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Abstract

Facility location problems arise in a wide range of applications such as plant or warehouse
location problems, cache placement problems, and network design problems, and have been
widely studied in Computer Science and Operations Research literature. These problems typi-
cally involve an underlying set F of facilities that provide service, and an underlying set D of
clients that require service, which need to be assigned to facilities in a cost-effective fashion.
This abstraction is quite versatile and also captures clustering problems, where one typically
seeks to partition a set of data points into k clusters, for some given k, in a suitable way, which
themselves find applications in data mining, machine learning, and bioinformatics.

Basic variants of facility location problems are now relatively well-understood, but we have
much-less understanding of more-sophisticated models that better model the real-world con-
cerns. In this thesis, we focus on three models inspired by some real-world optimization scenar-
ios.

In Chapter 2, we consider mobile facility location (MFL) problem, wherein we seek to relo-
cate a given set of facilities to destinations closer to the clients as to minimize the sum of facility-
movement and client-assignment costs. This abstracts facility-location settings where one has
the flexibility of moving facilities from their current locations to other destinations so as to serve
clients more efficiently by reducing their assignment costs. We give the first local-search based
approximation algorithm for this problem and achieve the best-known approximation guarantee.
Our main result is (3 + ε)-approximation for this problem for any constant ε > 0 using local
search which improves the previous best guarantee of 8-approximation algorithm due to [34]
based on LP-rounding. Our results extend to the weighted generalization wherein each facility i
has a non-negative weight wi and the movement cost for i is wi times the distance traveled by i.

In Chapter 3, we consider a facility-location problem that we call the minimum-load k-facility
location (MLkFL), which abstracts settings where the cost of serving the clients assigned to
a facility is incurred by the facility. This problem was studied under the name of min-max star
cover in [32, 10], who (among other results) gave bicriteria approximation algorithms for MLkFL
when F = D. MLkFL is rather poorly understood, and only an O(k)-approximation is currently
known for MLkFL, even for line metrics. Our main result is the first polytime approximation
scheme (PTAS) for MLkFL on line metrics (note that no non-trivial true approximation of any
kind was known for this metric). Complementing this, we prove that MLkFL is strongly NP-hard
on line metrics.

In Chapter 4, we consider clustering problems with non-uniform lower bounds and outliers,
and obtain the first approximation guarantees for these problems. We consider objective func-
tions involving the radii of open facilities, where the radius of a facility i is the maximum distance
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between i and a client assigned to it. We consider two problems: minimizing the sum of the radii
of the open facilities, which yields the lower-bounded min-sum-of-radii with outliers (LBkSRO)
problem, and minimizing the maximum radius, which yields the lower-bounded k-supplier with
outliers (LBkSupO) problem. We obtain an approximation factor of 12.365 for LBkSRO, which
improves to 3.83 for the non-outlier version. These also constitute the first approximation bounds
for the min-sum-of-radii objective when we consider lower bounds and outliers separately. We
obtain approximation factors of 5 and 3 respectively for LBkSupO and its non-outlier version.
These are the first approximation results for k-supplier with non-uniform lower bounds.
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Chapter 1

Introduction

An important exercise that rises in operation research is that of optimizing the cost of repetitive
tasks. Organizations seek to optimize their operations to minimize costs and improve efficiency.
Typically, each operation is associated with some cost effectiveness and it provides some service
to a set of demands or clients. Examples of such operations include setting up manufacturing
plants, storage/distribution centers, hospitals, and fire stations. More-modern examples include
the placement of proxy servers on the web. Facility location (FL) problems were proposed in the
Operation Research literature as a means of providing mathematical formulations of the common
optimization problems underlying these examples. We start by elaborating two examples of
optimization scenarios motivated by real-world settings that are captured by facility location
problems.

Consider a media company that aims to locate newspaper stands in a city. The company has
determined the cost of setting up a stand in each potential location/neighborhood and it knows
the demand in each neighborhood. The optimization question here is where the company should
locate its stands in order to minimize the total setup cost together with the cost incurred by its
customers traveling to these stands.

Consider a government that wants to locate polling stations for an election. There might be
a large set of potential locations such as schools and sports halls but since the government has
limited resources such as voting booths or staff members, it wants to select a fixed number of
these locations. The government knows the number of potential voters in each neighborhood.
There are two main attractive objectives to pursue. The first objective, which comes from a ”fair-
ness” perspective, is to maximize the maximum travel time of potential voters, and the second
objective, which comes from a ”social welfare” perspective, is to minimize the average travel
time of all potential voters.
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The preceding questions are typical examples of FL problems that have been widely studied
since the early 1960’s. These problems are described by four common elements:

• A set of locations where centers or facilities may be built or opened. There is usually an
opening cost associated with each location.

• A set of demand points or clients, which need to be served. Each client interacts with a
facility incurring a certain cost, e.g., traveling time in the last example, that is often termed
the connection or assignment cost.

• A list of requirements that need to be satisfied by the open facilities or the assignments of
clients to the open facilities.

• A cost function that associates each solution, specified by a set of open facilities and the
assignment of clients to these open facilities, with a cost.

The goal in FL problems is to determine a set of facilities to open and an assignment of clients
to these set that satisfies the requirement conditions while minimizing the cost function.

Numerous facility-location problems arise by varying the above elements, in particular, the
list of requirements and the cost function. The simplest FL problem is uncapacitated facility
location (UFL) problem, also known as plant location, where there are there are no requirements
(other than that every client must be assigned to an open facility), and the cost is simply the
sum of the opening costs of the facilities and the connection costs of the clients (newspaper
example). A more-realistic generalization, called capacitated facility location (CFL) problem,
emerges from UFL by adding the requirement that each open facility can serve only a certain
bounded number of clients.

FL problems also capture clustering problems, which involve aggregating data points into dif-
ferent groups (with the underlying metric space specifying the similarity between data points);
such problems can often be viewed as FL problems where the facilities are free. Clustering prob-
lems find application in a variety of settings (see, e.g., Jain [51]): examples include image seg-
mentation, information retrieval, and the grouping of customers into different types for efficient
marketing. Two popular examples of clustering problems are the k-center problem, wherein we
seek to open k centers (or facilities) so as to minimize the maximum connection cost of a client
(a fairness perspective), and the k-median problem, where we again seek to open k facilities to
minimize the sum of client connection costs (a social-welfare perspective).

Most FL problems are NP-hard, so we do not expect that there is a polytime algorithm that
finds an optimal solution for all instances of the problem. We, therefore, focus on the develop-
ment of approximation algorithms. An α-approximation algorithm is one that, for every instance,
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returns a solution of cost at most α times the optimum; the quantity α is usually called the approx-
imation guarantee or ratio of the algorithm. A polynomial-time approximation scheme (PTAS)
is an (family of) approximation algorithm(s) that, for any fixed ε > 0, achieves approximation
ratio (1 + ε) in time polynomial in the input size; a fully polynomial-time approximation scheme
(FPTAS) is a PTAS whose running time is also polynomial in 1/ε.

FL problems have been extensively studied in Operation Research and Theoretical Computer
Science communities and different techniques have been developed for devising approximation
algorithms for these problems. These techniques can be categorized into three major groups:
LP-rounding, Primal-Dual(PD), and local search. In the LP rounding technique, the algorithm
rounds an optimal solution to an underlying LP-formulation of the problem to an integral solu-
tion. The maximum ratio between the solution quality of the integer program and its relaxation
is called integrality gap of an LP formulation. Clearly, LP-rounding techniques only succeed if
the integrality gap of the underlying LP-formulation is bounded. A merit of using LP-rounding
techniques is that they are often versatile and extend to other related problems with similar relax-
ation. The PD approach implicitly relies on an LP-formulation of the problem, and it typically
constructs a feasible dual solution and a feasible (integral) primal solution simultaneously, and
then bounds the cost of the constructed primal solution in terms of the cost of the constructed
dual solution. In local search, the algorithm repeatedly moves from one feasible solution to a
neighboring solution with lower cost, and terminates with a locally-optimal solution. Such al-
gorithms have been successfully applied to a large variety of FL problems, and in some cases,
they are the only successful approach and yield the current-best approximation guarantees. The
maximum ratio between the solution quality of a local optimum and a global optimum is called
locality-gap. Ease of understanding and implementation has made local search the method of
choice for implementation by practitioners.

Whereas basic variants of FL location problems are now-relatively well-understood, we have
much less understanding of more-sophisticated variants that better model real-world settings. In
this thesis, our goal is to leverage the insights gained from the study of the basic variants to
better understand such sophisticated models. Our focus is on developing good approximation
algorithms for these problems. From practitioner’s viewpoint, one should remember that our
analysis gives an upper-bound on the running time and the ratio of the cost of our solution to the
cost of an optimum but in practice, it is possible that the algorithm terminates in a faster time
and it might return a solution which has a better ratio. We next discuss the various FL problems
considered in this thesis.
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Problem Our results Previous work

Mobile FL (Ch 2) 3 + ε 8 [34, 79]

Minimum-load k-FL (Ch 3) PTAS
(3 + ε, 3)-bicriteria ([10])

O(k) (via O(1) for k-median)

L
ow

er
-b

ou
nd

ed
(L

B
)

cl
us

te
ri

ng
(C

h
4) LB k-supplier 3 2 (uniform LB, F = D [3, 2] )

LB k-supplier with outliers 5 4 (uniform LB, F = D [3, 2] )

LB min-sum-of-radii 3.83
3.53 (no lower-bounds [22] )

QPTAS (no lower-bounds )

LB min-sum-of-radii with outliers 12.365 -

Table 1.1: Summary of our main results. We use F to denote the facility set and D
to denote the client set.

1.1 Models studied in this thesis

In this section, we introduce three problems inspired by realistic optimization scenarios. These
problems model more sophisticated real-world problems. In each subsection, we focus on one
problem and first start with an example motivating the problem, then we highlight our contribu-
tion to the given problem (more details of used techniques and more comprehensive description
of related work are given in the corresponding chapter). Table 1.1 summarizes our main results
for the three facility locations problems that we considered in this thesis.

1.1.1 Mobile facility location

Consider a setting where a company seeks a cost-efficient method for delivering products from
its plants to its customers. The company also owns some distribution centers, and each plant has
a truck. So a reasonable approach is to move products from each plant to a distribution center,
from where the customers pick up their demanded products. This setting is abstracted by mobile
facility location(MFL) problem wherein we are given an initial location of k facilities and clients,
all located in a common metric and the goal is to find a final location for each facility and assign
clients to these facilities such that the total facility movement cost and client connection costs is
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minimized. Mobile facility location can also be motivated from the perspective of reoptimiza-
tion. Suppose we have a current UFL solution, but clients get relocated after getting service, or
equivalently, a new set of clients appear after servicing one set of clients. For example, in news-
paper stand example, the media company may have changed its content resulting in a new set of
demands in each neighborhood. The goal in MFL is to minimize the sum of relocation costs of
facilities and the sum of the (new) clients’ connection costs. MFL was introduced by Demaine et
al. [28] in the context of movement problems.

We devise the first local-search based algorithm for MFL (see Chapter 2), which also yields
the current best approximation for this problem. Our algorithm achieves an approximation ratio
of (3+ε), for any ε > 0; The previous best guarantee for MFL was an 8-approximation algorithm
due to Friggstad and Salavatipour [34] based on LP-rounding. There is an approximation pre-
serving reduction from the k-median problem to MFL and our approximation guarantee matches
the current-best local-search based approximation ratio of (3 + ε) for k-median [11] (the approx-
imation ratio for k-median was however improved recently using LP-based approaches). Our
analysis is tight (up to o(1) factors) as the example showing locality gap of 3 for k-median can
be translated to yield the same locality gap for out local-search algorithm for MFL. Our results
extend to the weighted generalization where each facility i has a non-negative weight wi, and the
movement cost for i is wi times the distance traveled by i.

1.1.2 Minimum load k-facility location

Consider the polling station example with the following twist instead of clients coming to the
stations, we have volunteers that start at their own station and collect votes from potential voters
in their home. Each volunteer returns to its station after collecting votes from each location
to store the results at his/her station for privacy and security reasons. In order to insure fair
distribution of work, we want to minimize the maximum distance traveled by each volunteer.
This setting inspires an FL model where we want to open k facilities and assign clients to the open
facilities, and the goal is to minimize the maximum cost borne by each facility. This problem
is called minimum load k-facility (MLkFL) problem, wherein the objective is to minimize the
maximum load of each facility, where the load of each facility defined as the sum of connection
cost of clients assigned to it.

The MLkFL problem was studied under the name min-max star cover in Even et al. [32] and
Arkin et al. [10], who (among other results) gave bicriteria approximation algorithms for the
setting where the client set and facility set are the same. MLkFL is rather poorly understood,
and only an O(k)-approximation is currently known for MLkFL, even for line metrics. Our main
result is the first polynomial time approximation scheme (PTAS) for MLkFL (see Chapter 3).
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Complementing this, we prove that MLkFL is strongly NP-hard on line metrics.

1.1.3 Clustering problems with lower-bounds and outliers

An important concern that arises in publishing data (e.h., census data) is data privacy. For ex-
ample, one would like to publish the data obtained from a study on patients of a hospital while
maintaining the privacy of individual patients. A naive approach for achieving this is by remov-
ing the fields of data corresponding to personal identification, such as social security number
or name. However, this does not quite work, since by combining multiple databases, one can
use the combination of non-key attributes, called quasi-identifiers, to identify the identity of an
individual. In order to achieve anonymity, Samarati [73] proposed perturbing some attributes of
data points and then clustering these perturbed data points such that there are at least L identical
perturbed data points in each cluster, for some fixed L, thus making it difficult to identify an
individual from this perturbed data. Aggrawal et al. [3, 2] observed that this problem can be
abstracted as a lower-bounded clustering problem where the objective function captures the cost
of perturbing data points.

The preceding example provides one motivation for the study of lower-bounded clustering
problems. Again various objectives can be considered in this setting. Suppose that a clustering is
obtained by assigning data points to a center, and define the radius of the cluster to be defined as
the distance between the center and the furthest data point in the cluster. Two natural objectives
are minimizing the maximum radius, which is the k-center objective, and minimizing the sum
of the cluster radii. We use the term lower-bounded k-supplier (LBkSup) problem to refer to
the first objective function (k-supplier is a generalization of k-center, where the assumption that
facility set and client set are the same, is dropped); The problem corresponding to the second
objective is called thelower-bounded min-sum-of-radii (LBkSR) problem.

A common woe in clustering problems is the existence of data points that are quite dissimilar
from other data points. Any clustering of the entire data points in such circumstances is likely to
have poor quality. Allowing the flexibility of not clustering all data points, e.g., requiring only
90% of data points to be clustered, allows one to direct attention to the data points of interest, and
can thereby improve the quality of the clustering (and in some cases drastically). The unclustered
data points are called outliers and the outlier version of the two versions of clustering problems
we consider are called lower-bounded k-supplier with outliers(LBkSupO) and lower-bounded
min-sum-of-radii with outliers (LBkSRO).

We obtain approximation factors of 5 and 3 respectively for LBkSupO and its non-outlier
version. These are the first approximation results for k-supplier with non-uniform lower bounds.
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We obtain an approximation factor of 12.365 for LBkSRO, which improves to 3.83 for the non-
outlier version These also constitute the first approximation bounds for the min-sum-of-radii
objective when we consider lower bounds and outliers separately. For the min-sum-of-radii
problems, we apply the primal-dual method to the relaxation where we Lagrangify the constraint
on the number of opened centers. The chief technical contribution and novelty of our algorithm
is that, departing from the standard paradigm used for such constrained problems, we obtain an
O(1)-approximation despite the fact that we do not obtain a Lagrangian-multiplier-preserving
algorithm for the Lagrangian relaxation. We believe that our ideas have broader applicability to
other clustering problems with outliers as well (see Chapter 4 for more details).

1.2 Related work

There is a wealth of work on clustering and facility location problems (see e.g., [69] and the sur-
vey [74]). Here, we briefly survey the work on more classical facility location problems: UFL,
CFL, k-center, and k-median; we discuss the related work on the specific problems considered
in this thesis in the chapters pertaining to these problems. UFL is the most investigated facility
location problem. Although the problem was intensively studied since the 1960s (see, e.g., Stoll-
steimer [77], Balinski and Wolfe [12], Kuehn and Hamburger [61], Manne [68]), it was in 1997
that the first constant-factor approximation was devised for UFL with metric connection costs by
Shmoys et al. [76]. This result initiated a long line of research and resulted in the development of
various algorithmic techniques, including LP-rounding [24, 15], primal-dual methods [54, 53],
and local-search methods [11, 18]. The current best is due to Li [63] who combined an algorithm
by Byrka [15] and an algorithm by Jain et. al. [53] to achieve an approximation ratio of 1.488.
This result almost settles the approximation of metric UFL as Guha and Khuller [40] proved that
it is NP-hard to devise an algorithm with approximation ratio better than s0 ∼ 1.463 where s0 is
the solution to the equation s0 = 1 + 2es0 (e is the base of the natural algorithm).

The CFL problem is another highly investigated problem. All initial known constant-factor
approximation algorithm for CFL were based on local-search paradigm. The first constant-factor
approximation was obtained for a special case of uniform capacities by Korupolu et al. [59] who
analyzed a simple local-search based algorithm of Kuehn and Hamburger [61]. Subsequently,
Chudak and Williamson [25] improved the analysis, and finally, Aggrawal et al. [1] added the
last ingredients to obtain the current-best (3+ε)-approximation ratio for this special case. For the
general case of CFL (non-uniform capacities), the first constant approximation ratio was obtained
by Pál et al. [71]. Since then more sophisticated local-search based algorithms were suggested
and the current best (5 + ε)-approximation is due to Bansal et al. [13]. In 2014, An et al. [9]
made an important advance by devising the first LP-relaxation for CFL with constant integrality
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gap.

Clustering methods have been studied since the 1950’s in various fields including statistics,
biology, computer science, social science, and engineering. k-center is a fairly well-understood
clustering problem. Gonzalez [38] and Hochbaum and Shmoys [47] developed 2-approximation
algorithm for k-center. This result is the best possible as the existence of α-approximation al-
gorithm with α < 2, implies P =NP ([46], [50]). An extension of k-center is obtained when
the set of centers and clients are not necessarily the same and this problem is called k-supplier.
Hochbaum and Shmoys [49] provided a 3-approximation algorithm for k-supplier and this result
is again tight as Karloff proved, if there exists a (3 − ε)-approximation algorithm for k-supplier
for any fixed ε > 0, then P =NP (see [49]).

Metric k-median is another fundamental location problem in Combinatorial Optimization
which falls under clustering category. The first constant approximation ratio of 62

3
was obtained

via LP-rounding by Charikar et al. [19]. Jain and Vazirani [54] developed an elegant primal-dual
approach for UFL and combined this with the idea of Lagrangian relaxation to obtain an improved
6-approximation for k-median. In the Lagrangian relaxation of k-median, the hard constraint on
the number of facilities/centers is lifted and instead a fixed cost is incurred every time a facility
is opened, thus yielding a UFL instance. Using their primal-dual technique, Jain and Vazirani
obtained two solutions for UFL, corresponding to very nearby values of z, one opening fewer
than k facilities but having (possibly) large cost, and the other opening more than k facilities (but
having low cost). These two solutions are then combined to obtain a k-median solution with the
cost at most 6 times the cost of the optimal k-median solution. Later Jain et al. [52] improved
this ratio to 4. Arya et al. [11] analyzed a simple local-search based algorithm and showed
that this achieves (3 + ε) approximation ratio for k-median; their analysis was subsequently
simplified by Gupta and Tangwongsa [42]. In 2012, Li and Svensson [64] improved this decade-
old result by devising a (1 +

√
3 + ε) approximation ratio. Subsequently, Byrka et al. [16]

achieved approximation ratio of 2.675, the current state-of-the-art, by optimizing the ingredients
of the Li-Svensson algorithm using dependent rounding. The best hardness result for k-median
is due to Jain et al. [52] showing that k-median cannot be approximated within a factor (1+ 2

e
−ε)

for ε > 0 unless NP ⊆ DTIME[nO(log logn)].

1.3 Notation used in the thesis

Concluding this chapter, we introduce some common notation used throughout this thesis here.
Recall that every FL problem consists of a set of facilities or centers and a set of clients (the two
sets could be the same). We use F to denote the set of facilities or centers and we usually use
i for indexing facilities. For FL problems where an opening cost is given for each facility, we
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use fi to denote the opening cost of facility i. We use D to denote the set of clients or demands
and j to index the clients. In the settings where clients may have non-unit demands, we use
dj to denote client j’s demand. For all problems (and the vast majority of FL problems in the
literature), we assume that clients and facilities are located in a common metric space, and c(i, j)
denotes the distance between locations i, j ∈ F ∪ D; that is, the c(i, j) distances satisfy the
triangle inequality:

c(i, j) ≤ c(i, l) + c(l, j) ∀ i, j, l ∈ F ∪ D

Given an underlying FL solution (which will be clear from the context), we use σ(j) for each
client j, to denote the facility to which j is assigned.

For clustering problems, i.e., problems with no facility opening costs but with a bound k on
the number of opened facility in each solution, each cluster is identified by a center and a set
of clients assigned to this center. As we use σ(j) to denote the assigned cluster center for each
client j, so set σ−1(i) denotes the set of clients in the cluster with center i. For a cluster with
center i, we define the radius of the cluster, denoted by ri, to be the distance between i and the
furthest client assigned to i, i.e., ri = maxj∈σ−1(i) c(i, j) (if σ−1(i) is empty, we define ri = 0).
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Chapter 2

Mobile Facility Location

2.1 Introduction

In this chapter, we consider settings where facilities are mobile and may be relocated to destina-
tions near the clients in order to serve them more efficiently by reducing the client-assignment
costs. Formally, we consider the mobile facility location (MFL) problem introduced by [28, 34],
which generalizes the classical k-median problem (see below). We are given a metric space
(V, {c(i, j)}i,j∈V ) on a set V of locations, a set F ⊆ V of k initial facility, and a set D ⊆ V of
clients. A solution S to MFL moves each facility i ∈ F to a final location si ∈ V (which could
be the same as i), incurring a movement cost c(i, si), and assigns each client j to the nearest
location in S (break ties arbitrarily) denoted by σ(j), incurring the assignment cost of c(j, σ(j)).
The total cost of S is the sum of all the movement costs and assignment costs.

MFL can be motivated as a re-optimization version of UFL. Suppose we have initially opened
some facilities, but then the client locations change (i.e., the demand-pattern changes). Instead
of sticking with the original facility locations, which may incur a large assignment cost for the
clients, one may find it advantageous to relocate the facilities to other locations closer to the
clients incurring a certain movement cost; MFL captures the resulting optimization problem of
minimizing the sum of the movement and (new) client assignment costs.

Mobile facility location falls into the genre of movement problems introduced by Demaine
et al. [28]. In these problems, we are given an initial configuration in a weighted graph spec-
ified by placing “pebbles” on the nodes and/or edges; the goal is to move the pebbles so as to
obtain a desired final configuration while minimizing the maximum, or total, pebble movement.
MFL was introduced by Demaine et al. as the movement problem where facility- and client-
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pebbles are placed respectively at the initial locations of the facilities and clients, and in the final
configuration every client-pebble should be co-located with some facility-pebble.

2.1.1 Summary of results

We give the first local-search based approximation algorithm for this problem and achieve the
best-known approximation guarantee. Our main result is a (3+ε)-approximation for this problem
for any constant ε > 0 using a simple local-search algorithm. This improves upon the previous
best 8-approximation guarantee for MFL due to Friggstad and Salavatipour [34], which is based
on LP-rounding and is not combinatorial.

The local-search algorithm we consider is quite natural and simple. Observe that given the
final locations of the facilities, we can find the minimum-cost way of moving facilities from their
initial locations to the final locations by solving a minimum-cost perfect-matching problem (and
the client assignments are determined by the function σ defined above). Thus, we concentrate
on determining a good set of final locations. In our local-search algorithm, at each step, we
are allowed to swap in and swap out a fixed number (say p) of (final) locations. Clearly, for any
fixed p, we can find the best local move efficiently (since the cost of a set of final locations can be
computed in polytime). Note that we do not impose any constraints on how the matching between
the initial and final locations may change due to a local move, and a local move might entail
moving all facilities. It is important to allow this flexibility, as it is known [34] that the local-
search procedure that moves, at each step, a constant number of facilities to chosen destinations
has an unbounded approximation ratio.1

Our analysis is tight (Section 2.5). Notice that there is an approximation-preserving reduction
from the k-median problem to MFL [34]: choose arbitrary initial facility locations and give each
client a huge demand D (see Section 2.7). The tightness of our analysis (up to o(1) factors)
follows because by suitably setting D in this reduction, we can ensure that our local-search
algorithm for MFL essentially coincides with the local-search algorithm for k-median in [11],
which has a tight approximation ratio of 3.

We also consider a weighted generalization of the problem (Section 2.6), wherein each facil-
ity i has a weight wi indicating the cost incurred per-unit distance moved and the cost for moving
i to si is wic(i, si). (This can be used to model, for example, the setting where different facilities
move at different speeds.) Our analysis is versatile and extends to this weighted generalization to
yield the same performance guarantee. For the further generalization of the problem, where the

1 Whereas we consider p-swaps here for p > 1, it is natural to consider what happens if we only swap in and
out a single final location. In the arxiv version of this work [5], we show that this also yields a constant-factor
approximation, but the analysis is significantly different and involved and we obtain a larger constant.
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facility-movement costs may be arbitrary and unrelated to the client-assignment costs (for which
an 8-approximation can be obtained via LP-rounding; see “Related work”), we show that local
search based on multiple swaps has a bad approximation ratio (Section 2.8).

The results presented in this chapter are part of a joint work with Chaitanya Swamy and
Zachary Friggstad and it was published in 2013 [5].

2.1.2 Related work

As mentioned earlier, MFL was introduced by Demaine et al. [28] in the context of movement
problems. Demaine et al [28] considered various movement objectives and for the case that the
objective is to minimize the maximum facility movement cost or client connection cost, they
devise a 2-approximation algorithm. They left the problem with the objective function defined
as the sum of facility movement costs and clients’ connection costs, an open question. Friggstad
and Salavatipour [34] designed the first approximation algorithm for MFL. They gave an 8-
approximation algorithm based on LP rounding by building upon the LP-rounding algorithm
of Charikar et al. [19] for the k-median problem; this algorithm works only however for the
unweighted case. They also observed that there is an approximation-preserving reduction from
k-median to MFL. Halper [44] in his thesis, proposed the same local-search algorithm that we
analyze. His work focuses on experimental results and leaves open the question of obtaining
theoretical guarantees about the performance of local-search.

Swamy [79] observed that MFL, even with arbitrary movement costs is a special case of
the matroid median problem [60] wherein we are given a set of facilities with facility opening
costs and a matroid on facility-set, and a set of clients with demand and connection costs, and
the goal is to open an independent set of facilities and assign each client to an open facility so
that the sum of facility opening costs and the client connection costs is minimized. Following
the work of [60], Charikar et al. [21] and Swamy [79] improved the approximation ratio for
matroid median. Algorithm in [79] yields an 8-approximation algorithm for MFL with arbitrary
movement costs.

We now focus on results obtained using local-search algorithms for classical facility loca-
tion problems; UFL, CFL, and k-median. Starting with the work of [59], local-search techniques
have been utilized to devise O(1)-approximation algorithms for various facility-location prob-
lems. Korupolu, Plaxton, and Rajaraman [59] devised O(1)-approximation for UFL, and CFL
with uniform capacities, and k-median (with a blow-up in k). Charikar and Guha [18], and Arya
et al. [11] both obtained a (1 +

√
2)-approximation for UFL. The first constant-factor approx-

imation for CFL was obtained by Pál, Tardos, and Wexler [71], and after some improvements,
the current-best approximation ratio now stands at 5 + ε [13]. For the special case of uniform
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capacities, the analysis in [59] was refined by [25], and Aggarwal et al. [1] obtain the current-
best 3-approximation. Arya et al. [11] devised a (3 + ε)-approximation algorithm for k-median,
which was also the first constant-factor approximation algorithm for this problem based on local
search. Gupta and Tangwongsan [42] (among other results) simplified the analysis in [11]. We
build upon some of their ideas in our analysis.

Local-search algorithms with constant approximation ratios have also been devised for var-
ious variants of the above three canonical problems. Mahdian and Pál [67], and Svitkina and
Tardos [78] consider settings where the opening cost of a facility is a function of the set of
clients served by it. In [67], this cost is a non-decreasing function of the number of clients, and
in [78] this cost arises from a certain tree defined on the client set. Devanur et al. [29] and [42]
consider k-facility location, which is similar to k-median except that facilities also have opening
costs. Hajiaghayi et al. [43] consider a special case of the matroid median problem that they
call the red-blue median problem. Gørtz and Nagarajan[39] considered a problem that they call
the k-median forest problem, which generalizes k-median, and obtained a (3 + ε)-approximation
algorithm.

2.2 Problem definition and preliminaries

Recall that in the mobile facility location (MFL) problem, we have a metric space (V, {c(i, j)}i,j∈V ),
a set F ⊆ V of initial facility locations, and a set D ⊆ V of clients. We use term i to denote the
facility whose initial location is i ∈ F . A feasible solution S ⊆ F identifies k final locations for
each of initial locations i ∈ F , i.e., S = {s1, s2, · · · , sk} and si is the final location of facility
i ∈ F , which could be the same as i. For solution S, each client j is assigned to the closest facil-
ity (breaking ties arbitrary), denoted by σ(j), and this client pays assignment/connection cost of
c(j, σ(j)). The cost of solution S consists of the movement costs of facilities which is c(i, si) for
each initial location i ∈ F , and the assignment costs of clients which is c(j, σ(j)) for each client
j ∈ D. More precisely, the cost of S is

MFL(S) =
∑
i∈F

c(i, si) +
∑
j∈D

c(j, σ(j)).

We assume throughout that the edges form a metric and we use terms nodes and locations
interchangeably. We use S to denote the output of our algorithm which is a local optimum and
we use O = {o1, . . . , ok} to denote the (globally) optimal solution, where again facility i is
moved to oi. Throughout, we use s to index locations in S, and o to index locations in O. For
a node v ∈ V , let σ(v) be the location in S nearest to v (breaking ties arbitrary). Similarly,
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we define σ∗(v) to be the location in O nearest to v. For notational similarity with facility
location problems, we denote c(i, si) by fi, and c(i, oi) by f ∗i . (Thus, fi and f ∗i are the movement
costs of i in S and O respectively.) Also, we abbreviate c

(
j, σ(j)

)
to cj , and c

(
j, σ∗(j)

)
to c∗j .

Thus, cj and c∗j are the assignment costs of j in the local and global optimum respectively. So
MFL(S) =

∑
i∈F fi +

∑
j∈D cj and MFL(O) =

∑
i∈F f

∗
i +

∑
j∈D c

∗
j .

2.3 The local-search algorithm

As mentioned earlier, to compute a solution to MFL, we only need to determine the set of final
locations of the facilities, since we can then efficiently compute the best movement of facilities
from their initial to final locations, and the client assignments. This motivates the following
local-search operation. Given a current set S of k = |F| locations, we can move to any other set
S ′ of k locations such that |S \ S ′| = |S ′ \ S| ≤ p, where p is some fixed value. We denote this
move by swap(S \ S ′, S ′ \ S). The local-search algorithm starts with an arbitrary set of k final
locations. At each iteration, we choose the local-search move that yields the largest reduction in
total cost and update our final-location set accordingly; if no cost-improving move exists, then we
terminate. (To obtain polynomial running time, as is standard, we modify the above procedure so
that we choose a local-search move only if the cost-reduction is at least ε fraction of the current
cost; see Subsection 2.4.2.)

Before proceeding to the analysis of algorithm, we introduce some notation and a basic
lemma used repeatedly in the analysis. Let D(s) = {j ∈ D : σ(j) = s} be the set of
clients assigned to the location s ∈ S, and D∗(o) = {j ∈ D : σ∗(j) = o}. For a set
A ⊆ S, we define D(A) =

⋃
s∈AD(s); we define D∗(A) for A ⊆ O similarly. Define

cap(s) = {o ∈ O : σ(o) = s}. We say that s captures all the locations in cap(s).

Lemma 2.3.1. For any client j, we have c
(
j, σ(σ∗(j))

)
− c
(
j, σ(j)

)
≤ 2c∗j .

Proof. Let s = σ(j), o = σ∗(j), s′ = σ(o). The lemma clearly holds if s′ = s. Otherwise,

c(j, s′) ≤ c(j, o) + c(o, s′) ≤ c∗j + c(o, s) ≤ c∗j + c∗j + cj,

where the second inequality follows since s′ is the closest location to o in S. So c(j, s′)−c(j, s) ≤
2c∗j + cj − cj = 2c∗j (see Figure 2.1).
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j

sos′

c∗j cj
A final location in solution S

A final location in solution O

Figure 2.1: Reassignment of a client j from s = σ(j) to s′ = σ(σ∗(j)).

2.4 Analysis leading to a 5-approximation

We now analyze the above local-search algorithm and show that it is a
(
5 + o(1)

)
-approximation

algorithm. For notational simplicity, we assume that the local-search algorithm terminates at a
local optimum; the modification to ensure polynomial running time degrades the approximation
by at most a (1 + ε)-factor (see also Subsection 2.4.2).

Theorem 2.4.1. Let F ∗ and C∗ denote respectively the movement and assignment cost of an
optimal solution. The total cost of any local optimum using at most p swaps is at most(

3 +O
(

1
p1/3

))
F ∗ +

(
5 +O

(
1

p1/3

))
C∗.

Although this is not the tightest guarantee that we obtain, we present this analysis first since
it introduces many of the ideas that we build upon in Section 2.5 to prove a tight approximation
guarantee of

(
3 + o(1)

)
for the local-search algorithm. All our analyses carry over trivially to

the case of non-unit (integer) demand for each client since we can think of a client j having dj
demand as dj co-located unit-demand clients.

To prove the approximation ratio, we will specify a set of local-search moves for the local
optimum, and use the fact that none of these moves improve the cost to obtain some inequalities,
which will together yield a bound on the cost of the local optimum. We describe these moves by
using the following digraph. Consider the digraph Ĝ =

(
F∪S∪O, {(si, i), (i, oi), (oi, σ(oi))}i∈F

)
.

We decompose Ĝ into a collection of node-disjoint (simple) paths P and cycles C as follows; see
Figure 2.2. Repeatedly, while there is a cycle C in our current digraph, we add C to C, remove all
the nodes of C and recurse on the remaining digraph. After this step, a node v in the remaining
digraph, which is acyclic, has: exactly one outgoing arc if v ∈ S; exactly one incoming and one
outgoing arc if v ∈ F ; and exactly one incoming, and at most one outgoing arc if v ∈ O. Now
we repeatedly choose a node v ∈ S starting at v in P , remove all nodes of P and recurse on
the remaining digraph. Thus, each triple (si, i, oi) is on a unique path or cycle in P ∪ C. Define
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center(s) to be o ∈ O such that (o, s) is an arc in P ∪ C; if s has no incoming arc in P ∪ C, then
let center(s) = nil.

si oi

i

center edge

non-center edge
facility location in S

facility location in O

initial facility loction

Figure 2.2: Example of decomposing digraph Ĝ to set P of paths and set C of cycles.

