

Synchronization, Multistability and Clustering: How Useful are Predictions from Phase Models?

Sue Ann Campbell and Jeff Chadwick

Applied Mathematics, University of Waterloo, Waterloo, ON, Canada

NSERC CRSNG

Motivation

- * Phase models have mostly been used to give *qualita-tive* predictions about the behaviour of a system. E.g. What possible oscillation patterns can occur?
- * Many people study phase models in isolation without making a direct connection to the biophysical model although this is possible.
- * Our goal determine of how much *quantitative* information can be gained from phase models which are derived directly from a given biophysical neural model.

Biophysical Neural Model

X.J. Wang and G. Busaki (1996)

J. Neurosci., 16: 6402-6413

$$\frac{dV_i}{dt} = -g_{Na}m_{\infty}^3(V_i)h_i(V_i - V_{Na}) - g_K n_i^4(V_i - V_K)$$
$$-g_L(V_i - V_L) + I_{\mu,i} + \frac{g_{syn}}{n-1}(V_i - V_{syn}) \sum_{j=1, j \neq i}^n s_{ij}$$

$$\frac{dh_i}{dt} = \phi[\alpha_h(V_i)(1 - h_i) - \beta_h(V_i)h_i]$$

$$\frac{dn_i}{dt} = \phi[\alpha_n(V_i)(1 - n_i) - \beta_n(V_i)n_i]$$

$$\frac{ds_{ij}}{dt} = \alpha T(V_j)(1 - s_{ij}) - \frac{s_{ij}}{\tau_{aven}}$$

$$m_{\infty}(V) = \frac{\alpha_m(V)}{\alpha_m(V) + \beta_m(V)}$$

$$\alpha_m(V) = -0.1 \frac{V + 35}{e^{-0.1(V + 35)} - 1}, \quad \beta_m(V) = 4e^{-(V + 60)/18}$$

$$\alpha_m(V) = -0.7 \frac{(V + 58)/20}{e^{-0.1(V + 58)/20}}, \quad \beta_m(V) = 1.0$$

g_{Na}	35 mS/cm^2	V_{Na}	55 mV
g_K	9 mS/cm ²	V_K	-90 mV
g_L	0.1 mS/cm^2	V_L	-65 mV
ϕ	5	I_{μ}	1
g_{syn}	0.1 mS/cm^2	V_{syn}	-75 mV
α	6.25 ms^{-1}	$ au_{syn} $	1 - 10

Heterogeneity introduced through applied current: $I_{\mu,1} = I_{\mu} + \epsilon, \quad I_{\mu,2} = I_{\mu} - \epsilon$

Phase Model Reduction

F.C. Hoppensteadt and E.M. Izhikevich (1997)

Weakly connected neural networks

If couping strength (g_{syn}) is small enough, each neuron may be represented by a single phase variable θ_i . Effect of coupling is given by interaction function H.

G.B. Ermentrout (2002) Simulating, Analyzing and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students.

Interaction function can be computed numerically.

Homogeneous Two Cell Network

Phase Model

$$\frac{d\phi}{dt} = -2g_{syn}H_{odd}(\phi)$$

where $\phi = \theta_{2} - \theta_{1}$ is the phase difference.

Predictions of phase model

Stable synchronous solution exists for all τ_{syn} Stable asynchronous (antiphase) solution exists for $\tau_{syn} < 2.3$

Size of basins of attraction easily found from bifurcation diagram

Results from biophysical model

Stable synchronous solution exists for all τ_{syn} Stable asynchronous (antiphase) solution exists for $\tau_{syn} < 2.65$

 $\alpha_h(V) = 0.07e^{-(V+58)/20}, \quad \beta_h(V) = \frac{1.0}{e^{-0.1(V+28)}+1}$ Size of basins of attraction were determined by running $\alpha_n(V) = -0.01\frac{V+34}{e^{-0.1(V+34)}-1}, \ \beta_n(V) = 0.125e^{-(V+44)/80}$ Size of basins of attraction were determined by running many numerical simulations.

Example: Basins of attraction in V_1, V_2 space for

Initial Conditions: V_1, V_2 as shown, all other variables 0. Numerical simulations varying initial conditions for all variables yielded similar results.

Comparison of Basins of Attraction

Blue line shows cut-off for antiphase solutions at $\tau \approx 2.65$. Discrepency likely due to transients.

Heterogeneous Two Cell Network

Phase Model

$$\frac{d\phi}{dt} = \omega_2(\epsilon) - \omega_1(\epsilon) - 2g_{syn}H_{odd}(\phi)$$

where ω_i is the frequency of neuron i.

