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PHASE MODELS AND OSCILLATORS WITH TIME DELAYED

COUPLING

Abstract. We consider two identical oscillators with time delayed coupling,
modelled by a system of delay differential equations. We reduce the system of
delay differential equations to a phase model where the time delay enters as a
phase shift. By analyzing the phase model, we show how the time delay affects
the stability of phase-locked periodic solutions and causes stability switching
of in-phase and anti-phase solutions as the delay is increased. In particular,
we show how the phase model can predict when the phase-flip bifurcation will
occur in the original delay differential equation model. The results of the phase
model analysis are applied to pairs of Morris-Lecar oscillators with diffusive or
synaptic coupling and compared with numerical studies of the full system of
delay differential equations.

1. Introduction. Coupled oscillators occur as models for many systems including
neural networks [1, 2], laser arrays [3, 4], flashing of fireflies [5], cardiac pacemaker
cells [6] and even movement of a slime mold [7]. A fundamental question about
these systems is whether the elements will phase-lock, i.e., oscillate with some fixed
phase difference, and how the strength of the coupling and other parameters in the
model affect the answer to this question. In some systems, it is of particular interest
whether the elements synchronize, i.e., phase-lock with zero phase difference. In
many systems there are time delays in the connections between the oscillators due
to the time for a signal to propagate from one element to the other. For example,
in neural networks there is a delay due to conduction of electrical activity along an
axon or a dendrite [8, 9]. This then adds the question of how the length of the time
delay affects the phase-locking behaviour of the system.

The starting point of any study of coupled oscillators is usually to consider two
reciprocally connected oscillators. One of the first observations in such models is
that two fundamental phase-locked solutions may exist, the in-phase or synchro-
nous solution (zero phase difference) and the anti-phase solution in which the two
elements are one half period out of phase. Equivariant bifurcation theory has been
used to study the existence of these two solutions for particular classes of oscillators
[10, 11], however, proving stability is more difficult and is often model dependent.
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Figure 1. Defining the phase of an oscillator.

Below we review some of the literature on the stability of these two phase locked
solutions, both as shown in models and observed in experiments.

Prasad et al. [12, 13] have done extensive studies of systems with delayed diffusive
coupling:

ẋ1(t) = F1(x1(t)) + ǫg[x2(t− τ),x1(t)]
ẋ2(t) = F2(x2(t)) + ǫg[x1(t− τ),x2(t)],

(1)

in the case that oscillators are identical, F1 = F2, or nearly identical. Using nu-
merical simulations and analysis of Lypaunov exponents, they have characterized
the phase-flip bifurcation: at a critical value of the delay the system switches from
a stable in-phase state to a stable anti-phase state (or vice versa). This switch
of stability is associated with a discrete change in the frequency of oscillation of
the system. This bifurcation has also been documented in experimental systems
[12, 14]. Transitions from in-phase to anti-phase oscillations have also been ob-
served in human bimanual coordination experiments [15, 16, 17, 18], and in models
of these experiments incorporating time delayed coupling [19].

Other studies show more complex transitions between in-phase and anti-phase
solutions as the delay is varied. Intervals of values of τ where the two phase-
locked states are both stable or regions where neither are stable, but other stable
phase-locked solutions exist have also been found numerically and analytically using
perturbation theory techniques [20, 21]. In slime mold experiments [7] regions of
quasiperiodicity were observed between regions where the in-phase and anti-phase
solutions are stable.

The references above primarily consider systems where the elements are inher-
ently oscillatory, i.e., if the coupling is removed the elements still oscillate. Studies
of systems where the elements are not inherently oscillatory (for example, excitable
neural models) have also been done [22, 23, 24, 25, 26]. In these models it is often
observed that there are regions where the system does not oscillate (i.e., regions of
oscillator death) in between regions of stable in-phase and anti-phase solutions.

For systems with no time delay, phase models have been used to study phase
locking, starting with the work of Kuramoto [27, 28]. A phase model represents
each oscillator with a single variable as shown in Figure 1. For identical oscillators
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and identical coupling the form of the model is

dθ1
dt

= Ω+H(θ2 − θ1)

dθ2
dt

= Ω+H(θ1 − θ2)

where Ω = 2π/T is the angular frequency of the oscillators when uncoupled and H ,
the interaction function, represents the effect of the coupling. As we shall review
in the next section, if the coupling is sufficiently weak, then a phase model repre-
sentation of a system can be derived from a larger differential equation model. The
literature on phase models falls into two types. Some studies focus on the analysis
of general properties of phase models, given some assumptions on the interaction
function, H , without linking the phase model to a particular differential equation
model for the oscillator. For example see [5, 29, 30]. Other studies focus on deriving
the phase model for a particular model or class of models and then determining the
properties of the phase model. This latter approach has proved useful in studying
synchronization properties of many different neural models [1, 8, 10, 31, 32, 33, 34].
Since the phase model can be linked to experimentally derived phase resetting curves
[9], this approach has also been used to make predictions about synchronization
properties of experimental preparations [33].