We will use P and C to define our swaps. For a path P = (si1 , i1, oi1 , . . . , sir , ir, oir) ∈ P ,
define start(P ) to be si1 and end(P ) to be oir . Notice that σ(oir) /∈ P by our decomposition
process. For each s ∈ S, let Pc(s) = {P : end(P ) ∈ cap(s)}, T (s) = {start(P ) : P ∈ Pc(s)},
and H(s) = {end(P ) : P ∈ Pc(s)} = cap(s) \ {center(s)}. Note that |Pc(s)| = |T (s)| =
|H(s)| = |cap(s)| − 1 for any s ∈ S with |cap(s)| ≥ 1. For a set A ⊆ S, define T (A) =⋃
s∈A T (s), H(A) =

⋃
s∈AH(s), Pc(A) =

⋃
s∈APc(s).

A basic building block in our analysis, involves a shift along an s ; o sub-path Z = (si1 =
s, i1, oi1 , . . . , sir , ir, oir = o) of some path or cycle in P ∪ C. This means that we swap out s and
swap in o. We bound the cost of the matching between F and S ∪ {o} \ {s} by moving each
initial location i ∈ Z, i 6= ir to σ(oi) ∈ Z and moving ir to oir (see Figure 2.3). Thus, we obtain
the following simple bound on the increase in movement cost due to this operation:

shift(s, o) =
∑
i∈Z

(f ∗i − fi) +
∑

i∈Z:oi 6=o

c
(
oi, σ(oi)

)
≤ 2

∑
i∈Z

f ∗i − c(o, σ(o)). (2.1)

The last inequality uses the fact that c
(
oi, σ(oi)

)
≤ c(oi, si) ≤ f ∗i + fi for all i. For a path

P ∈ P , we use shift(P ) as a shorthand for shift
(
start(P ), end(P )

)
.
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si1

i1

oi1 si2

i2

oi2 si3 sir

ir

oir

center edge

facility location in S

facility location in O

initial facility loction

Figure 2.3: Depiction of shift move for subpath Z of a cycle or a path. For each
facility il for 1 ≤ l ≤ r, the dashed arrow leaving il shows the new location where
the facility il is moved to.

2.4.1 The swaps used and their analysis

We now describe the local moves used in the analysis. We define a set of swaps such that each
o ∈ O is swapped in to an extent of at least one, and at most two. We classify each location in S
as one of three types. Define t =

⌊
p1/3

⌋
. We assume that t ≥ 2.

• S0: locations s ∈ S with |cap(s)| = 0.

• S1: locations s ∈ S \ S0 with |D∗(center(s))| ≤ t or |cap(s)| > t.

• S2: locations s ∈ S with |D∗(center(s))| > t and 0 < |cap(s)| ≤ t.

Also define S3 := S0∪{s ∈ S1 : |cap(s)| ≤ t} (so s ∈ S3 iff |cap(s)| ≤ t and |D∗(center(s))| ≤
t}).

To gain some intuition, notice that it is easy to generate a suitable inequality for a location
s ∈ S0: we can “delete” s (i.e., if s = si, then do swap(s, i)) and reassign each j ∈ D(s) to
σ(σ∗(j)) (i.e., the location in S closest to the location serving j in O). The cost increase due
to this reassignment is at most

∑
j∈D(s) 2c∗j , and so this yields the inequality fi ≤

∑
j∈D(s) 2c∗j .

(We do not actually do this since we take care of the S0-locations along with the S1-locations.)
We can also generate a suitable inequality for a location s ∈ S2 (see Lemma 2.4.3) since
we can swap in cap(s) and swap out {s} ∪ T (s). The cost increase by this move can be
bounded by

∑
P∈Pc(s) shift(P ) and c

(
s, center(s)

)
, and the latter quantity can be charged to

1
t

∑
j∈D∗(center(s))(cj + c∗j); our definition of S2 is tailored precisely so as to enable this latter

charging argument. Generating inequalities for the S1-locations is more involved and requires
another building block that we call an interval swap (this will also take care of the S0-locations),
which we define after proving Lemma 2.4.3. We start out by proving a simple bound that one
can obtain using a cycle in C.

Lemma 2.4.2. For any cycle Z ∈ C, we have 0 ≤
∑

i∈Z
(
−fi + f ∗i + c(oi, σ(oi))

)
.
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Proof. Consider the following matching M from F ∩ Z to S ∩ Z: we match i to σ(oi). Now
consider the matching from F to S which matches every facility i not in Z to si and for facilities
in Z, it uses M . The cost of the resulting new matching is

∑
i/∈Z fi +

∑
i∈Z c(i, σ(oi)) which

should at least
∑

i∈F fi since the latter is the min-cost way of matching F to S. So we obtain
0 ≤

∑
i∈Z
(
−fi + c(i, σ(oi))

)
≤
∑

i∈Z
(
−fi + f ∗i + c(oi, σ(oi))

)
.

Lemma 2.4.3. Let s ∈ S2 and o = center(s), and consider swap(X := {s} ∪ T (s), Y :=
cap(s)). We have

0 ≤ MFL
(
(S \X)∪Y

)
−MFL(S) ≤

∑
P∈Pc(s)
i∈P

2f ∗i +
∑

j∈D∗(o)

(
t+1
t
·c∗j − t−1

t
·cj
)

+
∑

j∈D({s}∪T (s))
j /∈D∗(o)

2c∗j .

(2.2)

Proof. We can view this multi-location swap as doing swap(start(P ), end(P )) for each P ∈
Pc(s) and swap(s, o) simultaneously (see Figure 2.4). (Notice that no path P ∈ Pc(s) contains
s, since s = σ

(
end(P )

)
/∈ P .) For each swap(start(P ), end(P )) the movement-cost increase is

bounded by shift(P ) ≤
∑

i∈P 2f ∗i . For swap(s, o) we move the facility i, where s = si, to o, so
the increase in movement cost is at most c(s, o) = c(σ(o), o) ≤ c(σ(j), o) ≤ cj + c∗j for every

j ∈ D∗(o). So since |D∗(o)| > t, we have c(s, o) ≤
∑

j∈D∗(o)
cj+c

∗
j

t
. Thus, the increase in total

movement cost is at most
∑

j∈D∗(o)
cj+c

∗
j

t
+
∑

P∈Pc(s),i∈P 2 · f ∗i .

We upper bound the change in assignment cost by reassigning the clients in D∗(o) ∪D(X)
as follows. We reassign each j ∈ D∗(o) to o. Each j ∈ D(X) \ D∗(o) is assigned to σ∗(j),
if σ∗(j) ∈ Y , and otherwise to s′ = σ(σ∗(j)). Note that s′ /∈ X: s′ 6= s since σ∗(j) /∈
cap(s), and s′ /∈ T (s) since

⋃
s′′∈T (s) cap(s′′) = ∅. The change in assignment cost for each such

client j is at most 2c∗j by Lemma 2.3.1. Thus the change in total assignment cost is at most∑
j∈D∗(o)(c

∗
j − cj) +

∑
j∈D(X)\D∗(o) 2c∗j . Combining this with the bound on the movement-cost

change proves the lemma.

We now define a key ingredient of our analysis, called an interval-swap operation, that is
used to bound the movement cost of the S1- and S0-locations and the assignment cost of the
clients they serve. (We build upon this in Section 2.5 to give a tighter analysis proving a 3-
approximation.) Let S ′ = {s′1, . . . , s′r} ⊆ S0 ∪ S1, r ≤ t2 be a subset of at most t2 locations
on a path or cycle Z in P ∪ C, where s′q+1 is the next location in (S0 ∪ S1) ∩ Z after s′q. Let
O′ = {o′1, . . . , o′r} ⊆ O where o′q−1 = center(s′q) for q = 2, . . . , r and o′r is an arbitrary location
that appears after s′r (and before s′1 if Z ∈ C) on the corresponding path or cycle. Consider
each s′q. If |cap(s′q)| > t, choose a random path P ∈ Pc(s′q) with probability 1

|Pc(s′q)|
, and set
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o
X

s

X X X

center edge

non-center edge

facility location in S

facility location in O

initial facility loction

Figure 2.4: Example of swap(X := {s} ∪ T (s), Y := cap(s)) for node s ∈ S2 (i.e.,
0 < |cap(s)| < t and |D∗(o)| > t). Nodes in X are identified by a cross (×) and
nodes in Y are identified by a checkmark (X).

Xq = {start(P )} and Yq = {o′q}. If |cap(s′q)| ≤ t, setXq = {s′q}∪T (s′q), and Yq = {o′q}∪H(s′q).
Set X =

⋃r
q=1 Xq and Y =

⋃r
q=1 Yq. Note that |X| = |Y | ≤ t3 since |Xq| = |Yq| ≤ t for every

q = 1, . . . , r. Notice that X is a random set, but Y = O′ ∪H(S ′ ∩ S3) is deterministic. To avoid
cumbersome notation, we use swap(X, Y ) to refer to the distribution of swap-moves that results
by the random choices above, and call this the interval swap corresponding to S ′ and O′. We
bound the expected change in cost due to this move below. Let 1(s) be the indicator function
that is 1 if s ∈ S3 and 0 otherwise.

Lemma 2.4.4. Let S ′ = {s′1, · · · , s′r} ⊆ S0 ∪ S1, r ≤ t2 and O′ be as given above. Let
o′0 := center(s′1) = oî, where o′0 = nil and D∗(o′0) = ∅ if s′1 ∈ S0. Consider the interval
swap swap

(
X =

⋃r
q=1Xq, Y =

⋃r
q=1 Yq

)
corresponding to S ′ and O′, as defined above (see

Figure 2.5) We have
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0 ≤ E
[
MFL

(
(S \X) ∪ Y

)
−MFL(S)

]
≤

r∑
q=1

shift(s′q, o
′
q) +

∑
P∈Pc(S′),i∈P

2f ∗i +
∑

j∈D∗(O′)

(c∗j − cj)

+
∑

j∈D(T (S′∩S3)∪(S′∩S3))

2c∗j +
∑

j∈D(T (S′\S3))

2c∗j
t

+ 1(s′1)
∑

j∈D∗(o′0)

(f ∗
î

+ fî + c∗j).

(2.3)

o′0 s′1

X X

o′1
X

s′2 o′r−1

X
s′r

X X X

o′r
X

center edge

non-center edge

facility location in S

facility location in O

initial facility loction

Figure 2.5: Interval-swap for consecutive S0 ∪ S1 nodes. In this example, s′1, s
′
r cap-

ture less than t centers and s′2 captures more than t centers. Nodes that are swapped
out, are identified by a cross (×), and nodes that are swapped in are identified by a
checkmark (X).

Proof. Let Z be the path in P or cycle in C such that S ′ ∪O′ ⊆ Z.

We first bound the increase in movement cost. The interval swap can be viewed as a collection
of simultaneous swap(Xq, Yq), q = 1, . . . , r moves. If Xq = {start(P )} for a random path
P ∈ Pc(s′q), the movement-cost increase can be broken into two parts. We do a shift along P ,
but move the last initial location on P to s′q, and then do shift on Z from s′q to o′q. So the expected
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movement-cost change is at most

1

|Pc(s′q)|
·
∑

P∈Pc(s′q)

(
shift(P )+c(end(P ), s′q)

)
+shift(s′q, o

′
q) ≤

1

|Pc(s′q)|
·

∑
P∈Pc(s′q),i∈P

2f ∗i +shift(s′q, o
′
q)

which is at most
∑

P∈Pc(s′q),i∈P
2f ∗i + shift(s′q, o

′
q). Similarly, if |cap(s′q)| ≤ t, we can break the

movement-cost increase into shift(P ) ≤
∑

i∈P 2f ∗i for all P ∈ Pc(s′q) and shift(s′q, o
′
q). Thus,

the total increase in movement cost is at most
r∑
q=1

shift(s′q, o
′
q) +

∑
P∈Pc(S′),i∈P

2f ∗i . (2.4)

Next, we bound the change in assignment cost by reassigning clients in D̂ = D∗(O′)∪D(X)
as follows. We assign each client j ∈ D∗(O′) to σ∗(j). If |cap(s′1)| > t, then s′1 /∈ X . For
every client j ∈ D̂ \ (D∗(O′)), observe that either σ∗(j) ∈ Y or σ(σ∗(j)) /∈ X . To see this, let
o = σ∗(j) and s = σ(o). If o /∈ Y then s /∈ S ′ ∩ S3; also s /∈ T (S ′), and so s /∈ X . So we assign
j to σ∗(j) if σ∗(j) ∈ Y and to σ(σ∗(j)) otherwise; the change in assignment cost of j is at most
2c∗j (Lemma 2.3.1).

Now suppose |cap(s′1)| ≤ t, so s′1 ∈ X . For each j ∈ D̂ \ (D∗(O′) ∪ D∗(o′o)), we again
have σ∗(j) ∈ Y or σ(σ∗(j)) /∈ X , and we assign j to σ∗(j) if σ∗(j) ∈ Y and to σ(σ∗(j))

otherwise. We assign every j ∈ D̂ ∩ D∗(o′0) to sî (recall that o′0 = oî), and overestimate the
resulting change in assignment cost by

∑
j∈D∗(o′o)

(c∗j + f ∗
î

+ fî). Finally, note that we reassign a
client j ∈ D(T (S ′ \ S3)) \D∗(O′) with probability at most 1

t
(since σ(j) ∈ X with probability

at most 1
t
). So taking into account all cases, we can bound the change in total assignment cost by∑

j∈D∗(O′)

(c∗j−cj)+
∑

j∈D(T (S′∩S3)∪(S′∩S3))

2c∗j+
∑

j∈D(T (S′\S3))

2c∗j
t

+1(s′1)
∑

j∈D∗(o′0)

(f ∗
î

+fî+c
∗
j). (2.5)

In (2.5), we are double-counting clients in D
(
T (S ′) ∪ (S ′ ∪ S3)

)
∩D∗(O′). We are also overes-

timating the change in assignment cost of a client j ∈ D(X)∩D∗(o′0) since we include both the
1(s′1)(c∗j + f ∗

î
+ fî) term, and the 2c∗j or

2c∗j
t

terms. Adding (2.4) and (2.5) yields the lemma.

Notice that Lemma 2.4.3 immediately translates to a bound on the assignment cost of the
clients in D∗(center(s)) for s ∈ S2. In contrast, it is quite unclear how Lemma 2.4.4 may be
useful, since the expression

∑
j∈D∗(o′0)(f

∗
î

+ fî) in the RHS of (2.3) may be as large as t(f ∗
î

+ fî)

(but no more since |D∗(o′0)| ≤ t if 1(s′1) = 1) and it is unclear how to cancel the contribution of fî
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on the RHS. One of the novelties of our analysis is that we show how to amortize such expensive
terms and make their contribution negligible by considering multiple interval swaps. We cover
each path or cycle Z in t2 different ways using intervals comprising consecutive locations from
S0∪S1. We then argue that averaging, over these t2 covering ways, the inequalities obtained from
the corresponding interval swaps yields (among other things) a good bound on the movement-
cost of the (S0 ∪ S1)-locations on Z and the assignment cost of the clients they serve.

Lemma 2.4.5. Let Z ∈ P ∪ C, S ′ = {s′1, . . . , s′r} = S1 ∩ Z, where s′q+1 is the next S1-location
on Z after s′q, and O′ = {center(s′1), . . . , center(s′r)}. Let o′r = end(Z) if Z ∈ P and center(s′1)
otherwise. For r ≥ t2,

0 ≤
∑
i∈Z

(
t+1
t
· f ∗i − t−1

t
fi

)
+

∑
P∈Pc(S′),i∈P

2f ∗i +
∑

j∈D∗(Z∩O)

(
1
t
· cj + t+1

t2
· c∗j
)

+
∑

j∈D∗(O′∪{o′r})

(c∗j − cj) +
∑

j∈D(T (Z∩S3)∪(Z∩S3))

2c∗j +
∑

j∈D(T (S′\S3))

2c∗j
t
.

(2.6)

Proof. We first define formally an interval of (at most) t2 consecutive (S0 ∪ S1) locations along
Z. As before, let o′q−1 = center(s′q) for q = 1, . . . , r. For a path Z, define s′q = start(Z) for
q ≤ 0 and s′q = nil for q > r. Also define o′q = o′0 for q ≤ 0 and o′q = end(Z) for q ≥ r. If Z is
a cycle, we let our indices wrap around and be mod r, i.e., s′q = s′q mod r, o

′
q = o′q mod r for all q

(so o′r = o′0 = center(s′1)).

For 1 − t2 ≤ h ≤ r, define S ′h = {s′h, s′h+1, . . . , s
′
h+t2−1} to be an interval of length at

most t2 on Z. Define O′h = {o′h, o′h+1, . . . , o
′
h+t2−1}. Note that we have 1 ≤ |S ′h| = |O′h| ≤ t2

if Z is a path, and |S ′h| = |O′h| = t2 if Z is a cycle. Consider the collection of intervals,
{S ′−t2+1, S

′
−t2+2, · · · , S ′r}. For each S ′h, O

′
h, where −t2 + 1 ≤ h ≤ r, we consider the interval

swap (Xh, Yh) corresponding to S ′h, O
′
h. We add the inequalities 1

t2
×(2.3) for all such h. Since

each s′ ∈ S ′ ∪ {s′0} participates in exactly t2 such inequalities, and each s′h ∈ S ′ is the start of
only the interval S ′h, we obtain the following.

0 ≤
r∑
q=0

1

t2
· t2 · shift(s′q, o′q) +

∑
P∈Pc(S′),i∈P

1

t2
· t2 · 2f ∗i

+
∑

j∈D∗(O′∪{o′r}))

1

t2
· t2 · (c∗j − cj) +

∑
j∈D(T (Z∩S3)∪(Z∩S3))

1

t2
· t2 · 2c∗j +

∑
j∈D(T (S′\S3))

1

t2
· t2 ·

2c∗j
t

+
∑

i:σ(oi)∈Z

1(σ(oi)) ·
1

t2
·
∑

j∈D∗(oi)

(f ∗i + fi + c∗j).

(2.7)
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Notice that the S-locations other than s′q on the s′q ; o′q sub-paths of Z lie in S2, and for each

i such that σ(oi) ∈ Z ∩ S2, we have c(oi, σ(oi)) ≤
∑

j∈D∗(oi)
cj+c

∗
j

t
. Thus, using (2.1), we have

r∑
q=0

shift(s′q, o
′
q) =

∑
i∈Z

(f ∗i − fi) +
∑

i:σ(oi)∈Z∩S2

c(oi, σ(oi)) ≤
∑
i∈Z

(f ∗i − fi) +
∑

j∈D∗(Z∩O)

cj + c∗j
t

.

(2.8)
Since 1(σ(o)) = 1 means that σ(o) ∈ S3, and so |D∗(o)| ≤ t, we have

∑
i:σ(oi)∈Z∩S3

∑
j∈D∗(oi)

f ∗i + fi + c∗j
t2

≤
∑
i∈Z

(f ∗i + fi
t

+

∑
j∈D∗(oi) c

∗
j

t2

)
≤
∑
i∈Z

f ∗i + fi
t

+
∑

j∈D∗(Z∩O)

c∗j
t2
.

(2.9)

Incorporating (2.8) and (2.9) in (2.7), and simplifying yields the desired inequality.

For a path or cycle Z where |S1 ∩Z| < t2, we obtain an inequality similar to (2.6). Since we
can now coverZ with a single interval, we never have a client j such that none of σ(j), σ∗(j), σ(σ∗(j))

are in our new set of final locations. So the resulting inequality does not have any f∗i +fi
t

+
c∗j
t2

terms.

Lemma 2.4.6. Let Z ∈ P ∪ C, S ′ = {s′1, . . . , s′r} = S1 ∩ Z, where s′q+1 is the next S1-location
on Z after s′q, and O′ = {center(s′1), . . . , center(s′r)}. Let o′r = end(Z) if Z ∈ P and center(s′1)
otherwise. For r < t2,

0 ≤
∑
i∈Z

(f ∗i − fi) +
∑

P∈Pc(S′),i∈P

2f ∗i +
∑

j∈D∗(Z∩O)

cj + c∗j
t

+
∑

j∈D∗(O′∪{o′r})

(c∗j − cj) +
∑

j∈D(T (Z∩S3)∪(Z∩S3))

2c∗j +
∑

j∈D(T (S′\S3))

2c∗j
t
.

(2.10)

Proof. The proof is similar to that of Lemma 2.4.5, except that since we can cover Z with a
single interval, we only need to consider a single (multi-location) swap. We consider two cases
for clarity.

1. Z is a path, or r > 0. As before, let o′q−1 = center(s′q) for q = 1, . . . , r. If Z is a path,
define s′0 = start(Z). If Z is a cycle, we again set s′q = s′q mod r, o

′
q = o′q mod r for all q.

Consider the interval swap (X, Y ) corresponding to S ′ ∪ {s′0}, O′ ∪ {o′r}. The inequality
generated by this is similar to (2.3) except that we do not have any (f ∗

î
+fî+c

∗
j) terms since
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for client j ∈ D(X) ∪ D∗(Y ), we always have that either σ∗(j) ∈ Y or σ(σ∗(j)) /∈ X .
Thus, (2.3) translates to the following.

0 ≤
r∑
q=0

shift(s′q, o
′
q) +

∑
P∈Pc(S′),i∈P

2f ∗i

+
∑

j∈D∗(O′∪{o′r})

(c∗j − cj) +
∑

j∈D(T (Z∩S3)∪(Z∩S3))

2c∗j +
∑

j∈D(T (S′\S3))

2c∗j
t
.

Substituting
∑r

q=0 shift(s
′
q, o
′
q) ≤

∑
i∈Z(f ∗i −fi)+

∑
j∈D∗(Z∩O)

cj+c
∗
j

t
as in (2.8) yields the

stated inequality.

2. Z is a cycle with r = 0. Here, Lemma 2.4.2 yields 0 ≤
∑

i∈Z(f ∗i −fi)+
∑

j∈D∗(Z∩O)

cj+c
∗
j

t

(which is the special case of the earlier inequality with s′0 = nil = o′r, S
′ = O′ = Z∩S3 =

∅).

Proof of Theorem 2.4.1. We consider the following set of swaps.

A1. For every s ∈ S2, the move swap
(
{s} ∪ T (s), cap(s)

)
.

A2. For every path or cycle Z with |Z ∩ S1| ≥ t2, the 1
t2

-weighted interval swaps as defined in
Lemma 2.4.5.

A3. For every path or cycle Z with |Z ∩ S1| < t2, the interval swap defined in Lemma 2.4.6.

Notice that every location o ∈ O is swapped in to an extent of at least 1 and at most 2. (By
“extent” we mean the total weight of the inequalities involving o.) To see this, suppose first
o = end(Z) for some path Z, then o is involved to an extent of 1 in the interval swaps for Z in
A2 or A3. In this case, we say that the interval swap for Z is responsible for o. Additionally, if
s = σ(o) ∈ S2, then o belongs to the multi-swap for s in A1, else if s ∈ S3 then o is part of the
interval swap for the path/cycle containing s in A2 or A3. Now suppose o = center(s). If s ∈ S2,
then o is included in the multi-swap for s in A1. We say that this multi-swap is responsible for o.
If s ∈ S1, then o is included in the interval swap for the path/cycle containing s in A2 or A3, and
we say that this interval swap is responsible for o.

Consider the compound inequality obtained by summing (2.2), (2.6), and (2.10) correspond-
ing to the moves considered in A1, A2, and A3 respectively. The LHS of this inequality is 0.
We now need to do some bookkeeping to bound the coefficients of the f ∗i , fi, c

∗
j , cj terms on the

24



RHS. We ignore o(1) coefficients like 1
t
, 1
t2

in this bookkeeping, since for a given {f ∗i , fi, c∗j , cj}
term, such coefficients appear in only a constant number of inequalities, so they have an o(1)
effect overall. Let F and C denote respectively the movement- and assignment- cost of the local
optimum.

Contribution from the c∗j and cj terms. First, observe that for each o ∈ O, we have labeled
exactly one move involving o as being responsible for it. Consider a client j ∈ D(s) ∩ D∗(o).
Observe that c∗j or cj terms appear (with a Θ(1)-coefficient) in an inequality generated by a move
if (i) j is reassigned because the move is responsible for o; or (ii) s is swapped out (to an extent
of 1) by the move (so this excludes the case where s ∈ T (s′), s′ ∈ S1 \ S3 and the move is the
interval swap for the path containing s′). If (i) applies, then the inequality generates the term
(c∗j − cj). If (ii) applies then the term 2c∗j appears in the inequality. Finally, note that there are at
most two inequalities for which (ii) applies:

• If s = start(Z) ∈ S0, then (ii) applies for the interval-swap move for Z. If s′ =
σ(end(Z)) ∈ S2 ∪ S3, then (ii) again applies, for the multi-swap move for s′ if s′ ∈ S2, or
for the interval swap for the path containing s′ if s′ ∈ S3.

• If s ∈ S1 ∩ S3, then (ii) applies for the interval swap for the path containing s.

• If s ∈ S2, then (ii) applies for the multi-swap move for s.

So overall, we get a 5c∗j−cj contribution to the RHS, the bottleneck being the two inequalities
for which (ii) applies when s ∈ start(Z) and σ(end(Z)) ∈ S2 ∪ S3.

Contribution from the f ∗i and fi terms. For every i ∈ F , the expression (f ∗i − fi) is counted
once in the RHS of the inequality (2.6) or (2.10) for the unique path or cycle Z containing i. The
total contribution of all these terms is therefore, F ∗−F . The remaining contribution comes from
expressions of the form

∑
P∈Pc(s),i∈P 2f ∗i on the RHS of (2.2), (2.6), and (2.10). The paths P

involved in these expressions come from Pc(S2) ∪
(⋃

Z∈P∪C Pc(Z ∩ S3)
)
⊆ P . Therefore, the

total contribution of these terms is at most 2F ∗.

Thus, we obtain the compound inequality

0 ≤
(
5 + o(1)

)
C∗ +

(
3 + o(1)

)
F ∗ −

(
1− o(1)

)
(F + C) (2.11)

where the o(1) terms are O
(

1
t

)
= O

(
p−1/3

)
. This shows that F + C ≤

(
3 + o(1)

)
F ∗ +

(
5 +

o(1)
)
C∗.
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2.4.2 Polynomial time local search approach

A generic local search algorithm may not terminate in polynomial time. In order to make the
algorithm run in polynomial time, the usual trick is to consider a local search move only if it
improves the cost of the solution substantially. More precisely, let polynomial Q be a suitable
integer which is polynomial in the size of the input. In each local step, a current solution S is
updated to a solution S ′ in the neighborhood of S only if MFL(S) − MFL(S ′) ≥ ε

Q
· MFL(S)

where ε is a constant. So this new local search can be abstracted as follows:

Algorithm 1 Local search approach
1: S ← an arbitrary feasible solution.
2: while ∃S ′ such that |S \ S ′| = |S ′ \ S| ≤ p and MFL(S ′) < (1− ε/Q)MFL(S) do
3: S ← S ′

4: return S.

Since the cost of solution improves by a factor ε
Q

in each step of the algorithm, then the
algorithm terminates in at most log(MFL(S0)/MFL(O))/ log 1

1−ε/Q where O denotes the optimal
solution and S0 denotes the initial solution, which is polynomial in the input size. Now since Q
is polynomial in the input size and each step considers at most O(np) sets in the neighborhood
of S, the algorithm will have polynomial running time.

Now we argue that this modification does not significantly affect the claimed approximation
ratio. The above modification influences the inequalities that we used our analysis and now we
have− ε

Q
· (F +C) instead of 0 in the left-hand side of each inequality for a non-improving local

move. This means that on the left-hand side of (2.11), we get an extra term − ε
Q
· (F + C)N ,

where N is the total weight placed on the inequalities generated from the various swap moves
whose suitable linear combination yields (2.11). Note the weight for each inequality is at most 1
and there are at most O(np) inequalities, so as long as Q ≥ N = O(np), we only lose a factor of
(1 + ε) in the approximation factor.

2.5 Improved analysis leading to a 3-approximation

In this section, we improve the analysis from Section 2.4. Specifically, we prove the following
theorem.

Theorem 2.5.1. The cost of a locally-optimal solution using p swaps is at most 3+O
(√

log log p
log p

)
times the optimum solution cost.
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To gain some intuition behind this tighter analysis, note that the only reason we lost a factor
of 5 in the previous analysis was because there could be locations s = start(Z) ∈ S0 that are
swapped out to an extent of 2; hence, there could be clients j ∈ D(s) for which we “pay” 2c∗j
each time s is swapped out, and also pay an additional c∗j − cj term when σ∗(j) is swapped in.
To improve the analysis, we will consider a set of test swaps that swap out each location in S to
an extent of 1 + o(1).

The aforementioned bad case happens only when s′ = σ(end(Z)) ∈ S2 ∪ S3, because when
we close (i.e., swap out) s′ as part of an interval swap or a multi-swap, we open (i.e., swap in) all
the locations inH(s′), and we achieve this via path swaps (i.e., shift moves) along paths in Pc(s′)
that swap out locations in T (s′) (for a second time). The main idea behind our refined analysis is
to not perform such path swaps, but instead to “recursively” start an interval swap on each path
in Pc(s′). Of course, we cannot carry out this recursion to an arbitrary depth (since we can only
swap a bounded number of locations), so we terminate the recursion at a depth of t2. So, whereas
an interval swap included at most t2 S1-locations on the main path or cycle Z, we now consider a
“subtree” swap obtained by aggregating interval swaps on the paths in

⋃
Pc(Z ∩ S3). A subtree

swap can be viewed as a bounded-depth recursion tree where each leaf to root path encounters at
most t2 locations in S1. Because we no longer initiate path swaps for S3-locations, a leaf location
s′′ ∈ S3 in this recursion tree will not have any locations in cap(s′′) opened. But we will slightly
redefine the S1, S2, S3 sets to ensure that |D∗(cap(s′′))| ≤ t, and use the same trick that we did
with interval swaps in Section 2.4: we average over different sets of subtree swaps (like we did
with interval swaps in Section 2.4) to ensure that s′′ is a leaf location with probability at most
1
t2

. This ensures that we incur, to an extent of at most 1
t
, the cost f ∗i + fi + c(oi, s

′′), where
oi = center(s′′), for moving j with σ(σ∗(j)) = s′′ from s′′ to si.

Notation. Let t be an integer such that p ≥ t2tt
2

+ 1. We prove that the local-search algorithm
has approximation ratio 3 +O(t−1). We redefine S0, S1, S2 and S3 as follows.

• S0 = {s ∈ S : |cap(s)| = 0}.
• S1 = {s ∈ S \ S0 : |D∗(cap(s))| ≤ t or |cap(s)| > t}.
• S2 = {s ∈ S : |D∗(cap(s))| > t, |cap(s)| ≤ t}.
• S3 = S0 ∪ {s ∈ S1 : |cap(s)| ≤ t}.

Clearly, S = S0 ∪ S1 ∪ S2. We also redefine center(s) to be the location in cap(s) closest to s.

Claim 2.5.2. Let s ∈ S2 and o = center(s). Then c(s, o) ≤ 1
t

∑
j∈D∗(cap(s))(cj + c∗j).
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Proof. We have c(s, o) ≤ c(s, o′) for any o′ ∈ cap(s), and c(s, o′) ≤ cj + c∗j for any j ∈ D∗(o′).
Therefore, c(s, o) ≤ cj+c

∗
j for any j ∈ D∗(cap(s)), and the claim follows since |D∗(cap(s))| > t

as s ∈ S2.

It will be more convenient to work with the digraph H = (F , E) obtained from Ĝ by con-
tracting each triple {si, i, oi} of nodes associated with a facility i into a single node that we also
denote by i. Thus, (i, i′) is an arc inE if σ(oi) = si′ (it may be that i = i′). Note thatH may have
self loops, and each node in H has outdegree exactly 1 (counting self-loops) so each component
of H looks like a tree with all edges oriented toward the root, except the root is in fact a directed
cycle (possibly a self-loop). Figure 2.6 illustrates this graph.

si oi

i

center edge

non-center edge (i, i′), i′ ∈ S3

non-center edge (i, i′), i′ /∈ S3

facility location in S

facility location in O

initial facility loction

Figure 2.6: Example of graphH obtained from Ĝ by contracting each triple (si, i, oi)
of nodes associated with a facility i. Edges of H can be partitioned into three cat-
egories: center edge (shown by a thick solid arrow), non-center edge ending in S3

node (shown by a thin solid arrow), non-center edge not ending in S3 node (shown
by a dashed edge). In construction of H∗ from H , the dashed edges are removed.
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For brevity, we say that an edge (i, i′) in H is a center edge if oi = center(si′). In the arc
set E ′ = {(i, i′) ∈ E : oi = center(si′)}), each node has indegree and outdegree at most 1,
so E ′ consists of a collection of node-disjoint paths P and cycles C. For a facility i ∈ P , let
P(i) denote the unique path in P containing i. Let start(i) and end(i) denote the start and end
facilities of P(i) respectively. For distinct facilities i, i′ with si, si′ ∈ S0, the paths P(i) and
P(i′) are clearly vertex disjoint.

Now define H∗ =
(
F , E ′ ∪ {(i, i′) : si′ ∈ S3, σ(oi) = si′}

)
; that is, H∗ is the subgraph of H

with node-set F and edges (i, i′) of E where (i, i′) is a center edge or si′ ∈ S3. Call a node i of
H∗ a root if i has no outgoing arc or i lies on a directed cycle in H∗.

We consider an integer 1 ≤ l ≤ t2 and describe a set of swaps for each index l. The
inequalities for the swaps for different l will be averaged in the final analysis. We obtain H∗l
by deleting the edges (i, i′) of H∗ (see Figure 2.7) where: i is not on a cycle, si′ ∈ S1, and the
number of facilities i′′ with si′′ ∈ S1 on the path between i′ and the closest root of its component
in H∗ (both included) is congruent to l mod t2 (note that when an H∗ component is rooted at a
cycle, we have multiple roots, and this is the reason behind using the term the ”closest” root). We
define a subtree of H∗l to be an acyclic component of H∗l , or a component that results by deleting
the edges of the cycle contained in a component of H∗l .

For a facility i, define cand(i) = {i′ : oi′ ∈ cap(si) \ {center(si)}, 6 ∃i; i′ path in H∗}.
Note that |cand(i)| ≥ |cap(si)| − 2. The reason we define cand(i) is that we will sometimes
perform a shift along some path Z ∈ Pc(si) to reassign the facilities on Z but we will not want
this to interfere with the operations in the subtree ofH∗l containing i. For a facility iwith si 6∈ S2,
let next(i) be the facility obtained as follows. Follow the unique walk from i in H using only
center edges until the walk reaches a node i′ with either no outgoing center edge, or the unique
(i′, i′′) center edge satisfies si′′ ∈ S1; we set next(i) = i′.

Claim 2.5.3. The number of facilities i with si ∈ S0 ∪ S1 in any subtree of H∗l is at most tt
2
.

Proof. The facilities i in such a subtree that are in S2 have indegree and outdegree at most 1.
Shortcutting past these facilities yields a tree with depth at most t2 and branching factor at most
t.

The test swaps. For a subtree T of H∗l , we describe a set of nodes XT to be swapped out and
a set of nodes YT to be swapped in with |XT | = |YT | ≤ tt

2 . We do not actually perform these
swaps yet to generate the inequalities since we will have to combine some of these swaps for
various components.
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il′

il′+1

il′+t2−1

l mod t2 depth in H∗

supernode not in S1

supernode in S1

Figure 2.7: Example of construction of H∗l from H∗: we remove edges (i, i′) such
that i is not in a cycle, si′ ∈ S1, and the number of i′′ nodes with si′′ ∈ S1 from i′

to the closest root of its component is congruent to l mod t2. In this figure, all the
edges on the dashed curved lines are removed.

