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Abstract

We consider the lower-bounded facility location (LBFL) problem (, also known as load-
balanced facility location), which is a generalization of uncapacitated facility location (UFL)
problem where each open facility is required to serve a minimum number of clients. More
formally, in the LBFL problem, we are given a set of clients D, a set of facilities F, a non-
negative facility-opening cost f; for each ¢ € F, a lower bound M, and a distance metric
(i, 7) on the set F U D, where c(i,j) denotes the cost of assigning client j to facility i. A
feasible solution S specifies the set of open facilities F° C F and the assignment of each
client j to an open facility i(;) such that each open facility serves at least M clients. Our
goal is to find feasible solution S that minimizes » , ps fi + >, c(i(4), J)-

The current best approximation ratio for LBFL is 550 [20]. We substantially advance the
state-of-the-art for LBFL by devising an approximation algorithm for LBFL that achieves a
significantly-improved approximation guarantee of 83.
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Chapter 1

Introduction

Where should a franchisee open its stores? Where should the stations of a new subway in
a city be located? Such problems are often encountered while setting up chain stores ,or
other businesses with distributed production or supply centres. Typically, these centres, or
facilities can be set up at strategic locations for a location-dependent opening cost. Each
customer, or client, interacts with a facility at a price, which is called its connection cost.
Mathematically, problems underlying the above examples are usually abstracted by a class
of problems commonly referred to as facility location problems. The goal in problems is to
efficiently determine the set of locations at which facilities should be opened so as to serve
clients in a cost-efficient manner.

Facility location problems have been studied widely in Operations Research and Com-
puter Science since the 1960s [2,[11}|14}(17,|18], and a number of different variations of
facility location problems have been proposed in the literature. The simplest such prob-
lems is the uncapacitated facility location (UFL) problem, also known as the simple plant
location problem, in which a set of candidate locations for facilities and a set of clients who
need to be served are given. The goal is to decide which facilities to open to minimize the
total costs of opening these facilities and servicing each client by its closest open facility.
A more general problem is capacitated facility location (CFL) problem, where each facility
can serve at most a specific number of clients. A further generalization is universal facility
location (UniFL), in which the opening cost of a facility is a function of the number of
clients assigned to it. Most versions of facility location are computationally intractable, so
presumably, an optimal solution can not be found effectively.

A reasonable approach in such cases is to efficiently compute a solution to the facility
location problem that is within some provable bound of the optimum. This approach falls
in the framework of approximation algorithm, and the bound is called the approximation
ratio or approximation guarantee. Approximation algorithms have been studied widely
since the 1960s; see e.g. [5].



In the past few years, a variety of techniques that yield constant approximation ra-
tios has been derived for the facility location problems. Initial attempts to solve these
problems were greedy heuristics, which have been considerably refined. Algorithms for
facility locations can be categorized in three major groups. One approach is rounding algo-
rithms, which consider the linear programming (LP) relaxation of the integer programming
formulation of the problem, and round the optimal LP solution to an integer solution to
guarantee a good approximation. The maximum ratio of the cost of the optimal integer
solution to the cost of the optimal fractional solution is called the integrality gap of the
LP relaxation. There are various facility location problems, where the integrality gap of
the “natural” LP relaxation of the problem could be arbitrarily large, so this approach
would not be helpful in solving such problems (e.g., CFL). Another approach that relies
implicitly on linear programming is that of primal-dual algorithms. In this approach, the
aim is to simultaneously construct a feasible dual solution and a primal (integer) solution,
and use the dual to bound the cost of the constructed primal solution. Finally, there are
some techniques based on local-search algorithms that move from one solution to another
solution in the space of candidate solutions and usually return the local optimum. The lo-
cality gap of a local-search algorithm is the maximum ratio of the cost of a locally optimum
solution to the cost of a globally optimum solution. For certain facility location variants
especially the variants with large integrality gap, the only technique that yields constant
approximation ratios is based on local search algorithms.

In this thesis, we consider the lower-bounded facility location (LBFL) (also known as load
balanced facility location [7]), which is the generalization of UFL where each facility needs to
serve at least a certain number of clients. LBFL finds a direct application when a franchisee
must open stores to serve clients and also needs each store to serve a minimum number
of clients to be profitable. We devise an algorithm for the LBFL that improves the current
best approximation ratio of the LBFL. Our approach involves reducing a special structured
LBFL instance to the problem that we introduce, called capacity-discounted UFL (CDUFL).
CDUFL is a special case of CFL where facilities are either uncapacitated or capacitated with
a zero opening cost. We develop a local-search algorithm for the CDUFL and prove that it
has a constant approximation ratio, and this is one the components that leads to improved
approximation ratio.

1.1 Problem Definition and LP relaxation

In the LBFL problem, we are given a set of clients D, a set of facilities F, a non-negative
facility-opening cost f; for each i € F, a lower bound M, and a distance metric ¢(i, j) on
the set F U D, where c(i,j) denotes the cost of assigning client j to facility i. A feasible
solution S specifies the set of open facilities F** C F and the assignment of each client j
to an open facility i(j) such that each open facility serves at least M clients. Our goal is
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to find feasible solution S that minimizes:

We sometimes abuse the notation and use F'* to also denote the facility opening cost of
the open facilities. Defining C¥ = > ;jcli(j),J), we can say that we are looking for solution
S that minimizes F'® + C* such that |{j : i(j) = i}| > M for each i € F'S. We denote this
LBFL instance by Z and refer to its optimal solution by S*, which has connection cost of
C* and facility cost (and set of open facilities) F*. We sometimes use OPT(Z) to refer to
the total cost of solution S*, i.e., OPT(Z) = C* + F*.

We may consider the following natural integer linear programming (ILP) formulation
for LBFL. In this program, y; is an indicator variable denoting whether facility ¢ is open,
and z;; is an indicator variable denoting whether client j is assigned to facility 4.

min Y fui+ Y (i, f)ay (LBFL LP)
i 7,
Cay < Vi, j (1.2)
J
Lijy Yi € {Oa]-} \V/Z,j

Constraint [1.1] states that each client has to be assigned to a facility and constraint
ensures that this facility is open. Constraint ensures that each open facility serves
at least M clients. It is easy to see that an optimal solution to ILP corresponds to an
optimum solution to the LBFL instance Z.

By relaxing the last two constraint to z;; > 0 and y; > 0, we get the natural linear pro-
gramming of this ILP which can be solved efficiently. However, the natural LP-relaxation
has a large integrality gap, i.e., the fractional solution can have arbitrarily small cost
compared to the optimal integer solution (see Appendix . Thus, we are led to consider
alternate approaches for obtaining a good approximation algorithm for LBFL.

1.2 Related work

There is a large body of literature that deals with approximation algorithms for (met-
ric) UFL, CFL and its variants; see [15] for a survey on UFL. The first constant-factor
approximation guarantee for UFL was obtained by Shmoys, Tardos, and Aardal [16] via
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an LP-rounding algorithm, and the current state-of-the-art for UFL is a 1.5-approximation
algorithm due to Byrka [3]. Local-search techniques have also been utilized to obtain
O(1)-approximation guarantees for UFL [1,/4,[10]. We apply some of the ideas of [1,/4] in
our algorithm.

Lower-bounded facility location was introduced by Guha et al. [7] and Karger et al. [9]
independently. Guha et al. [7] call it load balanced facility location, and use it as a subrou-
tine for solving the access network design problem, which is a special case of the single-
sink buy-at-bulk problem. Karger et al. [9] introduced the problem as r-gathering problem
which was used to solve maybecast problem, which models a network design problem un-
der uncertain or incomplete information (and reduces to the rent or buy problem). Both
of them present a bicriteria approximation algorithm for LBFL that for each a € [0,1)
finds a solution in which each facility serves at least aM clients, and has cost at most a
constant-factor depending on « times the optimum. We sometimes refer to this solution as
bicriteria solution. Lim et al. [12] studied the mixed integer programming for special case
of LBFL where facility opening costs are zero. For this special case of LBFL, they devise a
greedy approximation algorithm whose approximation ratio is 2M. Svitkina [20] presents
the first constant-factor approximation algorithm for LBFL problem. Her algorithm uses
the bicriteria algorithm of [7,9] to pre-process the instance and obtain a more structured
LBFL instance (see Chapter [2)).

LBFL is the opposite of CFL in some aspects. LBFL requires each facility to serve a certain
minimum number of clients whereas CFL sets the bound on the maximum number of clients
that can be served by a facility.Also, all the constant-factor approximation algorithms for
CFL are based on local search, and the current best approximation for CFL is 5.83+¢ due to
Zhang et al. [21]. However, we are not aware of any constant-factor local-search algorithms
for LBFL. Actually, in Appendix [B] we present an example which shows the large locality
gap for local-search algorithm based on add, delete, and swap moves for LBFL.

A formulation that generalizes many facility-location variants is the universal facility
location problem. This problem was introduced by Hajiaghayi et al. [8] who devise a
constant-factor approximation for the special case where opening cost of a facility is a
concave function. Mahdian et al. [13] gave a constant approximation for arbitrary mono-
tone non-decreasing opening cost function. We are not aware of any work on UniFL with
arbitrary non-increasing opening cost functions, which generalizes LBFL. Guha et al. 6]
give a constant-factor approximation for the case where the cost-functions do not de-
crease too steeply (the constant depends on the steepness); notice that LBFL does not
fall into this class so their results do not apply here.