Initial studies of phase models for systems with delayed coupling considered
models where the delay occurs in the argument of one of the phases [35, 36, 37, 38,
39]. For two oscillators this model is of the form:

dθ1
dt

= Ω +H(θ1(t)− θ2(t− τ))

dθ2
dt

= Ω +H(θ2(t)− θ1(t− τ))

. (2)

However, it has been shown [9, 40, 41] that for small enough time delays it is
more appropriate to include the time delay as phase shift in the argument of the
coupling function. Crook et al. [8] use this type of model to study a continuum of
cortical oscillators with spatially decaying coupling and axonal delay. They show
that for small delay the synchronous oscillation is stable, but for large enough
delay the system undergoes a bifurcation where the synchronous oscillations lose
stability and a travelling wave phase-locked solution becomes stable. Bressloff and
Coombes [10, 42] study phase locking in chains and rings of pulse-coupled neurons
with distributed delays and show that distributed delays result in phase models with
a distribution of phase shifts. They consider phase models derived from integrate
and fire neurons and the Kuramoto phase model, H(φ) = sin(φ). For the Kuramoto
model in a ring configuration with excitatory coupling and several different types
of delays, they show that the synchronous solution is stable for sufficiently small
delay but loses stability as the delay is increased while a phase-locked travelling
wave solution becomes stable. For the Kuramoto model with discrete delays they
show that the stability of the synchronous solution periodically switches between
stability and instability.
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Following [9, 40, 41] the appropriate phase model for two oscillators with recip-
rocal time delayed coupling, with sufficiently small coupling and delay, is

dθ1
dt

= Ω+H(θ1 − θ2 − Ωτ)

dθ2
dt

= Ω+H(θ2 − θ1 − Ωτ)

.

Despite its simplicity, very little general work has been done on the effect of delay
in this model. Thus, this is the focus of this paper. In the next section we briefly
recall the steps involved in deriving this model and then obtain some results for a
general interaction function, H . In the following section we consider some specific
oscillators, derive the appropriate H function for them and apply the results of
section 2. We then compare the phase model predictions with numerical studies of
the corresponding delay differential equation model. Finally, in section 4 we discuss
our results and draw conclusions.

2. Phase Model. Consider the system of ODEs

dX

dt
= F(X(t)). (3)

Assume that the system admits an exponentially asymptotically stable periodic
orbit given by X = X̂(t), 0 ≤ t ≤ T = 2π/Ω. Linearizing (3) about the periodic
orbit gives the periodic system

dX

dt
= DF(X̂(t))X.

The system adjoint to this is

dZ

dt
= −[DF(X̂(t))]TZ. (4)

Let Z = Ẑ(t), 0 ≤ t ≤ T be the unique periodic solution of (4) satisfying the
normalization condition

1

T

∫ T

0

Ẑ(t) · F(X̂(t)) dt = 1.

Next, consider a system of two identical coupled oscillators of the form (3):

dX1

dt
= F(X1(t)) + ǫG(X1(t),X2(t), ǫ)

dX2

dt
= F(X2(t)) + ǫG(X2(t),X1(t), ǫ)

(5)

Assuming that ǫ is sufficiently small, one can apply weakly coupled oscillator theory
[43, 44, 45, 46] to show that the phases of the oscillators of (5) satisfy

dθ1
dt

= Ω+ ǫH(θ2 − θ1) +O(ǫ2)

dθ2
dt

= Ω+ ǫH(θ1 − θ2) +O(ǫ2)

(6)

where the interaction function, H , is given by

H(θ2 − θ1) =
1

T

∫ T

0

Ẑ(t)G[X̂(t), X̂(t+ (θ2 − θ1)/Ω)] dt, (7)

with Ẑ, X̂ as defined above. Note that H is a 2π−periodic function of its argument.
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Now consider system (5) with time delayed coupling:

dX1

dt
= F(X1(t)) + ǫG(X1(t),X2(t− τ), ǫ)

dX2

dt
= F(X2(t)) + ǫG(X2(t),X1(t− τ), ǫ)

. (8)

This model includes the systems with delayed diffusive coupling, e.g., equation (1),
as well as neural models with synaptic coupling and conduction delays.

Ermentrout [9, 40] has shown that the time delay enters as a phase shift in the
coupling function. That is, using weakly coupled oscillator theory, the phases of the
oscillators of (8) satisfy

dθ1
dt

= Ω+ ǫH(θ2 − θ1 − Ωτ) +O(ǫ2)

dθ2
dt

= Ω+ ǫH(θ1 − θ2 − Ωτ) +O(ǫ2)

. (9)

Izhikevich [41] refined this analysis, to show that (9) holds so long as Ωτ = O(1)
with respect to the small parameter ǫ, but if Ωτ is large enough, i.e., Ωτ = O(1/ǫ)
then (2) is the appropriate model. Introducing the phase difference φ = θ2− θ1 and
dropping the terms that are higher order in ǫ, we obtain the phase model we will
study:

dφ

dt
= −2ǫ[H(φ− Ωτ)−H(−φ− Ωτ)]

def
= −2ǫHτ (φ). (10)

Now the equilibrium points of (10) are given by φ∗ such that Hτ (φ
∗) = 0. Note

that Hτ is a 2π periodic and odd function of φ, thus we need only consider the
equilibrium points in [0, 2π). Further, the following computation shows that Hτ is
a T−periodic function of τ :

Hτ+T (φ) = H(φ− Ω(τ + T ))−H(−φ− Ω(τ + T ))

= H(φ− Ωτ − 2π)−H(−φ− Ωτ − 2π)

= Hτ (φ).