For each i ∈ T with si ∈ S0 ∪ S1, we add the following location in S to XT : if si ∈ S3 we
add si toXT ; otherwise (so si ∈ S1\S3), we choose any single i′ ∈ cand(i) uniformly at random
and add sstart(i′) to XT . We also add onext(i) to YT .

When we say perform swap(XT , YT ) (see Figure 2.8 for an example), we specifically mean
the following reassignment of facilities. For si ∈ XT with si ∈ S3, we perform shift(si, onext(i)).
For si ∈ XT with si ∈ S1 \ S3, say i′ is the facility in cand(i) for which sstart(i′) was added
to XT . Then we perform shift(sstart(i′), oi′), move facility i′ from oi′ to si, and finally perform
shift(si, onext(i)). As always, each client is then assigned to its nearest final location. Lemma 2.5.4
implies that these shift operations charge different portions of the local and global optimum.

Lemma 2.5.4. For a subtree T , all of the shift operations described for swap(XT , YT ) have their
associated paths being vertex disjoint.

Proof. For any subtree T , the paths between si and onext(i) for the facilities i ∈ T with si ∈
S0 ∪ S1 are vertex-disjoint by definition of next(i). Also, for any two distinct i1, i2 ∈ T , and any
i ∈ cand(i1), i′ ∈ cand(i2), we have start(i) 6= start(i′), and so their associated paths P(i) and
P(i′) are also vertex-disjoint.
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X

X

X

X

XX

X

XX

X

center edge
non-center edge (i, i′), i′ ∈ S3

non-center edge (i, i′), i′ /∈ S3

facility location in S
facility location in O
initial facility loction

Figure 2.8: Example of swap(XT , YT ) in a subtree T of H∗l . In this example, the
subtree T includes the nodes in the dashed-bordered shaded area. The S1-nodes in T
are surrounded by a circle, nodes in XT are identified by a cross(×) and nodes in YT
are identified by a checkmark(X).

Finally, consider any i ∈ T with si ∈ S0 ∪ S1, and i′′ ∈ T (i′′ could be i) with si′′ ∈ S1 \ S3.
Consider the paths involved in swap(si, onext(i)) and swap(sstart(i′), oi′), where i′ ∈ cand(i′′).
Note that both of these paths consist of only center edges. Therefore, since each facility has
at most one incoming and one outgoing center edge, and i′ = end(i′), if these paths are not
vertex-disjoint, then it must be that the path involved in swap(si, onext(i)) is a subpath of the path
involved in swap(sstart(i′), oi′). This means that i and i′, and hence, i, i′, i′′, are all in the same
component of H∗. Also, the edge (i′, i′′) is not in H∗ so i′ is the root of its component in H∗.
But then there is a path from i′′ to i′, which contradicts that i′ ∈ cand(i′′).

We need to coordinate the swaps for the various subtrees of H∗l . Consider a component Z
in H∗. Let C = ∅ if Z is rooted at a node, otherwise let C be its cycle of root nodes. Let

31



i1, . . . , ik be the facilities on C with si ∈ S1, indexed by order of appearance on C starting from
an arbitrary facility i1 on C (k = 0 if C = ∅). We consider four kinds of swaps.

Type 1. If 1 ≤ k ≤ t2, simultaneously do swap(XT , YT ) for all subtrees T rooted at some i ∈ C
with si ∈ S1.

Type 2. Otherwise, if k > t2, define Il′ = {il′ , il′+1, . . . , il′+t2−1} for all l′ = 1, . . . , k (where
the indices are modk). Simultaneously perform swap(XT , YT ) for each subtree T rooted at a
facility in Il′ . Reasoning similarly as in Lemma 2.5.4 and noting that the subtrees involved in a
single type-1 or type-2 swap are all disjoint, we can see that all shift paths involved in a single
type-1 or type-2 swap are vertex-disjoint.

Type 3. For each iwith si ∈ S2, simultaneously perform swap(XT , YT ) for all subtrees T rooted
at some i′ with oi′ ∈ cap(si) \ {center(si)}. At the same time, we also swap out si and swap in
oi′′ = center(si) for a total of at most tt2+1 + 1 ≤ p swaps. It may be that some (at most one)
shift path in this swap includes si, but then we just move i′′ to oi′′ instead of si, and then move i
according to the shift operation.

Type 4. Finally, for every other subtree T of H∗l that was not swapped in the previous cases,
perform swap(XT , YT ) on its own.

Analysis. We first bound the net client-assignment cost increase for any single one of these
test swaps. So, fix one such swap, let {Tr}kr=1, k ≤ t2 be the set of subtrees involved in the
swap, and let B denote the set of facilities i such that oi = center(σ(oi)) and σ(oi) is closed
during the swap while oi is not opened. So B consists of facilities with a center edge to some
leaf of some subtree Tr or, if the swap is of type 2, to the start of an interval Il′ . For this swap,
let C1 = {j ∈ D : σ∗(j) is opened}, C2 = D∗({oi : i ∈ B}), and C3 = {j : σ(j) = si ∈
S0 and end(i) ∈

⋃
r

⋃
i′∈Tr cand(i′)}.

Lemma 2.5.5. The expected change in client-assignment cost for a test swap is at most
∑

j∈C1
(c∗j−

cj) +
∑

j∈C2
2c∗j + 1

t−1

∑
j∈C3

2c∗j + 2t
∑

i∈B (f ∗i + fi). Here, the expectation is over the random
choices involved in selecting facilities from the appropriate cand(.) sets.

Proof. After the swap, we move every j ∈ C1 from σ(j) to σ∗(j) for a cost change of c∗j − cj .
Every client in j ∈ C2 ∪ C3 for which σ(j) is closed is moved initially to σ(σ∗(j)) for a cost
increase of at most 2c∗j .

Suppose i is such that σ(oi) = σ(σ∗(j)) and oi = center(σ(oi)). It may be that σ(oi) is still
not open which means that i ∈ B. Note that either si or oi is opened after the shift and we move
every client that was moved to σ(oi) to si or oi (whichever is open). This extra distance moved
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is at most f ∗i + fi + c(oi, σ(oi)) ≤ 2f ∗i + 2fi. Note that i ∈ B implies that σ(oi) ∈ S3, otherwise
σ(oi) would not have been closed down in the swap. So |D∗(cap(σ(oi)))| ≤ t, by definition of
S3, and at most t clients will be moved to either si or oi in this manner.

Finally, we note that while j ∈ C3 may have σ(j) being closed, this only happens with
probability at most 1

t−1
.

Now, we consider the following weightings of the swaps. First, for a particular index 1 ≤
l ≤ t2 we perform all type 1, 3, and 4 swaps. For a component of H∗l containing a cycle C, we
perform all type-2 swaps for the various intervals Il′ for C and weight the client and facility cost
change by 1

t2
. Finally, these weighted bounds on the client and facility cost change are averaged

over all 1 ≤ l ≤ t2.

Lemma 2.5.6. The expected change in client-assignment cost under the weighting described
above, is at most

∑
j 3c∗j − cj +O

(
1
t

) (∑
i(f
∗
i + fi) +

∑
j c
∗
j

)
.

Proof. For a fixed l, every client j is in C1 as in Lemma 2.5.5 to an extent of 1; either once in a
type 1, 3, or 4 swap or exactly t2 times among the type-2 swaps, each of which is counted with
weight 1

t2
. Similarly, every client j is in C2 to an extent of at most 1 and is in C3 to an extent of

at most 1 over all swaps for this fixed l. Finally, we note each facility i on a cycle in H∗ lies in
the set B for at most one offset 1 ≤ l′ ≤ k for that cycle, so its contribution 2t(f ∗i + fi) to the
bound is only counted with weight 1

t2
for this fixed l.

Lastly, every facility i not on a cycle in H∗ lies in B for at most one index l, 1 ≤ l ≤ t2

and, then, in only one swap for that particular l. Since we average the bound over all indices l
between 1 and t2, the contribution 2t(f ∗i + fi) of such i is counted with weight only 1

t2
.

Next, we bound the expected facility movement cost change. Let F ′ be the set of facilities i
that do not lie on a cycle in H∗ consisting solely of facilities i′ with si′ ∈ S2.

Lemma 2.5.7. The expected change in movement cost (under the weighting described above) is
at most

∑
i∈F ′ (f

∗
i − fi) +O

(
1
t

) (∑
i f
∗
i +

∑
j(c
∗
j + cj)

)
.

Proof. We consider two cases for a facility i. First, suppose si ∈ S0 ∪ S1. Then when si is
swapped out in a subtree during the shift from si to onext(i), i is moved to either oi, if i = next(i),
or to σ(oi), if i 6= next(i). The latter case implies that σ(oi) ∈ S2. The total movement change
is at most f ∗i − fi if i is moved to oi and is at most f ∗i − fi + c(oi, σ(oi)) if i is moved to
σ(oi). Since σ(oi) ∈ S2 and oi = center(σ(oi)), by Claim 2.5.2 we have that c(oi, σ(oi)) ≤
1
t

∑
j∈D∗(cap(σ(oi)))

(c∗j + cj).
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The only other time i is moved is when end(i) is randomly chosen from cand(i′) for some
facility i′. But this happens with probability at most 1

t−1
. In this case, i is shifted from si to σ(oi).

We do not necessarily have σ(oi) ∈ S2 in this case, but we can use the bound c(oi, σ(oi)) ≤
f ∗i +fi to bound the expected movement-cost change for i in this case to be at most 2f∗i

t−1
. Overall,

the expected movement-cost change for i is at most(
1 +

2

t− 1

)
f ∗i − fi +

1

t− 1

∑
j∈D∗

(
cap(σ(oi))

)(c∗j + cj).

Next, we consider the case si ∈ S2. Let center(si) = oi′ . When the swap consisting of i
and all subtrees rooted at cap(si) \ {oi′} is performed, i is moved from si to oi′ unless i lies on
a shift path during that swap, in which case it is moved like in the shift. Since si ∈ S2, we have
c(si, oi′) ≤ 1

t

∑
j∈D∗(cap(si))

(c∗j +cj). Unless i lies on a cycle with no S1-locations, that is, i /∈ F ′,
i lies between i′′ and next(i′′) for exactly one i′′, and shift(si′′ , onext(i′′)) is performed to an extent
of 1; this holds even if si lies on a shift path during the corresponding type-3 swap involving i.
All other times i when is moved, it is due to the same reasons as in the previous case, so the total
change in movement cost for facility i is at most(

1 +
2

t− 1

)
f ∗i − fi +

1

t

∑
j∈D∗(cap(si))

(c∗j + cj) +
1

t

∑
j∈D∗

(
cap(σ(oi))

)(c∗j + cj).

Adding up the appropriate expression for each facility accounts for the expected change in
total movement cost.

Proof of Theorem 2.5.1. By local optimality, the change in total cost for every test swap (count-
ing every random choice) is nonnegative. By averaging over the various swaps, the expected
change in total cost is nonnegative, so the sum of the expressions in Lemmas 2.5.6 and 2.5.7
is nonnegative. To generate an inequality involving a −fi term for facilities i /∈ F ′, we sum
the bound given by Lemma 2.4.2 here over all cycles of H∗ involving only facilities i with
si ∈ S2. This yields 0 ≤

∑
i 6∈F ′
(
−fi + f ∗i + c(oi, σ(oi))

)
, and we can bound c(oi, σ(oi)) by

1
t

∑
j∈D∗(cap(σ(oi)))

(c∗j + cj). Adding this to the inequality that the expected change in total cost
is nonnegative gives

(
1−O

(
1
t

))
(C + F ) ≤

(
3 +O

(
1
t

))
C∗ +

(
1 +O

(
1
t

))
F ∗.

2.6 Extension to the weighted case

The analysis in Section 2.5 (as also the proof of the 5 approximation) extends easily to the
weighted generalization, wherein each facility i has a weight wi ≥ 0 and the cost of moving i to
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s is given by wic(i, s), to yield the same
(
3+o(1)

)
-approximation guarantee. With the exception

of one small difference in the analysis, this requires only minor changes in the arguments. We
discuss these briefly in this section.

Unless otherwise stated, the same notation from Section 2.5 is used in this section. We
emphasize that f ∗i and fi now refer to the weighted movement cost of facility i in the global or
local optimum, respectively. So, f ∗i = wi · c(i, oi) and fi = wi · c(i, si).

One difference in notation is that the definition of S1 is slightly revised to this weighted
setting: si ∈ S1 if |cap(si)| > t, or 0 < |cap(si)| ≤ t and |D∗(cap(si))| ≤ max{wi, wi′} · t,
where i′ is such that oi′ = center(si) (equivalently, (i′, i) is a center edge in H). If all facility
weights are 1, then this definition of S1 agrees with the definition in Section 2.5. Similarly, we say
si ∈ S2 if |cap(si)| ≤ t and |D∗(cap(si))| > max{wi, wi′} · t. Under these definitions, similar to
Claim 2.5.2, we now have thatwi·c(si, oi′) ≤ 1

t

∑
j∈D∗(cap(si))

(cj+c
∗
j) (since c(oi, σ(oi)) ≤ c∗j+cj

for any j ∈ D∗(cap(si)) as before, and |D∗(cap(si))| > wit).

We consider the same set of test swaps and the same averaging of the inequalities generated
by these swaps. When a test swap is performed, we consider the same shift and reassignment of
facilities to generate the inequalities. In most cases, we also move the clients in the same way
as before with the exception that if a client j has all of σ(j), σ∗(j) and σ(σ∗(j)) being closed,
then we do not necessarily send it to si where i is such that oi = σ∗(j). This is discussed in
Lemma 2.6.1.

As in the discussion before Lemma 2.5.5, we consider a swap involving subtrees {Tr}kr=1.
Let B be as before, and let B′ be the set of facilities i such that i is a leaf in some Tr or, if the
swap is a type-2 swap, that i is the first facility in Il′ . Note that i ∈ B if and only if the unique
(i, i′) arc in H∗ is a center arc with i′ ∈ B′. We let C1, C2, and C3 also be defined as in Section
2.5.

Lemma 2.6.1. The expected change in client assignment cost for a test swap is at most
∑

j∈C1
(c∗j−

cj) +
∑

j∈C2
2c∗j + 1

t−1

∑
j∈C3

2c∗j + 4t
∑

i∈B∪B′ (f
∗
i + fi) .

Proof. Consider one particular swap. As in the proof of Lemma 2.5.5, we move j ∈ C1 to σ∗(j)
and j ∈ C2∪C3 to σ(σ∗(j)) and bound their assignment cost change in the same way. As before,
it may be that for some of these clients j ∈ C2 ∪ C3 we have that σ(σ∗(j)) was closed in the
swap. For such clients, we do the following slight variant of the reassignment that was done in
the proof of Lemma 2.5.5.

Suppose (i, i′) is the center edge such that σ∗(j) = oi for a client j ∈ C2 ∪ C3, and si′ is not
open. If wi ≥ wi′ , then we send j to either si or oi. As in the proof of Lemma 2.5.5, one of these
must be open and the total cost of moving j from si′ to either si or oi is at most 2c(i, si)+2c(i, oi).
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Otherwise, if wi′ > wi then we send j to either oi′ or σ(oi′) (one of them must be open). The
distance from si′ to either oi′ or σ(oi′) is bounded by 2c(i′, si′) + 2c(i′, oi′).

We conclude by noting that each facility î ∈ B has at most wî · t clients sent to either sî
or oî from σ(oî) in the manner just described, because σ(oî) must be in S3. Similarly, each
î ∈ B′ has at most wî · t clients sent to either oî or σ(oî) from sî in the manner described
above, since sî ∈ S3. So, the total client movement charged to i ∈ B ∪ B′ this way is at most
4twi(c(i, si) + c(i, oi)) = 4tf ∗i + 4tfi.

Using the same weighting of the swaps as in Section 2.5 we get the following bound on the
contribution of the client movement cost changes over these swaps. The proof is nearly identical,
except we notice that a facility i′ lies in the B′-set for various swaps to an extent of at most 1

t2

(under this weighting), since the facility i such that (i, i′) is a center edge lies in some B-set to
an extent of at most 1

t2
.

Lemma 2.6.2. The expected total client assignment cost change, weighted in the described man-
ner, is at most

∑
j 3c∗j − cj +O

(
1
t

) (∑
i(f
∗
i + fi) +

∑
j c
∗
j

)
.

The contribution of the facility movement costs is bounded in essentially the same way as in
Lemma 2.5.7. We just provide the details on how to account for the weights of the facilities. As
before, let F ′ be the set of facilities i that do not lie on a cycle inH∗ consisting solely of facilities
i′ with si′ ∈ S2.

Lemma 2.6.3. The expected change in movement cost is at most∑
i∈F ′

(f ∗i − fi) +O

(
1

t

)(∑
i

f ∗i +
∑
j

(c∗j + cj)
)
.

Proof. When shift(s, o) is performed, we move facilities i from si to center(oi). If this shift was
performed during a path swap, then the movement-cost change for a facility i moved in this shift
is at most wic(i, oi) + wic(oi, σ(oi)) − wic(i, si) ≤ 2wic(i, oi) = 2f ∗i so the same bound used
before applies.

If such a shift was performed along a path in a subtree, then we did not want to bound
c(oi, σ(oi)) by c(i, si) + c(i, oi) because we do not want to cancel the contribution of −c(i, si)
to the bound. However, this only happened when σ(oi) ∈ S2 so we can use the fact that
|D∗(cap(σ(oi)))| is large and that c(oi, σ(oi)) ≤ c∗j + cj for any j ∈ D∗(cap(σ(oi))). In our set-
ting, as noted earlier, the movement costwi·c(oi, σ(oi)) can be bounded by 1

t

∑
j∈D∗(cap(σ(oi)))

(c∗j+

cj), which is the same upper bound we used in the unweighted case.
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Finally, the only other time we moved a facility was from some si ∈ S2 to center(si). The cost
of this move is now wi · c(si, center(si)) which can also be bounded by 1

t

∑
j∈D∗(cap(si))

(c∗j + cj)
using the same argument as in the previous paragraph. So, all bounds for the unweighted facility
movement cost increase averaged over the swaps also hold in the weighted case.

Finally, we remark that the same bound for the facility movement cost for facilities on a
cycle with only S2 facilities holds for the weighted case, again using arguments like in the proof
of Lemma 2.6.3 to bound wi · c(oi, σ(oi)). Thus, the proof of Theorem 2.5.1 is adapted to prove
the following result for the weighted case.

Theorem 2.6.4. The cost of a locally-optimal solution using p swaps is at most 3+O
(√

log log p
log p

)
times the optimum solution cost in weighted instances of mobile facility location.

2.7 Reduction from k-median to MFL

In this section, we present approximation preserving reduction from the k-median problem to the
MFL problem (this was originally shown by Friggstad and Salavatipour [34]).

Theorem 2.7.1. If there exists an α-approximation for MFL problem then there exists an (α +
o(1))-approximation for the k-median problem.

Proof. Consider an instance Ikmed of k-median problem in which we are given a distance metric
(V, {c(i, j)})i,j∈V , and a set D ⊆ V of clients. Without loss of generality, we assume that the
minimum non-zero distance in c is at least one (this can be achieved by scaling). Let ∆ denote
the maximum distance between two vertices in V and let η = αnk∆ where n := |D|. We
construct an MFL instance I as follows: the distance metrics is the same as the distance metric
in Ikmed , the client set is η copies of D where for each client in cIkmed , we include η copies of it,
or equivalently, we can assume each client j has demand dj = η, and set F ⊆ V of arbitrary k
initial facility locations. Let F ∗ and C∗ denote respectively the movement and assignment cost
of an optimal solution of I, and let O denote an optimal solution of Ikmed with cost optkmed .

We claim C∗ + F ∗ ≤ η · optkmed · (1 + 1
αn

). To see this, consider a solution that moves
facilities in F to the locations in O and assigns clients as in O. The connection cost of clients in
this solution is ηoptkmed and the facility movement cost is at most k∆ = η

αn
. Thus, we have

C∗ + F ∗ ≤ ηoptkmed +
η

αn
≤ η · optkmed · (1 +

1

αn
)
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since optkmed ≥ 1.

Now suppose there exists an α-approximation algorithmA for MFL problem. UsingA on I,
we can find a solution with cost at most α(η · optkmed · (1 + 1

αn
)). This solution translates to a

solution of Ikmed with cost at most α · optkmed · (1 + 1
αn

) = (α + 1
n
) · optkmed which proves the

statement in the theorem.

2.8 Bad locality gap with arbitrary facility-movement costs

In this section, we present an example that shows that if the facility-movement costs and the
client-assignment costs come from different (unrelated) metrics then the p-swap local-search
algorithm has an unbounded locality gap; that is, the cost of a local optimum may be arbitrarily
large compared to optimal cost.

We first show a simple example for a single swap case, which we will later generalize for p
swaps. Suppose we have two clients j0, j1 and two facilities i0, i1. Some distances between these
clients and facilities are shown in the Figure 3.9(a); all other distances are obtained by taking
the metric completion. Note that in this example, in order to have a bounded movement cost for
facilities, the only option is to have one of i0, j1 as a final location of facility i0 and one of i1, j0
as a final location of facility i1.

As can be seen from the figure, the solution O = {i0, i1} has total cost 2 (the movement
cost is 0 and the client-assignment cost is 2). Now consider the solution S = {j0, j1} which
has a total cost of 2D (the movement cost is 2D and the client-assignment cost is 0). This is a
local optimum since if we swap out j0, then we have to swap in i1 to have a bounded movement
cost, which leads j0 having assignment cost of∞. By symmetry, there is no improving move for
solution S, and the locality gap is D.

Now consider the example shown in Figure 3.9(b) for local-search with p simultaneous
swaps. Suppose we have facility set {i0, i1, . . . , ip} and client set {j0, j1, . . . , jp}. The global op-
timumO = {i0, i1, · · · , ip} has total cost p+1 (facility movement cost is 0 and client-assignment
cost is (p + 1) · 1) while S = {j0, j1, . . . , jp} is a local optimum whose total cost is (p + 1) ·D
(facility movement cost is (p + 1) · D and client-assignment cost is 0). Consider any move
swap(X, Y ). Note that jk ∈ X if and only if ik−1 ∈ Y (where indices are mod(p + 1)) to
ensure bounded movement cost. Let k be such that jk ∈ X and jk+1 /∈ X . Then, jk has an
assignment cost of∞ in the solution (S \X) ∪ Y . Hence, S is a local optimum.

38



j1

j0 i0

i1

(∞, D)

(1,∞)

(1,∞)

(∞, D)

(a)Locality gap example for single-swap
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(1,∞)

(1,∞)

(∞, D)

(b) Locality gap example for p-swap

Figure 2.9: Examples showing large locality gap for the cases where local search
allows (a) single swaps (b) at most p simultaneous swaps. The label (c, f) of an edge
gives client-assignment cost c and the movement cost f of a facility along that edge.
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Chapter 3

Minimum-Load k Facility Location

3.1 Introduction

In this chapter, we study facility-location problems from a less-considered point-of-view on the
associated cost of a solution. We consider settings where the cost of serving a client by a facility
is incurred by the facility. Each facility, such as a distribution center or a warehouse, may be
responsible for supplying its clients and consequently bears a cost equal to the total cost of
servicing its clients. In such settings, it is natural to consider the problem of minimizing the
maximum cost borne by any facility.

Formally, we consider the following mathematical model: recall that we have a metric space
(F ∪D, {c(i, j)}i,j∈F∪D), where F and D denote the facility and client sets, respectively. There
are no facility-opening costs. The goal is to open k facilities fromF and assign each client j to an
open facility σ(j) so as to minimize the maximum load of an open facility, where the load of an
open facility i is defined to be

∑
j∈D:σ(j)=i c(i, j); that is, the load of i is the total connection cost

incurred in serving the clients assigned to it. We call this the minimum-load k-facility location
(MLkFL) problem. As is common in the study of facility-location problems, we assume that the
clients and facilities lie in a common metric space, so the c(i, j)s form a metric.

To give an example that motivates the minimize the maximum load objective, consider a
hospital with a nursing station where all the nurses start their morning round at the same time.
Each nurse has to go back to the nursing station after visiting a patient to drop off patient’s report
sheet and pick up the next patient’s report sheet. We want to assign patients to nurses such that all
nurses finish their rounds at about the same time (or roughly equivalently, we want to minimize
the latest time a patient is visited by a nurse). This problem and other similar settings motive a
facility location problem in which the goal is to minimize the maximum load.
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Despite the extensive amount of literature on facility-location problems, there is surprisingly
a little amount of work on MLkFL and it remains a rather poorly understood problem (see [72]).
One can infer that the problem is NP-hard, even when the set of open facilities is fixed, via
a reduction from the makespan-minimization problem on parallel machines, and that an O(k)-
approximation can be obtained by running any of the various O(1)-approximation algorithms
for k-median [19, 54, 52, 11, 64] (where one seeks to minimize the sum of the facility loads).
No better approximation algorithms are known for MLkFL even on line metrics, and the MLkFL
problem was mentioned as an open problem in [72].

3.1.1 Summary of results

Our main result is for MLkFL problem in the setting where facilities and clients are located on
a line and we completely resolve the status of MLkFL problem in this case: (1) we devise a
polynomial-time approximation scheme (PTAS) for this case (Theorem 3.3.1), and (2) comple-
menting our PTAS, we show (Theorem 3.5.1) that MLkFL is strongly NP-hard on line metrics
(and hence, a PTAS is the best approximation that one can hope to achieve in polytime unless P
= NP). This result is the first approximation algorithm for MLkFL on line metrics that achieves
anything better than an O(k)-approximation. Our PTAS for line metrics consists of two main
ingredients. First, we prove that there always exists a near-optimal solution possessing some
nice structural properties (Section 3.3.1). Second, we show in Section 3.3.2 that these structural
properties enable one to find such a structured solution via dynamic programming (DP ).

We also consider MLkFL in a special case of tree metrics where the given tree defining the
metric is a star. We consider MLkFL in star-metric for a more general setting where clients may
have non-uniform integer demands {dj}j∈D and the demand of a client may be split integrally
between several open facilities. We now define the load of a facility i to be

∑
j xijc(i, j), where

xij ∈ Z≥0 is the amount of j’s demand that is assigned to i. We devise a 14-approximation algo-
rithm for MLkFL on star metrics with non-uniform demands (Theorem 3.4.1). Notice that when
we restrict the metric to be a star metric, we cannot create colocated copies of a client (without
destroying the star topology), which makes the setting with non-uniform demands strictly more
general than the unit-demand setting.

We show that MLkFL problem is resilient to attack by a variety of techniques that have
been successfully applied to facility location problems, e.g., LP-based and local search-based
techniques. In Section 3.6, we obtain integrality-gap for configuration-style LP relaxation for
MLkFL. In this kind of LP formulation, we “guess” the optimum valueB and have a variable xi,C
for every facility i and every possible set C of clients such that

∑
j∈C c(i, j) ≤ B. We show the

integrality gap of Ω(k/ log k) even for line metrics (Theorem 3.6.1). Note that the configuration
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LP is stronger than the natural LP-relaxation for MLkFL. Moreover, this holds even if the graph
consisting of the edges (j, i) such that c(i, j) ≤ B—call these feasible edges—is connected.
This is in contrast with capacitated k-center [26, 8], where a large integrality gap for the natural
LP arises due to the fact that the graph of feasible edges is disconnected. In Section 3.7, we show
that a multi-swap k-median style local search has an unbounded locality gap.

The results presented in this chapter are part of a joint work between a group at the University
of Alberta and the University of Waterloo which was published in 2014 [4]. The published results
also include a quasi polynomial algorithm for the tree-metrics case.

3.1.2 Related work

The only prior result for MLkFL are due to Even et al. [32] and Arkin et al. [10] who studied
the problem under the name min-max star cover. They view the problem as one where we seek
to cover the nodes of a graph by stars (hence the name min-max star cover). In this setting,
F = D. Even et al. [32] considered two versions of the problems called rooted and unrooted.
In the rooted version, the set of open centers is prespecified and the goal is to find a partition of
the nodes of the graph and assign each partition to one the roots so that the maximum load of a
root is minimized. They notice that the rooted version is a special case of minimum makespan
scheduling on unrelated machines, and thus there exists a 2-approximation due to Lenstra et
al. [62]. For the rooted version, Even et al. [32] devise a (4 + ε, 4)-bicriteria approximation
algorithm which produces a solution with the cost within (4 + ε)-factor of the optimal cost, and
this solution opens at most 4k centers (so it violated the bound on the maximum number of open
centers). Subsequently, Arkin et al. [10] improved the results by devising a (3 + ε, 3)-bicriteria
approximation algorithm.

Another close perspective is the objective in which we want to cover the nodes of an un-
derlying graph with using a certain combinatorial object. Even et al. [32] and Arkin et al. [10]
both devised 4-approximation algorithm when the covering objects are trees (see also [70]). This
approximation was later improved to 3 by Khani and Salavatipour [56]. All these work also con-
sider another variant in which the maximum cost of a covering object is fixed and one seeks to
minimize the number of covering objects used. For this variation in the setting that the objects are
paths or walks, Arkin et al. [10] give (2αk−med + 1)-approximation where αk−med is the approx-
imation ratio of k-median problem. Frederickson et al. [33] obtain an (e+ 1− 1

k
)-approximation

when the covering objects are tours rooted at a given node.

As with the k-median and k-center problems, MLkFL can also be motivated and viewed as
a clustering problem: we seek to cluster points in a metric space around k centers in a way that
minimizes the maximum load (or “star cost”) of a cluster. Whereas MLkFL and k-center are
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min-max clustering problems, where the quality is measured by the maximum cost (under some
metric) of a cluster, k-median is a min-sum clustering problem, where the clustering quality is
measured by summing the cost of each cluster.

3.2 Problem definition and preliminaries

In the minimum-load k-facility location (MLkFL) problem, we are given a set D of clients and
a set F of facilities located in a common metric space {c(i, j)}i,j∈F∪D, and an integer k ≥ 1. A
feasible solution is a pair (F ⊆ F , σ : D → F ) with |F | = k, where σ(j) ∈ F indicates that
client j is assigned to, or served by, facility σ(j). The cost of such a solution is the maximum
load of a facility in F where the load of facility i is defined to be sum of connection costs of
clients assigned to it, i.e., cost(F, σ) := maxi∈F

∑
j∈σ−1(i) c(i, j). The goal is to find a feasible

solution (F, σ) with minimum cost. Throughout, we use OPT to denote an optimum solution
and Lopt to denote its cost.

In some contexts, MLkFL is called star-cover problem. Consider a solution (F, σ). The func-
tion σ in fact gives a partition of client set D, and so the solution can be viewed as a collection
of stars where for each star S , the root is a center i in F and leaves are clients in σ−1(i). There-
fore, MLkFL can be seen as the problem of finding k stars, S1,S2, · · · ,Sk, with roots in F and
leaves in D, that “cover” all clients so that the maximum load of a facility (or cost of a star) is
minimized.

3.3 A PTAS for line metrics

In this section, we focus on MLkFL on line metrics and present a PTAS for it. Let set V = D∪F
and let n := |V |. Here, each client/facility p ∈ V is located at some rational point vp ∈ R. It may
be that vp = vp′ for p 6= p′, for instance when we have collocated clients. To simplify notation, we
use the term “point” to refer to a client or facility p ∈ V as well as to its location vp. The distance
c(p, p′) between points p, p′ ∈ V is simply |vp − vp′ |. We assume that 0 ≤ v1 ≤ v2 ≤ . . . ≤ vn.
The main result of this section is the following theorem.

Theorem 3.3.1. There is a (1 + ε)-approximation algorithm for MLkFL on line metrics for any
constant 0 < ε ≤ 1.

Our high-level approach is similar to other min-max problems. Namely, we present an algo-
rithm that, given a guess B on the optimum solution value, either certify that B < Lopt (recall
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that Lopt is the cost of an optimal solution) or else find a solution with cost not much more than
B. Our main technical result, which immediately yields Theorem 3.3.1 is the following.

Theorem 3.3.2. Let Π = (D ∪F , c, k) be a given MLkFL instance. For any constant 0 < ε ≤ 1
and any B ≥ 0, there is a polynomial-time algorithm A that either finds a feasible solution with
the cost at most (1 + 18ε) ·B or declares that no feasible solution with the cost at most B exists.
Thus, if B ≥ Lopt , then A always finds a feasible solution with the cost at most (1 + 18ε) ·B.

Proof of Theorem 3.3.1. Let ∆ be defined such that vp∆ is an integer for each point p. So Lopt

is an integer multiple of 1
∆

. Since n · vn is clearly an upper bound on the cost of an optimal
solution, Lopt is a multiple of 1

∆
in the interval [0, nvn]. We perform a binary search on this

interval, and for each value B′ ∈ [0, nvn] which is a multiple of 1
∆

, we try algorithm A from
Theorem 3.3.2 with value B = B′. After O(log(nvn∆)) calls to binary search, we find two
multiples of 1

∆
, B′1 and B′2 with B′1 ≤ B′2 and B′2 − B′1 = 1

∆
such that A certifies B′1 < Lopt

and finds a solution with cost (1 + 18ε)B′2. Since Lopt is a multiple of 1
∆

, we can conclude that
B′2 ≤ Lopt . Therefore, setting ε := ε/18, by O(log(nvn∆)) calls to algorithm A, we can find a
solution with cost ≤ (1 + 18ε) · B′2 ≤ (1 + ε) · Lopt . Hence, we can find a solution with cost
(1 + ε)Lopt in polynomial time.

In what follows, we describe algorithm A. We will assume that B ≥ Lopt and show how to
find a solution with the cost at most (1 + 18ε) ·B. Without loss of generality, we assume that 1/ε
is an integer. Let (FB, σB) be a solution with the cost at most at most B. In the remainder of this
section, we will describe some preprocessing steps that simplify the structure of the problem. In
Section 3.3.1, we prove that a well-formed near-optimum solution exists, and in Section 3.3.2,
we describe a dynamic programming algorithm that finds such a near-optimum well-formed
solution.

Preprocessing

The first preprocessing step is to partition the instance into subinstances (and shift the origin
suitably) so that for each point p in each subinstance, we have 0 ≤ vp ≤ n ·B. Note that solution
(FB, σB) has the maximum load at most B, so each facility serves clients that are at distance
at most B from it, i.e., c(j, σB(j)) ≤ B for any client j. Therefore, if the distance of two
consecutive points on the line is more than B, then we can decompose the instance into smaller
instances such that the distance between any two consecutive points is at most B. For each of
the resulting instances Π′, we find the smallest k′ such that running the subsequent algorithm on
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the instance with k′ instead of k finds a solution with the cost at most (1 + 18ε)B. Since we are
assuming B ≥ Lopt , then the sum of these k′ values over the subinstances is at most k. Note that
in each subinstance Π′ by shifting the origin suitably, we can assume 0 ≤ vi ≤ n · B for each
point vi.

The second preprocessing step is scaling of distances. We move every point i ∈ V (recall
V = D ∪ F) left to its nearest integer multiple of εB

n
and then multiply this new point by n

εB
.

That is, move p from vp to bvp · n/εBc. Denote the new position of client/facility p by v′p. The
following lemma describes how the optimum solutions to the original and new locations relate.