1.3 Owur contribution

We devise an approximation algorithm for LBFL that achieves a substantially-improved
approximation guarantee of 82.5 and significantly improves the state-of-the-art for LBFL.
Our improvement comes from a combination of ideas in algorithm design and analysis, and
yields new insights about the approximability of LBFL.

As in Svitkina’s algorithm, our algorithm includes a pre-processing step in which a
bicriteria solution is obtained which is then used to construct a more structured LBFL
instance Z,. However, this bicriteria solution is obtained in a different fashion from Svitk-
ina’s algorithm. More precisely,similar to [7,9], we construct a UFL instance from the
LBFL instance Z, but we do so in a subtly different fashion, and then we use the local-
search algorithm of [1,/4] for solving it. Our UFL instance is defined in a way that enables
us to utilize techniques in [16}|19] in our analysis of LBFL. Also, local-search algorithms
give asymmetric bounds on the facility-opening and connection cost which assists us in
presenting a tighter analysis for LBFL.

We construct a special structured LBFL instance Z, in a similar fashion to [20] using
the bicriteria solution, but we solve Zy by reducing it to CDUFL rather than CFL. We devise
a local-search algorithm for CDUFL which has a better approximation ratio than CFL. This
results in better approximation ratio for Z, and hence to Z.

1.4 Structure of the thesis

The rest of this thesis is structured as follows. In chapter [2| we first present the bicriteria
algorithm by [7,9]. The ideas in this algorithm, which lead to bicriteria guarantees for
LBFL, play a preprocessing role in Svitkina’s algorithm for LBFL [20] and (slightly indi-
rectly) in our algorithm. Subsequently, we describe Svitkina’s algorithm in Chapter . In
Chapter [3, we present our algorithm and prove our approximation factor of 83 for LBFL.
We highly encourage the reader to read Chapter [2| before Chapter [3| since we use some of
the results in Chapter [2|in our algorithm. One of our improvements comes from a reduc-
tion of a structured LBFL problem to CDUFL. In Chapter [4] we present our algorithm for
CDUFL which is based on local-search. Finally, we conclude in Chapter [5| with a summary
of our results, and discuss possible future work.



Chapter 2

Lower-Bounded Facility Location

In this chapter, we focus on the lower-bounded facility location (LBFL) problem. LBFL is a
generalization of UFL, which comes with an extra bound constraint on the minimum number
of clients served by each open facility. We devise an algorithm for this problem which
achieves approximation guarantee of 83. Our result improves significantly the previous
best (and first) constant-factor approximation guarantee of 550 by Svitkina [20]. In order
to be able to describe our ideas, we present the algorithm by Svitkina and its analysis in
this chapter.

First, in Section [2.1, we discuss Svitkina’s algorithm briefly. Then, in Section [2.2]
we describe the bicriteria algorithm by [7,9], which is a pre-processing step in Svitkina’s
algorithm. Svitkina shows that one can reduce LBFL instance to a special structured
LBFL instance that is obtained by using bicriteria solution. We detail this reduction in
Section [2.3] She solves the resulting LBFL instance by reduction to CFL, where we discuss
these transformations in Section 2.4l

2.1 Sketch of Algorithm

In this section, we give a brief description of the algorithm in [20] and the ideas underlying
it. The algorithm is shown in Algorithm Svitkina’s algorithm starts with using the
algorithm in [7,|9] to obtain a bicriteria solution. This bicriteria solution is then used to
construct a special structured LBFL instance Z, in step 2 with the following structure: (i)
all clients are aggregated at a subset F» C F of the facilities with each facility ¢ € F>
having n; > aM co-located clients; (ii) all facilities in F3 have zero opening costs; and
(iii) near-optimal solutions to Z, translate to near-optimal solutions to Z (and vice versa).
Now the goal is to close a subset of facilities in F, such that transferring their co-located



clients to the remaining (open) facilities ensures that each open facility serves at least M
clients (and the cost incurred is “small”).

Algorithm 2.1 Svitkina’s Algorithm for LBFL

Get a bicriteria solution for LBFL instance 7.

Use bicriteria solution to modify LBFL instance,and get new instance Z,.
Construct CFL instance Zcp from Zs.

Solve ICFL-

Transfer obtained Z¢g -solution in step 4 to Z,-solution.

Transfer obtained Z,-solution in step 5 to Z-solution.

We solve Z, as follows. The idea for solving Z, is to reduce it to the CFL instance
ZcrL obtained in step 3 by reversing the role of facilities and clients. Roughly speaking,
each group of co-located clients in Zy corresponds to a supply point in Z¢p with capacity
equal to the size of this group. A facility in Z, that needs to be filled to reach the lower
bound M, corresponds to a demand point with demand equal to the number of empty
slots at . Now the goal is to find a solution that specifies how to fill the empty slots. The
constructed CFL problem is solved by one of the constant-factor approximation algorithms
for CFL problem in step 4. This near-optimal solution to Zcg, is then converted to a near-
optimal solution of Zy in step 5. Thus, we now have a solution to Z,, which is finally
transferred to a near-optimal solution to Z (by property (iii) of Z).

2.2 Bicriteria Algorithm

We now describe the bicriteria algorithm by [7], and [9]. Svitkina [20] uses the bicriteria
algorithm as a subroutine for converting Z to a more structured LBFL instance Z,. Also, our
algorithm (described in Chapter [3)) uses a subtle modification of this algorithm to obtain
the instance Z,. For any « € [0, 1), the bicriteria algorithm finds a solution in which there
are at least aM clients assigned to each open facility and the cost of this solution is within
some factor, which depends on «, of the optimal solution cost to Z. Bicriteria algorithm
gives a trade-off between the cost of the solution and the amount by which the lower-bound
constraint is violated. However, they are unable to give a non-trivial bound for the cost of
feasible LBFL solution.

For each facility i € F, we define D(i) to be the set of M closest clients to i. Consider
the UFL instance Z' with the same set of clients and facilities, and the same connection
costs as in Z but with facility opening costs:

fl=Ffi+x Y cig),

JED(3)
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where A = 2% is a scaling parameter. The term > jen@ €4, J) is a lower-bound on the

connection cost of clients assigned to a facility ¢ if ¢ is opened in a solution to LBFL.

The bicriteria algorithm consists of two main steps. In the first step, we solve Z' with
a p-approximation algorithm for UFL and obtain a solution in which each client is assigned
to its closest open facility (this only improves the cost). We maintain this invariant in all
steps of algorithm. If each open facility serves at least aM clients, we stop and return this
solution as a bicriteria solution.

In the second step, we reassign the clients that are assigned to facilities serving less
than aM clients. For each open facility ¢ that serves less than aM clients, do the following:
Reassign each client j served by i to its closest open facility other than i. After reassigning
all the clients served by 7, close i. We do this until there is no facility that serves less than
aM clients. We will show that the second step can be done without incurring any extra
costs.

To bound the cost of solution S” obtained by the algorithm, we state following lemmas:

Lemma 2.2.1. There exists a feasible solution S to " with facility cost bounded by F*+\C*
and connection cost bounded by C*.

Proof. Let S be the solution to Z' which opens the same set of facilities opened in (the
optimal solution to Z) S* and assigns clients as they are assigned in S*. The connection
cost of S is the same as S*. The opening cost of facilities in F™* is:

ST H=S(fi+ Y i) < FF+AC,

icF* i€ F* jeD()

The inequality comes from the fact that the connection cost of clients assigned to each
open facility i is at least Y. p;) (i, 7). O

Corollary 2.2.2. Solution S’ obtained at end of first step of the algorithm costs at most
pEF* + p(1 4+ X\)C*.

The next lemma bounds the cost incurs by reassigning the clients in the second step:

Lemma 2.2.3. Let @ be a facility that is closed down in the second step. The increase in
the cost of reassigning clients served by i in the second step is at most f.

Proof. We recall that there are less than aM clients assigned to i, so there are at least
(1 — a)M clients in D(i) that are not assigned to i. The distance of the closest client

j' among them to ¢ is bounded by the average distance of these clients to i; ¢(i,5) <
Zje’D(i) c(i,5)
l-a)M -



-

) )

Figure 2.1: Use of the triangle inequality in Lemma [2.2.3

Let i’ be the facility that serves j'. Since j’ is not assigned to ¢ we have ¢(i’, j') < ¢(i, j').
So using the triangle inequality (see Figure , we can bound the distance between
facilities ¢ and ¢’ by:

ZjeD(i) c(i, 7)

i) < eli ) +eli'3) < 20, 5) S 2T

which is also an upper bound on the increase in the connection cost of each client that
is reassigned from ¢ to its nearest open facility. So the total additional cost for all such
clients is at most:

Z' D(i C(iaj) ..
&M'Qﬁ =AY i) < ff.
JED(3)

]

Combining the results of Lemma2.2.3]and corollary we get the following theorem:

Theorem 2.2.4. The above algorithm returns a solution to I' with facility cost F* and
connection cost C° satisfying F* 4+ C® < pF* + p - if—z - C*, where each open facility serves
at least aM clients.