This leads to the following.

Proposition 1 (Existence of Equilibrium Points).
For any interaction function H and any values of Ω and τ , the phase model (10)
has the equilibrium points φ∗ = 0 and φ∗ = π. If 0 < φ∗ < π is an equilibrium point
of (10) then so is 2π − φ∗, i.e., equilibrium points come in pairs, with one in (0, π)
and one in (π, 2π). If φ∗ is an equilibrium point of (10) at delay τ , then it is an
equilibrium point at delays τ + kT, k ∈ ZZ.

Proof. Since Hτ is an odd, 2π−periodic function of φ, it follows that

Hτ (0) = −Hτ (0) ⇒ Hτ (0) = 0

and

Hτ (π) = Hτ (π − 2π) = Hτ (−π) = −Hτ (π) ⇒ Hτ (π) = 0.

Thus 0 and π are equilibrium points of (10).
Further, if φ∗ is equilibrium point of (10) then

Hτ (φ
∗) = 0 ⇒ Hτ (2π − φ∗) = Hτ (−φ∗) = 0.

Thus 2π − φ∗ is an equilibrium point of (10).
The last result follows from the periodicity of Hτ with respect to τ .
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Since φ∗ = 0 corresponds to the synchronous or in-phase phase-locked solution
of the original model (8), we will refer to it as the in-phase equilibrium point.
Similarly, we will refer to φ∗ = π as the anti-phase equilibrium point.

Let us now consider the stability of an equilibrium point φ∗ of (10). The linear
(local) stability of φ∗ is determined by the sign of H ′

τ (φ
∗). If H ′

τ (φ
∗) > 0 then

the equilibrium point is asymptotically stable and if H ′

τ (φ
∗) < 0 it is unstable. If

H ′

τ (φ
∗) = 0, the stability is not determined by the linearization. Now

H ′

τ (φ) = H ′(φ− Ωτ) +H ′(−φ− Ωτ), (11)

thus the stability of the equilibrium points will, in general, depend on H , Ω and τ .
In particular, there are simple formulas that determine the stability of the in-phase
and anti-phase equilibrium points:

H ′

τ (0) = 2H ′(−Ωτ) and H ′

τ (π) = 2H ′(π − Ωτ). (12)

We can now establish the following.

Proposition 2 (Stability of Equilibrium Points).
For any interaction function H we have the following.

1. The equilibrium points φ∗ and 2π − φ∗ have the same stability.
2. The stability of the in-phase equilibrium point at delay τ is the same as that

of the anti-phase equilibrium point at delay τ + T/2.
3. If an equilibrium point φ∗ undergoes a delay induced change of stability at

τ = τc, then it will have a countable number of stability switches in τ > 0.
4. The in-phase and anti-phase equilibrium points have a countable number of

stability switches in τ > 0.

Proof. The first result follows from the fact that H ′

τ (φ), as defined by (11), is a
2π−periodic function of φ.

The second result follows from the following computation

H ′

τ+T/2(π) = H ′(π − Ω(τ + T/2)) +H ′(−π − Ω(τ + T/2))

= H ′(π − Ωτ − π) +H ′(−π − Ωτ − π)

= 2H ′(−Ωτ)

= H ′

τ (0).

Since H ′

τ is a T−periodic function of τ , if the stability of an equilibrium point φ∗

changes, say, from stable to unstable, at some value τ = τc then it will have the same
change of stability at τ = τc+kT, k = 1, 2, . . .. Since H ′

τ is a continuous function of
τ it follows that the equilibrium point must change stability from unstable to stable
at least once in each interval (τc + (k − 1)T, τc + kT ). The third result follows.

Since H(φ) is a 2π−periodic function it must have at least one maximum and
one minimum in [0, 2π). Let φmax and φmin be the values of φ where these occur.
Then H ′(φmax) = 0 = H ′(φmin) and consideration of the sign of H ′(φ) near φmax

and φmin shows that the stability of the in-phase equilibrium point changes from
stable to unstable at τ = T (1 − φmin/(2π)) and from unstable to stable at τ =
T (1− φmax/(2π)). Result 3 then implies that the in-phase equilibrium point has a
countable number of stability switches in τ > 0. Result 2 then gives the result for
the anti-phase equilibrium point.
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It follows from the proof above that the in-phase equilibrium points will switch
from stable to unstable when

τ = T (k + 1−
φmin

2π
), k = 0, 1, . . .

and from unstable to stable when

τ = T (k + 1−
φmax

2π
), k = 0, 1, . . .

where φmin and φmax are values where H(φ) has a minimum and maximum, re-
spectively. Similarly, the anti-phase equilibrium points will switch from stable to
unstable when

τ = T (k + 1/2−
φmin

2π
), k = 0, 1, . . .

and from unstable to stable when

τ = T (k + 1/2−
φmax

2π
), k = 0, 1, . . .