Lemma 3.3.3. The optimum solution has the cost at most (1 + 1/ε) · n for the instance given by
the new positions v′. Furthermore, any solution with the cost at most (1 + αε) · (1 + 1/ε) · n for
the new positions has the cost at most (1 + (2 + 2α)ε) ·B in the original instance.

Proof. After sliding each point vp left to its nearest integer multiple of εB
n

, the distance between
any two points changes by at most εB

n
. So a load of each facility changes by at most εB, therefore

each facility has load at most (1 + ε)B. Finally, after multiplying all points by n
εB

, we have that
the maximum load of any facility is at most (1 + 1/ε) · n.

Now consider any solution with the cost at most (1+α · ε) · (1+1/ε) ·n. Scaling the points v′

back by εB/n produces a solution with the cost at most (1+α·ε)(1+ε)·εB ≤ (1+(1+2α)ε)·B.
Then sliding, any two points i, j back to their original positions vi, vj changes their distance by
at most εB/n, so doing this for all points changes the load of any facility by at most εB. The
resulting solution then has the cost at most (1 + (2 + 2α)ε) ·B.

In subsequent sections, we describe a (1 + 8ε)-approximation for any one of the subinstances
Π′ of Π, except we use the new points v′i. By Lemma 3.3.3, this gives us a solution to Π with the
cost at most (1 + 18ε)B, proving Theorem 3.3.2

To simplify notation, we use vp to refer to the new location of point p ∈ V (i.e. rename v′p to
vp). Similarly, the notation c(p, p′) for p, p′ ∈ V refers to these new distances |v′p − v′p′ | and B
denotes the new budget (1 + 1/ε) · n. From now on, we assume our given instance Π of MLkFL
satisfies the following properties:

• There is a solution (FB, σB) with the cost at most B = (1 + 1/ε) · n.

• Each point vp is an integer between 0 and n2

ε
.
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3.3.1 Structure of near optimum solutions

In this section, we show that there is a near-optimum solution to the instance Π with clients and
facilities D ∪ F that has some suitable structural properties. In Section 3.3.2, we will find such
a solution using a dynamic programming approach.

We denote the open interval between two points vi and vj on the line by Ii,j and call this the
arm between i and j (assuming that one of i, j is a client and the other is a facility). An arm Ii,j
is large if c(i, j) > εB and is small otherwise. We say that two arms Ii,j and Ii′,j′ cross if Ii,j is
not contained in Ii′,j′ or vice versa, and Ii,j ∩ Ii′,j′ 6= ∅. Note that the intervals are open so if two
intervals share an endpoint that does not count as an intersection and therefore such intervals are
non-crossing.

A well-formed solution for an MLkFL instance is a solution in which the small arms between
clients and their assigned facilities (centers) do not cross. To recall, (FB, σB) is a solution with
the maximum load B. We show an existence of a low-cost well-formed solution, with facility set
FB, in two steps:

Step 1: Solution with fractional assignment and no crossing small arms.
We demonstrate the existence of a fractional solution with facility set FB where the clients
are assigned to FB centers fractionally. This will be such that the fractional load of each
facility is at most B, all strictly fractional arms in the support have length at most 2εB, and
all small arms in the support of the solution do not cross.

Step 2: Solution with integral assignment and no crossing small arms.
We use a rounding algorithm for the Generalized Assignment Problem (GAP) by Shmoys
and Tardos [75] to round a fractional solution from Step 1 to an integral solution with the
cost at most (1 + 2ε)B.

We emphasize that this rounding algorithm is not a part of our algorithm, it is only used to
demonstrate the existence of a well-formed solution.

Step 1: solution with fractional assignment and no crossing small arms.

For the first step, we will consider a fractional uncrossing argument to eliminate crossings. In-
stead of proving the fractional uncrossing process eventually terminates, we will instead provide
a potential function that strictly decreases in a fractional uncrossing. This potential function is
the objective function of a mixed integer-linear program below; thus an optimal solution will not
contain any crossings between small arms its support.
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We consider the following mixed-integer programming (MIP) with variable xij which de-
notes if a client j is assigned to facility i ∈ FB. The first constraint ensures every client is
assigned to some facility. The second constraint ensures the load of each facility in FB does not
exceed B. The third constraint ensures that any arm with length at least 2εB is integral.

min
∑
i∈FB

∑
j∈D

c(i, j) · xij (MIP)

s.t.
∑
i∈FB

xij = 1 ∀j ∈ D∑
j∈D

c(i, j) · xij ≤ B ∀i ∈ FB

xij ∈ {0, 1} ∀i, j : c(i, j) ≥ 2εB

0 ≤ xij ≤ 1 ∀i, j : c(i, j) < 2εB.

We stress that this is not a relaxation for MLkFL. The objective function is more similar
to the objective function for the k-median problem. Rather, we will only be using this to help
demonstrate the existence of a well-formed solution. The objective function acts as a potential
function.

Lemma 3.3.4. The optimal solution x∗ of mixed integer-linear program (MIP) does not have any
crossing small arms in its support.

Proof. First observe that there is in fact a feasible solution to (MIP) because the integer solution
(FB, σB) defines a feasible solution to (MIP). By the standard theory of mixed-integer program-
ming and the fact that the set of feasible solutions is bounded, there exists an optimal solution x∗.
The rest of this proof shows that an optimal solution to (MIP) cannot contain crossings between
small arms in its support.

Suppose x∗ is a feasible solution such that two small arms Ii,j and Ii′,j′ in the support of x∗

cross. To simplify notation, let s1 = vi, s2 = vi′ be the locations of the centers i, i′ and v1 = vj
and v2 = vj′ be the locations of the clients j, j′. Also let x1 denote x∗ij and x2 denote x∗i′j′ . That
is, x1 is the extent to which the client at location v1 is assigned to the center at location s1 and
similarly for x2. Finally, let `1 = |s1 − v1| and `2 = |s2 − v2| denote the lengths of the two
crossing small arms. See Figure 3.1 for an illustration of how this notation is used.
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v1v2 s2s1

l

x1 x2

Case (1): v1 and v2 between s1 and s2

v1v2s1 s2

x1 x1

x2 − x1

Coverage after fixing the crossing in Case (1)

v1v2 s1 s2

l

x2 x1

Case (2): v1 and v2 on different sides of the segment s1s2

v1v2 s1 s2

x1
l1
l2 x1

x2 − x1
l1
l2

Coverage after fixing the crossing in Case (2)

v1 v2s1 s2

l

x1 x2

Case (3): v1 and v2 on the same side of the segment s1s2
v1 v2s1 s2

x1

x2 − x1
l1
l+l2

x1
l1
l+l2

Coverage after fixing the crossing in Case (3-1)

v1 v2s1 s2

x1 − x2
l+l2
l1

x2

x2
l+l2
l1

Coverage after fixing the crossing in Case (3-2)

Figure 3.1: Fixing the crossing between two small arms.

We check all possible ways that these two arms can cross. When we say that we shift some
value α of coverage from one variable y to another z, we mean increase z by α and decrease
y by α. Note that we will always shift value between the x∗ij, x

∗
i′j, x

∗
ij′ and x∗i′j′ values. Since

`1, `2 ≤ εB then c(i, j′) and c(i′, j) ≤ 2εB so such an uncrossing will maintain the constraint
that only arms of length at most 2εB may be fractional.

Case (1): v1 and v2 lie between s1 and s2 (see Figure 3.1). Let ` > 0 be the length of intersecting
parts of these arms. Without loss of generality, assume that x1 ≤ x2. Shift x1 coverage
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from x∗ij to x∗ij′ and from x∗i′j′ to x∗i′j and note that this preserves feasibility, since each
client is still covered (fractionally) to the extent of 1. The total cost of the two facilities s1

and s2 decreases by 2`x1 > 0, so the objective function strictly decreases and we are left
with an even cheaper solution to (MIP).

Case (2): v1 and v2 are on different sides of the segment s1s2 (see Figure 3.1). Let ` > 0 be the
distance between s1 and s2. Without loss of generality, assume that x1`1 ≤ x2`2. Shift
x1

`1
`2

from x∗i′j′ to x∗ij′ and shift x1 from x∗ij to x∗i′j .

We verify that the fractional load at each center s1 and s2 does not increase. That is, the
load at s1 changes by x1

`1
`2

(`2 − `) − x1`1 = −x1
`1
`2
` < 0 and the load at s2 changes by

x1(`1 − `) − x1
`1
`2
`2 = −x1` < 0. Since the load at both facilities strictly decreases then

this also yields a cheaper solution to (MIP).

Case (3): v1 and v2 are on the same side of the segment s1s2 (see Figure 3.1). Let ` > 0 be the
distance between s1 and s2. Without loss of generality, assume that v1 and v2 are on the
right side of segment s1 and s2 and the left center is s1. This means v1 is between s2 and
v2 and hence, `1 < `+ `2. As a consequence: (`+ `2)(`1 − `) < `1`2.

There are two sub-cases:

Case (3-1): x1`1 ≤ x2(`+ `2).
This means x1

`1
`+`2
≤ x2. We shift x1 from x∗ij to x∗i′j and shift x1

`1
`+`2

from x∗i′j′ to
x∗ij′ . The fractional load at s1 changes by x1

`1
`+`2

(`+ `2)−x1`1 = 0 and the fractional
load at s2 changes by x1(`1 − `)− x1

`1
`+`2

`2 = x1(`1 − `− `1`2
`+`2

) < 0. Since the total
load strictly decreases, then this also yields a cheaper solution to (MIP).

Case (3-2): x1`1 > x2(`+ `2).
We shift x2 from x∗i′j′ to x∗ij′ and shift x2(`+`2)

`1
from x∗ij to x∗i′j . The fractional load

at s1 changes by x2(` + `2) − x2
`+`2
`1
`1 = 0 and the fractional load at s2 changes

by x2
(`+`2)(`1−`)

`1
− x2`2 < 0. Since the total load strictly decreases, then this is also

yields a cheaper solution to (MIP).

In all these cases, the new solution is feasible and has a smaller objective value as required, so
an optimal solution x∗ of (MIP) does not have any crossing small arms.

Step 2: solution with integral assignment and no crossing small arms.

In the following, we will use Lemma 3.3.4 to prove the existence of a near-optimum solution to
instance Π where the small arms used by clients do not cross. To complete this proof, we rely on
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a structural result concerning the polytope of a relaxation for the following scheduling problem.

Definition 3.3.5. In the scheduling problem on unrelated machines, we are given machines
m1, . . . ,mk, jobs j1, . . . , jn, and processing times p(mi, ja) ≥ 0 for any job ja and any ma-
chine mi. The goal is to assign each job ja to a machine φ(ja) ∈ {m1, . . . ,mk} to minimize the
maximum total running time

∑
a:φ(ja)=mi

p(mi, ja) of any machine.

Shmoys and Tardos [75] prove a result concerning the polytope of an LP relaxation for this
problem, as a part of a more general result concerning the related Generalized Assignment Prob-
lem (GAP). The following summarizes the results they obtain that are relevant for our work.

Theorem 3.3.6 (Shmoys and Tardos, [75]). Suppose we have a bound B and fractional values
x(mi, ja) ≥ 0 for each job ja and each machine mi that satisfy the following:

•
∑k

i=1 x(mi, ja) = 1 for each job ja,

•
∑n

a=1 x(mi, ja) ≤ B for each machine mi.

Then there is an assignment φ of jobs to machines such that x(φ(ja), ja) > 0 for each job ja and
the maximum load of any machine under φ is at most B + maxa,i:0<x(mi,ja)<1 p(mi, ja).

We use the above theorem together with Lemma 3.3.4 to prove the following.

Theorem 3.3.7. There exists a feasible (integer) solution to the MLkFL instance Π with facility
set FB and the maximum load (1 + 2ε)B for each facility such that no two small arms cross.

Proof. Let x∗ be the fractional solution provided by Lemma 3.3.4. We view x∗ as a solution to
the following scheduling problem on unrelated machines. We have k machinesm1, . . . ,mk, each
corresponding to a facility i ∈ FB. For each client a ∈ D, there is a single job ja. The processing
time p(mi, ja) of job ja on machine mi is |vi − va|, the distance between the corresponding
locations.

Now, x∗ fractionally assigns each job ja to the machines to a total extent of 1 and the maxi-
mum (fractional) load at machine mi is B. Furthermore, the only strictly fractional assignments
(i.e. those with 0 < x∗ij < 1) have |vi − vj| ≤ 2εB. In the scheduling terminology, the only
strictly fractional assignments are between a job ja and a machine mi such that p(mi, ja) ≤ 2εB.

Theorem 3.3.6 shows we can transform this fractional assignment x∗ into an integer assign-
ment such that (i) if client j is assigned to facility/center i, then x∗ij > 0 and (ii) the maximum
load of a facility is B + maxi,j:0<x∗ij<1 |vi − vj| ≤ B + 2εB. In this solution, small arms used by
clients do not cross because they come from the support of x∗.
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3.3.2 Finding a well-formed solution

Theorem 3.3.7 shows that there is a solution of the cost at most (1 + 2ε)B such that no two
small arms (i.e. length ≤ εB) used to assign clients to centers cross. Let (FB, σ

′
B) denote such

solution. In this section, we present a dynamic programming approach that finds such a well-
formed solution of the cost at most (1 + 8ε)B.

The main idea behind our approach is the following. If it were true that a near-optimum
solution did not have any crossing arms (large or small) then we can find such a solution using
a dynamic programming approach (see Figure 3.2). At a very high-level, we could exploit the
laminar structure of the solution by decomposing the solution into a family of nested intervals I
such that for every I ∈ I there is one center (supplier) s with vs 6∈ I such that clients in I are
served either by centers in I or by s. From this, we can consider triples (I, s, β) where I ∈ I, s
is a location outside of I , and β is some integer between 0 and poly(n, 1/ε) describing the load
assigned to s from clients in I . We can look for partial solutions parameterized by these triples
and relate them through an appropriate recurrence.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 3.2: Example of a solution without crossing arms.

Unfortunately, we are only guaranteed that the small arms do not cross in our near-optimum
solution so the collection of all arms in the solution is not necessarily laminar. To handle this gen-
eral case, we must carry extra information about large arms through our dynamic programming
approach and keep track of how many large arms of each possible length cross an interval. Since
each large arm has a length between εB and B, if we store the exact length, then this amounts
to storing a vector with roughly B coordinates. There are exponentially many vectors with B
coordinates that the values in different coordinates sum up to at most n, so we cannot keep track
of this information. However, by coarsening the length, we ensure that large arms have only a
constant possible number of different perceived length, so we can keep track of this information
when we move to perceived length.

First, recall that all large arms have length more than εB. Thus, each facility is serving at
most (1+2ε)B

εB
≤ 3

ε
clients that are at distance more than εB from it; in other words each facility is
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assigned at most 3
ε

large arms in the solution provided by Theorem 3.3.7. Since large arms have
length at least εB, if we store their length in ε2B, we will not lose much information about them.
Let MULT(i, j) denote the number of multiples of ε2B in (vi, vj] interval for vi ≤ vj , so

MULT(i, j) =
⌊ vj
ε2B

⌋
−
⌊ vi
ε2B

⌋
.

Then, we measure the length of a large arm Iij between client j and facility i as ε2B ·MULT(i, j)
if vi ≤ vj or ε2B · MULT(j, i) otherwise. We call this the perceived cost of this arm. In this
method of measurement, the length of the arm changes by at most ε2B, and so the total load for
each center changes by at most 3εB. Now for this method of measurement, since there are 1

ε2

coordinates, the number of possible vectors for keeping track of large arms is at most n
1
ε2 which

is polynomial.

In the dynamic programming algorithm described below, we will use this coarse method to
measure the distance of large arms. Since in dynamic programming approach the problem is
often broken into subproblem, a large arm might be partitioned with respect to subproblems. We
would like to note that for points vp0 ≤ vp1 ≤ · · · ≤ vpt with p0 = i and pt = j, MULT(i, j) =∑t−1

q=0 MULT(pq, pq+1) (Note that MULT(a, a) = 0 for any a.). We use the term the perceived
cost of a facility i to denote the total cost of the small arms plus the perceived cost of its large
arms. The following is proved using arguments similar to the proof of Lemma 3.3.3, recalling
that every facility i n FB has at most 3/ε large arms.

Lemma 3.3.8. The perceived cost of every facility in (FB, σ
′
B) is at most (1+5ε)B. Furthermore,

a solution with maximum perceived cost at most (1+5ε)B and at most 3/ε large arms per center
has the (actual) cost at most (1 + 8ε)B.

Our dynamic programming algorithm will find a solution with the perceived cost at most
(1 + 5ε)B and at most 3/ε large arms per center, so the actual cost will be at most (1 + 8ε)B.

Dynamic programming

Before we formally define the subproblems of dynamic programming, we discuss the structure of
a well-formed solution, say (F, σ). We call a client covered by a small (large) arm a small client
(large client), respectively. It will be convenient to associate a direction with each arm, which
goes from the center/facility to the client. For a facility i, let Ssmall denote the clients covered by
small arms to i, i.e., small clients in σ−1(i). Let the small-span of i be the open interval, possibly
empty, spanning (lS , rS) where
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lS = min

{
vi, min

j∈Ssmall

vj

}
and rS = max

{
vi, max

j∈Ssmall
vj

}
are the left most and the right most small clients (or facility) in this star, respectively. Since

the small arms do not intersect in (F, σ), for any two small-spans I1 and I2 of two facilities, either
I1 ∩ I2 = ∅ or I1 ⊆ I2 or I2 ⊆ I1. Therefore, the ⊆ relation between small-span of facilities in
F defines a laminar family. A laminar family can naturally be viewed as a forest where we put a
node for each member of the family and each node I has an edge to the minimal member say I ′

of the family that contains it, i.e., I ⊆ I ′. If a facility i does not serve any client by a small arm
then its small-span is (vi, vi) by definition and although this is an empty interval, in the forest
corresponding to laminar family, it has an edge to the small-span (interval) that contains vi. We
frequently refer to this forest-view when referring to a laminar family.

Let us try to understand the subproblems that come up in constructing a solution. The dy-
namic programming in fact stitches together the solutions of these subproblems in order to find
the solution to the original problem. Let Vi,j denote the set of points {vi, vi+1, · · · , vj} with
i ≤ j, so V = V1,n. We want to use the dynamic programming to answer the question if it is
possible to open k centers in V1,n and assign clients to these centers such that the perceived cost
of each center is at most (1 + 5ε)B and the small-span of the centers form a laminar family.

Now consider solution (FB, σ
′
B) which has a maximum perceived load of (1+5ε)B. Consider

the forest corresponding to the small-span of centers in this solution and let s be the center that
its small-span is the leftmost root in the forest. We can guess s as there are at most O(n) possible
choices for it. Let kr and kl denote the number of centers in F which are on the right and left
side of s respectably, so kr + kl = k − 1. There are O(k) possible choice for kr and kl, so we
guess kr and kl as well (note that k is dominated by n). Let us now focus on the interval V1,s−1.
Since s corresponds to the interval at the root of the forest, no center in Vs+1,n can serve clients
in V1,s−1 by small arms (otherwise the small-span of s is a subset of small-span of some other
center). We can guess the load corresponding to small clients served by s in V1,s−1 as this load is
an integer in poly(n, 1/ε). We may have some clients in V1,s−1 served by large arms originating
in Vs,n. We cannot guess the large arms serving these clients as the number of possible such arms
is not polynomial (there are O(nkn3/e) possible choices) but instead we can bundle large arms
entering V1,s−1 based on their perceived length past vs−1, that is their perceived length in V1,s−1

interval. More precisely, we guess how many large arms have perceived length q× ε2B past vs−1

for each 0 ≤ q ≤ 1
ε2

as there are O(n
1
ε2 ) possible choices. Similarly, we may have some large

arms originating in the interval V1,s−1 which serve clients in Vs+1,n. Again we can bundle these
arms based on their perceived length past vs+1 (their perceived length in Vs+1,n) and we guess
the number of large arms with perceived length q× ε2B past vs+1 for each 0 ≤ q ≤ 1

e2
. This give

us an idea of what parameters are needed for describing the subproblems.
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The discussion above gives us a sense of what kind of subproblem we should consider. We
consider a subproblem which for an interval Vl,r asks if it is possible to open at most k′ centers
in the interval, for k′ ≤ k, and we may have one extra center s with small arms serving clients
in Vl,r Now consider some interval Vl,r between two arbitrary points vl, vr and consider how
(FB, σ

′
B) interacts with this interval. There may be some large arms that enter and/or leave this

interval from vl or vr. The arms that enter the interval can cover the deficiency of coverage for
some client in the interval and the arms that leave the interval provide coverage for some client
outside of interval and can be viewed as surplus to the demand of coverage of the clients in the
interval. We keep track of all large arms crossing the sides of interval Vl,r in terms of deficiency
and surplus vectors as follows:

• Deficiencies: Vector Dl is the deficiency vector in [n]
1
ε2 for vl where Dl[q] for 0 ≤ q ≤ ε−2

is the number of large arms from a center location i < l to a client j ≥ l such that
MULT(l, j) = q. So Dl[q] keeps track of the number of large arms originating in i < l and
crossing exactly q multiples of ε2B in interval (vl, vj]. Note that client j ≥ l can be located
outside of interval Vl,r, i.e., j > r as well. The vector Dr is defined similarly for vr, that
is, Dr[q] is the number of large arms from a center location i > r to a client j ≤ r such
that MULT(j, r) = q. Let q′ = MULT(l, r), then all arms represented by Dl[q] for q < q′

must end at clients located in Vl,r and all arms represented by Dl[q] for q > q′ must end at
clients located to the right of Vl,r. If q = q′ then some arms may end at clients in Vl,r and
some may end at clients located to the right of Vl,r (See Figure 3.3).

• Surpluses: Vector Sl is the surplus vector in [n]
1
ε2 for vl where Sl[q] for 0 ≤ q ≤ ε−2 is the

number of large arms from a center location i ≥ l to a client j < l such that MULT(j, l) = q.
So Sl[q] keeps track of large arms originating at i ≥ l and crossing exactly q multiples of
ε2B in interval (vj, vl]. Note that center i ≥ l can be larger than r and does not need to be
located in the interval Vl,r. The vector Sr is defined similarly, that is, Sr[q] is the number of
large arms from a center location i ≤ r to a client j > r such that MULT(r, j) = q. Recall
that q′ = MULT(l, r). Note that for q > q′, any arm contributing to Dl[q] also contributes
to Sr[q− q′] and similarly, any arm contributing to Dr[q] also contributes to Sl[q− q′] (See
Figure 3.3).

The dynamic programming table. The table we build in our dynamic programming algo-
rithm captures “snapshots” of solutions bound between two given points plus some information
on how arms cross these points. We consider the values A(k′, l, r, s, β,Dl,Dr,Sl,Sr) corre-
sponding to subproblems. The meanings of the parameters are as follows.

• 0 ≤ k′ ≤ k is the number of centers in the interval Vl,r.
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vl vri1 i2 i3 i4j1 j2 j3 j4 j5 j6 j7

Dl[1] = 1 (arm i1j3)

Dl[4] = 1 (arm i1j5)

Dl[8] = 1 (arm i1j7)

Dr[2] = 1 (arm i4j4)

Dr[9] = 1 (arm i4j1)

Sl[3] = 1 (arm i3j2)

Sl[4] = 1 (arm i4j1)

Sr[1] = 1 (arm i3j6)

Sr[3] = 1 (arm i2j7)

Figure 3.3: Example of deficiency and surplus vectors. In this example, multiples
of ε2B are shown by small blue squares, q′ := MULT(l, r) = 5, and all the arms are
large arms. Note that the arm i2j7 contributes to Sr[3] and Dl[8] and the arm i4j1

contributes to Sl[4] and Dr[9].

• 1 ≤ l ≤ r ≤ n corresponds to the interval Vl,r.

• s ∈ F denotes a single point with either s < l or s > r (i.e. outside of Vl,r) that is the
center of some star, or else s = ⊥. If s 6= ⊥ it is the only center outside of Vl,r with small
arms going into Vl,r and the total cost of small arms that s pays to cover vertices in Vl,r is
β where 0 ≤ β ≤ (1 + 5ε)B is an integer.

• Dl,Dr,Sl,Sr are deficiency and surplus vectors for the endpoints of interval Vl,r.

Note that in the above, if s = ⊥ then the value of β can be assumed to be zero.

The value A[k′, l, r, s, β,Dl,Dr,Sl,Sr] is TRUE if and only if the following holds. It is
possible to open k′ centers in the interval Vl,r and assign each client j ∈ D with l ≤ j ≤ r
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• to one of the k′ open centers,

• to center s, if s 6= ⊥,

• or to a large arm entering Vl,r

and also assign the start of some of the large arms exiting the interval to these open centers in
Vl,r such that the following hold.

• The perceived load of each of the k′ centers is at most (1 + 5ε)B.

• The load of s from small arms going to clients j ∈ D with l ≤ j ≤ r is β,

• The large arms entering and/or exiting Vl,r are consistent with Dl,Dr,Sl,Sr.

By consistent, we mean the following. For each interval [a, b] where a and b are consecutive
multiples of ε2B, we check the number of promised clients to be served by Dl,Dr,Sl,Sr in
this interval (depending on position of a and b with respect to l and r, some of these vectors
may not give any information). More precisely, when r ≤ b, each of Dl[q1] and Sr[q2] where
q1 = MULT(l, a) and q2 = MULT(r, a) gives the number of clients in [a, b) that are supposed to
be served by a centers i ≤ l and center i′ ≤ r, respectively. Now since l ≤ r, any large arm
counted in Dl[q1] must be counted in Sr[q2], i.e., Sr[q2] ≥ Dl[q1], and we must have at least
Sr[q2] clients in [a, b). Note that Sr[q2]−Dl[q1] correspond to long arms that start in interval Vl,r.
Similar arguments must be made for when a ≤ l and Dr and Sl. For intervals containing l or r,
we have to subdivide the interval, e.g., [a, r) and [r, b), and then check the consistency.

The number of table entries is polynomial, because k′, l, r, s are inO(n) and β is a polynomial
in n and 1

ε
and the deficiency and surplus vectors, in total, can take one of O(n1+1/ε2) values.

We shortly explain how one can compute the values A in polynomial time through dynamic
programming. After that, to find out if there is a feasible solution having perceived cost (1+5ε)B,
one simply needs to look at the value of A[k, 1, n,⊥, 0,0,0,0,0], where 0 is a vector having
1 + 1/ε2 zero components.

The recurrence. In the remaining of the section, we explain how the value of a table entry
is calculated. We call a subproblem feasible if A[k′, l, r, s, β,Dl,Dr,Sl,Sr] is TRUE. The recur-
rence is somewhat involved, so we explain the main ideas behind it; more details can be found
in the paper [4].

Base case. The base case is when k′ = 0 and l = r. Since k′ = 0, we are not allowed to open
a facility at vr (r might not be a facility anyway). There are two possible main cases based on
whether s can serve a possible client at r or not.
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• s = ⊥ and so β = 0 or s 6= ⊥ but β = 0.
If r is a client, then r has to be served by a large arm coming from outside of Vl,r. If r is
served by a large arm entering from left, so Dl[0] must be non-zero and moreover, values
of Dl,Dr,Sl,Sr must be consistent, i.e., Dl[0] = Sr[0]+1, Dl[q] = Sr[q] for 1 ≤ q ≤ ε−2,
and Dr = Sl. Similarly, if r is served by a large arm entering from right, then we must
have Dr[0] = Sl[0] + 1, Dr[q] = Sl[q] for 1 ≤ q ≤ ε−2, and Dl = Sr. So if either of these
conditions hold, then the subproblem is feasible.

If r is a facility, then it cannot be opened as k′ = 0. So we only check consistency of
Dl,Dr,Sl,Sr, i.e., Dl = Sr and Dr = Sl.

• s 6= ⊥ and β 6= 0.
If r is a client, it has to be served by a small arm originating at s, so β must be equal to
c(s, r) and it must be smaller than εB. The vectors Dl,Dr,Sl,Sr must be consistent, i.e.,
Dl = Sr and Dr = Sl.

If r is a facility, then the subproblem is infeasible by the definition.

Recursive step. Next, we show how to determine if A[k′, l, r, s, β,Dl,Dr,Sl,Sr] is TRUE when
the parameters do not represent a base case by relating its value to values of smaller problems.
In what follows, by guessing a parameter, we mean that we try all polynomially many possible
values of that parameter and if one of them results in a feasible solution, we set the value of the
current subproblem to TRUE. We consider two cases regarding the value of s:

Case (1): s 6= ⊥ and β > 0.
Without loss of generality, suppose s < l. There must be a small client j with l ≤ j ≤ r
covered by s. We guess j to be the leftmost such small client along with how many of
k′ facilities in Vl,r are in Vl,j−1, call this k′′ ( the rest of facilities, k′ − k′′, will be in
Vj+1,r). For subproblem constructed for Vl,j−1, no small arm can enter Vl,j−1, and for
subproblem constructed for Vj+1,r, the center outside Vj+1,r is s with allowed load of β′ =
β−c(s, j). We can also guess the large arms leaving and/or entering Vl,j−1 as well as Vj+1,r

and in polynomial time, we check if these vectors are consistent with each other as well
as Dl,Dr,Sl,Sr. So A[k′, l, r, s, β,Dl,Dr,Sl,Sr] is set to TRUE if one of the following
expressions is TRUE (see Figure 3.4).

A[k′′, l, j − 1,⊥, 0,Dl,Dj−1,Sl,Sj−1] ∧ A[k′ − k′′, j + 1, r, s, β − |vs − vj|,Dj+1,Dr,Sj+1,Sr]

For some l ≤ j ≤ r such that Isj is a small arm and |vs − vj| ≤ β, some 0 ≤ k′′ ≤ k′,
, and Dj−1,Sj−1,Dj+1,Sj+1 consistent with Dl,Dr,Sl,Sr,

(using the assumption that j is served with a small arm).
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Note that when j = l, we just check one other subproblem, namely A[k′, j + 1, r, s, β −
|vs−vj|,Dj+1,Dr,Sj+1,Sr] (we must have Isj is a small arm, and |vs−vj| ≤ β). Similarly,
when j = r, we just check one subproblem, namely A[k′, l, j−1,⊥, 0,Dl,Dj−1,Sl,Sj−1]
(we must have Isj is a small arm, and |vs − vj| = β). If l = r then k′ has to be non-zero
(otherwise we are in a base case), and since there is no facility to open at j, we say the
subproblem is infeasible. Similar argument can be made when s > r (in this case, we
guess the rightmost client served by s).

vl vrvjs

A[k′′, l, j − 1,⊥, 0, ...] A[k′ − k′′, j + 1, r, s, β − |vs − vj|, ...]

Figure 3.4: Case (1) of recursive step. Only small arms are drawn in the figure, and
for clarity large arms are not drawn (large arms can enter and/or leave the interval).

Case (2): s 6= ⊥ and β = 0, or s = ⊥.
We consider two subcases regarding value of k′:

Case (2-a): k′ = 0.
First note that in this case, l 6= r (otherwise we are in a base case). All clients in Vl,r
must be covered by large arms from centers (facilities) outside the interval. If l is a fa-
cility then it must be closed so we recursively checkA[0, l+1, r, s, 0,Dl

′,Dr
′,Sl

′,Sr
′]

where the new deficiency and surplus vectors are obtained from Dl,Dr,Sl,Sr after
taking into account the number α of multiples of ε2B between vl and vl+1. If this is
not possible, e.g. if Dr(q) > 0 for some q < α or similarly, then the subproblem is
not feasible.
So, suppose that l is a client. First, assume l is covered by a large arm from the left.
Then Dl[0] > 0 and we use one to cover client l. In this case, define Dl

′,Dr
′,Sl

′,Sr
′
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to reflect the fact that this one large arm covers l and the perceived length of the
remaining ones accounted for by Dl,Sl that entered or exited by vr have a different
perceived length depending on the number of multiples of ε2B between vl and vl+1

(again, if this is not possible then the subproblem is not feasible).
Then we declare the subproblem to be feasible if and only if the value of A[0, l +
1, r, s, 0,Dl

′,Dr
′,Sl

′,Sr
′] is TRUE. A similar argument works if l is covered by a

large arm from the right.

Case (2-b): k′ > 0.
Note that since s 6= ⊥ and β = 0, or s = ⊥, no small arm can enter Vl,r. Consider the
set of centers in Vl,r. The small-span (interval of small arms) of these centers forms
a laminar family. Consider the roots of the forest of this laminar family and let s′ be
the center corresponding to the leftmost root; we guess s′ (see Figure 3.5) along with
the contribution of small arms originating at s′ going to the left (call β′) and the right
(call β′′), and also the number of centers located between l and i, say k′′. Observe
that the small-span of i is not contained in the small-span of any other center in Vl,r.
Center s′ has at most 3/ε large arms. We guess the large arms of s′ along with large
arms entering/leaving Vl,s′−1 and Vs′+1,r. For all the guesses that the perceived cost
of c′ is at most (1 + 5ε)B and the large arms are consistent with each other as well as
Dl,Dr,Sl,Sr. So A[k′, l, r, s, β,Dl,Dr,Sl,Sr] is set to TRUE if one the following
expressions is TRUE (see Figure 3.5).

A[k′′, l, s′ − 1, s′, β′,Dl,Ds′−1,Sl,Ss′−1] ∧ A[k′ − k′′ − 1, s′ + 1, r, s′, β′′,Ds′+1,Dr,Ss′+1,Sr]

For some l ≤ s′ ≤ r, 0 ≤ k′′ ≤ k′ − 1

guessed ≤ 3/ε long arms such that the perceived cost at s′ is at most (1 + 5ε)B,
guessed large arms and Ds′−1,Ss′−1,Ds′+1,Ss′+1 consistent with Dl,Dr,Sl,Sr.

3.4 A constant-factor approximation algorithm for MLkFL in
star metrics

We now consider MLkFL in star metrics, but in the more-general setting where each client j
has an integer demand dj that may be split integrally across various open facilities; we call this
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vl vrs′

A[k′′, l, s′ − 1, s′, β′, ...] A[k′ − k′′ − 1, s′ + 1, r, s′, β′′, ...]

Figure 3.5: Case (2-b) of recursive step.Only small arms are drawn in the figure, and
for clarity large arms are not drawn (large arms can enter and/or leave the interval).

an integer-splittable assignment. The load of a facility i is now defined as
∑

j xijc(i, j) where
xij ∈ Z≥0 is the amount of j’s demand that is served by i. We devise a 14-approximation
algorithm for this problem. At a high level, our approach is similar to the one used to obtain
the PTAS for line metrics. We again “guess” the optimal value B. We argue via a slightly
different uncrossing technique that if B ≥ Lopt , then there exists a well-structured fractional
solution with the maximum load at most 6B, and use DP to obtain a fractional solution with the
maximum load at most 12B. This can then be converted to an integer-splittable assignment with
the maximum load at most 14B using the GAP-rounding algorithm, since it is easy to ensure via
some preprocessing that c(i, j) ≤ 2B for every facility i and client j. Thus, we either determine
that B < Lopt or obtain a solution with the maximum load at most 14B.

Theorem 3.4.1. There is a 14-approximation algorithm for MLkFL on star metrics with non-
uniform demands and integer-splittable assignments.