Proof. From Corollary [2.2.2, we know that the cost of solution at the end of first step of
algorithm is at most F* + C* < pF* + p- 1+ . C*. By Lemma we know that in the
second step the total cost does not increase, since the increase in the connection cost is
less than the decrease in the facility cost. So the result follows. O]



2.3 Transformation to instance 7,

Svitkina showed that if the LBFL instance has certain properties, then one can find a
constant-factor solution for this instance. In this section, we show how to construct
this special structured LBFL instance Z, given the bicriteria solution. We also prove that
OPT(Z,) is bounded in terms of OPT(Z), and show how to convert a feasible solution to
I, to a feasible solution to Z without incurring too much cost.

Let S® be the solution found by the bicriteria algorithm for some parameter o > .5 (to
be specified later). Denote the connection cost of S® by C® and the facility opening cost
(and set of open facilities) by FP. Let i°(j) denote the facility to which j is assigned and
) = c(i*(j), 7). We define the LBFL instance Z, in the following way:

Definition 2.3.1. Let Z, be an instance of LBFL with the same set of clients D and lower
bound M as in I. The set of facilities is Fo= F°, and all facility costs are set to zero.
The distance-metric is also modified as follows. Intuitively, we move each client j to the
facility i°(j) that serves j in S°. Formally, for any two clients j,j' and any two facilities
i1, we define: cy(i,7) = c(i,i°(5)) ; c2(4,75) = c(i®(4),1%(5")); and the distances between
facilities remain unchanged, i.e., cy(i,1') = c(i,7').

It is easy to see that the new distances form a metric. We will sometimes use the
notation Zy(«) to indicate explicitly that Zy’s specification depends on the parameter a.
Figure [2.2 depicts the transformation from Z to Z, given a bicriteria solution.

In the next lemma, we bound the cost of an optimal solution to Z, in terms of OPT(T),
and the cost of S°.

Lemma 2.3.2.
OPT(I,) < 2(C* + C*) (2.1)

Proof. We construct a feasible solution S, to Z, from the optimal solution S* to Z in the
following way. For each facility ¢« € F™*, transfer all clients served by i to its closest facility
i" € F5 (, and open ¢ if i’ is not already open). Note that the above procedure returns
a feasible solution since each open facility serves at least M clients. Now we just need to
bound the connection cost of clients (the facility opening cost is zero). For any client j
assigned to 7', we have

ca(i', 5) = e(@',3°(j)) c(i,1°(j)) + (i, ) (2.2)

<
< 2e(i,1°(5)) < 2(c] + ).
The first inequality holds because of the triangle inequality ( see Figure . Since

i’(j) € Fs, we can bound the distance c(i,4’) < c(i,i°(j)). Using the triangle inequality,
the second inequality follows. Summing up ([2.2) for all clients, the result follows.

]
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Figure 2.2: The octagons represent the clients, squares in instance Z and the large rect-
angles in instance 7, represent the facilities, and M = 6. The dotted lines show the
assignment of clients found by bicriteria algorithm for the original instance, for @ = .65.

Figure 2.3: Triangle inequality in Lemma [2.3.2]
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In the next section, we will describe how Svitkina’s algorithm obtains a constant-factor
approximation Z, solution. The next lemma shows how to construct a feasible solution to
7 using a feasible solution to Zy without incurring too much additional cost.

Theorem 2.3.3. Let Sy be a feasible solution to I, with connection cost Cy. Then we
can find a feasible solution to I which costs at most C® + F® + Cy. Thus, if Sy is a
G-approximation solution to I, then, we can obtain a solution to I of the cost at most:

(2h(a) +1)C* + F* + 2h(a)C,

Proof. Consider a solution to Z which opens the same set of facilities that are open in Sy,
and assigns the clients as in S,. Since the set of open facilities is subset of F°, the facility
cost is at most FP. For each client j which is assigned to facility i5(j) in Sy, we have:

c(iz(5),4) < clia(4),3°(5)) + c(i®(), J) = c2(ia(4), §) + &

If we sum this up for all clients, we get that the total connection cost is at most C® + Cj.
Thus, if S is a B-approximation solution to Z,, then Cy < 3 - (C® 4+ C*) and the result
follows. O

2.4 Transformation to instance Z¢f

We recall that Z, has only points in F5, C F and there are n; > aM co-located clients at
each location i. The goal is to identify a subset of F, to close such that transferring the
clients at these locations to the remaining (open) facilities in F5 ensures that each such
facility satisfies the lower bound constraint.

Since a > .5, two facilities together have at least M clients. One initial idea is to find
a matching between facilities and transfer all clients of these two facilities to one of the
facilities. The following instance shows that the cost of solution found this way could be
much larger than OPT(Z;). Consider an instance where we have M — 1 facilities located
at unit distance from each other, and each of these facilities has M — 1 co-located clients.
The optimal solution is to close an arbitrary facility, and transfer each of its clients to a
different facility, which costs M — 1 in total. However, the solution found by a matching
incurs cost & - (M — 1).

Svitkina shows that one can solve Z, by solving suitable CFL instance. The general idea
is that a facility ¢ that should be closed, corresponds to a supply point that has n; units of
supply to give out. On the other hand, a facility i’ that remains open but has less than M
clients corresponds to a demand point that requires M —n; units of demand. Of course one
does not know beforehand which facilities should be closed and which ones should remain
open, but the reduction does not require this knowledge.

12



The CFL instance Zcp is defined as follows (see Figure . For each facility ¢ € F>
create a capacitated supply point with capacity M and opening cost d - min{n;, M} - 1(7),
where [(i) = minyez, 27 c(i,4') and 0 is a scaling parameter to be determined later. If
n; < M, we also create a demand point with M — n; amount of demand; if n, > M we
create a supply point with capacity n; — M and zero opening cost. Distances in Z¢g_ are
the same as in Z,.

We first bound the cost of the optimal solution to Z¢g. in terms of the optimal solution
to IQZ

Lemma 2.4.1. There exists a solution to Zcp. with facility cost bounded by 6C5 and con-
nection cost bounded by C5.

Proof. We transfer an optimal solution S5 of Z,, to a feasible solution to Zcp.. We may
assume, due to the triangle inequality, that if a facility ¢ is open in S5, then it serves all
the clients co-located with it.

Solution S to Zcg, is obtained in the following way (see Figur. For each closed
facility in S5, open the corresponding supply point ¢ with nonzero opening cost. We also
select all the supply points with zero opening cost. For each selected supply point i, let it
satisfy all the demands at location 7 (if there is any demand at location i, i.e., n; < M). If
k clients are assigned from i to a facility ¢ in S5 , we say k units of supply are sent from
supply point i to i'. It is possible that the total supply sent to a demand point is larger
than the actual demand at the demand point, but this only overestimates the connection
cost incurred.

Now we need to show that the obtained solution is actually a feasible solution to Zcg, .
We need to show all the demands are satisfied, and also none of the selected supply points
exceeds its capacity. First, we show that all the demands in Z¢cF, are satisfied. Note that
we only have demands at supply points ¢ where n; < M. If a facility ¢ is open in 53,
this means that at least M — n; clients of other facilities are transferred to 7 so in the
constructed solution to Zcr all the demand at location 7 are satisfied by supplies of other
locations (like facilities on the left side of the bottom row in Figurd2.4)). If ¢ is closed in

5, then supply point 7 is opened in S, and it satisfies all the demand at its location (like

facility ¢ in Figure .

Second, we need to show that the capacity constraint is satisfied for all supply points.
For a closed facility 4, all n; clients at this location should be assigned to other facilities.
If n; < M, the supply point ¢ sends out n; units of supply, and M — n; units of supply
are used to satisfy the demand co-located at i. So overall such a facility uses M units of
supply, which is equal to its capacity. If n; > M, we open both supply points at i, which
together have n; units of supply, and we have no demands at this location. Since the two
supply points send out n; units of supply, they do not exceed their capacities. We also

13
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Figure 2.4: The top row shows the correspondence between the instances Z, and Z¢p and
the bottom row shows the correspondence between solutions to these instances. We have
M =6 and o = .6. The octagons represent clients and large rectangles represent facilities
in F5. The black triangles represent the capacity of the supply point and white triangles
represent the demand at the co-located demand point. A closed facility 7 in the Z, solution
correspond to an open supply point in Z¢g, solution. Three units of supply at ¢ satisfy the
demands of the other locations, and two units satisfy the demand located at 7.
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need to consider the case that a supply point ¢ is opened in S, but corresponding facility
is open in S5. We only have this case for the supply points with zero selection cost. Since
the facility ¢ is open in S5 so at most n; — M of clients at this location are assigned to other
facilities, which is equivalent to at most n; — M units of supply of supply point ¢ being
sent out to satisfy demand at other locations. So ¢ does not exceed its total capacity.

We bound the cost of S as follows. The connection cost of S is at most C3 since each
unit of supply transferred to a demand point corresponds to a reassigned client. Note that
we only pay nonzero facility opening cost for supply points that correspond to facilities that
are closed in S3. All clients of such facilities should be reassigned to other facilities, so their
connection cost is at least n; - [(7). Since for each such a facility, we pay 6 min{n;, M }{(7)
as an opening cost so the overall facility cost is bounded by 6C; and result follows.

]

The next step is to solve Zcp. and show how to transfer the obtained solution S to
a feasible solution to Z,. We can get a feasible solution to Zc¢p by utilizing one of the
constant-factor approximation algorithms for CFL. The best known factor for the general
case is 5.83 [21]. Let 7 denote the approximation guarantee of the algorithm we use for
solving CFL. We get the following corollary using the results in lemma [2.4.1]

Corollary 2.4.2. The cost of the solution S found for Zcg by v-approximation algorithm
is at most (1 +0)y - C5.