Thus there will be intervals of τ where the in-phase equilibrium point is stable
interleaved with intervals where the anti-phase equilibrium point is stable. The
exact nature of the interleaving will depend on the relationship between φmin, φmax

and T , however, we can determine conditions for a phase-flip bifurcation to occur.
Since this bifurcation corresponds to the simultaneous changing of the stability of
the in-phase and anti-phase equilibrium points, a simple calculation shows that it
will occur if

φmax − φmin = ±π.

In applying phase model reduction above to a particular model one can usually
only calculate the interaction function H , i.e., evaluate eq. (7), numerically. Thus,
to study the system with delayed coupling, one needs a way to represent Hτ . One
way to do this is using the Fourier modes of H which can easily be computed
from the numerical representation of H . Writing H in terms of its Fourier series
expansion

H(φ) = a0 +

∞
∑

n=1

[an cos(nφ) + bn sin(nφ)], (13)

Hτ can be expressed as

Hτ (φ) =

∞
∑

n=1

cn(τ) sin(nφ), (14)

where
cn(τ) = bn cos(nΩτ) + an sin(nΩτ)

= rn sin(nΩτ − δn)
(15)

with

rn =
√

a2n + b2n and δn = arctan

(

−bn
an

)

.

Note that when τ = 0 we have

Hτ (φ) =

∞
∑

n=1

bn sin(nφ),

i.e., Hτ is the odd part of H , as expected [45]. However, for τ > 0 Hτ depends on
both the odd and even parts of H .
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The Fourier approach is useful since we can usually approximate H , and hence
Hτ , by a finite number of Fourier modes. Thus we can get approximate analytic
expression for the phase model:

dφ

dt
= −2ǫ

N
∑

n=1

cn(τ) sin(nφ) (16)

which may be amenable to analysis if the number of modes in the approximation,
N , is not too large.

In many papers, H is assumed to be represented by the first set of Fourier modes.
The following proposition gives some exact results in this case.

Proposition 3. If the interaction function H can be represented by the first set of
Fourier modes, i.e.,

H(φ) = a0 + a1 cos(φ) + b1 sin(φ) (17)

then we have the following

1. The only equilibrium points of (10) are the in-phase and anti-phase ones, i.e.,
φ∗ = 0, π.

2. These equilibrium points have opposite stability, i.e., when the in-phase equi-
librium point is asymptotically stable then the anti-phase one is unstable and
vice versa.

3. As τ is increased, these equilibrium points will switch stability periodically at
the values

τ = T

[

1

2π
arctan

(

−b1
a1

)

+
k

2

]

, k = 0, 1, 2, . . . . (18)

4. At the switching points, the frequencies of the corresponding in-phase and
anti-phase phase-locked oscillations will differ by the amount 2

√

a21 + b21.

Proof. If H satisfies (17), then the phase model (10) becomes

dφ

dt
= −2ǫc1(τ) sin(φ) = −2ǫHτ(φ) (19)

Clearly Hτ (φ) has only two zeros in [0, 2π): φ = 0 and φ = π which gives the first
result. Further, H ′

τ (0) = c1(τ) = −H ′

τ (π) which gives the second result. Setting
c1(τ) equal to zero and solving for τ gives the third result.

Now from equation (9), on a phase-locked solution with phase difference φ∗ the
frequencies of the two oscillators will be

Ω∗ = Ω +H(φ∗ − Ωτ). (20)

Evaluating this for φ∗ = 0 and π at the bifurcation points defined by (18) gives

Ω0 = Ω+ a0 ∓
√

a21 + b21, Ωπ = Ω+ a0 ±
√

a21 + b21.

The fourth result follows.

The previous proposition proves that the phase-flip bifurcation occurs in system
(8), if the coupling is sufficiently weak and the interaction function satisfies (17),
and gives a formula for the frequency jump at the bifurcation. This bifurcation
is degenerate since two equilibrium points change stability simultaneously. The
degeneracy is easily seen in the phase model (19) since at the bifurcation point
Hτ ≡ 0. One should not expect to see such a bifurcation generically. Equivalently,
for a generic oscillator, it should not be expected that the Fourier expansion of H
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would only have the first modes. (For example, in the model of [8] they use five
modes to get a good representation of H .) However, if the coefficients of the higher
Fourier modes are small enough that H is close to (17) then one might still expect
to see something similar to a phase-flip bifurcation where the change of stability
of the in-phase and anti-phase solutions occur close together but not at the same
value of the delay. We will see examples of this in the next section.