Let r be the root of the star graph defining the star metric, V denote the set of all leaf nodes,
and let ci = c(i, r) for leaf i. We may assume that r /∈ F ∪D since we can add an extra leaf with
distance zero to r. Number the nodes of V from 1 to n so that c1 ≤ c2 ≤ · · · ≤ cn. Let dj be the
integer demand of client j ∈ D. Recall that we consider integer-splittable assignments, where
each open facility serves an integer amount of the demand (possibly 0) of each client. As before,
we often refer to a pair (i, j), where i ∈ F , j ∈ C, as an arm.
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Let B be our current guess of the optimal value. Our goal is to either certify that B < Lopt ,
or find a solution with the maximum load at most 14 · B. We may assume that ci ≤ B for all
i = 1, . . . , n. Otherwise, if ci > B, then no client may assign any demand to i (if i ∈ F) in any
integer-splittable assignment; also, if di > 0, then all of di must be served by i. Thus, we can
remove i from V , and in the latter case, decrease k by 1, and proceed with the smaller instance.

In Section 3.4.1, we show that if B ≥ Lopt , then there exist k facilities, and a well-structured
fractional assignment of clients to these facilities of cost (i.e., maximum load) at most 6B. In
Section 3.4.2, we devise a dynamic programming approach that finds k facilities and a well-
structured fractional assignment of clients to these facilities of cost at most 12B provided there
is such a solution of the cost at most 6B. Combining these results, if B ≥ Lopt , we can find k
facilities and a fractional assignment of clients to these facilities that has the maximum load at
most 12B. Finally, using Theorem 3.3.6, we can round this solution to an integer solution while
increasing the maximum load by at most maxi∈F ,j∈D c(i, j) ≤ 2B.

3.4.1 A well-structured near-optimal solution

We now show that if B ≥ Lopt , then there exists a fractional assignment satisfying various nice
structural properties, which will then enable us to find such a solution via DP (Section 3.4.2).
Let FB be the set of open facilities in some integer-splittable solution having the maximum load
at most B. Consider the following LP.

min
∑
i∈FB

∑
j∈D

c(i, j) · xij (S-P)

s.t.
∑
i∈FB

xij = dj ∀j ∈ D∑
j∈D

c(i, j) · xij ≤ B ∀i ∈ FB

xii = di ∀i ∈ FB
xij ≥ 0 ∀i ∈ FB, j ∈ D.

Given a solution x to (S-P), we say that arms (i, j′) and (i′, j) cross in x if xij′ · xi′j > 0 and
c(i, j) · c(i′, j′) < c(i′, j) · c(i, j′). We know that (S-P) is feasible. We prove that the optimal
solution to (S-P) does not have any crossing arms in its support.
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Lemma 3.4.2. The optimal solution to (S-P) does not have any crossing arms in its support.

Proof. Let x∗ be an optimal solution to (S-P). Suppose (i, j′) and (i′, j) cross in x∗. If c(i, j) = 0
then simply update x by moving all of j’s demand to i. Similarly, if c(i′, j′) = 0 then move all of
the demand of j′ to i′. In both cases, the objective value of x∗ decreases, which is a contradiction.
So suppose that c(i, j) · c(i′, j′) > 0.

For some ε, ε′ > 0 to be specified shortly, we create a new assignment x that agrees with x∗

in all center-client pairs except that:

• xij = x∗ij + ε, xi′j = x∗i′j − ε.

• x∗i′j′ = xi′j′ + ε′, x∗ij′ = xij′ − ε′.

It must be that c(i, j) < c(i, j′) or c(i′, j′) < c(i′, j) so assume, without loss of generality, that
c(i, j) < c(i, j′). We chose the largest possible values for ε, ε′ such that the load at i does not
change, i.e., ε · c(i, j) = ε′ · c(i, j′) and xi′j, xij′ are non-negative, so either xi′j = 0 or xij′ = 0
will be zero while the other remains nonnegative. The change in the load of i′ as well as the
change in objective value is given by

ε′ · c(i′, j′)− ε · c(i′, j) = ε

(
c(i, j) · c(i′, j′)

c(i, j′)
− c(i′, j)

)
which is nonpositive because c(i, j) · c(i′, j′) < c(i, j′) · c(i′, j). This yields a contradiction.

Observe that the above uncrossing property is stronger than the uncrossing that we achieved
for line metrics, where we only ensured that small arms do not cross. Figure 3.6 illustrates all
the (non-symmetric) cases that count as crossing. The figures on the right show the result after
modifying x as described in the above proof (assuming xi′j becomes zero).

Definition 3.4.3. A fractional solution x to (S-P) is well-structured if we can partition V =
{1, . . . , n} into consecutive subsequences V1, V2, . . . , Vm such that:

• For each Va and each j ∈ Va ∩ D, we have xij = 0 for i 6∈ Va. That is, each client is
completely served within its partition.

• For each Va, at least one of the following holds:

1. |FB ∩ Va| = 1.

2. xij = 0 for all j ∈ Va∩D and i < j (clients are only satisfied by centers to the right).
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Figure 3.6: Fixing the crossing of two arms.

3. xij = 0 for all j ∈ Va ∩ D and i > j (clients are only satisfied by centers to the left).

Lemma 3.4.4. There is a well-structured fractional solution x to (S-P) with the maximum load
at most 6B.
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Proof. Let x∗ be an optimal solution to (S-P). So x∗ has the maximum load at most B, and by
Lemma 3.4.2, it does not have any crossings. We initialize variable x to x∗. We modify x in a
number of steps that do not increase the maximum load by more than a constant factor.

• Step 1) Ensuring all clients are served in only one direction.
Consider client j ∈ D. If j ∈ FB, all the demands at j must be satisfied by the collocated
center by the constraint xii = di for all i ∈ FB, so we can assume xij = 0 for i 6= j. If
j /∈ FB, either

∑
i<j xij ≥

dj
2

or
∑

i>j xij ≥
dj
2

. Suppose the former is true (the latter is
similar). Then we simply set xij = 0 for i > j and scale the xij with i < j uniformly until
they sum to dj again. After doing this for all clients, we have that xij at most doubles for
each center-client pair so the maximum load is at most 2B.

• Step 2) Ensuring all centers either serve clients only to the left or only to the right, or
form their own consecutive partition.
Let i be any center in FB with xip, xiq > 0 for two clients p < i < q. If there is no
such center, then this step is done. We will modify the assignment to i and, perhaps, some
nearby centers and then form a consecutive subsequence of V whose only center is i.

Consider the rightmost center iL ∈ FB such that iL < i, see Figure 3.7. If there is no
center to the left of i, then the operations in this paragraph are skipped. Otherwise we
update the assignment x in the following way: For any client j < iL with xij > 0, we
update xiLj ← xiLj + xij and xij ← 0. Note that this modification does not introduce any
crossings in x as each client j is now assigned to a closer location. Since xiLiL = diL by
(S-P) constraint, we can now claim that any client j < i with xij > 0, has to be on the
right of iL, i.e., iL < j.

Similarly, if there is a leftmost center iR ∈ FB with iR > i then move all assignment xij
with j > iR to iR. Again after these modifications, no new crossing is introduced, and any
client j > i with xij > 0, has to be on the left of iR, i.e., j < iR.

Let jL be the leftmost client with xijL > 0, if no such client exists define jL = n + 1.
Similarly, let jR be the rightmost client with xijR > 0, if no such client exist let jR = 0.
Define interval Va to be j1, j2, · · · , jm where j1 = min(jL, i) and jm = max(i, jR) (See
Figure 3.7). Note that partition Va satisfies |FB ∩ Va| = 1. We claim that all clients in Va
are completely assigned to i. Let j be an arbitrary client in Va. Without loss of generality
assume j < i (the other case is similar). Note that in this case j1 ≤ j < i, so jL < i. We
have two possible cases:

– j = jL. By definition of jL, xijL > 0. By step 1, we know that jL is served in one
direction which has to be right as i is on the right of jL. Suppose facility i′ > i,
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Figure 3.7: Moving client assignments. Black solid circles denote clients with xij >
0.

serves jL. Since i in x∗ serves q > i (initial condition for picking i), this gives us a
contradiction as x∗i′jL · x

∗
iq > 0 and arms (i, q) and (i′, jL) cross (Case (1) or Case (4)

depending on the position of q with respect to i′, see Figure 3.6).

– j > jL. First, we show j cannot be served by a facility i′ < i. Let us assume the
contrary. By definition of iL, we have i′ ≤ iL, and hence arms (i′, j) and (i, jL) cross
which gives us a contradiction as x∗i′j · x∗ijL > 0 (Case (2) in Figure 3.6). Second, we
show j cannot be served by facility i′ > i. Again let us the contrary. Since arms (i, q)
and (i′, j) cross for solution x∗ while x∗i′j · x∗iq > 0 (Case (1) or Case (4) depending
on the position of q with respect to i′, see Figure 3.6).

Note that partition Va satisfies |FB ∩ Va| = 1 and that all clients in Va are completely
assigned to the sole center in Va. Removing Va from V effectively divides the instance into
two subinstances. We only note that xi′j′ = 0 for any j′ < i < i′ or i′ < j < j′. Otherwise,
if (say) j′ < i < i′ has xi′j′ > 0 then this would cross arm (i, q) that was assigned to i in
x∗ which gives us a contradiction.

We claim the maximum load after performing the second step has increased by at most
4B. The only times the load increases are when some centers of the form iL or iR have
some xij reassigned to them. Each center i′ can be some center of the form iL only once
and of the form iR only once. Moreover, the load of i′ cannot be increased in both cases.
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Suppose the contrary, i.e., i′ is iL for some center i0 and iR for some center i1 where there
exist clients j0 < i′ and j1 > i′ with x∗i0j0 , x

∗
i1j1

> 0. Since the arms (i0, j0) and (i1, j1)
cross, we get a contradiction. So at most one center can increase the load of i′, therefore it
remains to show that the increase in the load if i′ is iL or iR of some center is at most 4B.

First assume that i′ is of the form iL for some facility i. Since c(i′, j) < c(i, j) for each
client j 6= i, the load of i′ after the process is increased by the portion of load of i that
corresponds to serving clients j < iL which is at most 2B. Now assume i′ is of the
form iR for some facility i. Note that any client j moved to i′ has c(i, j) < c(i′, j) but
c(i′, j) < 2c(i, j) as j > i′. So the load increase on i′ is at most twice the load on i due to
clients j > i′; therefore, the load increase is at most 4B.

• Step 3) Dividing the remaining instance.
Now each j ∈ D \ FB assigns all demand either completely to the left or completely
to the right. Similarly, any i ∈ FB collects demand either completely from the left or
completely from the right. Say that j ∈ FB ∪ D “goes left” if j 6∈ FB and xij > 0 only
for i < j or j ∈ FB and xjj′ > 0 only for j′ > j. Say that j ∈ FB ∪ D “goes right”
if j 6∈ FB and xij > 0 only for i > j or j ∈ FB and xjj′ > 0 only for j′ < j. If j is
served by a collocated facility and it is the only client served by this facility, we say j is
”neutral”. Now V naturally breaks up into maximal consecutive intervals of nodes, each
of which only includes clients that “go left”/“neutral” or “go right”/“neutral”. These form
the remaining partitions Va.

The only thing left to note is that a client is completely served within its partition. Suppose
j ∈ Va and that j “goes left”. If j is not completely served within Va, then there exists
facility i < j not in Va which serves j. Since Va is maximal partition, there exists the pre-
ceding partition Va′ that “goes right”. Since Va′ must include a client j′ that ”goes right” by
maximality of intervals, there is some i′ > j′ with xi′j′ > 0. Since arms (i, j) and (i′, j′)
cross (Case (1) or Case (4) in Figure 3.6), this cannot happen. Thus, j cannot assign any
demand to a center to the left of Va.

3.4.2 A dynamic-programming algorithm for finding a well-structured so-
lution

In this section, we describe our dynamic programming approach for finding a well-structured so-
lution with the cost at most 12B with fractional assignment. Note that since by the preprocessing
done in the beginning, cj ≤ B for 1 ≤ j ≤ n, using the GAP-rounding algorithm, we can obtain
an integral solution with the maximum load at most 14B.
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Our dynamic programming approach here is much simpler compared to the dynamic pro-
gramming approach for line metrics. This is due to the useful properties that a well-structured
solution has. In the following, we describe a dynamic programming approach, which utilizes the
following proxy for measuring the cost of an arm (i, j): we use max(ci, cj) to measure the cost
of (i, j). This makes the calculation of a load of a facility for our dynamic programming much
easier and since the actual cost of the arm is at most twice this proxy cost, we lose a factor 2 for
the actual load of a facility. So in fact, our dynamic programming finds a well-structured solution
with the maximum load 6B with the new method of measurement.

We describe the dynamic programming approach in two steps. For notational convenience,
we set dj = 0 if j /∈ D, and think of every node as a client (but with potentially 0 demand). First,
for any subsequence Vl,r = {l, . . . , r} for 1 ≤ l ≤ r ≤ n, and any 1 ≤ k′ ≤ k we describe a
boolean value I(l, r, k′) that is TRUE if and only if one of the following is TRUE.

1. k′ = 1 and there is some facility l ≤ i ≤ r in F such that assigning each client from Vl,r
to i places proxy load at most 6B on i.

2. There is a set F ⊆ Vl,r ∩ F of k′ facilities, and a fractional assignment (xij)i∈F,j∈Vl,r such
that for every j ∈ Vl,r: xij = 0 for i < j (j goes right) and

∑
i∈F xij = dj , and for every

i ∈ F : ci ·
∑

j∈Vl,r:j<i xij ≤ 6B.

3. There is a set F ⊆ Vl,r ∩ F of k′ facilities, and a fractional assignment (xij)i∈F,j∈Vl,r such
that for every j ∈ Vl,r: xij = 0 for i > j (j goes left) and

∑
i∈F xij = dj , and for every

i ∈ F :
∑

j∈Vl,r:j>i cj · xij ≤ 6B.

If we can compute I(l, r, k′) for all (l, r, k′) tuples (as well as the solution that generates
it), then we claim that we are done. Observe that if I(l, r, k′) = TRUE when k′ > 1, then
the fractional assignment x corresponding to I(l, r, k′) induces a maximum load of 12B on the
centers opened from Vl,r. If I(l, r, k′) is TRUE due to the second condition, then this is because if
xij > 0, then c(i, j) ≤ 2ci, and we have ci ·

∑
j∈Vl,r xij ≤ 6B. Similarly, if I(l, r, k′) is TRUE due

to the third condition, then xij > 0 implies that c(i, j) ≤ 2cj , and we have
∑

j∈Vl,r cj · xij ≤ 6B.

Now it is a simple matter to determine, using another dynamic program, how to partition V
into consecutive intervals [j0 + 1, j1], [j1 + 1, j2] . . . , [jm−1 + 1, jm] where j0 := 0 and jm := n
with positive integers k′1, . . . , k

′
m summing to k such that I(jp−1 + 1, jp, k

′
p) = TRUE for each

1 ≤ p ≤ m.

To wrap up the proof, we describe how to compute I(l, r, k′). We can associate a table for
each case in the definition of I(l, r, k′) and describe how to calculate them.
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1. Let T1 be an n × n table corresponding to the first case. T1(l, r) is TRUE if there exists a
center l ≤ i ≤ r such that assigning each client from Vl,r to i places load at most 6B on i
which assigns value TRUE. There are O(n) possible choices for the center, and table entry
can be computed in O(n) time.

2. For the second case, we consider an n × n × n table T2. In order to compute the value of
each table entry T2(l, r, k′), we use an auxiliary table f(i, k′′) for l ≤ i ≤ r, 0 ≤ k′′ ≤ k′.
f(i, k′′) stores the minimum possible excess demand

∑
j≤i
(
dj −

∑
i′∈F ′ xi′j

)
among all

ways of choosing k′′ centers F ′ in {l, . . . , i} and fractionally assigning up to dj units of
demand of each client j ≤ i to centers in F ′ such that no center i′ ∈ F ′ is assigned more
than 6B/ci′ units of demand from clients j < i′ and xi′j = 0 if i′ < j.

The base cases with i = l are easy: f(i, 0) = di and f(i, k′′) = 0 if i ∈ F and k′′ > 0;
we set f(i, k′′) = ∞ if k′′ > 0 and i /∈ F . Also, for i > l but k′′ = 0, we have
f(i, k′′) = f(i− 1, k′′) + di. Otherwise, if i > l and k′′ > 0 we have

f(i, k′′) =

{
min{max{0, f(i− 1, k′′ − 1)− 6B/ci}, f(i− 1, k′′) + di}; if i ∈ F
f(i− 1, k′′) + di otherwise.

The first term in the min says that if we open i, then we assign as much leftover demand
that we can. The second term says that if we do not open i then all of the demand at i
must go to the right of i. Once we compute this, we set T2(l, r, k′) to TRUE if and only if
f(r, p) = 0.

3. For the last case, we consider a similar dynamic programming algorithm in a “right-to-left”
manner, except we are concerned with the minimum value of

∑
j≥i cj ·

(
dj −

∑
i′∈F ′ xi′j

)
.

We associate the table T3(l, r, k′) for this case, and we use the auxiliary table g(i, k′′) for
l ≤ i ≤ r, 0 ≤ k′′ ≤ k′. g(i, k′′) is the minimum possible excess load

∑
j≥i cj

(
dj −

∑
i′∈F ′ xi′j

)
among all ways to choose k′′ centers F ′ in {i, . . . , jR} and fractionally assign up to dj units
of demand of each client j ≥ i to centers in F ′ such that no center i′ ∈ F ′ is assigned more
than 6B and xi′j = 0 if i′ > j.

The base cases with i = r are easy: g(i, 0) = ci · di and g(i, k′′) = 0 if i ∈ F and
k′′ > 0; we set g(i, k′′) = ∞ if k′′ > 0 and i /∈ F . Also, for i < r but k′′ = 0 we have
g(i, k′′) = g(i+ 1, k′′) + ci · di. Otherwise, if i < r and k′′ > 0 we have

g(i, k′′) =

{
min{max{0, g(i+ 1, k′′ − 1)− 6B}, g(i+ 1, k′′) + ci · di}; if i ∈ F
g(i+ 1, k′′) + ci · di otherwise.
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The first term in the min says that if we open i, then we assign as much leftover load that
we can. The second term says that if we do not open i then all of the demand at i must go
to the left of i. Once we compute this, we set T3(l, r, k′) to TRUE if and only if g(l, k′) = 0.

Finally, once all of the T1(l, r), T2(l, r, k′) and T3(l, r, k′) are computed, we can set I(l, r, 1) =
T1(l, r) and I(l, r, k′) = T2(l, r, k′) ∨ T3(l, r, k′) for k′ > 1.

3.5 Hardness of the problem

We now present our hardness result and prove that MLkFL is strongly NP-hard on line metrics.

Theorem 3.5.1. Minimum-load k-facility location is strongly NP-hard even in line metrics.

Proof. We reduce from 3-partition, where we are given n = 3k integers b1, . . . , bn and a bound
B such that

∑n
i=1 bi = kB. The goal is to partition the integers into k groups such that the sum

of the integers in any group is at most B. It is NP-complete to determine if there is a feasible
solution, even when bi ≤ 216n4 and B

4
< bi <

B
2

for each i (e.g. [35]). In particular, any feasible
solution will have precisely three integers in each group of the partition.

We create an instance of MLkFL on the line by creating two groups of clients. First, for each
point p ∈ {−k−1

3k
,−k−2

3k
, . . . ,− 1

3k
, 0}, we place 3k2(B + 1) clients at p. Next, for each integer

bi, 1 ≤ i ≤ n, we add a single client at position bi. LetN be the number of clients in the resulting
instance and notice that all values have bit complexity bounded by a polynomial in N . The claim
is that there is a solution with costB+ k−1

k
if and only if the 3-partition problem is a yes instance.

First, suppose there is a partition of the integers b1, . . . , bn into k groupsG1, . . . , Gk such that
the sum of the integers in any group Gi is B. For each 1 ≤ i ≤ k we create a star with center at
− i−1

3k
, assign all clients located at this center to this star, and also assign the clients in group Gi

to this star. The only clients that move some positive distance to the center of the star are those
from the group Gi, and they move a total distance of B + i−1

k
< B + k−1

k
.

Conversely, suppose there is a solution with the maximum load at most B + k−1
k

. First, we
claim that every point of the form − i

3k
, 0 ≤ i < k must be the center of a star. Otherwise, the

3k2(B+1) clients at this location must be assigned to other stars. The minimum distance each of
these client travels is 1

3k
and one of the open centers receives at least 3k(B + 1) of these clients,

so its load is at least B + 1 > B + k−1
k

. Therefore, the centers are at locations − i
3k
, 0 ≤ i < k.

Since B
4
< bi <

B
2

, then every star must contain exactly three clients corresponding to
integers b1, . . . , bn in the 3-partition instance. Without loss of generality, say b1, b2, b3 are the
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three integers in some star. The total distance they travel lies between b1 + b2 + b3 and b1 + b2 +
b3 + k−1

k
so b1 + b2 + b3 ≤ B. Therefore, if we let Gi be the clients corresponding to integers

b1, . . . , bn that are in the star with center − i−1
3k

for each 1 ≤ i ≤ k, then G1, . . . , Gk is a feasible
solution to the 3-partition problem.

3.6 Integrality-gap lower bounds

In this section, we demonstrate that a natural configuration-style LP has an unbounded integrality
gap in Theorem 3.6.1. Let

(
D∪F , c, k

)
be an MLkFL instance. Given a candidate “guess” B of

the optimal value, we can consider the following LP-relaxation of the problem of determining if
there is a solution with the maximum load at most B. We propose the following linear program-
ming for the MLkFL . For each facility i ∈ F , define S(B; i) := {C ⊆ D :

∑
j∈C c(i, j) ≤ B}

to be the set of all stars centered at i that induce load at most B at i. We will often refer to a star
in S(B; i) as a configuration. (Note that S(B; i) contains ∅.) Our LP will be a configuration-
style LP, where for every facility i and star C ∈ S(B; i), we have a variable denoting if star C is
chosen for facility i. This yields the following natural feasibility LP.

(P )∑
i∈F

∑
C∈S(B;i):j∈C

x(i, C) ≥ 1 ∀j ∈ D (3.1)

∑
C∈S(B;i)

x(i, C) ≤ 1 ∀i ∈ F (3.2)

∑
i∈F

∑
C∈S(B;i)

x(i, C) ≤ k (3.3)

x ≥ 0.

Constraint (3.1) ensures that each client belongs to some configuration, and constraints (3.2) and
(3.3) ensure that each facility belongs to at most one configuration, and that there are at most k
configurations. We show that there is an MLkFL instance on the line metric, where the smallest
value BLP for which (P ) is feasible is smaller than the optimal value by an Ω(k/ log k) factor;
thus, the “integrality gap” of (P ) is Ω(k/ log k). Moreover, in this instance, the graph containing
the (i, j) edges such that c(i, j) ≤ BLP is connected.
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Theorem 3.6.1. The integrality gap of (P ) is Ω(k/ log k) even for line metrics.

Proof. Assume for simplicity that k is odd. Consider the following simple MLkFL instance. We
have F = {f1, g1, f2, g2, . . . , fm, gm}, where 2m = k + 1. These facilities are located on a line
as shown in Figure 3.8, with the distance between any two consecutive nodes being T/2. There
are n = 2k clients colocated with each facility. Let Fi (respectively Gi) denote the set of clients
located at fi (respectively gi) for 1 ≤ i ≤ m.

0 T
2

T 3T
2

(m− 1)T (2m−1)T
2

f1 g1 f2 g2 fm gm

F1 G1 F2 G2 Fm Gm

F
D

Figure 3.8: Example showing bad integrality gap for the configuration LP in line
metrics.

There is a feasible solution to (P ) with B = T . For all i = 1, . . . ,m, we set x(fi, Fi ∪
{j, j′}) = k

(k+1)·(n2)
for all j, j′ ∈ Gi; note that all these configurations lie in S(T ; fi). Similarly,

we set x(gi, Gi ∪ {j, j′}) = k

k+1·(n2)
for all j, j′ ∈ Fi. It is easy to verify that x is a feasible

solution. It is clear that constraints (3.2) and (3.3) hold since every facility belongs to exactly(
n
2

)
configurations. Consider a client j ∈ Fi. j is covered to an extent of k

k+1
by the

(
n
2

)
configurations

{
Fi∪{k, `}

}
k,`∈Gi

in S(fi;T ) and to an extent of 1
k+1

by the n−1 configurations{
Fi ∪ {j, k}

}
k∈Fi:k 6=j

. A symmetric argument applies to clients in some Gi set.

Finally, we show that any feasible solution for this instance must have the maximum load
at least T · k

2Hk
, where Hr := 1 + 1

2
+ . . . + 1

r
is the r-th harmonic number, which proves the

theorem since Hr = Θ(log r). In any feasible solution, there is some location v that does not
have an open facility. For i = 1, . . . , k, let ni be the number of clients colocated at v that are
assigned to a facility at a location that is i hops away from v; set ni = 0 if there is no such
location. Then,

∑k
i=1 ni = n, and the maximum load L at a facility is at least maxi=1,...,k

niiT
4

since there are at most two facilities that are i hops away from v, and one of them must have at
least ni

2
clients assigned to it. Thus, we have ni ≤ 4L

iT
for all i = 1, . . . k, and so n ≤ 4L

T
·Hk, or

L ≥ nT
4Hk

. So integrality gap of (P ) is at least nT/4Hk
T

= 2k
4Hk

= Ω(k/ log k).
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3.7 An unbounded locality gap for the multi-swap local-search
algorithm for MLkFL

A natural local-search heuristic for MLkFL is one where given a current set S of k facilities, we
may swap out a facility in S and swap in a facility not in S. More generally, we may consider
a p-swap heuristic where we swap out and swap in at most p facilities. Note that given a set
of k facilities, one can find a good assignment of clients to facilities by solving an instance of
the generalized assignment problem [75]. We keep performing such local moves as long as it
improves the maximum load of the solution. One can come up with simple examples showing
that the locality gap of the p-swap heuristic, which is the worst-case ratio between the maximum
load at a local optimum and the (global) optimal value, can be arbitrarily large, even on line
metrics.

Theorem 3.7.1. The locality gap of the p-swap heuristic is unbounded, even on line metrics.

Proof. Choose any ε < 1. Consider 3k consecutive locations s1, j1, o1, s2, j2, o2, . . . , sk, jk, ok
located on a line with the d(si, ji) = 1, d(ji, oi) = ε for all i = 1, . . . , k, and d(oi, si+1) = 1− ε
for all i = 1, . . . , k − 1 (See Figure 3.9). The facility set is F = S ∪O, where S = {s1, . . . , sk}
and O = {o1, . . . , ok}, and the client set is D = {j1, . . . , jk}.

1 22 + ε 3 44 + ε 2k − 1 2k2k + ε

s1 j1o1 s2 j2o2 sk jkok

Figure 3.9: Example showing bad locality gap for a simple local search based on
multiple swaps.

We claim that the solution S, which has the maximum load of 1, is a local optimum for the
p-swap heuristic, for any p < k. Consider a p-swap move where we swap out si1 , . . . , sip and
swap in o`1 , . . . , o`p . We claim that this move does not decrease the maximum load, and hence
is not an improving move. If it were, then the load of every facility in F = S \ {si1 , . . . , sik} ∪
{o`1 , . . . , o`k}must be strictly less than 1. But then none of the facilities in F∩S may be assigned
any clients; thus, no facility in S serves any client. Since p < k, there is some i such that oi is
not swapped in. Then, ji is not assigned to si or oi and hence has connection cost larger than 1,
which contradicts the assumption that the maximum load is less than 1.

Thus, S is a local optimum, whereas the global optimum is to open the facilities in O and
assign each ji to oi incurring a maximum load of ε.
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In some sense, the rather simplistic nature of the above example exemplifies the difficulties
in applying local search to min-max problems.
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Chapter 4

Clustering problems with lower bounds
and outliers

4.1 Introduction

Clustering is a practical and well-studied problem in Computer Science that arises in various
applications in different areas such as data mining, machine learning, and bioinformatics. The
main goal in clustering problems is to partition a set of points into k clusters, for some given k,
such that some objective function is minimized. Formally, we consider the following abstraction
of clustering problems. We are given a set D of data points and a set F of candidate centers
(where data points are aggregated) located in a common metric space {c(i, j)}i,j∈F∪D; the dis-
tance between two data points j and j′ measures the dissimilarity between j and j′. A cluster is
a collection of data points that are assigned to some center in F . For each cluster, the radius of
the cluster is defined as the distance from the center to the furthest data point in the cluster. We
consider two natural clustering objective functions, namely, minimizing the maximum radius of
a cluster and minimizing the sum of cluster radii.

For these two objective functions, we consider clustering problems with some side constraints
that arise in the modeling of various applications. More precisely, we consider clustering prob-
lems with (non-uniform) lower bound requirements on the cluster sizes, and we allow the flex-
ibility of not clustering all points, i.e., some points may be designated as outliers, and left un-
clustered. We use the term k-supplier to denote the objective where we want to open k clusters
and minimize the maximum cluster radius (the term k-center is used whenever F = D). We use
LBkSup and LBkSupO to denote the lower-bounded k-supplier problem without outliers and with
outliers, respectively. Analogous problems to LBkSup and LBkSupO problems when F = D,

74



are LBkCent and LBkCentO, respectively. We use the notation LBkSR to denote the clustering
problem with a lower bound requirement where we want to open k clusters to minimize the sum
of radii; the term LBkSRO is used when outliers are allowed. More formal definitions of these
problems appear in Section 4.2.

Various applications motivate these problems. One motivation for considering lower bounds
comes from an anonymity perspective. Suppose we want to publish data points obtained from a
test run on the patients of a hospital while preserving the identity of patients. In order to achieve
data privacy, [73] proposed an anonymity problem where we perturb some of (the attributes of)
the data points and then cluster them so that every cluster has at least L identical perturbed
data points, thus making it difficult to identify a specific individual’s data from the clustering.
Aggrawal et al. [3, 2] observed that this anonymization problem can be abstracted as a lower-
bounded clustering problem where the clustering objective captures the cost of perturbing data.
Another motivation comes from a facility location perspective and is inspired by a model in
which it is infeasible or unprofitable to provide a service from a facility unless we know that
there are at least a certain number of clients served by this facility (see, e.g., [65]); an example is
the lower-bounded facility location (LBFL) problem.

The motivation for considering outliers is that there could be data points that are quite dis-
similar from the rest of the data, which can disproportionately degrade the cost of any clustering
that is required to cluster all data points. Instead, allowing for outliers allows one to ignore such
points and focus on data points of our interest.

4.1.1 Summary of Results

We obtain the first results for clustering problems with non-uniform lower bounds and outliers.
We develop various techniques for tackling these problems using which we obtain constant factor
approximation guarantees for LBkSRO and LBkSupO. Note that we need to ensure that none of
the three types of hard constraints involved here—at most k clusters, non-uniform lower bounds,
and at most m outliers—are violated, which is somewhat challenging.

For the k-supplier objective (Section 4.3), we obtain an approximation factor of 5 for LBkSupO
(Theorem 4.3.2), and 3 for LBkSup (Theorem 4.3.1). These are the first approximation results for
the k-supplier problem with non-uniform lower bounds. Previously, [2] obtained approximation
factors of 4 and 2 respectively for LBkCentO and LBkCent for the special case of uniform lower
bounds (recall that LBkCentO and LBkCent are special cases of LBkSupO and LBkSup when
F = D, respectively). Complementing our approximation bounds, we prove a factor-3 hardness
of approximation for LBkSup (Theorem 4.3.3), which shows that our approximation factor of 3
is optimal for LBkSup. We also show (Section 4.8) that LBkSupO and LBkCentO are equivalent
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in terms of approximation, so we have a factor-3 hardness of approximation for LBkCentO and
LBkSupO, as well.

For the min-sum-of-radii problem, we obtain an approximation factor of 12.365 for LBkSRO
(Theorem 4.6.1,Section 4.6), which improves to 3.83 for the non-outlier version LBkSR (The-
orem 4.5.2, Section 4.5). These also constitute the first approximation results for the min-sum-
of-radii objective when we consider: (a) lower bounds (even uniform bounds) but no outliers
(LBkSR); and (b) outliers but no lower bounds. Previously, an O(1)-approximation was known
only in the setting where there are no lower bounds and no outliers [22].

The results presented in this chapter are part of a joint work with Chaitanya Swamy and it
was published in 2016 [7].

4.1.2 Related Work

The only prior work on clustering problems to incorporate both lower bounds and outliers is by
Aggarwal et al. [2]. They obtain approximation ratios of 4 and 2 respectively for LBkCentO and
LBkCent with uniform lower bounds. They also prove factor-2 approximation hardness result for
LBkCent with uniform lower bounds via a reduction from 3-SAT problem which complements
their result.

Other related problems either consider lower bounds or outliers but not both. Charikar et
al. [20] consider clustering problems with outliers such as uncapacitated FL, k-supplier and k-
median problems. They devise constant factor approximations for the first two problems, and
a bicriteria approximation for the k-median problem with outliers. They also proved a factor-3
approximation hardness result for k-supplier with outliers. This nicely complements our factor-3
hardness result for k-supplier with lower bounds but no outliers. The result for k-median with
outliers was improved by Chen [23] who presented the first (and only) true approximation via a
sophisticated combination of the primal-dual algorithm for k-median and local search that yields
a large (unspecified) O(1)-approximation. Some of the challenges encountered in devising an
approximation algorithm for this problem are similar in spirit to the challenges we encounter
in devising an algorithm for LBkSRO. Another closely related problem is the capacitated k-
supplier with outliers problem wherein instead of a lower bound requirement on the size of a
cluster we have an upper bound on the size of a cluster. This problem was studied by Cygan
and Kociumaka [27] and they devised a 25-approximation algorithm. Some of the ideas for our
algorithm for LBkSup are inspired by their ideas.

Clustering problems with lower bounds have received some attention but are not so well un-
derstood. As it was mentioned LBkCent was studied by [2] and subsequently by Ene et al.[31] in
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Euclidean spaces. The problem has been considered in the facility location setting as well under
the name lower-bounded facility location (LBFL) [55, 41], wherein we seek to open (any number
of) facilities (which have lower bounds) and assign each client j to an open facility σ(j) so as to
minimize

∑
j∈D c(σ(j), j). Svitkina [78] obtained the first true approximation for LBFL, achiev-

ing an O(1)-approximation; the O(1)-factor was subsequently improved by [6]. Both results
apply to LBFL with uniform lower bounds, and can be adapted to yield O(1)-approximations to
the k-median variant (where we may open at most k facilities).

We now discuss work related to our clustering objectives that does not consider lower bounds
or outliers. Doddi et al. [30] introduced the min-sum-of-diameters problem (kSD), which is
closely related to the min-sum-of-radii problem (kSR), and they showed that the kSD-cost is at
least the kSR-cost and it is at most twice the kSR-cost. The kSD problem is better understood in
terms of hardness results and it is NP-hard to obtain a polynomial time algorithm with approx-
imation ratio better than 2 for kSD problem even when the metric is the shortest path metric of
an unweighted graph [30]. However, kSR is only known to be NP-hard to approximate in gen-
eral metrics, and its complexity for shortest-path metrics of unweighted graphs is not yet settled,
with only a quasipolynomial time (exact) algorithm known for this case [36]. On the positive
side, Charikar and Panigrahi [22] devised the first (and currently the best) O(1)-approximation
algorithms for these problems, obtaining approximation ratios of 3.53 and 7.06 for kSR and kSD,
respectively. Various other results are known for specific metric spaces and when F = D, such
as Euclidean spaces [37, 17] and metrics with bounded aspect ratios [36, 14].