Now we show how to transfer a near-optimal Z¢g-solution to a near-optimal Z,-solution.
We are given an Zcp -solution S with facility cost (and set of open facilities) F*° and
connection cost C°. We may assume that:

e all zero-cost facilities are open in S.

e if S opens a supply point with non-zero opening cost located at some facility ¢ € F»
with n; > M, then the demand assigned to the supply point at ¢ with zero opening
cost equals its capacity n; — M, i.e., S never opens a supply point with non-zero
facility opening cost unless all the capacity of a supply point with zero opening cost
at the same location is used.

e for each ¢ € F5 with n; < M, if the supply point at ¢ is open then it serves the entire
demand of the co-located demand point.

We briefly sketch parts of the procedure, omitting certain details since it is also described
in Chapter |3| when we describe our procedure for solving Z,. We reassign clients of S as
follows. We transfer x clients from 7 to i’ if x demand units of i’ are satisfied by i where
i # i'. Note that we can always perform this reassignment since the amount of supply i
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sends out is at most n;: if n; < M, since 7 satisfies all demand at its location, it sends out
at most n; units of supply; if n; > M, since the capacity constraint is satisfied, at most n;
units of supply are sent out from this location.

After doing the above procedure, each facility ¢ that is closed in S has at least M
clients. However, we may not yet have a feasible solution since a supply point ¢ may send
out less than n; units of supply, in which case we may have some residual clients at ¢ but
their number may be less than M. So we need to reassign these residual clients. This
issue also arises in our algorithm for solving Z,, when we want to construct a feasible Z,-
solution, so to avoid redundancy, we describe this part in detail in Chapter [3|and just state
the following result from [20] here.

Lemma 2.4.3. [20] The cost of solution found by the algorithm for I, is at most

9 1
¢ oS4

—F° 2.
200 — 1 da (2:3)

where C® denotes the connection cost, and F° denotes the facility opening cost of an
ZcrL solution S.

Combining the results of Theorem [2.2.4] Lemma [2.3.3] Corollary and Lemma|2.4.3|
we get the main theorem on cost of obtained solution for Z in the algorithm :

Theorem 2.4.4. [20] There is a constant-factor approzimation algorithm for lower-bounded
facility location problem.

Proof. Combining the results of corollary 2.4.2] and lemma [2.4.3] we can get a solution
to Z, which costs at most max(522,5-)(1+4) - - C* Settlng 0 = 21 we get that
the approxunatlon ratio for solvmg Iy is h(a) = 7 - - (1 + 21). Using the results
in lemma [2 now we only need to bound F® + (Qh( ) + 1)Cb. Using the results in
Theorem F "+ C% < p12 - OPT(Z), so the overall bound on the cost of a solution
to T is (2h( ) 1)(1+ pE2) + 2h(r). We use the value a = .68 and p = 1.50 which gives

approximation guarantee of 550. O
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Chapter 3

Our Improved Algorithm

In this chapter and next chapter (the CDUFL chapter), we describe our improved algorithm
for LBFL and its analysis. We advance the state-of-the-art for LBFL significantly by devising
an algorithm with approximation ratio 82.5. Initially, we tried to develop a local-search
algorithm for LBFL, but we found bad locality gaps for various local-search algorithms for
LBFL (see Appendix . (Recall that the locality gap of a local-search algorithm is the
maximum ratio of the cost of a locally optimum solution to the cost of a globally optimum
solution.)

We begin by presenting the sketch of our algorithm in section [3.1} As we mentioned in
the Introduction chapter, our high-level approach is similar to Svitkina’s algorithm [20];
we first transform our instance to a more structured LBFL instance Z, such that (i) all
clients are aggregated at a subset F, C F of the facilities with each facility ¢ € F, having
n; > aM co-located clients; (ii) all facilities in F> have zero opening costs; and (iii) near-
optimal solutions to Z, translate to near-optimal solutions to Z (and vice versa), then we
solve Z,. But our algorithm differs from Svitkina’s algorithm in (a) How we solve Z, and,
(b) how we obtain Z,. Our key insight is that instead of solving Z, by reducing it to a
CFL instance as in [20], one can solve LBFL instance Z, by reducing it to an instance of
capacity-discounted UFL (CDUFL), which is a special case of CFL, and a generalization of
UFL that we introduce.

In section [3.2] we will describe our approach for obtaining a bicriteria solution to LBFL,
which is then used to construct Z, instance. We describe our our local-search algorithm for
CDUFL, and the proof of its approximation guarantee to Chapter [l In Section [3.3] we use
our results on the approximation ratio of CDUFL and show how this leads to an improved
approximation to Z, and hence for Z. We describe this reduction, that is, how we construct
the CDUFL instance Z , how to transfer an Z-solution to an Z,-solution. Finally we wrap
up our improvements in our main theroem stated in section [3.4]
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3.1 Sketch of the algorithm

In this section, we briefly present our algorithm (see Algorithm |3.1)).

Algorithm 3.1 Our Algorithm for LBFL

: Get a bicriteria solution for LBFL instance Z.

Use the bicriteria solution to modify LBFL instance Z, and get new instance Zy.
Construct CDFL instance Z from Z,.

Solve 7. R

Transfer the Z-solution obtained in step 4 to an Zs-solution.

Transfer the Zs-solution obtained in step 5 to an Z-solution.

The first step of our algorithm is to obtain a bicriteria solution. Our approach for
obtaining this solution varies from [7,9], which show that given an LBFL instance, if one
modifies the facility costs in a certain way, solves the resulting UFL instance, and post-
processes the solution so that no single facility deletion move improves the solution cost,
then one obtains a bicriteria solution to the LBFL instance. We define slightly distinct
UFL instance where the facility opening costs are defined in a subtly different way. The
opening cost of facility 7 in 7 is now set to fi = fi+2aMR,; (o) where R;(«) is the distance
between i and the [aM|-closest client to i. As in [7,9], one can show a delete-optimal
solution is a bicriteria solution. Eventually, the overall cost of the solution to Z includes
ZJeD c(i,j) .
T in the

analysis, we choose a from a suitable distribution and leverage the fact that M fo Ri(a) =
> jepw (i, j) for tighter analysis. Also, we use the local-search algorithm of [1,4] to solve
the resulting UFL instance. The obtained UFL solution is already post-processed, and gives
asymmetric bounds on the facility-opening and assignment costs. This property also yields
a tighter analysis since we can bound the the term 2(h(a) + 1)C® + F® in Theorem [2.3.3]
more tightly (as compared to 2(h(a) + 1)(C® + F?)).

We construct Z, from the bicriteria solution as in [20] (See Section [2.3). Our chief
algorithmic novelty is that one can solve Z, by reducing it to CDUFL. CDUFL is a special
case of CFL, where facilities are either uncapacitated, or capacitated with zero facility-
opening cost. In step 3, the CDUFL instance Z is constructed in a way similar to the way
the CFL instance is constructed in section [2.4] except that supply points with nonzero
opening cost are now uncapacitated. In the fourth step, we solve Z with the local-search
algorithm that we devise (See Chapter . Our approximation ratio for CDUFL is better
than the best known approximation ratio for CFL. The next step is to transfer this solution
to Zs-solution without incurring too much cost. Here, in addition to the problem faced
in [20], where supply point may send out less supply than the number of clients at its
corresponding facility in Z,, since we now have uncapacitated facilities, a supply point ¢

various R;(«) terms. Instead of plugging the (weak) bound M R;(«) <
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may send out supply more than the number of clients at its corresponding facility in Zs.
We resolve this problem by opening subset of supply points at locations of demand points
served by 7. We show that the overall incurred cost for transferring a feasible Z-solution
to a feasible Zs-solution is small. Finally, we transfer the obtained Z,-solution to a feasible
solution to Z as described in Chapter [2|

3.2 Bicriteria Algorithm

We now present our method for obtaining a bicriteria solution to LBFL. Consider the UFL
instance Z with the same set of facilities and clients, and the same assignment costs as 7.
The opening cost of facility i is set to f; = f; +2aM R;(«) where R;(«) denote the distance
between i and the [aM |-closest client to ¢; that is, if D(i) = {j1,...,jm}, where ¢(i, j;) <

. < c(i,jum), then Ri(a) = c(i, jran) (for 0 < o < 1). Let R* (o) = > ,cp Ri(a).
Observe that each Rl(a) is an incrggsing function of «, Mfol Ri(a)da = 3 cpg (i 5),
and R;(«a) < %jf?;%(ﬂ) < szfi;(; 7 Hence, R*() is an increasing function of a.. The
same argument as in Lemma [2.2.1] yields the following lemma:

Lemma 3.2.1. There exists a feasible solution to 7 with facility cost bounded by F* +
2aM R*(«v) and connection cost bounded by C*.