3. Example: Morris-Lecar oscillators. In this section we take the ideas of
the previous section and apply them to a particular example: a system of two
Morris-Lecar oscillators with time delayed coupling. The Morris-Lecar model was
introduced to study the oscillations in barnacle muscle fibre [47]. It is a useful model
since it is two dimensional and exhibits excitability and oscillations with variables
that can be directly linked to physiological variables.

We use the dimensionless formulation of the Morris-Lecar model due to Rinzel
and Ermentrout [48]:

v′ = −gCam∞(v)(v − 1)− gK w (v − vK)− gL (v − vL) + i
def
= f(v, w)

w′ = φλ(v) (w − w∞(v))

(21)

where m∞(v) =
1

2
(1 + tanh((v − ν1)/ν2))

w∞(v) =
1

2
(1 + tanh((v − ν3)/ν4))

λ(v) = cosh((v − ν3)/(2ν4))

Detailed studies of this system have been made showing it can exhibit a variety
of behaviour [49]. In our study we consider two sets of parameter values, given
in Table 1, for which the system has a unique, exponentially asymptotically stable
limit cycle. The limit cycles are created by different bifurcations as we now describe.
For the parameter values as in Table 1 and gCa = 1 the system has a stable limit

Table 1. Values of parameters used in the Morris-Lecar model.

Values of parameters which are the same for both parameter sets
Parameter Name Value
vCa Calcium equilibrium potential 1
vK Potassium equilibrium potential -0.7
vL Leak equilibrium potential -0.5
gK Potassium ionic conductance 2
gL Leak ionic conductance 0.5
φ Potassium rate constant 1

3
v1 Calcium activation potential -0.01
v2 Calcium reciprocal slope 0.15
v3 Potassium activation potential 0.1
v4 Potassium reciprocal slope 0.145

Values of parameters that differ for set I and set II
Parameter Name Set I value Set II value
gCa Calcium ionic conductance 1 0.5
i Applied current 0.09 0.15

cycle that is created by a saddle node on an invariant circle (SNIC) bifurcation at
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Figure 2. (a) Two parameter bifurcation diagram for the Morris-
Lecar model (21). Stable limit cycles exist in the region bounded
by the saddle node, supercritical Hopf and fold of limit cycles bifur-
cations. The parameter sets I and II as given in Table 1 are marked
with *’s. (b) Limit cycle for parameter set I. (c) Limit cycle for
parameter set II. Solid line corresponds to v, dashed to w.

i ≈ 0.08326 and lost in a fold of limit cycles at i ≈ 0.2419. See Figure 2(a). For
gCa = 1, i = 0.09, the system has a unique stable limit cycle with period T ≈ 23.87,
as shown in Figure 2(b). For the parameter values as in Table 1 and gCa = 0.5,
the system has a stable limit cycle it is created in a supercritical Hopf bifurcation
at i ≈ 0.1377 and lost in another supercritical Hopf bifurcation at i ≈ 0.3044. See
Figure 2(a). For gCa = 0.5 and i = 0.15 the system has a unique stable limit
cycle with period T = 13.81, as shown in Figure 2(c). Note that the limit cycle
corresponding to parameter set I has a relaxation oscillator shape, where as the
oscillation corresponding to parameter set II is more sinusoidal in shape.

3.1. Diffusive Coupling. Now consider two identical Morris-Lecar oscillators with
time delayed diffusive coupling of the form considered in [12, 13, 22, 23, 50]. This
leads to the following system of delay differential equations:

v′1(t) = f(v1(t), w1(t)) + ǫ(v2(t− τ) − v1(t))
w′

1(t) = φλ(v1(t)) (w1(t)− w∞(v1(t)))
v′2(t) = f(v2(t), w2(t)) + ǫ(v1(t− τ) − v2(t))
w′

2(t) = φλ(v2(t)) (w2(t)− w∞(v2(t)))

(22)

We used the software XPPAUT [51] to calculate the interaction functions, H ,
for this model with τ = 0 and to find the first 10 terms in the Fourier series
approximation forH . Figure 3 shows the interaction functions, H , together with the
approximations using one and four Fourier modes. Clearly one mode is not enough
to capture the full shape of H , however, the approximation with four modes is
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Figure 3. Interaction functions for Morris-Lecar model (22) with
parameter sets as given in Table 1, together with the approxima-
tions using 1 and 4 terms of Fourier Series.

Table 2. Fourier coefficients of the interaction function for the
Morris-Lecar model (22).

Parameter set I Parameter set II
j aj bj aj bj
0 2.915252 0 0.6271561 0
1 -2.684797 4.908449 -0.5209326 1.595618
2 -0.3278022 -0.7020183 -0.08538575 -0.04727176
3 0.05596774 -0.09934668 -0.005648281 -0.00301241
4 0.0351635 -0.01104474 -0.0002642404 -0.002760313

indistinguishable. This can be explained by consideration of the Fourier coefficients
in Table 2.