The k-supplier and k-center (i.e., k-supplier with F = D) objectives have a rich history
of study. Hochbaum and Shmoys [47, 48] obtained optimal approximation ratios of 3 and 2
for these problems respectively. Capacitated versions of k-center and k-supplier have also been
studied: [57] devised a 6-approximation for uniform capacities, [26] obtained the first O(1)-
approximation for non-uniform capacities, and this O(1)-factor was improved to 9 in [8].

4.2 Problem Definition and Preliminaries

Various clustering problems can be considered in the framework where each facility has a lower
bound requirement on the number of clients assigned to it (if opened), and a bounded number
of points may be designated as outliers and left unclustered. More precisely, we consider two
clustering problems with different objective functions with the same input and feasible solu-
tions. In these problems, we are given a facility-set F , client-set D located in a metric space
{c(i, j)}i,j∈F∪D, lower bounds {Li} for each facility i ∈ F , a non-negative integer k specifying
the number of allowed clusters, and a non-negative integer m specifying the maximum number
of allowed outliers. A feasible solution is a pair

(
F ⊆ F , σ : D 7→ F ∪ {out}

)
, where σ(j) ∈ F
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indicates that j is assigned to facility σ(j), and σ(j) = out designates j as an outlier, such that
|F | ≤ k, |σ−1(i)| ≥ Li for all i ∈ F , and |σ−1(out)| ≤ m. That is, the lower bound require-
ments are met for the facilities in F , and at most m points are designated as outliers. Let the
radius of facility i, denoted by ri be defined as the distance between facility i and the furthest
client assigned to i, i.e., ri := maxj∈σ−1(i) c(i, j). We define two different problems based on the
objective function we are interested in:

• The lower-bounded k-supplier with outliers (LBkSupO) problem is the min max-radius
problem where we want to find a feasible solution (F, σ) to minimize the maximum radius
among the opened facilities in F , i.e, minimize

max
i∈F

ri = max
i∈F

max
j∈σ−1(i)

c(i, j).

The special case where m = 0 is called the lower-bounded k-supplier (LBkSup) problem,
and the setting where D = F is often called the k-center version.

• The lower-bounded min-sum-of-radii with outliers (LBkSRO) problem is the min-sum ver-
sion where we want to find a feasible solution (F, σ) to minimize the sum of cluster radii
of clusters, i.e., minimize ∑

i∈F

ri =
∑
i∈F

max
j∈σ−1(i)

c(i, j).

The special case where m = 0 is called the lower-bounded min-sum-of-radii (LBkSR)
problem.

One piece of notation used in both problems is B(i, r) which denotes the ball of clients
centered at i with radius r, i.e., B(i, r) = {j : c(i, j) ≤ r}.

4.3 Minimizing the maximum radius with lower bounds and
outliers

As defined above, in the lower-bounded k-supplier with outliers (LBkSupO) problem, we seek
a feasible solution, i.e., a pair (F ⊆ F , σ : D 7→ F ∪ {out}) with |F | ≤ k, |σ−1(i)| ≥ Li
for all i ∈ F , |σ−1(out)| ≤ m, that minimizes the maximum radius ri of a facility in F (where
ri = maxj∈σ−1(i) c(i, j)). The two special cases are lower-bounded k-supplier (LBkSup) problem
in which m = 0, and the lower-bounded k-center with outliers (LBkCentO) in which D = F .
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Although LBkCentO is a special case of LBkSupO, it can be shown that if there exists an α-
approximation for LBkCentO then there exists an α-approximation for LBkSupO as well (see
Section 4.8).

Let τ ∗ denote the optimal value; note that there are only polynomially many choices for τ ∗

as τ ∗ ∈ {c(i, j) : i ∈ F , j ∈ D}. As is common in the study of min-max problems, we reduce
the problem to a “graphical” instance, where given some value τ , we try to find a solution of cost
O(τ) or deduce that τ ∗ > τ . We construct a bipartite unweighted graph Gτ =

(
Vτ , Eτ ) where

the vertex set Vτ consists of the bipartitions D ∪ Fτ , where Fτ = {i ∈ F : |B(i, τ)| ≥ Li}, i.e.,
Fτ contains facility i ∈ F if there are at least Li clients with distance at most τ from i. Edge
set Eτ is a collection of edges ij between client j and facility i ∈ Fτ that are at distance at most
τ from each other, i.e., Eτ = {ij : c(i, j) ≤ τ, i ∈ Fτ , j ∈ D} . Let dist τ (i, j) denote the
shortest-path distance in Gτ between i and j, so c(i, j) ≤ distτ (i, j) · τ by triangle inequality.
We say that an assignment σ : D 7→ Fτ ∪{out} is a distance-α assignment if dist τ (j, σ(j)) ≤ α
for every client j with σ(j) 6= out. We call such an assignment feasible, if it yields a feasible
LBkSupO solution, and we say that Gτ is feasible if it admits a feasible distance-1 assignment.
It is not hard to see that given F ⊆ Fτ , the problem of finding a feasible distance-α-assignment
σ : D 7→ F ∪ {out} in Gτ (if one exists) can be solved by creating a network-flow instance with
lower bounds and capacities. 1

Observe that an optimal solution yields a feasible distance-1 assignment inGτ∗ . We devise an
algorithm that for every τ , either finds a feasible distance-α assignment in Gτ for some constant
α, or detects thatGτ is not feasible. This immediately yields an α-approximation algorithm since
the smallest τ for which the algorithm returns a feasible LBkSupO solution must be at most τ ∗.
We obtain Theorems 4.3.1 and 4.3.2 via this template.

Theorem 4.3.1. There is a 3-approximation algorithm for LBkSup.

Theorem 4.3.2. There is a 5-approximation algorithm for LBkSupO.

Before introducing our algorithms for these problems, let us prove a result on the hardness
of LBkSupO. The following hardness result complements the above, and shows that our approx-
imation factor for LBkSup is tight.

Theorem 4.3.3. It is NP-hard to approximate LBkSup within a factor better than 3, unless P = NP .
1 We add source s, sink t, and another node o. We have edges (s, j) for all j ∈ D with lower bound and capacity

1, edges (i, t) for all i ∈ F with lower bounds Li and infinite capacity, and edge (o, t) with lower bound 0 and
capacity m. We also have edges (j, i) if dist(i, j) ≤ α, and edges (j, o); these edges have lower bound 0 and
infinite capacity. The source s has demand −|D|, the sink t has demand |D|, and every other vertex has demand 0.
A feasible distance-α assignment inGτ exists if and only if there exists a feasible circulation satisfying the demands
of all the vertices.
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Proof. The result is shown via a reduction from the set cover problem. Suppose we have a
set cover instance with set U = [n] of elements and collection S = ∪n′q=1{Sq} of subsets of
U , and we want to know if there exists k subsets of U in S that cover all elements of U . Let
j1, j2, · · · , jn represent the elements and i1, i2, · · · , in′ represent subsets of U in S. Construct an
LBkSup instance I with client set D = ∪np=1{jp}, facility set F = ∪n′q=1{iq}, define c(jp, iq) for
jp ∈ D, iq ∈ F to be 1 if p ∈ Sq, 3 otherwise, and let Li = 1 for each i ∈ F . Suppose there
exists a collection F of k subsets in S that cover all elements. First, remove any set i in F , if i
does not cover an element that is not covered by F \ i. Let σ : D → F be defined for element
j to be some set in F that covers j. Since each set i in F covers at least one element that is not
covered by F \ i, |σ−1(i)| ≥ 1, so (F, σ) is a feasible solution to I with radius 1. Conversely, if
(F, σ) is a feasible solution to I with radius 1, then it is easy to see that the sets corresponding
to F yield k subsets that cover U . Thus, there exist k subsets that cover U if and only if OPT(I)
is 1. It is also easy to see that if OPT(I) > 1, then it is at least 3. Therefore, it is NP-hard
to approximate LBkSup within a factor better than 3 as otherwise the algorithm can be used to
answer the decision problem.

4.3.1 Finding a distance-3 assignment for LBkSup.

In this section, we present our algorithm for finding a solution with a distance-3 assignment for
the LBkSup problem. Consider the graph Gτ∗ . Note that there exists an optimal center among
the neighbors of each client in Gτ∗ . Moreover, two clients at distance at least 3 are served by two
distinct centers. These insights motivate the following algorithm.

Let N(v) denote the neighbors of vertex v in the given graph Gτ . Find a maximal subset
Γ of clients such that every pair of distinct clients in Γ are at distance at least 3 from each
other. If |Γ| > k or there exists a client j with N(j) = ∅, then return Gτ is not feasible. (i.e.,
there is no feasible distance-1 assignment in Gτ ). For each j ∈ Γ, let ij denote the center in
N(j) with minimum lower bound. If there exists a feasible distance-3 assignment σ of clients
to F =

⋃
j∈Γ{ij}, return σ (this can be checked by solving a simple network flow problem),

otherwise return Gτ is not feasible. The following lemma yields Theorem 4.3.1.

Lemma 4.3.4. If Gτ is feasible, then the above algorithm finds a feasible distance-3 assignment
in Gτ .

Proof. Let σ∗ : D 7→ F ∗ be a feasible distance-1 assignment in Gτ . This means that
∣∣∣σ∗−1

(i)
∣∣∣ ≥

Li for each i ∈ F ∗. Moreover, since each client is assigned to a facility at distance at most 1
from it, every client has a non-empty neighbor set. Since each client in Γ has to be served by a
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distinct center in F ∗, |Γ| ≤ |F ∗| ≤ k. For each client j ∈ Γ, let i∗j = σ∗(j). Note that i∗j ∈ N(j),
so Lij ≤ Li∗j by the choice of ij , and every client in σ∗−1

(i∗j) is at distance at most 3 from ij .

We show that there is a feasible distance-3 assignment σ : D 7→ F . For each j ∈ Γ, we
assign all clients in σ∗−1

(i∗j) to ij . As argued above this satisfies the lower bound of ij by choice
of ij . For any unassigned client j, let j′ ∈ Γ be a client at distance at most 2 from j (which must
exist by maximality of Γ); we assign j to ij′ .

The above lemma shows that the algorithm returns a distance-3 assignment for all τ ≥
τ ∗ (since Gτ is feasible for all τ ≥ τ ∗). Therefore, as mentioned before this yields a 3-
approximation as the smallest τ for which the algorithm returns a distance-3 solution must be
smaller than or equal to τ ∗, hence the algorithm return a solution which assigns each clients to a
facility at distance at most 3τ which is at most 3τ ∗.

4.3.2 Finding a distance-5 assignment for LBkSupO.

In this section, we present our algorithm that given an input graphGτ = (D∪Fτ , Eτ ), returns an
LBkSupO solution with a distance-5 assignment or returns that Gτ is not feasible. The main idea
here is to find a set F ⊆ Fτ of at most k centers that are close to the centers in F ∗ ⊆ Fτ where
(F ∗, σ∗) is a feasible LBkSupO solution and σ∗ : D 7→ F ∗ ∪ {out} is a distance-1 assignment in
Gτ . The non-outlier clients of (F ∗, σ∗) are close to F , so there are at least |D| −m clients close
to F . If centers in F do not share a neighbor in Gτ , then clients in N(i) can be assigned to i for
each i ∈ F to satisfy the lower bounds (recall that for each i ∈ Fτ , |N(i)| ≥ Li). We cannot
check if F satisfies the above properties, but using an idea similar to that in [27], we will find a
sequence of facility sets such that at least one of these sets will have the desired properties when
Gτ is feasible.

Definition 4.3.5. Given the bipartite graph Gτ , a set F ⊆ F is called a skeleton if it satisfies the
following properties.

(a) (Separation property) For i, i′ ∈ F , i 6= i′, we have dist τ (i, i
′) ≥ 6;

(b) There exists a feasible LBkSupO solution (F ∗, σ∗) with distance-1 assignment σ∗ : D 7→
F ∗ ∪ {out} in Gτ such that

• (Covering property) For all i∗ ∈ F ∗, dist τ (i∗, F ) ≤ 4, where dist τ (i
∗, F ) is defined

as mini∈F dist τ (i
∗, i).

• (Injection property) There exists f : F 7→ F ∗ such that dist τ (i, f(i)) ≤ 2 for all
i ∈ F .
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If F satisfies the separation and injection properties, it is called a pre-skeleton.

Note that if F ⊆ Fτ is a skeleton (or pre-skeleton), then Gτ is feasible. Suppose F ⊆ Fτ is
a skeleton and satisfies the properties with respect to a feasible distance-1 assignment (F ∗, σ∗).
The separation property ensures that the neighbor sets of any two locations i, i′ ∈ F are disjoint.
The covering property ensures that F ∗ is at distance at most 4 from F , so there are at least |D|−m
clients at distance at most 5 from F . Finally, the injection and separation properties together
ensure that |F | ≤ k since no two locations in F can be mapped to the same location in F ∗. Thus,
if F is a skeleton, then we can obtain a feasible distance-5 assignment σ : D 7→ F ∪ {out}.

Lemma 4.3.6. Let F be a pre-skeleton in Gτ . Define U = {i ∈ Fτ : dist τ (i, F ) ≥ 6} and let
i = arg maxi′∈U |N(i′)|. Then, either F is a skeleton, or F ∪ {i} is a pre-skeleton.

Proof. Suppose F is not a skeleton and F∪{i} is not a pre-skeleton. Let σ∗ : D 7→ F ∗∪{out} be
a feasible distance-1 assignment in Gτ such that F satisfies the injection property with respect to
(F ∗, σ∗). Let f : F 7→ F ∗ be the mapping given by the injection property. Since F ∪{i} is not a
pre-skeleton and dist τ (i, F ) ≥ 6, this implies that dist τ (i, F ∗) > 2, and hence, dist τ (i, F ∗) ≥ 4
as Gτ is bipartite. This means that all clients in N(i) are outliers in (F ∗, σ∗). Moreover, since
F is not a skeleton, there exists a center i∗ ∈ F ∗ with dist τ (i

∗, F ) > 4, and so dist(i∗, F ) ≥ 6
(see Figure 4.1). Therefore, i∗ ∈ U . By the choice of i, we know that |N(i)| ≥ |N(i∗)|. Now
consider F ′ = F ∗ \ {i∗} ∪ {i}, and define σ′ : D 7→ F ′ ∪ {out} as follows: σ′(j) = σ∗(j) for
all j /∈ N(i) ∪ N(i∗), σ′(j) = i for all j ∈ N(i), and σ′(j) = out for all j ∈ N(i∗). Note that
the F ′ covers as many clients as F ∗, and so σ′ : D 7→ F ′ ∪ {out} is another feasible distance-1
assignment. But this yields a contradiction since F ∪ {i} now satisfies the injection property
with respect to (F ′, σ′) as certified by the function f ′ : F ∪ {i} → F ′ defined by f ′(s) = f(s)
for s ∈ F , f ′(i) = i.

If Gτ is feasible, then ∅ is a pre-skeleton. A skeleton can have size at most k. So using
Lemma 4.3.6, we can find a sequence F ′ of at most k + 1 subsets of Fτ by starting with ∅ and
repeatedly applying Lemma 4.3.6 until we either have a set of size k or the set U in Lemma 4.3.6
is empty. By Lemma 4.3.6, if Gτ is feasible then one of these sets must be a skeleton. So if for
some F ∈ F ′, there exists a feasible distance-5 assignment σ : D 7→ F ∪ {out}, then, we return
(F, σ). Otherwise we return that Gτ is not feasible.
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i1

i∗1

i4

i3

i2

i∗2

i∗3

i∗4

i∗5

client
facility

facility in F

Figure 4.1: An example of pre-skeleton construction: F = {i1, i2, i3, i4} and i4 is the
lastly added facility. F \ {i4} is a pre-skeleton with respect to F ∗ = {i∗1, i∗2, · · · , i∗5}
but F is not a skeleton as distτ (i∗1, F ) > 4. F is a pre-skeleton with respect to an
optimal solution F ∗ \ {i∗1} ∪ {i4}.

4.4 Minimizing sum of radii with lower bounds and outliers

Recall that in the lower-bounded min-sum-of-radii with outliers (LBkSRO) problem, the input
I = (F ,D, {c(i, j)}i∈F ,j∈D, {Li}i∈F , k,m) and the space of feasible solutions remain the same
as in LBkSupO (i.e.,

(
F ⊆ F , σ : D 7→ F ∪ {out}

)
is feasible if |F | ≤ k, |σ−1(i)| ≥ Li for all

i ∈ F , and |σ−1(out)| ≤ m.); our objective is to find a feasible solution (F, σ) that minimizes
cost(F, σ) :=

∑
i∈F ri. A special case is when all clients have to be clustered andm = 0 (LBkSR

problem).

It will be convenient to consider a relaxation of LBkSRO that we call the k-ball-selection
(k-BS) problem, which focuses on selecting at most k balls centered at facilities of minimum
total radius. Recall that B(i, r) denotes the ball of clients centered at i with radius r. Let Li :=
{(i, r) : |B(i, r)| ≥ Li} denote the collection of pairs (i, r) for a fixed facility i ∈ F where
B(i, r) has enough clients to satisfy the lower bound of i, and let L :=

⋃
i∈F Li be the set of

all allowed pairs. A feasible solution to k-BS is a set F ⊆ L of at most k balls (i.e., |F | ≤ k)
that covers all but at most m clients, i.e.,

∣∣D \ ⋃(i,r)∈F B(i, r)
∣∣ ≤ m. The goal in k-BS is to

find a feasible solution F so that cost(F ) :=
∑

(i,r)∈F r is minimized. When formulating the
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LP-relaxation of the k-BS problem, we equivalently view L as containing at most |F| · |D| pairs
of the form (i, c(i, j)) for some client j, which makes L finite.

It is easy to see that any LBkSRO solution yields a k-BS solution of no greater cost: let (F, σ)
be a feasible solution of LBkSRO, define F = {(i, c(i, ji)) : i ∈ F, ji = arg maxj∈σ−1(i) c(i, j)}
(note that F ⊆ L as for each (i, r) ∈ F , σ−1(i) ⊆ B(i, r) and |σ−1(i)| ≥ Li). The key advantage
of working with k-BS is that we do not explicitly consider the lower bounds (they are folded into
the Lis) and we do not require the balls B(i, r) for (i, r) ∈ F to be disjoint. While a k-BS
solution F need not directly translate to a feasible LBkSRO solution, one can show that it does
yield a feasible LBkSRO solution of cost at most 2 · cost(F ). We prove a stronger version of this
statement in Lemma 4.4.1. In the following two sections, we utilize this relaxation to devise the
first constant-factor approximation algorithms for LBkSR and LBkSRO.

The first step of our algorithm for both problems involves “guessing” the t facilities in the
optimal solution with the largest radii, and their radii, where t ≥ 1 is some constant. This will
help us in filtering the set of balls considered for the underlying k-BS problem (we only consider
balls with radius bounded by the smallest radius among the guessed balls), which is needed in
order to bound the cost of final solution.2We perform this guessing step by enumerating over all
O
(
(|F| + |D|)2t

)
choices FO = {(i1, r1), . . . , (it, rt)} of t (i, r) pairs from L (this can be done

by guessing facility i along with the furthest client j assigned to it, and checking if |B(i, r)| ≥
Li). For each such selection, we set D′ = D \

⋃
(i,r)∈FO B(i, r), L′ = {(i′, r′) ∈ L : r′ ≤

min(i,r)∈FO r} and k′ = k − |FO|, and run our k-BS-algorithm on the modified k-BS-instance
(F ,D′, c,L′, k′,m) to obtain a k-BS solution F . We translate F ∪ FO to an LBkSRO solution,
and return the best of these solutions. The following lemma, and the procedure described therein,
is repeatedly used to bound the cost of translating F ∪ FO to a feasible LBkSRO solution (see
Algorithm 2 for an overview of the general algorithm). We call pairs (i, r), (i′, r′) ∈ F × R≥0

non-intersecting, if c(i, i′) > r+ r′, and intersecting otherwise. Note that B(i, r)∩B(i′, r′) = ∅
if (i, r) and (i′, r′) are non-intersecting. For a set P ⊆ F × R≥0 of pairs, define µ(P ) := {i ∈
F : ∃r s.t. (i, r) ∈ P}.

Lemma 4.4.1. Let FO ⊆ L, and D′,L′, k′ be as defined above. Let F ⊆ L be a k-BS solution
for the k-BS instance (F ,D′, c,L′, k′,m). Suppose for each i ∈ µ(F ), we have a radius r′i ≤
maxr:(i,r)∈F r such that the pairs in U :=

⋃
i∈µ(F )(i, r

′
i) are non-intersecting and U ⊆ L. Then

there exists a feasible LBkSRO solution (F, σ) with cost(F, σ) ≤ cost(F ) +
∑

(i,r)∈FO 2r.

Proof. Pick a maximal subset P ⊆ FO to add to U such that all pairs in U ′ = U ∪ P are non-
intersecting. For each (i, r) ∈ FO \ P , define κ(i, r) to be some intersecting pair (i′, r′) ∈ U ′

2This is similar in spirit to the preprocessing for the k-minimum spanning tree(k−MST) problem where we guess
the furthest node (or 1/ε furthest nodes) from the root that is covered by the optimal tree.
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Algorithm 2 Algorithm for constructing feasible assignment LBkSRO solution (F, σ)

Input: An LBkSRO instance I =
(
F ,D, {c(i, j)}, {Li}, k,m

)
, parameter ε > 0.

Output: A feasible LBkSRO solution (F, σ).
1: t = min

{
k,
⌈

1
ε

⌉}
.

2: for each FO = {(i1, r1), . . . , (it′ , rt)} ⊆ L do
3: D′ ← D \

⋃
(i,r)∈FO B(i, r).

4: L′ ← {(i, r) ∈ L : r ≤ R∗ = min(i,r)∈FO r}.
5: k′ ← k − t.
6: I ′ ← (F ,D′, c,L′, k′,m).
7: (F, {r′i}i∈µ(F ))← k-BS algorithm’s output on instance I ′ satisfying Lemma 4.4.1.
8: if LP relaxation of the k-BS instance is infeasible (P3 or P1 when m = 0) then
9: Reject this guess, i.e., skip to the next guess.

10: else
11: (F, σ)← the output of the procedure in Lemma 4.4.1 with (F, {r′i}i∈µ(F )).

12: return min-cost solution (F, σ) found in the for loop.

(see Figure 4.2). Define F = µ(U ′). Assign each client j to σ(j) ∈ F as follows. If j ∈ B(i, r)
for some (i, r) ∈ U ′, set σ(j) = i. Note that U ′ ⊆ L and sets in U ′ are non-intersecting, so
this satisfies the lower bounds for all i ∈ F . Otherwise, if j ∈ B(i, r) for some (i, r) ∈ F , set
σ(j) = i. Otherwise, if j ∈ B(i, r) for some (i, r) ∈ FO \ P and (i′, r′) = κ(i, r), set σ(j) = i′.
Any remaining unassigned client is not covered by the balls corresponding to pairs in F ∪ FO.
There are at most m such clients (since F is a feasible solution for the k-BS instance), and we
set σ(j) = out for each such client j. Thus (F, σ) is a feasible LBkSRO solution.

For any i ∈ F and j ∈ σ−1(i) either j ∈ B(i, r) for some (i, r) ∈ F ∪ U ′, or j ∈ B(i′, r′)
where κ(i′, r′) = (i, r) ∈ U ′, in which case c(i, j) ≤ r + 2r′. So

cost(F, σ) ≤ cost(F ) +
∑

(i,r)∈FO
2r.

In the next two sections, we describe the algorithms for k-BS problem for non-outlier and out-
lier versions and analyze the resulting algorithms for LBkSR (Section 4.5) and LBkSRO (Section
4.6), respectively.
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Figure 4.2: In this example F = {(il, rl) : 0 ≤ l ≤ 4}, each ball in F is shown by a
dashed-bordered circle, and each ball in U is shown by solid (yellow) circle. Balls in
the set FO = {(i∗l , r∗l ) : 0 ≤ l ≤ 4} are shown by grid-filled circles. In this example
P = {(i∗0, r∗0)}, κ(i∗1, r

∗
1) = κ(i∗3, r

∗
3) = (i∗0, r

∗
0), and κ(i∗2, r

∗
2) = (i2, r2).

4.5 Approximation algorithm for LBkSR

We now present our algorithm for the non-outlier version, LBkSR, which will introduce many
of the ideas underlying our algorithm for LBkSRO described in Section 4.6. The main results of
this section are as follows.

Theorem 4.5.1. There exists a (6.18 + ε)-approximation algorithm for LBkSR problem for any
ε > 0.

Theorem 4.5.2. There exists a (3.83 + ε)-approximation algorithm for LBkSR problem for any
ε > 0.

As discussed before, we focus on a k-BS problem with client set D′ and set L′ of balls, and
consider the k-BS problem of picking at most k′, which is equal to k − t where t is the number
of guessed balls, pairs from L′ whose corresponding balls cover D′ incurring the minimum cost.
We point out that our algorithm k-BSAlg in fact returns pairs from L (i.e., the superset of L′
where we do not place any upper bounds on the radii) but this is compatible with Lemma 4.4.1.
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We consider the following natural LP-relaxation (P1) of this problem, and its dual (D1). (As
remarked earlier, we now consider L′ to be a finite set of pairs of the form (i, c(i, j)) for some
facility i and some client j.) We have an indicator variable yi,r for each (i, r) ∈ L′ that indicates
whether B(i, r) is selected or not. We have to cover all clients with at most k balls, so the LP is

min
∑

(i,r)∈L′
r · yi,r (P1)

s.t.
∑

(i,r)∈L′:j∈B(i,r)

yi,r ≥ 1 ∀j ∈ D′

∑
(i,r)∈L′

yi,r ≤ k′ (4.1)

y ≥ 0.

max
∑
j∈D′

αj − k′ · z (D1)

s.t.
∑

j∈B(i,r)∩D′
αj − z ≤ r ∀(i, r) ∈ L′

α ≥ 0

z ≥ 0.

In our algorithm for LBkSR problem, if (P1) is infeasible then we discard the choice of t pairs
and move to the next selection. In the remainder of this section, we assume (P1) is feasible. Let
OPT denote the common optimal value of (P1) and (D1). Our algorithm k-BSAlg follows the
Jain-Vazirani (JV) template for k-median. As in the JV algorithm for k-median, we Lagrangify
constraint (4.1) and consider the facility location version of the problem where we do not bound
the number of pairs we may pick, but we incur a fixed cost z for each pair (i, r) that we pick (in
addition to r). So the new LP along with its dual are as follows

min
∑

(i,r)∈L′
(r + z) · yi,r (P2)

s.t.
∑

(i,r)∈L′:j∈B(i,r)

yi,r ≥ 1 ∀j ∈ D′

y ≥ 0.

max
∑
j∈D′

αj (D2)

s.t.
∑

j∈B(i,r)∩D′
αj ≤ r + z ∀(i, r) ∈ L′ (4.2)

α ≥ 0.

In the following, we first present our primal-dual algorithm for facility location version of the
k-BS problem (Section 4.5.1), then we present our algorithm k-BSAlg in Section 4.5.2 followed
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by the analysis of the LBkSR algorithm in Section 4.5.3 that employs this k-BSAlg in line 6 of
Algorithm 2. Finally in Section 4.5.4, we present ideas for improving approximation ratio of
k-BSAlg which results in a better approximation ratio for the LBkSR problem.

While our approach is similar to the one in [22] for the min-sum-of-radii problem without
lower bounds (although our combination step is notably simpler), an important distinction that
arises is the following. In the absence of lower bounds, the ball-selection problem k-BS is
equivalent to the min-sum-of-radii problem, but (as noted earlier) this is no longer the case when
we have lower bounds since in k-BS problem, we do not insist that the balls we pick be disjoint.
Consequently, moving from overlapping balls in a k-BS solution to an LBkSR solution incurs,
in general, a factor-2 blowup in the cost (see Lemma 4.4.1). It is interesting that we are able to
avoid this blowup and obtain an approximation factor that is quite close to the approximation
factor (of 3.504) achieved in [22] for the min-sum-of-radii problem without lower bounds.

4.5.1 Primal Dual Algorithm

In this section, we present our primal-dual algorithm PDAlg for the facility location version of
k-BS problem, which utilizes the LPs (P2) and (D2). The primal dual algorithm takes input
I = (F ,D′, c,L′, k′) (since m = 0 in this problem, we remove it from the input) and a fixed
opening cost z, and outputs a solution F ⊆ L, radius rad(i) for all i ∈ µ(F ), and a dual solution
α to (D2). The algorithm consists of two main phases:

PD1 Dual-ascent phase. We start with a feasible dual solution α = 0 (αj = 0 for all j ∈ D′),
the set of active clients initialized to D′, and the set T of tight pairs initialized to ∅. We
repeat the following until all clients become inactive: we raise the αjs of all active clients
uniformly until constraint (4.2) becomes tight for some (i, r); we add (i, r) to T and mark
all active clients in B(i, r) as inactive.

PD2 Pruning phase. Let TI be a maximal subset of non-intersecting pairs in T picked by a
greedy algorithm that scans pairs in T in non-increasing order of radius (see Figure 4.3).
Note that for each i ∈ µ(TI), there is exactly one pair (i, r) ∈ TI ; we set rad(i) := r
and set ri := max {c(i, j) : j ∈ B(i′, r′), (i′, r′) ∈ T, r′ ≤ r, (i′, r′) intersects (i, r) }.
Note that ri denotes the distance from i to the furthest client in a T -ball of radius at most
r intersecting with B(i, r). Let F = {(i, ri)}i∈µ(TI). Return F , {rad(i)}i∈µ(TI), and α.

Claim 4.5.3. Solution F found by PDAlg covers all clients in D′ and F ⊆ L. Moreover,{
(i, rad(i))

}
i∈µ(F )

⊆ L′, is a set of non-intersecting pairs, and rad(i) ≤ ri ≤ 3rad(i) ≤ 3R∗ for
all i ∈ µ(F ),
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Figure 4.3: Example for the pruning phase: all the tight pairs in T are shown by
circles and the tight pairs in TI are shown by solid (yellow) circles.

Proof. We first show that all clients in D′ are covered by F . The Dual-ascent phase terminates
when all clients are inactive. Consider client j ∈ D′, and let (i′, r′) denote the tight pair that
causes j to become inactive. Then there must be a pair (i, r) ∈ TI that intersects (i′, r′) such that
r ≥ r′ (we could have (i, r) = (i′, r′)). Since by definition ri ≥ c(i, j), j ∈ B(i, ri) and j is
covered by F -balls.

Note that {(i, rad(i))}i∈µ(F ) = TI , so all these pairs are tight and non-intersecting. Since
all tight sets are subsets of L′, {(i, rad(i))}i∈µ(F ) ⊆ L′. Now consider (i, ri) ∈ F . Note that
(i, rad(i)) ∈ TI and since TI ⊆ T , (i, rad(i)) is among the T -balls with radius at most rad(i)
intersecting with (i, rad(i)), so ri ≥ rad(i). In other words, each (i, r) ∈ F is obtained by
expanding the radius of the (i, rad(i))-ball so that clients in intersecting balls of smaller radius are
covered. Clearly, expanding the radius by 2rad(i) is enough to cover any client in an intersecting
ball with radius smaller than rad(i), so ri ≤ 3rad(i). Since (i, rad(i)) is in L′, |B(i, rad(i))| ≥ Li
which means that (i, r) is in L. Moreover, rad(i) ≤ R∗ for each (i, rad(i)) ∈ L′, so 3rad(i) ≤
3R∗.

Next, we prove that PDAlg is a Lagrangian-multiplier-preserving (LMP) 3-approximation
algorithm : if F is the primal solution constructed, then 3

∑
j αj can pay for cost(F ) + 3|F |z.
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Theorem 4.5.4. Suppose PDAlg(F ,D′, c,L′, z) returns (F, {rad(i)}, α) where (α, z) is a feasi-
ble solution to (P1). Then

cost(F ) + 3|F |z ≤ 3
∑
j∈D′

αj ≤ 3(OPT + k′z)

Moreover, If |F | ≥ k′, then cost(F ) ≤ 3 ·OPT and if |F | > k′, then z ≤ OPT .

Proof. Consider a pair (i, rad(i)) ∈ TI , since this pair is tight, we have
∑

j∈B(i,rad(i)) αj =

rad(i) + z. Since all pairs in TI are non-intersecting,∑
j∈D′

αj ≥
∑

(i,rad(i))∈TI

rad(i) + |TI | · z

Since by Claim 4.5.3, rad(i) ≥ 1
3
ri for each (i, ri) ∈ F and |TI | = |F |, we get the first inequality

in the lemma. The last inequality in the lemma follows by weak duality and the fact that (α, z)
is a feasible solution to (D1).

For the second part, since cost(F ) + 3|F |z ≤ 3OPT + 3k′z, if |F | ≥ k′, cost(F ) ≤ 3OPT .
Moreover, 3(|F | − k′)z ≤ 3OPT , so if |F | > k′, then z ≤ OPT .

Corollary 4.5.5. Let (F, {rad(i)}, α) = PDAlg(F ,D′, c,L′, z) for z = 2k′cmax where cmax =
maxi∈F ,j∈D c(i, j). Then |F | ≤ k′.

Proof. We prove this corollary by showing that OPT ≤ k′cmax, so using Theorem 4.5.4, |F | ≤
k′. Since (P1) is feasible (by assumption), all balls in L′ have radius at most cmax and any
feasible solution of (P1) satisfies

∑
(i,r)∈L′ yi,r ≤ k′, the optimal solution of (P1) has value at

most k′cmax.

Corollary 4.5.6. Let (F, {rad(i)}, α) = PDAlg(F ,D′, c,L′, z) for z = 0. If |F | ≤ k′, then F is
a feasible k-BS solution with cost at most 3OPT .

Proof. Since F covers all clients inD′ (Claim 4.5.3), and |F | ≤ k′, F is a feasible k-BS solution.
Using Theorem 4.5.4, cost(F ) + 3|F |z ≤ 3OPT + 3k′z. Since z = 0, cost(F ) ≤ 3OPT .
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4.5.2 Algorithm k-BSAlg

In this section, we explain our algorithm k-BSAlg for obtaining a k-BS solution utilizing PDAlg.
We follow similar framework as JV algorithm for k-median. We use PDAlg within a binary-
search procedure for z to obtain two solutions F1 and F2 with |F1| > k′ > |F2| and then show
how these two solutions can be combined to extract a feasible k-BS solution with cost at most
6.183OPT +O(R∗). This combination step is more involved than in k-median.

Step 1: Binary search for z.

We start with z1 = 0 and z2 = 2k′cmax. Let (Fp, {radp(i)}, αp) ← PDAlg(F ,D′, c,L′, zp) for
p = 1, 2, and let kp = |Fp|. If k1 ≤ k′, we stop and return

(
F1, {rad1(i)}

)
as the output of

k-BSAlg (Steps 2 and 3 below are skipped). In Corollary 4.5.5, we proved that that k2 ≤ k′. If
k2 = k′, we stop and return

(
F2, {rad2(i)}

)
as the output of k-BSAlg (Steps 2 and 3 are skipped).

Now if we have not returned any solution yet, it means that we have our initial F1 and F2

solutions with |F1| > k′ > |F2|. We repeat the following until z2 − z1 ≤ δz = εOPT
3n

, where
n = |F| + |D|: Set z = z1+z2

2
. Let (F, {rad(i)}, α) ← PDAlg(F ,D′, c,L′, z). If |F | = k′,

we stop and return
(
F, {rad(i)}

)
as an output of our k-BSAlg (combination step is skipped),

otherwise if |F | > k′, update z1 ← z and (F1, rad1, α
1) ← (F, rad, α), else update z2 ← z and

(F2, rad2, α
2)← (F, rad, α).