We use the local search by [1,4] to solve Z. [1] argues that to get a polynomial running
time, the only local moves that should be considered are those that improve the cost by
some factor of the cost of current solution. However, one can execute all delete moves that
improves the cost of the solution upon termination and there by obtain an “approximate”
local optimum that is “delete-optimal”f] . The same arguments as in Lemma show
that in a delete-optimal solution, each facility serves at least aM clients. So our solution
does not need the post-processing step as in [7,9] (and hence [20]). For simplicity, we
assume that we obtain a local optimum; standard arguments in |1,/4] show that dropping

this assumption increases the cost by at most a (1 + €) factor.Thus combining the results
of [1,4] and Lemma yeilds the following :

Lemma 3.2.2. For any parameter v > 0, execuling the local-search algorithm in [1,|4)]

on T returns a solution with facility cost F® and assignment cost C° satisfying F* <
(F*+2aMR*(a)) +2C* /v, C* < v (F*+2aMR*(a)) + C*, where each open facility serves
at least oM clients.

'We call a solution with no improving delete move a delete optimal solution
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3.3 Solving 7,

In this section, we describe our algorithm for solving Z5. As we mentioned earlier, our key
insight is that one can solve Z by reducing it to CDUFL. We present our algorithm for
solving CDUFL in chapter 4} Here, we first describe how the CDUFL instance space, 7 is
constructed. Then, in Section we show how to transfer an Z-solution to an I--
solution, and in Section [3.3.2] we bound the cost of the obtained solution for Zs.

Following [20], to avoid confusion, we refer to the facilities and clients in the CDUFL
instance as supply points and demand points respectively. The CDUFL instance 7 is con-
structed from Z, in a way similar to the way in which Z¢g is constructed (in Chapter
, except that the supply points with non-zero facility costs are now uncapacitated.
More precisely, for each facility ¢ put an uncapacitated supply point with opening cost
0l(i) min(n;, M) where (i) is the distance between i and the closest facility in F3 \ {i} and
4 is a scaling parameter. If n; > M also put a supply point with capacity n; — M and zero
opening cost; If n; < M put a demand point with demand M —n;. In Z, let 7 denote the
set of capacitated supply points and let F* denote the set of uncapacitated supply points.
Arguing as Lemma leads to the following lemma:

Lemma 3.3.1. There exists a solution to I with facility cost at most 0C5 and connection
cost bounded by C5.

We will prove the following theorem in Chapter |4 on the approximation ratio of our
local-search algorithm for CDUFL:

Theorem Given any CDUFL instance, one can efficiently compute a solution with
facility-opening cost F' < (F*!42C%")(1+¢) and connection cost C' < (F*!+ C*")(1+¢),
where F*° and C*? are the facility and connection costs of an arbitrary solution to the
CDUFL instance, and € is a factor that effects the running time of the algorithm.

As in [1}4], for notational simplicity, we ignore the e-terms in the sequel since the effect
of all such e-terms can be captured by incurring an additional (1 + €)-multiplicative factor
in the approximation. Combining the results in the above theorem and Lemma [3.3.1] we
arrive at the following theorem:

Theorem 3.3.2. One can compute a solution to T with facility cost F < (2+0)C5 and
assignment cost C' < (1 +9)C5.
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3.3.1 Mapping CDUFL solution to 7, solution

Suppose that are given a solution_ S to T with facility cost FS and assignment cost CS.
Again, we abuse notation and use I ['S to also denote the set of supply points that are opened
in S. We may assume that: (1) all capacitated supply points are open (i.e., FeC FS)7 (ii)
if § opens an uncapacitated supply point located at some i € F5 with n; > M, then the
demand assigned to the capacitated supply point at ¢ equals its capacity n; — M; (iii) for
each 1 € F, with n; < M, if the supply point at ¢ is open then it serves the entire demand
of the co-located demand point; and (iv) at most one uncapacitated supply point serves,
maybe partially, the demand of any demand point; we say that this uncapacitated supply
point satisfies the demand point.

Let N, initialized to n;, keep track of the number of clients at location 7 € F5. During
the process, we always keep N; updated. Our goal is to reassign clients (using S as a
template) so that at the end we have N; = 0 or N; > M for each i € F5. Observe that
once we have determined which facilities in F, will have N; > M (i.e., the facilities to open
in the Zy-solution), one can find the best way of (re)assigning clients by solving a min-cost
flow problem. However, for purposes of analysis, it will often be convenient to explicitly
specify a (possibly suboptimal) reassignment. We reassign clients in three phases.

Al. (Removing capacitated supply points) For each location ¢ € F, with n; > M, if
the capacitated supply point i' at i supplies z units to the demand point at location 7/,
we transfer z clients from location i to i'. Now if i' has y > 0 leftover units of capacity
in S, then we “move” y clients to the uncapacitated supply point at #, 7> (which must
not be open in S due to property (ii)). Note that this reassignment effectively gets rid
of all capacitated supply points. Thus, there is now exactly one uncapacitated supply
point and at most one demand point at each location ¢ € F3; we refer to these simply
as supply point ¢ and demand point ¢ below.

Let X; be the total demand from other locations assigned to supply point i. Let F& =
{iEFQZNZ'ZXZ'>O},fG:{i€f2INZ‘<Xi},ande:{7:€f2IXiZO},WhiCh
is the set of supply points that are not opened in S. Note that N; > min{n;, M} > aM
for all i € Fy, and N; = min{n;, M} for all i € FRUFC (because of properties (ii) and
(iii) above).

A2. (Taking care of F and demand points satisfied by F%) For each i € FE ifi
supplies z units to demand point 7', we move z clients from i to 7.

We now have N; = min(n;, M) — X; residual clients at each i € F%, which we must
reduce to 0, or increase to at least M. We follow the same procedure as in [20], which
we sketch below.
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A3.

For each i € Ff we include an edge (i,4') where i/ € Fy is the facility nearest to i
(recall that c(i,4") = I(i)). We use an arbitrary but fixed tie-breaking rule here, so we
have two types of components in G:

e (i) A tree rooted at facility i € F, \ F where all the edges of the tree are directed
toward the root.

e (ii)A tree rooted at 2-cycle (r,r’), (', r), where r,r" € F and all edges of the tree
are directed toward this 2-cycle.

Note that a facility in F, \ F% is either a root of a type (i) tree, or a singleton since it
does not have any out-edges. Essentially, we move the residual clients of supply points
in a component bottom-up from the leaves up to the root. For each internal node i
(i.e., the node is neither the root, nor one of the nodes of the 2-cycle): If i has at least
M clients cut off the edge going up to its parent ¢’; otherwise transfer all clients at i to
i'. And for 2-cycle (r,r"), (7', r): if N, +N,» > M and min(N,, N,») < M, say N,» < M,
transfer all clients of r’ to r; if N, + N,» < M, transfer all clients at r and r’ to the
demand point ¢ in F? that is nearest to {r,r'}; otherwise do nothing. After each of
such above transfers, we update N;s.

At this point, the only facilities that may have 0 < N; < M correspond to eithe supply
points in F or demand points satisfied by a supply point in F. All other facilities
have N, =0or N; > M.

(Taking care of ¢ and demand points satisfied by F¢) For i € F¢ let D(i)
be the set of demand points j € Fy, j # ¢ that are satisfied by 4, and let D'(i) =
{j € D(i) : N; < M}. Note that D(i) C FB. Phase A2 only increases N; for all j in
FBUFC, so N; > aM for all j € FCU (U,cre D(4)).

Fix i € F¢ We reassign clients so that N; = 0 or N; > M for all j € {i} U D'(i),
without decreasing N; for j € D(i) \ D'(i). Applying this procedure to all supply
points in F¢ will complete our task. Define Y; = M — N; (which is at most M — n;)
for j € D'(i). First, suppose ZjeD,(i) Y; < N,. For each j € D'(i), if ¢ supplies = units
to j, we transfer x clients from 7 to j. If ¢ is now left with less than M residual clients,

we move these residual clients to the location in D(i) nearest to i.
Now suppose ZjeD/(i) Y; > N;. Let ig = ¢, and D'(i) = {i1,...,4}, where ¢;;; < ... <

Cii- Let £ =1t — F:::O N | = {Z"Zl Yf’*_Nf'OW, so ¢ >1 (and ¢ < t since N;, + N;, > M).

M M
We first transfer Y;, clients to each iq, ¢ = £ +1,...,t from the locations iy, ..., o,
where we transfer all clients of i, (where 1 < r < /) before moving to i,_;. (This is
always possible since (t — ()M < >7'_ N;.) We argue that this leaves at most M
residual clients in {io} U D’'(7), which are all concentrated at i and iy, with ¢; having
at most (1 — a)M residual clients. We transfer these residual clients to i 1.
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3.3.2 Bounding the cost of the constructed Z,-solution

In this section, we bound the cost of the fea51ble solution to Toobtained above. We first
bound the cost of this solution in terms of the Z-solution S that we started from. Then,
we determine our approximation ratio for solving Z,.

Lemma 3.3.3. The above algorithm returns an Zs-solution of cost at most % + 65(5 +

2a
2a—1

) where S is a feasible 7 -solution.

Proof. Let Sy denote the solution computed for Z,. For a supply point ¢ opened in S , We use
C? to denote the cost incurred in supplying demand from i to the demand points satisfied
by ; so CS = Y icrs C At various steps, we transfer clients between locations according
to the assignment in the CDUFL solution S, and the cost incurred in this reassignment can
be charged against the @f s of the appropriate supply points. So the cost of phase Al is
Y icFe C?, and the cost of the first step of phase A2 is Y icFR Cs.