Now, using the results discussed in the previous section, we can make some
predictions about the behaviour of the phase model for this system. Recall that
any zero, φ∗, of Hτ corresponds to an equilibrium point of the phase model and
that this solution will be asymptotically stable (unstable) if H ′

τ (φ
∗) > 0 (< 0). To

begin, consider the in-phase and anti-phase equilibrium points, i.e., φ∗ = 0 and π,
which are guaranteed to exist. From equation (12) and Figure 3 it is clear that
for both parameter sets the in-phase equilibrium point will be stable at τ = 0
while the anti-phase equilibrium point will be unstable. Further, by estimating the
maximum and minimum points of H from Figure 3 one could use the formulas given
after Proposition 2 to predict where the changes of stability for these equilibrium
points occur. More accurate information is obtained by studying the zeros of Hτ

numerically. We have done this in XPPAUT [51], using the first four terms of the
Fourier series for H . The results are shown in Figure 4. We find that behaviour
is quite similar to that predicted by Proposition 3: the equilibrium points switch
stability periodically in τ and the stability of the in-phase and anti-phase equilibrium
points are almost always the opposite of each other. Using the values for the period
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Figure 4. Numerical bifurcation diagram with respect to τ for
the phase model (16) with N = 4 corresponding to the Morris-
Lecar model (22). Thick/thin lines correspond to stable/unstable
equilibrium points. The period is T ≈ 23.87 for parameter set I
and T ≈ 13.81 for parameter set II.

and the Fourier coefficients, we can evaluate the switching points given by (18):

Parameter set I: τ ≈ 4.07 + 11.94k,
Parameter set II: τ ≈ 2.76 + 6.91k,

k = 0, 1, . . .

which are close to the values seen in Figure 4.
Closer examination of Figure 4 shows that the stabilities of the in-phase and anti-

phase equilibrium points do not switch at exactly the same value of τ . For parameter
set I, there are small intervals of τ where both equilibrium points are stable and, for
parameter set II, there are small intervals where they are both unstable. To clarify
the behaviour near these points, we show the bifurcation diagrams zoomed close
to one switching point in Figure 5. In both cases, we see that the transition from
stable in-phase equilibrium point to stable anti-phase equilibrium point involves
two pitchfork bifurcations and one saddle node bifurcation. The difference between
the two cases occurs due to the relative ordering of the pitchfork bifurcations. For
parameter set I the pitchfork bifurcation stabilizing the anti-phase equilibrium point
occurs before the pitchfork bifurcation destabilizing the in-phase equilibrium point.
For parameter set II the ordering is the opposite. As expected from the analysis of
the previous section, the identical sequence, with the roles of the in-phase and anti-
phase equilibrium points reversed, occurs for τ one half period later and the whole
bifurcation structure repeats periodically in τ with period T . We note that we must
include enough terms in the Fourier series to resolve the bifurcation structure. For
both parameter sets, if fewer than three modes are used then the present bifurcation
diagram changes drastically. For three or more modes, the structure is the same,
the additional modes only slightly modify the bifurcation points.

3.1.1. Comparison with the full model. We performed numerical simulations on the
full system of delay differential equations (22) using the package XPPAUT. The
parameter values used are as given in Table 1, with various values of τ and ǫ. The
initial conditions used were of the form

(v1(t), w1(t), v2(t), w2(t)) = (v10, w10, v20, w20) − τ ≤ t ≤ 0. (23)
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Figure 5. Close up of the numerical bifurcation diagrams of Fig-
ure 4. Thick/thin lines correspond to stable/unstable equilibrium
points.
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Figure 6. Numerical simulations of the full Morris-Lecar model
(22). (a) Coexistence of in-phase and anti-phase periodic solutions.
Initial conditions were of the form (23) with (v10, w10, v20, w20) =
(0.2, 0.01, 0, 0.01) and (0.2, 0.01,−0.35,−0.01). (b) Phase locked
solution. Initial condition was of the form (23) with
(v10, w10, v20, w20) = (0.2, 0.01,−0.2,−0.01). See Table 1 for pa-
rameter values.

Some example simulations are shown in Figure 6. For parameter set I with τ =
4.2 and ǫ = 0.05 we observed the coexistence of stable in-phase and anti-phase
periodic solutions. For parameter set II with τ = 2.75 and ǫ = 0.001, we observed
the existence of a stable phase-locked solution which is neither in-phase nor anti-
phase. These simulations agree with the prediction of the phase model, as shown
in Figure 5.

To make a more comprehensive comparison between the predictions of the phase
model and the behaviour of the full model (22) we use the numerical continuation
software DDE-BIFTOOL [52]. Using this software, we were able to follow the in-
phase and anti-phase period solutions of (22) and calculate their stability as τ is
increased. The results for several values of ǫ are shown in Figure 7. The switching
points for both parameter sets are summarized in Table 3. For ǫ = 0.001 the
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(c) Parameter set I, ǫ = 0.01
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(d) Parameter set II, ǫ = 0.01

0 5 10 15 20 25 30 35 40 45 50

−0.1

0

0.1

0.2

0.3

0.4

0.5

τ

m
ax

(v
1+

v 2)

(e) Parameter set I, ǫ = 0.1
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Figure 7. Results from numerical continuation study of in-phase
and anti-phase periodic solutions in the Morris-Lecar model (22)
with parameter values as given in Table 1 and ǫ as shown. The
amplitude of the periodic solutions (represented as max(v1(t) +
v2(t)), 0 ≤ t ≤ T ) is plotted vs the time delay, τ . In all cases,
the upper curve corresponds to the in-phase solution and the lower
curve and the anti-phase solution. Filled/open circles denote sta-
ble/unstable solutions.
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Table 3. Values of τ where changes of stability occur. Four
Fourier modes are used in the phase model.