Step 2: Combining F1 and F2.

If in Step 1, no solution is returned then we perform this step to combine two solutions F1 and
F2 found in Step 1. The main idea is to use F2 as a guide to merge some F1-pairs. We cluster
F1 pairs around F2-pairs and setup a covering-knapsack problem whose solution determines for
each F2-pair (i, r), whether to “merge” the F1-pairs clustered around (i, r) or select all these
F1-pairs.

Let π : F1 7→ F2 be any map such that (i′, r′) and π(i′, r′) intersect ∀(i′, r′) ∈ F1. This map
exists since every j ∈ D′ is covered by B(i, r) for some (i, r) ∈ F2, so each (i′, r′)-pair in F1

intersects with all the F2-balls covering clients in B(i′, r′). Define star Si,r = π−1(i, r) for all
(i, r) ∈ F2 (see Fig. 4.4).

In order to decide how to merge F1-pairs, we use the following LP with an indicator variable
xi,r for (i, r) ∈ F2 which takes value 1 if all pairs in Si,r are to be merged and takes value 0 if
they are not to be merged.
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(i1, r1)

(i′1, r
′
1) (i′2, r

′
2) (i′3, r

′
3) (i′4, r

′
4)

(i2, r2)

(i′5, r
′
5) (i′6, r

′
6)

(i3, r3)

(i′7, r
′
7) (i′8, r

′
8) (i′9, r

′
9)

(i4, r4)

(i′10, r
′
10)

(i5, r5)

(i′11, r
′
11)

(i6, r6)

Figure 4.4: An example of stars formed by F1 and F2 where F1 = {(i′l, i′l) : 1 ≤ l ≤
11} and F2 = {(il, rl) : 1 ≤ l ≤ 6} depicted on the bottom row and the top row,
respectively.

min
∑

(i,r)∈F2

(
xi,r(2r +

∑
(i′,r′)∈Si,r2r

′) + (1− xi,r)
∑

(i′,r′)∈Si,rr
′
)

(C-P)

s.t.
∑

(i,r)∈F2

(
xi,r + |Si,r|(1− xi,r)

)
≤ k (SZ BND)

0 ≤ xi,r ≤ 1 ∀(i, r) ∈ F2.

Let x∗ be an extreme-point optimal solution to (C-P). We construct solution F ′ using x∗ as
follows. If x∗i,r = 0, then we select all pairs in Si,r. Otherwise, if Si,r 6= ∅, we pick a pair in
(i′, r′) ∈ Si,r, and include (i′, 2r + r′ + max(i′′,r′′)∈Si,r\{(i′,r′)} 2r′′) in our solution. Notice that
by expanding the radius of i′ to 2r + r′ + max(i′′,r′′)∈Si,r\{(i′,r′)} 2r′′, we cover all the clients in⋃

(i′′,r′′)∈Si,r B(i′′, r′′) (the coefficient of xi,r in LP objective function dominates this value and is
used as an upper bound on this value).

Step 3: Returning a solution

In this step we return solution F ′ or F2 depending on which has a smaller cost. So if cost(F2) ≤
cost(F ′), return (F2, rad2), else return

(
F ′, {rad1(i)}i∈µ(F ′)

)
.

Analysis. Let
(
F, {rad(i)}

)
= k-BSAlg(F ,D′, c,L′, k′). If k-BSAlg terminates before

reaching combination step, then cost(F ) ≤ 3 · OPT due to Theorem 4.5.4 or Corollary 4.5.6,
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so let us assume assume otherwise. So the binary-search procedure finds (F1, rad1, α
1) and

(F2, rad2, α
2) which are the outputs of PDAlg for z1 and z2 respectively. Let a, b ≥ 0 be such

that ak1 + bk2 = k′, a + b = 1. Let C1 = cost(F1) and C2 = cost(F2). We first prove the
following claim on the cost of a fractional solution obtained from linear combination of F1 and
F2 solutions.

Claim 4.5.7. We have aC1 + bC2 ≤ (3 + ε)OPT , and moreover, OPT C-P ≤ 2bC2 + (1 + b)C1.

Proof. By Theorem 4.5.4, we have C1 + 3k1z1 ≤ 3(OPT + k′z1) and C2 + 3k2z2 ≤ 3(OPT +
k′z2). Multiplying the first inequality by a, and the second by b, and adding and rearranging, we
get

aC1 + bC2 ≤ 3OPT + 3k′(az1 + bz2)− 3(ak1z1 + bk2z2)

Since 0 ≤ z2 − z1 ≤ δz, we get

aC1 + bC2 ≤ 3OPT + 3k′(az2 + bz2)− 3(ak1(z2 − δz) + bk2z2)

⇒ aC1 + bC2 ≤ 3OPT + 3k′(z2) + 3ak1δz − 3z2k
′

where the inequalities uses the fact that a + b = 1 and ak1 + bk2 = k′. Note that k ≤ n and
0 ≤ a ≤ 1, so 3ak1δz ≤ εOPT and the lemma follows.

In order to bound OPT C-P, we present a feasible solution and use its cost to bound OPT C-P.
Consider x̄i,r = b for all (i, r) ∈ F2. x̄ yields a feasible solution to (C-P) as 0 ≤ b ≤ 1 and∑

(i,r)∈F2
b+ |Si,r|(1− b) = b · k2 + a · k1 = k′. The objective function evaluates to∑

(i,r)∈F2

b·(2r+
∑
r′∈Si,r

2r′)+(1−b)
∑

(i′,r′)∈Si,r

r′ = b
∑

(i,r)∈F2

2r+
∑

(i′,r′)∈F1

b·2r′+(1−b)·r′ = 2bC2+(1+b)C1

Lemma 4.5.8. The solution (F ′, rad) found in the combination step consists of at most k balls
and has the cost of at most OPT C-P + 15R∗.

Proof. In (C-P), there is only one constraint in addition to the bound constraints 0 ≤ xi,r ≤ 1,
so the extreme-point optimal solution x∗ has at most one fractional component, and if it has
a fractional component, then

∑
(i,r)∈F2

(
x∗i,r + |Si,r|(1 − x∗i,r)

)
= k′. For any (i, r) ∈ F2 with

x∗i,r ∈ {0, 1}, the number of pairs we include is exactly x∗i,r+ |Si,r|(1−x∗i,r). If x∗ has a fractional
component (i′, r′) ∈ F2, then x∗i′,r′ + |Si′,r′ |(1 − x∗i′,r′) is a positive integer. Since we include at
most one pair for (i′, r′), this implies that |F ′| ≤ k′.
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Now let us focus on the cost of F ′. Again for any (i, r) ∈ F2 with x∗i,r ∈ {0, 1}, the radius of
the pair included is at most x∗i,r(2r +

∑
(i′,r′)∈Si,r2r

′) + (1− x∗i,r)
∑

(i′,r′)∈Si,rr
′ (the contribution

to the objective function of (C-P) from the x∗i,r and (1 − x∗i,r) terms). For a pair (i, r) with
0 < x∗i,r < 1, if Si,r is non-empty, we pick an arbitrary pair (i′, r′) in Si,r and include a pair
(i′, 2r + r′ + max(i′′,r′′)∈Si,r\{(i′,r′)} 2r′′). Since all (i, r) ∈ F1 ∪ F2 satisfy r ≤ 3R∗, the cost of
the included pair in F ′ is at most 15R∗. Therefore, cost(F ′) ≤ OPT C-P + 15R∗.

Theorem 4.5.9. k-BSAlg(D′,L′, k′) returns a feasible solution
(
F, {rad(i)}

)
with cost(F ) ≤(

6.183 +O(ε)
)
·OPT +O(R∗) where

{
(i, rad(i))}i∈µ(F ) ⊆ L′ is a set of non-intersecting pairs.

Proof. The radii {rad(i)}i∈µ(F ) are simply the radii obtained from some execution of PDAlg,
so
{

(i, rad(i))
}
i∈µ(F )

⊆ L′ and comprises non-intersecting pairs. If k-BSAlg terminates in the
binary search step, then either |F | = k′ , or z1 = 0 and |F | ≤ k′; in both cases, we have
cost(F ) ≤ 3 · OPT (by Theorem 4.5.4 or Corollary 4.5.6). So in this cases we have a better
bound (than what is claimed in the lemma) on cost(F ). If the algorithm does not return a solution
in the binary search step, then it returns solution F ′ found in the combination step or solution F2

whichever has a smaller cost. So when we terminate in step 3 (returning a solution), we return
a solution F with cost(F ) ≤ min{C2, 2bC2 + (1 + b)C1 + 15R∗}. Claim 4.5.10 proves that
min{C2, 2bC2 + (1 + b)C1} ≤ 2.0607(aC1 + bC2) for all a, b ≥ 0 with a + b = 1. Combining
this with Claim 4.5.7 yields the bound in the theorem.

Claim 4.5.10. min{C2, 2bC2 + (1 + b)C1} ≤ ( b+1
3b2−2b+1

)(aC1 + bC2) ≤ 2.0607(aC1 + bC2) for
all a, b ≥ 0 such that a+ b = 1.

Proof. Since the minimum is less than any convex combination,

min(C2, 2bC2 + bC1 + C1) ≤ 3b2 − b
3b2 − 2b+ 1

C2 +
1− b

3b2 − 2b+ 1
(2bC2 + bC1 + C1)

=
(1− b)(1 + b)

3b2 − 2b+ 1
C1 +

b2 + b

3b2 − 2b+ 1
C2

=
b+ 1

3b2 − 2b+ 1
((1− b)C1 + bC2)

Since a = 1− b, the first inequality in the claim follows.

The expression b+1
3b2−2b+1

is maximized at b = −1 +
√

2, and has value 1 + 3
2
√

2
≈ 2.0607,

which yields the second inequality in the claim.
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4.5.3 Analysis of LBkSR Algorithm employing k-BSAlg

Now that we have the bounds on the performance of k-BSAlg, we can analyze what Algorithm 2
will give us using this k-BSAlg (in line 6). We show that the right selection of FO combined with
Lemma 4.4.1 yields Theorem 4.5.1.

Proof of Theorem 4.5.1. It suffices to show that when the selection FO = {(i1, r1), . . . (it, rt)}
in Algorithm 2 corresponds to the t facilities in an optimal solution with largest radii, we obtain
the desired approximation bound. If k ≤ 1

ε
, then t = k, and so we obtain an optimal solution.

Otherwise, t ≥ 1
ε

and R∗ ≤ O∗

t
≤ εO∗ and OPT ≤ O∗ −

∑t
p=1 rp. Using Lemma 4.4.1, the

cost of solution (F, σ) found is at most cost(F ) +
∑t

p=1 2rp. By Theorem 4.5.9, cost(F ) is at
most

(
6.183 + O(ε)

)
· OPT + O(εO∗). Note that the remaining facilities in optimal solution

(excluding the guessed facilities), yield a feasible solution to (P1), so OPT ≤ O∗ −
∑t

p=1 rp.
Combining this we get that the cost of solution F is at most

(
6.183 +O(ε)

)
· (O∗ −

t∑
p=1

rp) +O(εO∗) +
t∑

p=1

2rp ≤
(
6.183 +O(ε)

)
·O∗.

4.5.4 Improved Approximation Ratio for LBkSR

We now present a better way of combining solution F1 and solution F2 which leads to the im-
proved approximation ratio stated in Theorem 4.5.2. We begin by representing the key insight
that encourages us to modify our combination subroutine. This insight was originally observed
by Charikar et. al [22], and we generalize it for LBkSRO problem in Lemma 4.6.9, called con-
tinuity lemma. The Lemma below is a corollary of Lemma 4.6.9 in Section 4.6.2, which proves
the continuity property for the dual solution constructed for outlier problem. We defer the proofs
of these lemmas to the end of this chapter.

Lemma 4.5.11. Let (Fp, . . . , α
p) = PDAlg(F ,D′, c,L′, zp) for p = 1, 2, where 0 ≤ z2−z1 ≤ δz.

Then, ‖α1
j − α2

j‖∞ ≤ 2nδz. Thus, if (4.2) is tight for some (i, r) ∈ L′ in one execution, then∑
j∈B(i,r)∩D′ α

p
j ≥ r + zp − 2nδz for p = 1, 2.

Proof. This follows from Lemma 4.6.9 since the dual-ascent process in PDAlgo when m = 0 is
the same as the dual-ascent process in PDAlg.
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The above lemma essentially states that if a pair is tight in one execution of z = z1 or z = z2,
then this pair is almost tight (might even be tight) in the other execution. We use this insight
to improve our combination step by constructing stars based on whether (i, rad1(i)) intersects
with (i′, rad2(i′)) for pairs (i, r) ∈ F1 and (i′, r′) ∈ F2, rather than whether (i, r) intersects with
(i′, r′). Let Ik-BSAlg denote our modified combination step (replacing Step 2 in Section 4.5.2).
A minor change in Binary search for z is that the process is continued until z2−z1 ≤ δz = εOPT

3n2n
,

so this adds up to n iterations. As before, we return solution F2 or solution F ′ from the modified
combination step Ik-BSAlg whichever has a smaller cost. Recall that we require that every pair
(i′, r′) ∈ F1 is in some star Si,r, but now a pair (i′, rad1(i′)) may not intersect with any (i, rad2(i))
for (i, r) ∈ F2, so first we modify solution F2 to ensure this does not happen. Let F = F2 and
TF = T2,I . We consider pairs in F1 one by one. For each pair (i, r) ∈ F1, if (i, rad1(i)) does not
intersect any pair in TF , add (i, rad1(i)) to TF and add (i, r) to F . We continue this process until
all pairs in F1 are scanned or |F | = k′. Now using Lemma 4.5.11, we get the following result.

Lemma 4.5.12. If |F | = k′ after above process, then F is a feasible kSR solution with cost(F ) ≤
(3 + ε)OPT .

Proof. Using Lemma 4.5.11, each pair in TF is almost tight, so for each (i, rad(i)) ∈ TF , we have
r+ z1−2nδz ≤

∑
j∈B(i,rad(i))∩D′ α

1
j . Since all pairs in TF are non-intersecting,

∑
(i,rad(i))∈TF (r+

z1) ≤
∑

j∈D α
1
j + 2nδz · |TF |. Since by construction of F , we have F2 ⊆ F , all clients in D′ are

covered by balls corresponding to F -pairs. Now we know by PDAlg process that any (i, r) in F2

or F1 has r ≤ 3rad(i), so the cost of solution F can be bounded as follows:

cost(F ) =
∑

(i,r)∈F

r ≤
∑

(i,rad(i))∈TF

3rad(i) ≤ 3(
∑
j∈D′

α1
j − |F |z1 + 2nδz|F |).

Since
∑

j∈D′ α
1
j−k′z1 ≤ OPT (by weak duality and feasibility of (α1, z1) to (D1)) and 2nδz|F | ≤

εOPT by choice of δz, we get cost(F ) ≤ (3 + ε)OPT .

If preprocessing finds a solution F of size k′, we just return this solution. Otherwise, |F | < k′

From this point, we use F2 := F , T2,I = TF and rad2(i) is defined based on TF . We combine
solutions F1 and F2. We construct assignment π : F1 → F2 similar to before with the small
modification that π(i, r) = (i′, r′) if (i, rad1(i)) intersects with (i′, rad2(i′). By our preprocessing
step, π is well-defined. Let star Si,r = π−1(i, r) for each (i, r) ∈ F2 (see Figure 4.5).

Again we use an LP with an indicator variable xi,r. If xi,r = 0, we select all pairs in Si,r.
If xi,r > 0 and |Si,r| > 1, we select a pair (i′, r′) ∈ Si,r with the second largest radius, and
include (i′, rad1(i′) + 2rad2(i) + 4 max(i′′,r′′)∈Si,r rad1(i′′)). If xi,r > 0 and |Si,r| = 1, we select
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Figure 4.5: Comparison of old and new combination methods.

the (i′, r′) ∈ Si,r. Note by the given choices all clients in ∪(i′′,r′′)∈Si,rB(i′′, r′′) are covered and
the radius of the chosen pair is dominated by 2rad2(i) + 4

∑
(i′,r′)∈nstari,r rad1(i′) when xi,r > 0.

Since for each (i, r) ∈ F1, r ≤ 3rad1(i), the new LP can be written as

min
∑

(i,r)∈F2

(
xi,r(2rad2(i) +

∑
(i′,r′)∈Si,r4rad1(i′)) + (1− xi,r)

∑
(i′,r′)∈Si,r3rad1(i′)

)
(C-P’)

s.t.
∑

(i,r)∈F2

(
xi,r + |Si,r|(1− xi,r)

)
≤ k, (SZ BND)

0 ≤ xi,r ≤ 1 ∀(i, r) ∈ F2.

Let x∗ be an extreme point of (C-P’). Let F ′ be corresponding pairs obtained by the above
process. Similar to before an optimal solution of this LP has at most one fractional component
and the above rounding process chooses at most k′ pairs.

Let us now analyze Ik-BSAlg. Let C ′1 =
∑

(i,r∈F1) rad1(i) and C ′2 =
∑

(i′,r′)∈F2
rad2(i′). We

have claims analogous to Claim 4.5.7 and Claim 4.5.10 for our new analysis.
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Claim 4.5.13. We have aC ′1 + bC ′2 ≤ (1 + ε
3
)OPT

Proof. Using Lemma 4.5.11,

aC ′1 + bC ′2 ≤ a · (
∑
j∈D′

α1
j − k1z1) + b · (|F2|2nδz +

∑
j∈D′

α1
j − k2z1)

≤
∑
j∈D′

(aα1
j + bα1

j )− (ak1 + bk2) · z1 + b · k22nδz

≤
∑
j∈D′

α1
j − k · z +

ε

3
OPT ≤ (1 +

ε

3
)OPT ,

where the first inequality uses Lemma 4.5.11, and the third inequality uses that b ≤ 1, k2 ≤ n,
and δz = εOPT

3n2n
.

Lemma 4.5.14. Ik-BSAlg(F ,D′, c,L′, k′) returns a feasible solution (F, {rad(i)}) with cost(F ) ≤
(3.83 +O(ε))OPT +O(R∗) where {(i, rad(i))}i∈µ(F ) ⊆ L′ is a set of non-intersecting pairs.

Proof. First note that if Ik-BSAlg returns solutionF = F2, then {rad(i)} correspond to {rad2(i)}.
If Ik-BSAlg returns solution resulted from combination step, i.e., F = F ′, then {rad(i)} ⊆
{rad1(i)} by construction of F ′ from optimal (C-P’) solution. So in both cases {(i, rad(i))}
corresponds to non-intersecting pairs in L′.

Let us first bound the cost of solution F ′ obtained in the combination step. We claim the cost
of the (possible) pair corresponding to a fractional component of x∗ is at most 7R∗. First note
that radp(i) ≤ R∗ for each (i, r) ∈ Fp for p ∈ {1, 2}. Now if 0 < x∗i,r < 1 and |Si,r| > 1,
the included pair has radius rad1(i′) + 2rad2(i) + 4rad1(i′′) ≤ 7R∗ where (i′′, r′′) and (i′, r′)
are the pairs with the largest and the second largest radius in Si,r, respectively. if 0 < x∗i,r < 1
and Si,r = {(i′, r′)}, the included pair has radius r′ ≤ 3rad1(i′) ≤ 7R∗. Since x∗ has at most
one fractional component, cost of solution F ′ is at most OPT C-P’ + 7R∗. Also, OPT C-P’ ≤
2bC ′2 +(4b+3a)C ′1 = 2bC ′2 +(3+ b)C ′1, since setting xi,r = b for all (i, r) ∈ F2 yields a feasible
solution to (C-P’) of this cost. So the combination step returns solution F ′ with cost(F ′) ≤
2bC ′2 + (b+ 3)C ′1 + 7R∗.

The algorithm returns one of solutions F ′ or F2 depending on which has smaller cost. So the
cost of solution F return by the algorithm is at most min(3C ′2, 2bC

′
2 + (b + 3)C ′1) + 7R∗ which

is at most 3.83(aC ′1 + bC ′2) + 7R∗ for all a, b ≥ 0 and a+ b = 1 by the following Claim 4.5.15.
Using Claim 4.5.13, the cost of solution F is at most (3.83 +O(ε))OPT +O(R∗).

Claim 4.5.15. min{3C ′2, 2bC ′2 + (3 + b)C ′1} ≤
3(b+3)

3b2−2b+3
(aC ′1 + bC ′2) ≤ 3.83(aC ′1 + bC ′2) for all

a, b ≥ 0 such that a+ b = 1.
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Proof. Since the minimum is less than any convex combination,

min(3C ′2, 2bC
′
2 + bC ′1 + 3C ′1) ≤ 3b2 + b

3b2 − 2b+ 3
(3C ′2) +

−3b+ 3

3b2 − 2b+ 3
(2bC ′2 + bC ′1 + 3C ′1)

=
3(1− b)(b+ 3)

3b2 − 2b+ 3
(C ′1) +

3b(b+ 3)

3b2 − 2b+ 3
C ′2

=
3(b+ 3)

3b2 − 2b+ 3
((1− b)C ′1 + bC ′2) ≤ 3(b+ 3)

3b2 − 2b+ 3
OPT

Since a = 1 − b, the first inequality in the claim follows. The expression 3(b+3)
3b2−2b+3

is maxi-
mized at b = −3+2

√
3, and has value 3

8
(5+3

√
3) ≈ 3.8235, which yields the second inequality

in the claim.

We now have all the ingredients needed for proving our main result for the approximation of
the LBkSR problem.

Proof of Theorem 4.5.2. Again when FO = {(i1, r1), . . . (it, rt)} in Algorithm 2 corresponds to
the t facilities in an optimal solution with largest radii, we obtain the desired approximation
bound. In this case, we either have t = k and FO is then an optimal solution, or tgeq 1

ε
and

R∗ ≤ O∗

t
≤ εO∗ and OPT ≤ O∗ −

∑t
p=1 rp. Combining Lemma 4.5.14 and Lemma 4.4.1 then

yields the theorem.

4.6 Approximation algorithm for LBkSRO

In this section, we present our algorithm for the LBkSRO problem and its analysis. We prove the
following result.

Theorem 4.6.1. There exists a
(
12.365 +O(ε)

)
-approximation algorithm for LBkSRO that runs

in time nO(1/ε) for any ε > 0.

The algorithm is built on the ideas presented in Section 4.5 and follows a similar line of
attack. The presence of outliers introduces various complications and requires us to slightly
modify the primal-dual algorithm and the binary search process. More significantly, it also leads
to major modifications in the combination step. In the following, we first give an overview of
the algorithm and necessary modification needed to be made to primal-dual and binary search
step. Then we present two different combination steps employed by our algorithm. Finally, we
present the analysis of the algorithm.
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The high level approach of the algorithm is similar to the one in Section 4.5. We again “guess”
the t (i, r) pairs FO corresponding to the facilities with largest radii in an optimal solution, and
consider the modified k-BS instance (F ,D′, c,L′, k′,m) (where D′,L′, k′ are defined as before).
We design a primal-dual algorithm for the Lagrangian relaxation of the k-BS problem where we
are allowed to pick any number of pairs from L′ (leaving at most m uncovered clients) incurring
a fixed cost of z for each pair picked. Then this algorithm is utilized to obtain two solutions F1

and F2, and finally, we combine these solutions to extract a low-cost solution.

We consider the following LP-relaxation of the k-BS problem and its dual (analogous to (P1)
and (D1)). We use an indicator variable yi,r for each (i, r) ∈ L′ that indicates whether the ball
B(i, r) is selected (yi,r = 1) or not (yi,r = 0). We also use an indicator variable wj for each client
j that indicates whether client j is an outlier (wj = 1) or not (wj = 0).

min
∑

(i,r)∈L′
r · yi,r (P3)

s.t.
∑

(i,r)∈L′:j∈B(i,r)

yi,r + wj ≥ 1 ∀j ∈ D′

∑
(i,r)∈L′

yi,r ≤ k′ (4.3)

∑
j∈D′

wj ≤ m

y,w ≥ 0.

max
∑
j∈D′

αj − k′ · z −m · γ (D3)

s.t.
∑

j∈B(i,r)∩D′
αj − z ≤ r ∀(i, r) ∈ L′

αj ≤ γ ∀j ∈ D′

α ≥ 0

z, γ ≥ 0.

If (P3) is infeasible, then we reject this guess. So in the remainder of this section, we assume that
(P3) is feasible. Let OPTdenote the optimal value of (P3). As in JV algorithm (and as before),
we Lagrangify constraint (4.3) and consider the facility location version of the problem. So the
new LP with its dual are:
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min
∑

(i,r)∈L′
(r + z) · yi,r (P4)

s.t.
∑

(i,r)∈L′:j∈B(i,r)

yi,r + wj ≥ 1 ∀j ∈ D′

∑
j∈D′

wj ≤ m

y,w ≥ 0.

max
∑
j∈D′

αj −m · γ (D4)

s.t.
∑

j∈B(i,r)∩D′
αj ≤ r + z ∀(i, r) ∈ L′

αj ≤ γ ∀j ∈ D′

α, z, γ ≥ 0.

As before we first use a primal-dual algorithm to find a feasible solution to (P4) along with
a feasible dual solution to (D4). The natural modification of the earlier primal-dual algorithm
PDAlg is to now stop the dual-ascent process when the number of active clients is at most m
and set γ = maxj∈D′ αj . This introduces the significant complication that one may not be able
to completely pay for the (r + z)-cost of the non-intersecting tight pairs selected in the pruning
phase by the dual objective value

∑
j∈D′ αj −m · γ, since clients with αj = γ may be needed

to pay for the r + z-cost of the last tight pair f = (if , rf ) but their contribution gets canceled
by the −m · γ term. This issue affects us at various levels. First, we no longer obtain an LMP
approximation for the unconstrained problem since we have to account for the (r + z)-cost of f
separately. Second, unlike Claim 4.5.7, given solutions F1 and F2 obtained via binary search for
z1, z2 ≈ z1 respectively with |F2| ≤ k′ ≤ |F1|, we now only obtain a fractional k-BS solution
of cost O(OPT + z1). While one can modify the covering-knapsack-LP based procedure of
k-BSAlg to combine F1, F2, this only yields a good solution when z1 = O(OPT ). The chief
technical difficulty is that z1 may however be much larger than OPT . We design a second
combination procedure that is guaranteed to return a good solution when z1 = Ω(OPT ). This
requires establishing certain structural properties for F1 and F2, using which we argue that one
can find a good solution in the neighborhood of F1 and F2.

We now detail the changes to the primal-dual algorithm and k-BSAlg in Section 4.5, and
analyze them to prove that our LBkSRO algorithm has an approximation guarantee of 12.365
(see Theorem 4.6.1 in Section 4.6.3).

Modified primal-dual algorithm PDAlgo(F ,D′, c,L′, z). This is quite similar to PDAlg
(and we again return pairs from L). We stop the dual-ascent process when there are at mostm ac-
tive clients. We set γ = maxj∈D′ αj . Let f = (if , rf ) be the last tight pair added to the tight-pair
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set T , and Bf = B(if , rf ). For a set P of (i, r) pairs, define uncov(P ) := D′ \
⋃

(i,r)∈P B(i, r).
Note that |uncov(T \ f)| > m ≥ |uncov(T )|. Let OUT be a set of exactly m clients such that
uncov(T ) ⊆ OUT ⊆ uncov(T \ f). Note that αj = γ for all j ∈ OUT.

The pruning phase is similar to before, but we only use f if necessary. Let TI be a maximal
subset of non-intersecting pairs picked by greedily scanning pairs in T \ f in non-increasing
order of radius. For i ∈ µ(TI), set rad(i) to be the unique r such that (i, r) ∈ TI , and let ri be
the smallest radius ρ such that B(i, ρ) ⊇ B(i′, r′) for every (i′, r′) ∈ T \ f such that r′ ≤ rad(i)
and (i′, r′) intersects (i, rad(i)). Let F ′ = {(i, ri)}i∈µ(TI). If uncov(F ′) ≤ m, set F = F ′.
If uncov(F ′) > m and there exists i ∈ µ(F ′) such that c(i, if ) ≤ 2R∗, then increase ri so
that B(i, ri) ⊇ Bf and let F be the set obtained from F ′ after this extension. Otherwise, set
F = F ∪ f and rif = rad(if ) = rf . We return (F, f,OUT, {rad(i)}i∈µ(F ), α, γ).

Claim 4.6.2. Solution F found by PDAlgo covers at least |D′|−m clients and F ⊆ L. Moreover,{
(i, rad(i))

}
i∈µ(F )

⊆ L′, is a set of non-intersecting pairs, and rad(i) ≤ ri ≤ 3R∗ for each
i ∈ µ(F ). Moreover, there is at most one i ∈ µ(F ) for which ri > 3rad(i).

Proof. Let F ′ = {(i, r′i)}i∈µ(TI) be the set of pairs obtained from the set TI in the pruning phase.
By the same argument as in the proof of Claim 4.5.3, we have rad(i) ≤ r′i ≤ 3rad(i) ≤ 3R∗ for
all i ∈ µ(TI), and uncov(F ′) ⊆ uncov(T \ f). If we return F = F ′, then |uncov(F )| ≤ m by
definition. If uncov(F ′) > m and there exists i ∈ µ(F ′) such that c(i, if ) ≤ 2R∗, we increase
the radius of (i, r) ∈ F ′ to include B(if , rf ), so then we have ri ≤ max{r′i, 3R∗} ≤ 3R∗

and uncov(F ) ⊆ uncov(T ), so |uncov(F )| ≤ m. If f ∈ F , then we again have uncov(F ) ⊆
uncov(T ). In all cases, F is feasible, and we have rad(i) ≤ ri ≤ 3R∗ for all i ∈ µ(F ), and
ri ≤ 3rad(i) for all but at most one i ∈ µ(F ).

Notice that
{

(i, rad(i))
}
i∈µ(F )

is TI if f /∈ F , and TI + f otherwise. In the latter case, we
know that c(i, if ) > 2R∗ for all i ∈ µ(TI), so f does not intersect (i, rad(i)) for any i ∈ µ(TI).
Thus, all pairs in

{
(i, rad(i))

}
i∈µ(F )

are non-intersecting.

Next, we prove a bound on the cost of solution returned by PDAlgo.

Theorem 4.6.3. Suppose PDAlgo(F ,D′, c,L′, z) returns (F, {rad(i)}, α, γ) where (α, z, γ) is a
feasible solution to (P3). Then

cost(F \ f) + 3|F \ f |z − 3R∗ ≤ 3(
∑
j∈D′

αj −mγ) ≤ 3(OPT + k′z)

If |F \ f | ≥ k′ then cost(F ) ≤ 3OPT + 4R∗, and if |F \ f | > k′ then z ≤ OPT .
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Proof. The argument in proof of Claim 4.6.2 shows that cost(F \f) ≤
∑

i∈µ(TI) 3 · rad(i)+3R∗.
All pairs in TI are tight and non-intersecting and |F \ f | = |TI |. Also, OUT ⊆ uncov(T \ f) ⊆
uncov(TI). (Recall that |OUT| = m and αj = γ for all j ∈ OUT.) So

cost(F \ f) + 3|F \ f |z − 3R∗ ≤
∑

i∈µ(TI)

(3 · rad(i) + 3z) =
∑

i∈µ(TI)
j∈B(i,rad(i))∩D′

3αj (4.4)

≤ 3
(∑
j∈D′

αj −
∑
j∈OUT

αj

)
= 3
(∑
j∈D′

αj −mγ
)
≤ 3(OPT + k′z).

The last inequality follows since (α, γ, z) is a feasible solution to (D3).

If |F \ f | ≥ k′ then since rf ≤ R∗ then cost(F ) ≤ 3OPT + 4R∗ + 3z(k′ − |F \ f |) which
is at most 3OPT + 4R∗. Inequality (4.4) implies that ,

∑
i∈µ(TI)(rad(i) + z) ≤ OPT + k′z and

since |TI | = |F \ f |, we have z ≤ OPT if |F \ f | > k′.

Modified algorithm k-BSAlgo(F ,D′, c,L′, k′, ε). As before, first, we use binary search
to find solutions F1 and F2 with |F1| > k′ and F2 ≤ k′, and then extract a low-cost solution from
combining these two solutions. The binary search is essentially the same with the modification
that we start with z1 = 0 and z2 = 2nk′cmax; we argue in Claim 4.6.4 that for this z2, PDAlgo

returns at most k′ pairs. We stop when z2 − z1 ≤ δz := εOPT
3n2n

. Note that We do not stop even
if PDAlgo returns a solution (F, . . .) with |F | = k′ for some z = z1+z2

2
, since Theorem 4.6.3 is

not strong enough to bound cost(F ) even when this happens!.3 If |F | > k′, we update z1 ← z
and the F1 solution; otherwise, we update z2 ← z and the F2 solution. Thus, we maintain that
k1 = |F1| > k′, and k2 = |F2| ≤ k′.

Claim 4.6.4. When z = z2 = 2nk′cmax, PDAlgo returns at most k′ pairs.

Proof. Let (F, f, out, {rad(i)}i∈µ(F ), α, γ) be the output of PDAlgo for this z. Let T be the set
of tight pairs after the dual-ascent process. Observe that γ ≥ 2k′cmax, since for any tight pair
(i, r) ∈ T , we have that nγ ≥

∑
j∈B(i,r)∩D′ αj ≥ z. We have

∑
j∈D′ αj − mγ ≤ OPT +

k′z ≤ k′cmax + k′z. On the other hand, since uncov(T \ f) \ OUT 6= ∅ and αj = γ for all
j ∈ uncov(T \ f), we also have the lower bound∑

j∈D′
αj −mγ ≥

∑
i∈µ(F\f)

j∈B(i,rad(i))∩D′

αj + γ ≥ |F \ f |z + γ.

So if |F | > k′, we arrive at the contradiction that γ ≤ k′cmax.
3Note that this is an artifact that never arises for k-median, or for other problems using the Lagrangian-relaxation

technique coupled with LMP approximations (such as k-MST)
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The main change is in the way solutions F1, F2 are combined. We modify the combination
step in k-BSAlg to handle outliers (procedure A in Section 4.6.1), but the key extra ingredient
is that we devise an alternate combination procedure B (Section 4.6.2) that returns a low-cost
solution when z1 = Ω(OPT ). We return the better of the solutions output by the two procedures.
In Section 4.6.3, we summarize these changes in Algorithm k-BSAlgo(D′,L′, k′, ε) and state the
approximation bound for k-BSAlgo and LBkSRO. This immediately yields Theorem 4.6.1.

4.6.1 Combination subroutine A
(
(F1, rad1), (F2, rad2)

)
As in the combination step in k-BSAlg, we cluster the F1-pairs around F2-pairs in stars. However,
unlike before, some (i′, r′) ∈ F1 may remain unclustered as (i′, r′) may only cover outliers of
solution F2 and thus it does not intersect with any pair in F2. In the previous combination
subroutine, for each pair (i′, r′) ∈ F1, either (i′, r′) or some pair (i, r) close to (i′, r′) was picked
(the case corresponding to merging pairs in a star). The reason behind this selection was to
make sure that we cover all clients. Since now we do not need to cover all clients, we allow the
flexibility of neither choosing (i′, r′) ∈ F1 nor a pair close to it.