We can bound the remaining cost of A2, by F*S /§a+ (Y icrr 5;9)/(204— 1). For the out-
edge of facility 7 in its corresponding tree, we pay at most MI(i) for (possibly) transferring
(at most M) clients along this edge. Since i is an open supply point in § it pays at least
ol(1)aM for its openlng cost. So the cost of transferring clients through edges of tree can
be bounded by ~—. We also need to bound the cost of transferring clients from 2-cycles
(ryr"), (', r)to a demand point in FZ. We incur this cost in case that N, + N, < M. This
means that at least (2 — 1)M < n, + n — (N, + N,») supplies of these location were
sent to the other demand points. Let demand point i in F? be the location nearest to
{r,r"}. So the cost transferring the residual clients of these two facilities to i is at most

S AS o~ ~
M - i:j;:i < (C’f + C’TS,)/(QQ — 1). Summing up this for all 2-cycles, we can bound the

cost by > i rr C5 /(20 —1).
Finally, consider phase A3 and somei € F¢. If Y jen'(i) Y; < N;, then the cost incurred

is at most CS +M- -5 < C’S(l + 1). Now consider the case > jepipy Yj > Ni. For any
iq € {iog1s---, 0t} and any i, € {zo, ...y}, we have c(ir,iq) < 2¢(i,14), so the cost of
transferring Y; < M —n;_ clients to each i, q =/{+1,...,tis at most 2@5 . Observe that
(t—C+1)M > > Ny, ie, M+ Zq oi1 Vi, > ZT o Vi, so after this reassignment,
there are less than M residual chents in 7, .. Zg By our order of transferring clients, all
these residual clients are at ig, i (otherwise we Would have at least V;, + N;, > M residual
clients) with at most M — N;, < (1 — a)M of them located at i;. The cost of reassigning

these residual clients is at most (1 — a)Mc(i,41) + Mc(i,ip11) < (1 —a)M - %ﬂfl—n) +

Mtc—s which is at most<CS(1—°‘+—) since M —n; >Y; for all j € D'(3).

r= £+1(M ni,)’

23



Thus, the cost of S5 is at most

F\S ~S S 1 ~S 1 1—« 1
ngZC’Z + ZCZ '<1+2a71>+ ZQ -max{1+a,2+7+2a71}

e Fe icFR i€ FG
FS
S(1 2a
< S +C (E + m)

]

Combining the results in Theorem [3.3.2] and above lemma yields the following theorem
on the approximation bound of our algorithm for solving Zs:

Theorem 3.3.4. For any o > 0.5, there is a g(«)-approzimation for Iy(«), where g(a) =
ot T2/t o

Proof. Letting S be the solution given by Theorem the cost of S, is at most

2 1 1 2c0
— 4+ =+ (1+§)(= Cy.
((504+04+(+>(04+2a—1)) 2
Setting 0 = W yields the bound in the theorem. O

Remark Our g(a)-approximation ratio for Zy(«) improves upon the approximation ob-
tained in [20] by a factor of roughly 2 for all . Thus, plugging in our algorithm for solving
7, in the LBFL-algorithm in [20] (and choosing a suitable «), already yields an improved
approximation factor of 264 for LBFL.

3.4 Combining improvements

In this section, we bound the cost of solution obtained by our algorithm. The overall bound
that we obtain includes certain R*(«) terms. We will argue how choosing a random variable
from suitable distribution will lead to tighter analysis. This can be easily de-randomized
since we have only M choices for a. Combining the results of Theorem [2.3.3] and Lemma
leads to the following theorem on the approximibility of LBFL.

Theorem 3.4.1. For any parameter a € (0.5,1], we can compute efficiently a solution to
7T of cost at most

F*(4.125) + C*(5.28h(r) + 1.64) + 8.25aM R*(cv)
where h(a) = % + 522 + 2. /55~. Thus, choosing o € [0.67,1] randomly according to the

200—1 200—1
density function p(z) = m concentrated on [0.67, 1], yields a solution of cost at most
83 OPT(T).
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Proof. Note that our approximation factor for solving Zo ¢(«) is smaller than h(«) for
all &« € (0,1); we use this upper bound throughout below. Combining the bounds in
Lemma (3.2.2] and Theorems [2.3.3] and [3.3.4] we obtain a solution to Z of cost at most
Fb+ (2h(a) + 1) C® + 2h(a)C*

20
;
< P (1 +(2h(a) + 1)) + (4h(a) Tl %) +2vaMR*(a)(2h(a) + 1) + 20MR*(a).

< F*+2aMR(a) + — + (2h(a) + 1)7<F* + 2aMR*(a)> + (4h(a) + 1)C*

Setting v = 3.125/(2h(«) 4 1) yields the expression in the theorem statement.

We bound the expected cost incurred when one chooses o randomly according to the
stated density function as follows :

1

Eo[h()] = e(B):= [% — 24 4V6(m/4 — tan"} (/25 — 1)) +1n(2ﬂ - 1)}/111(1/@,

E, [aMR*(a)] = M( /ﬁ R*(;c)dx)/ln(l/ﬁ)gc*/lnu/m.

Plugging in these bounds, we get that the total cost is at most

F*(4.125) + C* (5.2802(6) 4164 +8.25) ln(l/ﬁ)) < 83(F* + C%).
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Chapter 4

Capacity Discounted Facility
Location Problem

In this chapter, we focus on the capacity-discounted UFL (CDUFL) problem and describe
the algorithm we developed for it. CDUFL is a special version of CFL, where facilities are
either uncapacitated, or capacitated with zero facility cost. We introduced this problem
as we realized that using it as a subroutine instead of CFL when solving the LBFL instance
7, yields a better better approximation guarantee.

Circumventing the difficulty that CDUFL inherits from CFL with respect to LP-based
approximation algorithms (see Appendix7 we give a simple local-search algorithm based
on add, delete ,and swap moves (Section . Our analysis is inspired by the analysis of
the algorithm in [1], which uses the same moves for UFL, but the presence of capacitated
facilities calls for the use of other techniques for analysis as well. Surprisingly the bounds
that we get for facility opening cost and connection cost of our solution are the same as

the bounds in [1] (Section [4.3).

The locality gap of a local-search algorithm is the maximum ratio of the cost of a
global optimum to the cost of a local optimum. For UFL, Arya et al. |1] argued that any
procedure that permits add, delete ,andswap has a locality gap of 3. Since our local-search
algorithm is based on the same moves for CDUFL which generalizes UFL problem, the the
example in [1] also shows that the locality gap of our algorithm is at least 3. We include
this example in Sectionfd.4] for completeness.

We use the standard scaling technique in [4] to improve our approximation guarantee
to 1+ /2. As in the case of various other local-search algorithms for UFL, we can bound
the facility cost and the connection cost of our solution in terms of the facility cost and
the connection cost of any feasible solution to CDUFL. This property has a significant role
in giving tighter bounds when CDUFL is used as subroutine for solving other problems (as
we use it here for solving LBFL).
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4.1 Problem Definition

In the capacity-discounted UFL problem, we are given a set of clients 23, a set of facilities
JF, which is the union of two disjoint set F* and F°, non-negative facility opening cost
fi for each i € F" ( fi = 0 for each facility i € F C) positive (finite) capacity u; for each
i € F°, and a distance metric ¢(i,7) on the set FUD. Here ¢(i,7) denotes the cost of
assigning a demand at location j to a facility ¢. In certain settings, a client j may have
non-unit demand d; at its location, in which case the cost of assigning this demand to an
open facility ¢ is d;¢(4, 7).

A feasible solution S specifies the set of open facilities Fs C F and the assignment of
each client j to an open facility such that the capacity constraints for facilities in F°¢ are
satisfied. For a feasible CDUFL solution S, let 65 denote the connection cost of client j and

DS( ) denote the set of clients assigned to facility 7. Our goal is to find feasible solution S

that minimizes :
D fi+ Z

ieFs

subject to |Dg(i)| < u; for all i € F¢. We sometimes abuse the notation and use F'S to

also denote the facility cost of open facilities. Defining CS = > . €7, we can say we are

j J’
looking for solution S that minimizes F'¥ 4 C*.

4.2 A local search algorithm

Since we can find the best assignment of the clients to open facilities by solving a suitable
network flow problem, we focus on determining the set of facilities to open. Our local-search
algorithm consists of three moves : add(i’), delete(i), and swap(i,i’), which respectively
open a not-currently-open facility ', close an open facility 7, and open a not-currently-open
facility ¢/, and close an open facility i. Note that all (local-search) algorithms for CFL use
moves more complicated than above for non-uniform capacities.

To guarantee polynomial running-time for our local-search algorithm, we only consider
amove in a local step if it significantly improves the cost of the solution. We call such a local
move an admissible move. More formally, let cost(S) denote the total cost of a solution S
and op(S) denote the solution obtained after applying local move op € {add, delete, swap}.
We consider an operation op, if cost(op(S)) < (1 — +)cost(S) where € is a constant factor
and N is a suitable integer which is polynomial in the size of the input. Thus, the cost of
the current solution is improved in each local step by at least a factor of §. Let Sp be an

initial solution to the CDUFL problem and § be an optimal solutlon to CDUFL, then the

algorithm terminates after at most log(cost(SO)/cost(S*))/log - /N number of steps. As

27



log(cost(gg)), log(cost(:g\*)), and N are polynomial in the size of the input of the algorithm,
and there are polynomial number of possible moves in each step of the local-search, the
algorithm has a polynomial running time.