Solution Phase Model Full Model
ǫ = 0.001 ǫ = 0.01

Parameter Set I
In-phase 4.47 4.64 4.89

16.08 15.94 14.75
28.36 28.54 29.21
39.97 39.59 36.40

Anti-phase 4.15 4.09 3.84
16.41 16.59 17.06
28.02 27.74 25.67
40.28 40.54 41.60

Parameter Set II
In-phase 2.74 2.85 2.94

9.71 9.55 9.39
16.55 16.65 16.84
23.52 23.35 22.89
30.36 30.45 30.79
37.33 37.15 36.25
44.18 44.35 44.75

Anti-phase 2.81 2.65 2.65
9.64 9.75 9.85
16.62 16.45 16.15
23.45 23.55 23.85
30.43 30.25 29.65
37.26 37.45 37.75
44.25 44.05 43.15

agreement with the predictions of the phase model is excellent, but as ǫ is increased
the agreement becomes less good. By ǫ = 0.1 it is clear that the phase model is no
longer appropriate. For this value of ǫ we see significant variation in the amplitude
of the limit cycle with τ and coexistence of multiple, stable in-phase and anti-phase
periodic solutions.

3.2. Synaptic coupling. We now consider the same model as above but with the
diffusive coupling replaced by synaptic coupling:

v′1(t) = f(v1(t), w1(t)) + ǫs(v2(t− τ))(v1(t)− Esyn)
w′

1(t) = φλ(v1(t)) (w1(t)− w∞(v1(t)))
v′2(t) = f(v2(t), w2(t)) + ǫs(v1(t− τ))(v2(t)− Esyn)
w′

2(t) = φλ(v2(t)) (w2(t)− w∞(v2(t)))

(24)

where

s(v) = 0.5 (1 + tanh(10v))

and ǫ is the maximal synaptic strength. This model falls into our general framework
(8), thus the predictions of section 2 should apply for ǫ sufficiently small.
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Figure 8. Numerical bifurcation diagram with respect to τ for the
phase model (16) corresponding to the Morris-Lecar model (24).
Thick/thin lines correspond to stable/unstable equilibrium points.
Four terms of the Fourier series for H are used for parameter set I,
seven for parameter set II. The period is T ≈ 23.87 for parameter
set I and T ≈ 13.81 for parameter set II.

Computing the interaction function and its Fourier series as before, we found
bifurcation diagrams for the (approximate) phase model (16) as shown in Fig-
ure 8. The bifurcation sequence here is similar to that observed with diffusive
coupling, with some slight differences. In particular, the ordering of the bifurcations
is changed. In this case parameter set I has intervals of τ where neither in-phase
nor anti-phase solutions are stable, while for parameter set II there are intervals
where both are stable. Also, changes of stability for the in-phase and anti-phase
solutions are further apart and the initial instability (where the in-phase oscillation
loses stability) occurs for a smaller value of τ . For comparison, numerical continua-
tion studies of the full delay differential equation model (24) are shown in Figure 9.
Once again, the phase model represents the full system well for ǫ sufficiently small,
but loses validity for larger ǫ. The phase model seems to be a better match for
ǫ = 0.01 with synaptic coupling than with diffusive coupling.

4. Conclusions. In this paper we studied a phase model for two coupled identical
oscillators with delayed connections. For any interaction function, H , we showed
that as the delay is increased, a countable number of stability switches of the in-
phase and anti-phase solutions must occur. These stability switches occur periodi-
cally in τ with period equal to the intrinsic period of the uncoupled oscillator. We
proved that the phase-flip bifurcation, i.e., the in-phase and anti-phase oscillations
switch stability at the same value of τ , occurs if the coupling is sufficiently weak
and the interaction function is simple, i.e., H(φ) ≈ a0 + a1 cos(φ) + b1 sin(φ). We
also gave a formula for the frequency jump at the phase-flip bifurcation in terms of
the coefficients a1 and b1. We conjectured that for an oscillator with H close to this
ideal form, i.e., the coefficients of the higher Fourier modes are small, then a “near
phase-flip” bifurcation would occur where the change of stability of the in-phase
and anti-phase solutions occur close together but not at exactly the same value of
the delay.

