 0.1 mS/cm2 Vsyn −75 mV
α 6.25 ms−1 τsyn 1− 10

Heterogeneity introduced through applied current:
Iµ,1 = Iµ + ε, Iµ,2 = Iµ − ε

Motivation
∗ Phase models have mostly been used to give qualita-

tive predictions about the behaviour of a system. E.g.
What possible oscillation patterns can occur?

∗Many people study phase models in isolation without
making a direct connection to the biophysical model
although this is possible.

∗Our goal - determine of how much quantitative in-
formation can be gained from phase models which
are derived directly from a given biophysical neural
model.
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