The algorithm terminates in the polynomial time with an “approximate” local optimum.
For the purpose of analysis, first we show how to bound the facility cost and the connection
cost of the optimum, and in the end we show how to modify the analysis to get bounds on
the facility cost and the connection cost of the approximate local optimum. For simplicity,
we assume that we have unit-demand clients. In the cases of non-unit-demand clients, we
can still find an admissible move in the polynomial time, hence run the algorithm, and
for the purposes of analysis, we can always treat a client with demand d as d co-located
unit-demand clients.

4.3 Analysis

In this section, we show how to bound the facility cost and the connection cost of the
solution obtained by our local-search algorithm. We first show how to bound the facility
cost F' S and the connection cost C’i of a local-optimal solution S in terms of the facility
cost F*°! and the connection cost C*° of a feasible CDUFL solution sol. (Recall that we
also use 9 and F S"f\to denote respectively the set of open facilities in S and sol, and we
may assume F¢ C F° N F*!) We do this by using the fact that S is a local optimum
and no local-search operation will improve the cost of the solution. We borrow some ideas
from the analysis of local search based algorithm for UFL by [1]. Similar to the analysis
for UFL, when we use a local search move, we also specify the reassignment of clients to
order to (upper) bound the change in the connection cost, but since we have capacitated
facilities now, we do this in a more careful way. Particularly, upon removal of a facility s
in the analysis of local-search for UFL, we only reassign the clients assigned to s, but in
our case we may have to reassign some other clients to satisty the capacity constraints of
the facilities in F°.

We specify the reassignment of clients for local-search moves in the analysis by means
of a suitable graph. We construct a directed graph G with node-set FuU D and arcs from

i to all clients in Dg(i) and arcs from all clients in D,y (i) to i, for every facﬂlty i. Thus
each client has one incoming arc and one outgoing arc.

We decompose the arc-set of G into a set of (simple) paths, P, and cycles R via
standard flow decomposition, so that (i) each client j appears on a unlque path P; or on a

unique cycle, (ii) each facility appears as the starting point of max{0, |DS( )| — |D80l( )|}

paths and as the ending point of max{0, |Dyy(i)| — |Ds(i)|} paths. Let P*(s) C P and
Perd(o) C P respectively denote the set of paths starting in s and ending in o, and
P(s,0) := P(s) NP (o). For a path P = {ig := 8, jo, i1, J1, - ik, Jk» ikt1 := 0} € P(s,0)
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define ZS(P) = {Jo,J1, -, Jr }, head(P) = jo, and tail(P) = jx. A shift along this path is a
reassignment of clients so that j; which is earlier assigned to ¢, now assigned to 7,1 (opening
o if necessary). Note that this is feasible since if 0 € F¢ then we know that |Dg(0)| <
Dyot(0)| — 1 < u,. Let shift(P) = ¥ Jep(P)(ASOZ ¢7) denote the increase in service cost
due to shift along path P. We can similarly define shift along a cycle R € R similarly,

letting shift(R) = Z]eDmR(éSOZ ¢7) . Also let cost(P) = > iepip) (€ et é5).

4.3.1 Bounding the connection cost

We will show that

C\S S asol + F\sol (41)

Consider adding a facility o € F'S\ F** and shifting along all the paths in P°*¢(0). The
change in the objective value consists of the facility-opening cost of o and the change in
the connection costs of the clients that are reassigned, i.e., all clients in (Jpepena(p) D(P).
From local optimality of S, we get:

0<fot > > (&-& (4.2)

PePend(o) jeD(P)

Note that the above argument assumed that the facility o was not present in the local
optimum solution. If o is in the local optimal solution, shifting along paths in P*¢(0) re-
sults in a change in cost of Y- pepenao) D jeh(p) & — cSOZ which is non-negative (from local
optimality) and so the above inequality contlnues to hold.

For every cycle R € R, we have shift(R) > 0. Thus, adding all these inequalities, we
get that C¥ < [*°! + C*?!. Using the argument above we can state the following lemma :

Lemma 4.3.1. For every o € F*' and any Q C P(0), we have > peo shift(P) >
{—ﬁ, if o € Fol\ S,
0

otherwise.

4.3.2 Bounding the facility cost

To bound the facility cost of facilities in \ sl , wWe only need the paths that start at
a facility in F'S\ F*l. Note that all facilities in F*!AFS := (FS"Z \ FSyU (FS\ F*) are
uncapacitated. To avoid excessive notation, for a facility o € F' sl \ FS , we now use P¢(o)
to refer to the collection of paths ending in o and starting in F*S \F Feol. (As before P(s,0) is
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the set of paths that start at s and end at 0.) Consider a bijection 7 : P4 (0) — P(0)
for 0 € F*'\ F¥ such that if P € P(s,0) and m(P) = P’ € P(s',0) (so 5,8 € F*\ F*" by
our new notation) then we have the following properties:

o if |P(s,0)| < w, we have s # ¢'.
Therefore 7 maps every “small” set to a different region in P"*¢(0). So if P belongs
to a small set P(s, 0), then the path to which it is mapped starts at a facility different
from s.

o If s=¢ then P=P'.
Now we cannot guarantee that a path in a “large” set P(s, o) is mapped to outside
the set.

o 7(n(P)) =P
If a path P is mapped to path P’, it must be that P’ is mapped to P.

Say that o is captured by s if |P(s,0)| > | )l Observe that we can have at most
one set P(s, 0) of cardinality strictly greater than [Pe"(0)|/2, so each facility o € F*!\ F'S
is captured by at most one facility s € Fs \ £l Call a facility s in Fs \ [l good if it
does not capture any facility, and bad otherwise.

pend(o
2

Lemma 4.3.2. For any good facility s, we have :

fi < Z shift(P) + Z cost(m(P)). (4.3)

PePpsi(s) 0¢FS,PEP(s,0)

Proof. Consider the operation delete(s). We upper bound the increase in the connection
cost as follows. Let j € Dg(s) and P; € P(s,0). (Recall that P; is the unique path
containing j.) Note that j cannot lie on a cycle since s € Fs \ﬁ solWe do the reassignment
as follows :

e lfoc FSNF sol then we reassign clients on P; by shifting along P;.

o If 0 € FS\ F*! then let n(P;) = P' € P(s',0) where s’ # s. We reassign all
clients in in D(F;) except tail(P;) by shifting along P; and reassign tail(P;) to s'.
Let k = tail(P;) (see Figure [d.1)). Since é(k, s') < & + ¢(0,8") < &% + cost(m(P))),
we can bound the reassignment cost of clients on P; by cost(m(F;)) + ¢t — & +
Zj,G@(Pj)\{k} (é;ff’l - éjs,) = cost(m(P;)) + shift(P;).
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So we can bound the change in the objective value performing the above operation by

0< —fi+ Z shift(P) + Z [shift(P) + cost (F(P))] : (4.4)
0€F'S PeP(s,0) 0¢ FS PeP(s,0)
which leads to the inequality [4.3]
O

Now consider a bad facility s. Let cap, C [l \ FS be the set of facilities captured by
s, and os € cap, be the facility nearest to s.

Lemma 4.3.3. For any bad facility s, we have

fo < Z fot Z shift(P) + Z cost(m(P)) + Z cost(P). (4.5)

o€capg PG’Pst(s) oiﬁ’s o€cap,
PeP(s,0):m(P)#P PcP(s,0):m(P)=P

Proof. We consider the move swap(s,o0,) in the local optimum. We upper bound the
increase in the connection cost as follows. Consider client j € Dg(s) and let P; € P (s).
We do the reassignment as follows:

e Ifoc FSnN ﬁs"l, or o = o, and w(F;) = P;, then we reassign clients on P; by shifting
along P;. The increase in the cost is at most shift(P;).

Otherwise, let 7(P;) € P(s',0).
o If 7(P;) # Pj(so s # s'), We reassign D(p) \ {tail(P;)} as in the shiftoperation, and

assign tail(P;) to s’. As in the proof of lemma |4.3.2 the increase in this case can be
bounded by shift(P;) + cost(n(F;)).

o If 7(P;) = P (so 0 # o,), we assign j to o,. Note that ¢(j,0,) < & + &(s,05) <
&7 4 ¢(s,0) < & + cost(P;), so the increase in the cost can be bounded by cost(P;).

Thus we get the following inequality :

0< fo.— fot > shift(P)

PEP(s,0):0€FS or
o=o0s, ©(P)=P

+ Z Z [shift(P) + COSt(ﬂ'(P))} (4.6)

og B'S PEP(s,0):m(P)£P

+ Z Z cost(P).