Predictions of Phase Model

Heterogeneity can destroy both nearsynchronous and antiphase oscillations.

 ϵ values where near-synchronous and antiphase oscillations are lost as a function of τ_{syn} :

Since antiphase solution only persists for small ϵ , basins of attraction are basically unchanged.

Results from biophysical model

Bifurcation plot of ϕ vs ϵ for $\tau_{syn}=1.0$ ms:

 ϵ values where near-synchronous and antiphase oscillations are lost as a function of τ_{syn} :

Basins of attraction in V_1, V_2 space for $\tau_{syn} = 1.0$ ms and $\epsilon = 0.01$:

Comparison of Basins of Attraction

Homogeneous n Cell Network

Phase Model

$$\frac{d\phi_i}{dt} = f_i(\phi_1, \dots, \phi_{n-1})$$

where $\phi_i = \theta_{i+1} - \theta_i$ are the phase differences.

Predictions of phase model

Synchronous solution

Condition for stability exactly the same as for two cell network

Antiphase solution - n even

Network separates into two clusters of $\frac{n}{2}$ neurons each Within cluster neurons are synchronous. Phase difference between clusters is π . Condition for stability exactly the same as for two cell network

Antiphase solution - n odd

Network separates into two clusters of $\frac{n+1}{2}$ neurons and $\frac{n-1}{2}$ neurons Within cluster neurons are synchronous. Phase difference between clusters is $\bar{\phi}(n,\tau_{syn})$ For large $n, \bar{\phi} \to \pi$ and stability condition approaches that for two cell network.

Existence and Stability

$ au_{syn}$ / n	5	7	9	11	17	25	55	105	155	205
0.5	•	•	•	•	•	•	•	•	•	•
1.0	×	\times	•	•	•	•	•	•	•	•
1.5	×	\times	\times	×	•	•	•	•	•	•
1.7	×	\times	\times	×	×	•	•	•	•	•
1.9	×	\times	\times	×	×	×	•	•	•	•
2.0	×	×	\times	×	×	×	X	•	•	•
2.1	×	×	\times	×	×	×	X	×	•	•
2.2	×	×	\times	×	×	×	X	×	×	×
\bullet = stable, \times = unstable or non-existent										

Other Symmetric Clusters

Network separates into N clusters of n/N neurons each.

Many choices of clusters.

Within cluster neurons are synchronous.

Phase difference between clusters is $\frac{2\pi}{N}$ Stable clusters only occur for $N=3,\, \tau_{syn}\leq 0.7$

Other Asymmetric Clusters

Network separates into two clusters of k neurons and n-k neurons Within cluster neurons are synchronous. Phase difference between clusters is $\bar{\phi}(n,\tau_{syn})$ Solutions other than antiphase only occur if n>15.

Sizes of cell groups with stable solutions vs. n for $\tau_{sun} = 1.0$

Homogeneous n Cell Network

Results from biophysical model

All types of predicted solutions are observed Solutions other than synchronous and antiphase only occur for n>16

Example: n=7

Only antiphase (4/3) solution occurs. Comparision of cluster phase difference:

comparision of cluster phase differen						
$_{_} au_{syn}$	Predicted $\bar{\phi}$	Observed $ar{\phi}$				
0.2	3.91069	3.88080				
0.4	3.91442	3.90873				
0.6	3.94507	3.93602				
0.8	4.02303	3.99840				
1.0	_	4.09466				
	II .					

Example: n = 24

$ au_{syn}$	Solution type	Number of solutions
1.0	synchronous solution	2146
1.0	antiphase solution (12/12)	207
1.0	2 clusters (11/13)	423
1.0	2 clusters (10/14)	129
1.0	3 clusters (8/8/8)	1
1.5	synchronized solution	1345
1.5	antiphase solution (12/12)	55
1.5	2 clusters (11/13)	98
2.0	synchronized solutions	1488
2.0	antiphase solution (12/12)	12

Conclusions

Homogeneous Two cell network

* Phase model gives reasonable prediction of existence, stability and basins of attraction of synchronous and antiphase solutions

Heterogeneous Two cell network

- * Phase model gives reasonable prediction of existence of near-synchronous and near-antiphase solutions.
- * Stability/basin of attraction predictions are accurate for τ_{syn} small enough.
- * Phase model cannot predict period doubling bifurcations which cause loss of stability at higher τ_{syn}

Homogeneous n cell network

- * All solution types predicted to occur by phase model are observed in biophysical model.
- * Phase model predicts that stability of synchronous solution, antiphase solution (n even or n odd and large) are determined by two cell network. Results from biophysical model are consistent with this.
- * Phase model gives reasonable prediction of existence and stability of clusters and of phase difference between clusters.