As an example we considered a pair of Morris-Lecar oscillators with delayed
diffusive or synaptic coupling. We considered two sets of parameter values. For the
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(b) Parameter set II, ǫ = 0.001
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(c) Parameter set I, ǫ = 0.01
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(d) Parameter set II, ǫ = 0.01

0 5 10 15 20 25 30 35 40 45 50

−0.1

0

0.1

0.2

0.3

0.4

0.5

τ

m
ax

(v
1+

v 2)

(e) Parameter set I, ǫ = 0.1
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Figure 9. Results from numerical continuation study of in-phase
and anti-phase periodic solutions in the Morris-Lecar model (24)
with parameter values as given in Table 1 and ǫ as shown. The
amplitude of the periodic solutions (represented as max(v1(t) +
v2(t)), 0 ≤ t ≤ T ) is plotted vs the time delay, τ . In all cases,
the upper curve corresponds to the in-phase solution and the lower
curve and the anti-phase solution. Filled/open circles denote sta-
ble/unstable periodic orbits.
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first set, the uncoupled system was close to a SNIC bifurcation and the resulting
oscillations were high amplitude with a relaxation oscillator shape. For the second
set, the uncoupled system was close to a super-critical Hopf bifurcation and thus
the oscillations were lower amplitude and more sinusoidal in shape.

For the model with diffusive coupling we did see “near” phase-flip bifurcations
and showed that between the switches of stability of the in-phase and anti-phase
solutions there are a number of secondary bifurcations involving phase-locked os-
cillations with phase shifts between 0 and π. The exact sequence of bifurcations
depended on the particular oscillators present, but involved both pitchfork bifur-
cations and saddle node bifurcations. For the model with synaptic coupling, the
switches of stability of the in-phase and anti-phase solutions occurred further apart,
although the sequence of bifurcations between them was similar to that seen with
diffusive coupling. Numerical continuation studies of the full delay differential equa-
tion models verified that predictions of the phase model were valid for sufficiently
small coupling.

The results should also apply to other oscillators. To test this, we considered the
Van der Pol-Fitzhugh-Nagumo with diffusive coupling studied by Prasad et al. [12].
In numerical studies of this model, Prasad et al. [12] observe a phase-flip bifurcation,
where the in-phase solution loses stability and the anti-phase gains stability, at a
particular value of the delay. At this point they observe the angular frequency
jumps from ∼ 3.5 to ∼ 4. (See [12, Fig. 3]). We calculated the appropriate phase
model interaction function for the model of Prasad et al. and found that it was
reasonably well fit by the first few Fourier modes. Thus the phase model predicts
that the switches of stability of the in-phase and anti-phase solutions should be
close to a phase-flip bifurcation. The phase model predicts a jump of 0.4455 in the
angular frequency at this bifurcation. These results agree qualitatively with the
numerical studies of Prasad et al. We verified that quantitative agreement between
the phase model and the full delay differential equation model is obtained if smaller
coupling values are used than those in the study of Prasad et al.

We can also make a prediction about the robustness of synchronization to delays.
Consider a pair of identical coupled oscillators which are synchronized, i.e. the in-
phase solution is stable, when there is no delay in the coupling. We showed that
the in-phase solution will lose stability when

τ = T

(

1−
φmin

2π

)

where T is the intrinsic period of the uncoupled oscillators, and φmin is the phase
where there is a minimum in the interaction function for the phase model of the
system with no delay. Thus longer periods will tend to make oscillators more robust
to delays. We did observe this in the Morris-Lecarmodel with diffusive coupling: the
in-phase solution remained stable for larger delay in the parameter set corresponding
to the longer period.

While the phase model is expected only to be valid for sufficiently small coupling,
in our examples, we observed that the qualitative behaviour, e.g., the switching of
stabilities of the in-phase and anti-phase solutions, persisted for reasonably large
coupling. This is not surprising given the continuous dependence of models on the
coupling strength.

There are many ways that the work of this paper could be generalized. An obvi-
ous first step is to consider larger networks. The results of Bressloff and Coombes
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[10, Section 4.4] for the Kuramoto model in a ring configuration indicate that gener-
alization of our Proposition 3 to that configuration should be possible. For networks
with identical neurons and all-to-all coupling, many more solution types are possible,
such as clustered solutions and the splay-phase state [29]. It would be interesting
to consider the effect of time delay on these solutions.
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[50] N. Burić, I. Grozdanović, and N. Vasović, Type I vs type II excitable systems with delayed

coupling, Chaos Solitons Fract., 23 (2005), 1221–1233.
[51] G.B. Ermentrout, “Simulating, analyzing and animating dynamical systems: A guide to

xppaut for researcher and students.”, SIAM, Philadelphia, PA, 2002.
[52] K Engelborghs, T Luzyanina, and G Samaey, “DDE-BIFTOOL v. 2.00: a MATLAB package

for bifurcation analysis of delay differential equations.”, Technical Report TW-330, Depart-
ment of Computer Science, K.U. Leuven, Leuven, Belgium, 2001.

E-mail address: sacampbell@uwaterloo.ca

E-mail address: ilya kob@rogers.com

mailto:sacampbell@uwaterloo.ca
mailto:ilya_kob@rogers.com

	1. Introduction
	2. Phase Model
	3. Example: Morris-Lecar oscillators.
	3.1. Diffusive Coupling
	3.2. Synaptic coupling

	4. Conclusions
	Acknowledgements
	REFERENCES