0¢ F'S:00, PEP(s,0):m(P)=P
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Figure 4.1: The octagons represent clients, and the squares represent facilities (double
border squares represent facilities in FNF soly . The dashed outgoing arc shows the
assignment of a client in solution sol, and the incoming arc shows the assignment of a
client in solution S.
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Now _consider an operation in which a facility o' € cap, \ {os} is added. Applying
lemmal4.3.1|with @ = {P € P(s,0') : m(P) = P}, we get 0 < fo—i-zpep(s,o)m(mzp shift(P)
for each o’ € cap, \ {os}. Adding these inequalities and 0 < cost(P), for each P € P(s, o)
that 7(P) = P, to and rearranging proves the lemma. O

Finally we add up inequality for all good facilities and inequality for all bad
facilities and we get the following:

0 < Spga (—fo+ 3 shif(P)+ > cost(x(P))) (4.7)

PePst(s) 0%?‘5,]3673(5,0)
F et (F X At X iRy Y cost(x(P))
o€cap, PePst(s) og F'S
PeP(s,0):m(P)£P
+ Z cost(P))
occapg

PcP(s,0):m(P)=P

We define three categories on the paths that start from some facility s € Fs \ Fol.
Let Ql denote the set of paths that end in o € FS Fsol, Hence, the rest of paths end in
o€ F*\ F5 let Q> = {P: n(P) # P}. Let Q3 be the set of the remaining paths (i.e.,
{P : 7(P) = P}). Using these definition inequality 4.7|leads to:

Soofe< DD fot D shift(P

SEFS\ Fsol o is captured PeQ!
+ Z (shift(P) + cost(m(P)))
PeQ?
+ Z shift(P) + cost(P))
PeQ3

Using the fact that = (7 (P)) = P, we get:

DA S A 3 o ]

s€FS\ Fsol o is captured PeQ! jeD(P)

+ Z Z 2Asol

PeQ? jeD(P)

+ Z Z 2Asol

PeQ3 jeD(P)
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Which leads to our desired inequality F'S < Fs°l 4 20!,

4.3.3 Bounding the total cost

We can wrap up the results we got so far in the following lemma:

Lemma 4.3.4. The local optimal solution to a local search algorithm based on add, delete,
and swap moves has the facility-opening cost F < 5ol 4+ 205 and connection cost C <
F5°l+05"l, where F*°! and C*°! are the facility and connection costs of an arbitrary solution
to the CDUFL instance.

Now we describe how to modify the analysis to obtain bounds on the facility opening
cost and the connection cost of an “approximate” local optimum obtained by our algorithm.
To avoid excessive notation, we denote this solution by .S. For solution S, we know that no
operation improves its cost significantly. More formally, the change in the cost of solution
for any operation is larger than ——(C +F ). (Recall that for a local optimum, we say this
change is positive.) We use the same approach in the analysis, so we get similar inequalities
but instead having 0 we have ——(6 + F) for lower bound on the change in the cost (in
inequalities and 4.6 - Since at most N number of these inequalities add up at the
end, we get —e(C’ +F )+ F < Fsel 4 o0, Similarly, for the connection cost of S, we get
—E(C +F )+ C < Feol 4 Ol Combining these two results, we get the following bounds
for S:
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Dividing inequalities by 1 — € — 16—_25, we get the following theorem:

Theorem 4.3.5. Given any CDUFL instance, one can efficiently compute a solution with
facility-opening cost F < (F= 420 (14¢€) and connection cost C < (F* +C*) (1 +¢),
where F5oU and C*° are the facility and connection costs of an arbitrary solution to the
CDUFL instance, and € is a factor that effects the running time of the algorithm.

Using standard scaling techmques [4] we can scale the famhty opening costs by o > 0
so we get a solution where F + C < (F* + 205"[) (oFsol + C*). By setting o = v/2,
we get the following corollary:

Corollary 4.3.6. There is a 2.45-approximation algorithm for CDUFL.
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Figure 4.2: Tight example for CDUFL algorithm.

4.4 Tight example

Since UFL is an special case of CDUFL the tight example given by [1] also works for our
algorithm. In this example, we have F=Fu= {s,01, 09, ..., 01} where the facility opening
cost are f, = 2k and f,, = € for i € {1,2,...,k} for some integer k and constant factor
e. We have |13| = k and the distances between the facilities and clients are shown in
Figure . Consider a feasible solution with open facility set {s}. Clearly this solution
is a local optimum since deleting s, or adding any facility, or swapping s and some other
facility does not improve the cost of this solution. This solution has cost 3 times the cost
of the optimal solution in which the set of open facilities is {01, 09, ..., 0 }. More precisely,
the cost of this solution is 3k while the optimal solution has a cost k(1 + ¢).
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Chapter 5

Conclusion and future work

In this thesis, we presented our approximation algorithm for solving LBFL which achieves
the constant-factor approximation guarantee of 83. The running time of our algorithm
is dominated by the running time of local-search algorithms for a) UFL instance Z', and
b)CDUFL instance 7 , since other transformation steps can be done efficiently. As we men-
tioned earlier, to ensure polynomial running time, we only consider the moves with signif-
icant improvement in local-search, and hence the algorithm terminates at an approximate
local optimum.

Although our approximation factor is much better than the current best approximation
factor for LBFL, our results are not yet practical. Finding an algorithm with much better
approximation factor which is useful in practice is an interesting future work. Also, we are
not aware of any LP-based or local-search algorithm for LBFL, so devising such algorithms
is another future work.

Our algorithm can be extended to handle the case that clients have non-unit splittable
demands, since for non-unit demands one can still compute the best local search move
(for CDUFL), and hence run the algorithm. In this case, our algorithm finds a solution
where the demand of a client might be satisfied by different facilities, i.e., our algorithm
finds a solution with splittable demand. If splitting the demand is not allowed, one can
check if there is a feasible solution to LBFL; but Svitkina [20] claims that approximating
the solution within any factor, independent of the demand value, is not possible unless
P=NP.

Unfortunately, our algorithm (or the algorithm in [20]) does not extend to the general-
ization of LBFL where each facility ¢ has its own lower bound M; on the number of clients
that should be served by i. In this case, we are not able to provide bounds on the cost of
the optimal solution to Zy (the approach in Lemma may fail to return a feasible solu-
tion). Svitkina shows that there is a reduction from UniFL with monotone non-increasing
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facility costs to LBFL with non-uniform lower bounds. We leave the problem of solving
LBFL with non-uniform lower bounds as future work. Another interesting open problem is
universal facility location problem with non-monotone opening cost functions.
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Appendix A

Integrality gap of LBFL

Let (.7-", D, {f:}, M, {c(q, j)}) be an LBFL instance with facility-set F, and client-set D. Now
consider the following simple LBFL instance. We have two facilities ¢ and ' at distance d
from each other. There is a set T; of M — 1 clients at location i, and a set Ty of M — 1
clients at location ¢’. Both of the facilities have zero facility opening cost. The only feasible
integer solution is to transfer clients at one of the facilities to the other facility and open
the latter, and therefore the cost incurred is d(M —1). However, there is a feasible solution
to (LBFL LP)) of cost 2d - 2=1: we set y; = yy = Y=L, 2y = M4 2 = L for each
jeT;, aHdMJJi/j =ML g, = & for each j € Ty. Thus, the integrality gap of
is at least 5.
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Appendix B

The locality gap for a local-search
algorithm for LBFL

Our initial attempt for solving LBFL was to design a local-search algorithm for it. We are
not aware of any constant-factor local-search algorithm for LBFL. For the local-search algo-
rithm based on add, delete, and swap moves we found the following example showing the
large locality gap for this algorithm. Consider an LBFL instance (F,D,{f;}, M,{c(i,j)})
with facility-set F = {o, s1, s2, ..., Sp }, and client-set D = Dy U Dy U ... U Dy, where the
D;s are disjoint sets of size M (see Figure . The facility opening costs are defined as
follows : f, = M? + € and f,, = M for each i € {1,2,..., M}. All clients are located at
unit-distance from o. For all clients, we have ¢(s;, j) = M for j € D; and ¢(s;,7) = M + 2
for each j ¢ D;. Note that these distances can be extended to yield a metric on F U D.
The solution S with set of open facilities F'® = {s1, 59, ..., sas} is a local optimum since no
improving add, delete,or swap move exists. The cost of this solution is M?+ M3. However,
the optimal solution opens facility {0}, and it has a total cost of 2M? + ¢. So the locality
gap for this algorithm is at least M /2.
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Figure B.1: An example showing large locality gap for a local-search algorithm based on
add,delete, and swap moves for LBFL.
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Appendix C

Integrality gap of CDUFL

Let (.7? = FuUFe, D, {f;}. {u;}, {¢(i,5)}) be a CDUFL instance with facility-set F (where
u; = oo foralli € }/:“, and ﬁ =0foralli e }/:C), and client-set D. We propose the following
natural linear programming for the CDUFL. Let y; be indicator variables denoting whether
facility ¢ is open, and x;; is an indicator variable denoting whether client j is assigned to
facility 7.

min Y fiyi+ Y é(i, j)ay (CDUFL LP)
i gy

st Y wy>1 VjeD (C.1)
J
xij,yizO Vie F,j€D.

Constraint states that each client has to be assigned to a facility and constraint
ensures that this facility is open. Constraint [C.3|ensures that at most u; clients are assigned
to a capacitated facility i. Now consider the following simple CDUFL instance. We have
two facilities ¢ and 4/, and u + 1 clients, all present at the same location. Facility 7 is
uncapacitated and has opening cost f, and facility ¢’ has capacity u (and zero opening
cost). Any solution to CDUFL must open facility ¢ and therefore incur cost at least f.

. . . /. — _1
However, there is a feasible solution to (CDUFL LP)) of cost ;i5: we set y; = and

u+1’

Tij = u+r1, zyj = 445 Thus, the integrality gap of (CDUFL LP) is at least u + 1.
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