We again set up an LP to obtain a suitable collection of pairs. Let ucp denote uncov(Fp) and
Dp := D′ \ ucp for p = 1, 2. Let π : F1 → F2 ∪ {∅} be defined as follows: for each (i′, r′) ∈ F1,
if (i′, r′) ∈ F1 intersects some F2-pair, pick such an intersecting (i, r) ∈ F2 and set π(i′, r′) =
(i, r); otherwise, set π(i′, r′) = ∅. In the latter case, (i′, r′) is unclustered, and B(i′, r′) ⊆ uc2.
Define Si,r = π−1(i, r) for all (i, r) ∈ F2. Let Q = π−1(∅). Let {uc1(i, r)}(i,r)∈F2 denote
a partition of set uc1 ∩ D2 such that for each (i, r) ∈ F2, uc1(i, r) ⊆ B(i, r). In essence,
{uc1(i, r)}(i,r)∈F2 is a partition of F1-outliers covered by F2 that is induced by the F2-balls.
Similarly, let {uc2(i′, r′)}(i′,r′)∈F1 denote a partition of uc2 ∩ D1 such that for each (i′, r′) ∈ F1,
uc2 ⊆ B(i′, r′). We use an indicator variable xi,r for each (i, r) ∈ F2 to indicate whether
the F1-pairs in Si,r should be merged (xi,r = 1) or not (xi,r = 0). For each unclustered pair
(i′, r′) ∈ Q (so π(i′, r′) = ∅), we use an indicator variable qi′,r′ to indicate whether this pair
should be picked (qi′,r′ = 1) or not (qi′,r′ = 0). We consider the following LP, which can be
written as 2-dimensional covering knapsack LP.
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min
∑

(i,r)∈F2

(
xi,r(2r +

∑
(i′,r′)∈Si,r2r

′) + (1− xi,r)
∑

(i′,r′)∈Si,rr
′
)

+
∑

(i′,r′)∈Q

qi′,r′ · r′ (2C-P)

s.t.
∑

(i,r)∈F2

(
xi,r + |Si,r|(1− xi,r)

)
+

∑
(i′,r′)∈Q

qi′,r′ ≤ k′ (4.5)

−
∑

(i,r)∈F2

xi,r|uc1(i, r)|+
∑

(i′,r′)∈Q

(1− qi′,r′)|uc2(i′, r′)| ≤ 0 (4.6)

0 ≤ xi,r ≤ 1 ∀(i, r) ∈ F2

0 ≤ qi′,r′ ≤ 1 ∀(i′, r′) ∈ Q.

The interpretation of the variable xi,r is similar to before with a small modification. If xi,r =
0, we select all pairs in Si,r. If xi,r = 1, Si,r 6= ∅, we pick some (i′, r′) ∈ Si,r and expand
its radius suitably. Finally, (unlike before) if xi,r = 1, Si,r = ∅, then we also pick (i, r) (see
Lemma 4.6.5). Inequality (4.5) ensures that there are at most k′ pairs picked. Inequality (4.6)
ensures that our solution leaves at most m clients uncovered. To see this, note that the number
of uncovered clients is

|uc1|+ |clients from D1 that are not covered| − |clients in uc1 that are covered|.

The clients in D1 that are not covered correspond to unclustered pairs (i′, r′) ∈ Q that are not
picked. The total number of such clients is at most

∑
(i′,r′)∈Q(1−qi′,r′) · |uc2(i′, r′)|. The number

of clients from uc1 that are covered, is at least
∑

(i,r)∈F2
xi,r · |uc1(i, r)|. Thus, inequality 4.6

ensures that there are at most m uncovered clients (note that |uc1| = m).

The general idea in the combination subroutine A is similar to before; we first solve the
LP-formulation (2C-P) to obtain an optimal (fractional) solution (x∗, q∗), then this solution is
rounded to an integral solution (x̃, ỹ) (see Lemma 4.6.5), and finally a good set F ′ of pairs is con-
structed from (x̃, ỹ) (see Lemma 4.6.6). SubroutineA returns one of solutions (F2, {rad2(i)}i∈µ(F2))
or (F ′, {rad(i)}i∈µ(F ′)) whichever has a smaller cost. We now describe these steps in more details
and proceed with the analysis. The resulting combination subroutine A is summarized towards
the end of this Section (after Claim 4.6.7), and Theorem 4.6.8 gives a bound on the cost of the
solution returned.

Recall that k1 = |F1|, k2 = |F2|. Let a, b ≥ 0 be such that ak1 + bk2 = k′, a + b =
1. Let C1 = cost(F1) and C2 = cost(F2).
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Claim 4.6.5. (x∗, q∗) can be rounded to a feasible integer solution (x̃, q̃) to (2C-P) of objective
value at most OPT2C-P + 30R∗.

Proof. Let S be the set of fractional components of (x∗, q∗). As noted earlier, |F | is at most the
number of tight constraints from (4.5), (4.6). Let

l∗ :=
∑

(i,r)∈S∩F2

(
x∗i,r + |Si,r|(1− x∗i,r)

)
+

∑
(i′,r′)∈S∩Q

q∗i′,r′

denote the contribution of the fractional components of (x∗, q∗) to the LHS of (4.5). Note that if
(4.5) is tight, then l∗ must be an integer. For a vector v = (vj)j∈I where I is some index-set, let
dve denote

(
dvje

)
j∈I . Let P = {(i, r) ∈ F2 : Si,r = ∅}. We round (x∗, q∗) as follows.

• If l∗ ≥ 2 or |S| ≤ 1 or |S ∩ (F2 \ P)| ≥ 1, set (x̃, q̃) = d(x∗, q∗)e.

• Otherwise (i.e., l∗ < 2, S ⊆ P ∪ Q, |S| = 2), we set x̃i,r = x∗i,r, q̃i′,r′ = q∗i′,r′ for
all the integer-valued coordinates. We set the fractional component with larger absolute
coefficient value on the LHS of (4.6) equal to 1 and the other fractional component to 0.

We prove that (x̃, q̃) is a feasible solution to (2C-P). Note that (4.6) holds for (x̃, q̃) since we
always have∑

(i,r)∈F2

(1− x̃i,r)|uc1(i, r)|+
∑

(i′,r′)∈Q

(1− q̃i′,r′)|uc2(i′, r′)|

≤
∑

(i,r)∈F2

(1− x∗i,r)uc1(i, r) +
∑

(i′,r′)∈Q

(1− q∗i′,r′)|uc2(i′, r′)|.

Clearly, the contribution to the LHS of (4.5) from the components not in S is the same in both
(x̃, q̃) and (x∗, q∗). Let l denote the contribution from (x̃, q̃) to the LHS of (4.5) from the com-
ponents in S. Clearly, l is an integer.

If l∗ ≥ 2, then l = 2. If |S| ≤ 1, then l = 1. If l∗ ≥ 1, then in these cases the LHS of
(4.5) evaluated at (x̃, q̃) is at most the LHS of (4.5) evaluated at (x∗, q∗). If l∗ < 1 and |S| ≤ 1
(so l = 1), then since l∗ is fractional, we know that (4.5) is not tight for (x∗, q∗). So despite the
increase in LHS of (4.5), we have that (4.5) holds for (x̃, q̃). If |S| = 2 and |S ∩ (F2 \ P)| ≥ 1,
then we actually have l∗ > 1 and l = 2. Again, since l∗ is fractional, we can conclude that
(x̃, q̃) satisfies (4.5) despite the increase in LHS of (4.5). Finally, suppose l∗ < 2, |S| = 2,
and S ∩ (F2 \ P) = ∅. Then, given any (x, q), the contribution from S to the LHS of (4.5) is
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∑
(i,r)∈S∩F2

xi,r +
∑

(i′,r′)∈S∩Q qi′,r′ , and at most one of the components in S is set to 1 in (x̃, q̃).
So l = 1, and either l ≤ l∗ or l∗ < 1, and in both cases (4.5) holds for (x̃, q̃).

To bound the objective value of (x̃, q̃), notice that compared to (x∗, q∗), the solution (x̃, q̃)
pays extra only for the components that are rounded up. There are at most two such components,
and their objective-function coefficients are bounded by 15R∗, so the objective value of (x̃, q̃) is
at most OPT2C-P + 30R∗.

Lemma 4.6.6. A k-BS solution
(
F ′, {rad(i)}i∈µ(F ′)

)
can be obtained from (x̃, q̃) with cost(F ′) ≤

OPT2C-P + 30R∗ where
{

(i, rad(i))
}
i∈µ(F ′)

⊆ L′ is a set of non-intersecting pairs.

Proof. We first construct F ′′ from (x̃, q̃) as follows. If q̃i′,r′ = 1, we include (i′, r′) ∈ F ′′ and
set rad(i′) = rad1(i′). If x̃i,r = 0, we include all pairs in Si,r in F ′′ and set rad(i′) = rad1(i′)
for all (i′, r′) ∈ Si,r. If x̃i,r = 1 and Si,r 6= ∅, we pick a pair in (i′, r′) ∈ Si,r, and include
(i′, 2r + r′ + max(i′′,r′′)∈Si,r\{(i′,r′) 2r′′) in F ′′. We set rad(i′) = rad1(i′). Now we initialize F ′ =
F ′′ and consider all (i, r) ∈ P with x̃i,r = 1. If (i, r) does not intersect any (i′, r′) ∈ F ′′ then we
add (i, r) to F ′, and set rad(i) = rad2(i). Otherwise, if (i, r) intersects some (i′, r′) ∈ F ′′, then
we replace (i′, r′) ∈ F ′ with (i′, r′+2r). We have thus ensured that

{
(i, rad(i))

}
i∈µ(F ′)

⊆ L′ and
consists of non-intersecting pairs. Note that in all the cases above, the total cost of the pairs we
include when we process some q̃i′,r′ or x̃i,r term is at most the total contribution to the objective
function from the q̃i′,r′ term, or the x̃i,r and 1 − x̃i,r terms. Therefore, cost(F ′) is at most the
objective value of (x̃, q̃) which is at most OPT2C-P + 30R∗.

Claim 4.6.7. We have aC1 + bC2 ≤ (3 + ε)OPT + 4R∗ + 3z1 and moreover, OPT2C-P ≤
2bC2 + (1 + b)C1.

Proof. This follows easily from Theorem 4.6.3 and since cost(Fp) ≤ cost(Fp \ fp) + R∗ for
p = 1, 2. So we have C1 + 3(k1 − 1)z1 ≤ 3(OPT + k′z1) + 4R∗ and C2 + 3(k2 − 1)z2 ≤
3(OPT + k′z2) + 4R∗. Combining these, we obtain

aC1 + bC2 ≤ 3OPT + 3k′(az1 + bz2)− 3(ak1z1 + bk2z2) + 3(az1 + bz2) + 4R∗

≤ 3(OPT + k′z2)− 3k′z2 + 3ak1δz + 3z1 + 3bδz + 4R∗

≤ (3 + ε)OPT + 4R∗ + 3z1.

where the second inequality follows since 0 ≤ z2 − z1 ≤ δz = εOPT
3n2n

.

In order to prove the second part, we present a feasible solution and use its cost to upper bound
OPT2C-P. We claim that setting xi,r = b for all (i, r) ∈ F2, and qi′,r′ = a for all (i′, r′) ∈ Q
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yields a feasible solution to (2C-P). The LHS of (4.5) evaluates to ak1 + bk2, which is exactly k′.
The first term on the LHS of (4.6) evaluates to b

∑
(i,r)∈F2

|uc1(i, r)| = b|uc1|. The second term
on the LHS of (4.6) evaluates to at most (1− a)

∑
(i′,r′)∈Q uc2(i′, r′) = b|uc2|. Since the number

of F1-outliers is equal to the number of F2-outliers covered by F2 (both solutions have exactly
m outliers), we have |uc1| = |uc2|, so the inequality holds trivially. The objective value of this
solution is∑

(i,r)∈F2

b · 2r +
∑

(i′,r′)∈F1,π(i′,r′)6=∅

(1 + b) · r′ +
∑

(i′,r′)∈F1,π(i′,r′)=∅

a · r′ ≤ 2bC2 + (1 + b)C1

using the fact that 0 ≤ a ≤ 1.

Now that all the ingredients of subroutine A are presented, we can summarize this sub-
routine as follows. First, we solve the LP-formulation (2C-P) to obtain an optimal (fractional)
solution (x∗, q∗). The number of fractional components in (x∗, q∗) is at most the number of
tight constraints from (4.5), (4.6). We exploit this to round (x∗, q∗) to an integer solution (x̃, q̃)
of good objective value (see Lemma 4.6.5), and then use (x̃, q̃) to extract a good set F ′ of
pairs as sketched above (see Lemma 4.6.6). Combination subroutine A returns one of solutions
(F2, {rad2(i)}i∈µ(F2)) or (F ′, {rad(i)}i∈µ(F ′)) whichever has a smaller cost.

Theorem 4.6.8. Combination subroutineA returns a feasible solution
(
F, {rad(i)}

)
with cost(F ) ≤

(6.1821 + 3ε)(OPT + z1) + O(R∗) where
{

(i, rad(i))}i∈µ(F ) ⊆ L′ is a set of non-intersecting
pairs.

Proof. We return (F2, rad2) if cost(F2) ≤ cost(F ′), and
(
F ′, {rad(i)}i∈µ(F ′)

)
otherwise. Using

Lemma 4.6.6, Claims 4.6.5 and 4.6.7 on the cost of (F ′, {rad(i)}i∈µ(F ′), we obtain that the cost
of the solution returned is at most

min
{
C2, 2bC2 + (1 + b)C1

}
+ 30R∗ ≤ 2.0607

(
aC1 + bC2

)
+ 30R∗

≤ 2.0607
(

(3 + ε)OPT + 4R∗ + 3z1

)
+ 30R∗ ≤ (6.1821 + 3ε)(OPT + z1) + 39R∗.

where the first inequality follows from Claim 4.5.10 and the second inequality follows from
Claim 4.6.7.

4.6.2 Subroutine B
(
(F1, f1,OUT1, rad1, α

1, γ1), (F2, f2,OUT2, rad2, α
2, γ2)

)
Subroutine A in the previous section yields a low-cost solution only if z1 = O(OPT ). We
complement subroutineA by now describing a procedure that returns a good solution when z1 is
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large. We assume in this section that z1 > (1+ε)OPT . Then |F1\f1| ≤ k′ (otherwise z ≤ OPT
by Theorem 4.6.3), so |F1 \ f1| ≤ k′ < |F1|, which means that k1 = k′ + 1 and f1 ∈ F1.

First, we perform a preprocessing step on F1 to take care of some simple cases. If there
exists (i, r) ∈ F1 \ f1 such that |uncov

(
F1 \ {f1, (i, r)} ∪ (i, r + 12R∗)

)
| ≤ m, then set F =

F1\{f1, (i, r)}∪(i, r+12R∗). We have cost(F ) = cost(F1\f1)+12R∗ ≤ 3·OPT+15R∗ (using
Theorem 4.6.3). If there exist pairs (i, r), (i′, r′) ∈ F1 such that c(i, i′) ≤ 12R∗, take r′′ to be the
minimum ρ ≥ r such that B(i′, r′) ⊆ B(i, ρ) and set F = F1 \ {(i, r), (i′, r′)}∪ (i, r′′). We have
cost(F ) ≤ cost(F1\f1)+13R∗ ≤ 3·OPT +16R∗. In both cases, we return

(
F, {rad1(i)}i∈µ(F )

)
(see Figure 4.6).

i1

i0

i2
i3

fi1

i0

i2
i3

f1

covered client by F1 outlier client of F1

Case (1): |uncov(F1 \ {f1, (i3, r3)} ∪ {(i3, r3 + 12R∗)})| ≤ m = 7.

F = F1 \ {f1, (i3, r3)} ∪ {(i3, r3 + 12R∗)}

12R∗ + r3

i1

i0

i2

i3

i4

i5

r

Case (2): c(i4, i0) ≤ 12R∗.

F = F1 \ {(i4, r4), (i0, r0)} ∪ {(i4, r)}

Figure 4.6: Example of the two cases resolved in the preprocessing step.

We assume in the sequel that neither of the above apply So all pairs in F1 are well-separated.
Note that, in particular, the last ball f1 is far from F1 \ f1 and this means that α1

j = γ1 for all
j ∈ Bf1 ∩D′. We require the following continuity lemma, which generalizes Lemma 4.5.11; we
defer the proof to the end of the chapter.

Lemma 4.6.9. Let (Fp, . . . , α
p, γp) = PDAlgo(D′,L′, zp) for p = 1, 2, where 0 ≤ z2 − z1 ≤ δz.

Then, ‖α1
j − α2

j‖∞ ≤ 2nδz and |γ1 − γ2| ≤ 2nδz. Thus, if (4.2) is tight for some (i, r) ∈ L′ in
one execution, then

∑
j∈B(i,r)∩D′ α

p
j ≥ r + zp − 2nδz for p = 1, 2.
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Let AT = {(i, r) ∈ L′ :
∑

j∈B(i,r)∩D′ α
1
j ≥ r + z1 − 2nδz} and AD = {j ∈ D′ : α1

j ≥
γ1 − 2nδz}. By Lemma 4.5.11, AT includes the tight pairs of PDAlgo(F ,D′, c,L′, zp) for both
p = 1, 2, and OUT1 ∪ OUT2 ⊆ AD . Since the tight pairs T2 used for building solution F2

are almost tight in (α1, γ1, z1), we swap them in and swap out pairs from F1 one by one while
maintaining a feasible solution. Either at some point, we will be able to remove f , which will
give us a solution of size k′, or we will obtain a bound on cost(F2). The following lemma is our
main tool for bounding the cost of the solution returned.

Lemma 4.6.10. Let F ⊆ L′, and let TF =
{

(i, r′i)
}
i∈µ(F )

where r′i ≤ r for each (i, r) ∈ F . Sup-
pose TF ⊆ AT and pairs in TF are non-intersecting. If |F | ≥ k′ and |AD \

⋃
(i,r)∈F B(i, r))| ≥

m then cost(TF ) ≤ (1 + ε)OPT . Moreover, if |F | > k′ then z1 ≤ (1 + ε)OPT .

Proof. Let OUTF be a subset of exactly m of clients from AD \
⋃

(i,r)∈F B(i, r). Since the pairs
in TF are non-intersecting and almost tight,

∑
i∈µ(F )(r

′
i + z) ≤

∑
j∈D′\OUTF

(α1
j + 2nδz), so∑

i∈µ(F )

(r′i+z) ≤
∑
j∈D′

(α1
j+2nδz)−m(γ1−2nδz) ≤

∑
j∈D′

α1
j−mγ1+(m+|D′|)2nδz ≤ (1+ε)OPT+k′z1

where the last inequality follows since (α1, γ1, z1) is a feasible solution to (D3). So cost(TF ) ≤
(1 + ε)OPT if |TF | = |F | ≥ k′, and z1 ≤ (1 + ε)OPT if |F | > k′.

Define a mapping ψ : F2 → F1 \ f1 as follows. Note that any (i, r) ∈ F2 may intersect with
at most one F1-pair: if it intersects (i′, r′), (i′′, r′′) ∈ F1, then we have c(i′, i′′) ≤ 12R∗ which
contradicts the fact that we assume that we are not in one of the simple cases. First, for each
(i, r) ∈ F2 that intersects with some (i′, r′) ∈ F1, we set ψ(i, r) = (i′, r′). Let M ⊆ F2 be the
F2-pairs mapped by ψ this way. For every (i, r) ∈ F2 \M , we arbitrarily match (i, r) with a
distinct (i′, r′) ∈ F1 \ ψ(M). We claim that ψ is, in fact, a one-one function.

Lemma 4.6.11. Every (i, r) ∈ F1 \ f1 intersects with at most one F2-pair.

Proof. Suppose two pairs (i1, r1), (i2, r2) ∈ F2 intersect with a common pair (i, r) ∈ F1 \
f1. Let T1,I be the tight pairs corresponding to F1 \ f1 obtained from the (pruning phase
of) PDAlgo(D′,L′, z1). Let (i, rad1(i)) ∈ T1,I be the tight pair corresponding to (i, r). Let
(i1, rad2(i1)), (i2, rad2(i2)) be the tight pairs corresponding to (i1, r1), (i2, r2) obtained from
PDAlgo(D′,L′, z2). We will show that either z1 ≤ OPT , or that |uncov(F1 \ {f1, (i, r)} ∪
{(i, r + 12R∗)})| ≤ m, both of which lead to a contradiction.

Define F ′ = F1 \ {f1, (i, r)} ∪ {(i1, r1), (i2, r2)} (so |F ′| = k + 1), and define TF ′ =
T1,I \ {(i, rad1(i))} ∪ {(i1, rad2(i1)), (i2, rad2(i2))} (See Figure 4.7). Since (i1, rad2(i1)) and
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(i2, rad2(i2)) are non-intersecting and they do not intersect with any pair in T1,I \ (i, rad1(i)), the
pairs in TF ′ are non-intersecting. Also, TF ′ ⊆ AT . If |AD \

⋃
(i′,r′)∈F ′ B(i′, r′)| ≥ m, then z ≤

OPT by Lemma 4.6.10. Otherwise, note that every client j ∈ B(i1, r1)∪B(i2, r2) is at distance
at most r+ 2 max(r1, r2) ≤ r+ 6R∗ from i. So setting F ′′ = F1 \ {f1, (i, r)} ∪ {(i, r+ 12R∗)},
we have uncov(F ′′) ⊆ uncov(F ′) ⊆ AD, and so |uncov(F ′′)| ≤ |AD \

⋃
(i′,r′)∈F ′ B(i′, r′)| ≤ m.

i

i1

i2

rad1(i)

rad2(i1)

rad1(i2)

Figure 4.7: Depiction of the case that a pair (i, r) in F1 intersects with two pairs
(i1, r1) and (i2, r2) in F2.

Let F ′2 be the pairs (i, r) ∈ F2 such that if (i′, r′) = ψ(i, r), then r′ < r. Let P = F ′2∩M and
Q = F ′2 \M . For every (i′, r′) ∈ ψ(Q) and j ∈ B(i′, r′), we have j ∈ uncov(F2) ⊆ AD (else
(i′, r′) would lie in ψ(M)). Starting with F ′ = F1 \ f1, we iterate over (i, r) ∈ F ′2 and do the
following. Let (i′, r′) = ψ(i, r). If (i, r) ∈ P , we update F ′ ← F ′\(i′, r′)∪(i, r+2r′) (soB(i, r+
2r′) ⊇ B(i′, r′)), else we update F ′ ← F ′ \ (i′, r′) ∪ (i, r). Let TF ′ = {(i, rad1(i))}(i,r)∈F ′∩F1 ∪
{(i, rad2(i))}(i,r)∈F ′\F1 . Note that |F ′| = k′ and uncov(F ′) ⊆ AD at all times. Also, since
(i, r) intersects only (i′, r′), which we remove when (i, r) is added, we maintain that TF ′ is
a collection of non-intersecting pairs and a subset of AT ⊆ L′. This process continues until
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|uncov(F ′)| ≤ m, or when all pairs of F ′2 are swapped in (see Figure 4.8). In the former case,
we argue that cost(F ′) is small and return

(
F ′, {rad1(i)}(i,r)∈F ′∩F1 ∪ {rad2(i)}(i,r)∈F ′\F1

)
. In the

latter case, we show that cost(F ′2), and hence cost(F2) is small, and return (F2, rad2).

(i1, r1)

(i′1, r
′
1)

(i2, r2)

(i′2, r
′
2)

(i3, r3)

(i′3, r
′
3)

(i4, r4)

(i′4, r
′
4)

(i5, r5) (i6, r6)

(i′5, r
′
5) (i′6, r

′
6)

(i7, r7) (i8, r8)

(i′7, r
′
7) (i′8, r

′
8) (i′7, r

′
7) (i′8, r

′
8) f1

M

F ′2

Figure 4.8: Combination step B: The vertices on top represent F2 pairs and the
vertices on the bottom represent F1 pairs. An edge between (i, r) ∈ F2 and (i′, r′) ∈
F1 \ f1 indicates that (i′, r′) = ψ(i, r): If (i, r) and (i′, r′) intersect then the edge
is solid otherwise it is dotted. In this example, P = {(il, rl) : 3 ≤ l ≤ 6} and
Q = {(i7, r7)}.

Lemma 4.6.12. (i) If the algorithm stops with |uncov(F ′)| ≤ m, then cost(F ′) ≤ (9+3ε)OPT+
18R∗.

(ii) If case (i) does not apply, then cost(F2) ≤ (3 + 3ε)OPT + 9R∗.

(iii) The pairs corresponding to the radii returned are non-intersecting and form a subset of L′.

Proof. Part (iii) follows readily from the algorithm description and the discussion above. Con-
sider part (i). Let (i, r) ∈ F ′2 be the last pair scanned by the algorithm before it terminates, and
(i′, r′) = ψ(i, r). Let F ′′ be the set F ′ just before the last iteration. So F ′′ = F ′ \ (i, r + 2r′) ∪
(i′, r′) if (i, r) ∈ P , and F ′′ = F ′ \ (i, r) ∪ (i′, r′) if (i, r) ∈ Q. Note that r + 2r′ ≤ 9R∗. Since
uncov(F ′′) ⊆ AD and |uncov(F ′′)| > m, by Lemma 4.6.10, we have cost(TF ′′) ≤ (1 + ε)OPT .
For all (i, r) ∈ F1, we have r ≤ 3rad1(i) (since f1 ∈ F1). For all but at most one (i, r) ∈ F2, we
have r ≤ 3rad2(i) and for the one possible exception, we have r ≤ 3R∗. Therefore,

cost(F ′) ≤ cost(F ′′ ∩ F1) + cost(F ′′ \ F1) + 9R∗ ≤ 3 · cost(TF ′′) + 3R∗ + 2 · cost(F1 \ F ′′) + 9R∗

≤ 3(1 + ε)OPT + 3R∗ + 2(3 ·OPT + 3R∗) + 9R∗ =
(
9 + 3ε)OPT + 18R∗.
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For part (ii), the same argument as above shows that cost(TF ′) ≤ (1+ε)OPT and cost(F ′2)+
cost

(
F1 \ (f1 ∪ ψ(F ′2))

)
≤ 3 · cost(TF ′) + 3R∗. Now

cost(F2) = cost(F ′2) + cost(F2 \ F ′2) ≤ cost(F ′2) + cost
(
ψ(F2 \ F ′2)

)
≤ cost(F ′2) + cost

(
F1 \ (f1 ∪ ψ(F ′2)

)
≤ 3(1 + ε) ·OPT + 3R∗

where the first inequality follows by the definition of F ′2.

Theorem 4.6.13. If z > (1 + ε)OPT then, combination subroutine B returns a feasible solution(
F, {rad(i)}

)
with cost(F ) ≤ (9 + 3ε)OPT + O(R∗) where

{
(i, rad(i))}i∈µ(F ) ⊆ L′ is a set of

non-intersecting pairs.

Proof. If z1 > (1 + ε)OPT , then |F1 \ f1| ≤ k′ (otherwise z ≤ OPT by Theorem 4.6.3), so
|F1 \ f1| ≤ k′ < |F1|, which means that k1 = k′ + 1 and f1 ∈ F1. If either of the simple
cases apply, then the cost of the returned solution is at most cost(F1) + O(R∗) which is at
most cost(F1 \ f1) + rf + O(R∗) ≤ 3OPT + O(R∗) by Theorem 4.6.3. In both these cases{

(i, rad(i))}i∈µ(F ) is a set of non-intersecting pairs as this set is a subset of
{

(i, rad(i))}i∈µ(F1)

which is a subset of L′. If the combination step does not return a solution in the preprocessing
step then it either returns (F ′, {rad(i)}i∈µ(F ′)) or (F2, {rad(i)}i∈µ(F2)) whichever has a smaller
cost. Using Lemma 4.6.12, cost(F ) ≤ (9 + 3ε)OPT + O(R∗) and satisfies the condition in the
Theorem.

4.6.3 Analysis of k-BSAlgo Algorithm and LBkSRO Algorithm

The k-BSAlgo algorithm, which uses the subroutine A and B discussed in Sections 4.6.1 and
4.6.2 respectively, is summarized below.

Algorithm k-BSAlgo(D′,L′, k′). Output: F ⊆ L with |F | ≤ k′, a radius rad(i) for all i ∈ µ(F ).

C1. Binary search. Let (F1, rad1, . . .) = PDAlgo(D′,L′, 0). If |F1| ≤ k′ pairs, return (F1, rad1). Else
perform binary-search in the range [0, 2nk′cmax] to find z1, z2 with 0 ≤ z2 − z1 ≤ δz =

εOPT
3n2n such

that letting (Fp, fp,OUTp, radp, α
p, γp) = PDAlg(D′,L′, zp) for p = 1, 2, we have |F2| ≤ k′ <

|F1|.
C2. Let

(
FA, {radA(i)}i∈µ(FA)

)
= A

(
(F1, rad1), (F2, rad2)

)
(Section 4.6.1). If |F1 \ f1| > k′, return

(FA, radA).
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C3. Preporocessing in subroutine B: If ∃(i, r) ∈ F1 \ f1 such that |uncov
(
F1 \ {f1, (i, r)} ∪ (i, r +

12R∗)
)
| ≤ m, then set F = F1 \ {f1, (i, r)} ∪ (i, r + 12R∗). If ∃(i, r), (i′, r′) ∈ F1 such that

c(i, i′) ≤ 12R∗, let r′′ ≥ r be the minimum ρ ≥ r such that B(i′, r′) ⊆ B(i, ρ); set F = F1 \
{(i, r), (i′, r′)} ∪ (i, r′′). In either of the above apply, return

(
F, {rad1(i)}i∈µ(F )

)
.

C4. Let
(
FB, {radB(i)}i∈µ(FB)

)
be the output of subroutine B if no solution return in C3 (Section 4.6.2).

C5. If cost(FA) ≤ cost(FB), return (FA, radA), else return (FB, radB).

Theorem 4.6.14. k-BSAlgo(D′,L′, k′) returns a solution (F, rad) with cost(F ) ≤
(
12.365 +

O(ε)
)
·OPT +O(R∗) where

{
(i, rad(i))

}
i∈µ(F )

⊆ L′ comprises non-intersecting pairs.

Proof. This follows essentially from Theorem 4.6.8 and Theorem 4.6.13. When z1 ≤ (1 + ε) ·
OPT , Theorem 4.6.8 yields the above bound on cost(FA). Otherwise, Theorem 4.6.13 yields the
bound (9 + 3ε)OPT +O(R∗) on the cost(FB) or the solution returned in C3 which is dominated
by the term in the theorem.

We now have all the ingredients needed for proving our main theorem for the LBkSRO prob-
lem.

Proof of Theorem 4.6.1. Again when FO = {(i1, r1), . . . (it, rt)} in Algorithm 2 corresponds to
the t facilities in an optimal solution with largest radii, we obtain the desired approximation
bound. In this case, if t = k, then FO is an optimal solution, otherwise, we have t ≥ 1

ε
and

R∗ ≤ O∗

t
≤ εO∗ and OPT ≤ O∗ −

∑t
p=1 rp. Using Theorem 4.6.14, we get the result in the

theorem.

4.7 Proof of Lemma 4.6.9 (continuity lemma)

Let us abbreviate PDAlg(F ,D′, c,L′, z) to PDAlg(z) and let x− denote a quantity infinitesimally
smaller than x. Consider the dual-ascent phase of PDAlg for z1 and z2. Sort clients with respect
to their α0

j = min(α1
j , α

2
j ) value, i.e., the earliest time they become tight in one of the two

executions. Let this ordering be α0
1 ≤ α0

2 ≤ · · · ≤ α0
n. We prove by induction that |α1

j − α2
j | ≤

2j−1δz.

For the base case, assume without loss of generality that α0
j = α1

j for j = 1, and let (i, r) be
the tight pair that caused j to become inactive in PDAlg(z1). Consider time point t = α0

1 in the
two executions. By definition all clients are active at time t− in PDAlg(z2). So the contribution∑

j∈B(i,r)∩D′ αj of clients to the LHS of (4.2) at time t− is at least as much as their contribution
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in PDAlg(z1) at time t−. Therefore, we can increase α1 by at most δz beyond time t in PDAlg(z2)
as z2 − z1 = δz.

Suppose we have shown that for all clients j = 1, 2, · · · , ` − 1 (where ` ≥ 2), |α1
j − α2

j | ≤
2j−1δz. Now consider client ` and let (i, r) be the tight pair that makes ` inactive at time α0

` in
PDAlg(zp), where p ∈ {1, 2}. Consider time point t = α0

` in both executions. By definition, all
clients j > ` are still active at time t− in both executions PDAlg(z1) and PDAlg(z2). (They might
become inactive at time t but can not become inactive earlier.) The contribution

∑
j∈B(i,r)∩D′ αj

of clients to the LHS of (4.2) in the execution other than p at time t− is at least their contribution in
PDAlg(zp) at time t− minus

∑`−1
j=1 2j−1δz. The values of z in the two executions differs by at most

δz, so in the execution other than p, α` can grow beyond t by at most (1 +
∑`−1

j=1 2j−1)δz ≤ 2`δz.

Now if we consider a tight pair (i, r) in one of the execution, the value of RHS and LHS of∑
j∈B(i,r) αj ≤ r + z for the other execution can differ by at most (1 +

∑n
j=1 2j−1)δz ≤ 2nδz.

Now consider the case where m > 0. Note that in this case, we can assume that we have the
execution for m = 0, pick the first time at which there are at most m active clients, i.e., time
γ in PDAlgo, and set αj = γ for every active client at this time point. Let γ0 = min(γ1, γ2),
suppose γ0 = γp, where p ∈ {1, 2}. Note that by time γ0 + 2nδz, all pairs that are tight in the
p-th execution by time γ0 are also tight in the other execution. So the number of active clients
after this time point is at most m. Therefore |γ1 − γ2| ≤ 2nδz.

4.8 Equivalence of lower-bounded k-supplier with outliers and
lower-bounded k-center with outliers

Let LBkCentO denote the special case of LBkSupO where F = D. In this section, we show
that if there exists an α-approximation for LBkCentO, then there exists an α-approximation for
LBkSupO. Let I = (F ,D, c, L, k,m) be an instance of LBkSupO withN = |F|+1 and |D| = n.
Define an instance I ′ = (D′, c′, L′, k′,m′) as follows: let k′ = k, letD′ = (D×{1, 2, · · · , N})∪
F (|D′| = nN +N − 1), let c′((j, p), i) = c(j, i) for each j ∈ D, p ∈ [N ], i ∈ F and let c′(q, q′)
be defined as symmetric closure of the fixed distances for q, q′ ∈ D′, let L′i = Li for i ∈ F and
L′(j,p) = N(n + 1), and let m′ = N · m + (N − 1). Clearly I ′ can be constructed from I in
polynomial time. Note that lower bounds for (j, p), j ∈ D, p ∈ [N ] is set so that it is smaller
than the number of clients, i.e., L′(j,p) < |D′|, so (j, p) cannot be opened as a center.

Let OPT (I ′) denote the value of optimal solution of I ′ and OPT (I) denote the value of
optimal solution of I. We claim that OPT (I ′) ≤ OPT (I). Let (F ∗, σ∗) denote an optimal
solution of I. Let solution (F̂ , σ̂) for I be constructed as follows: let F̂ = F ∗, for each p ∈ [N ],
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define σ̂(q) = i for q = (j, p) if σ∗(j) = i, and σ̂(q) = out otherwise. Note that since there are at
mostm outliers in solution (F ∗, σ∗) then there are at mostN ∗m+|F| = N ∗m+(N−1) outliers
in (F̂ , σ̂). Clearly the radius of opened centers is the same as before, so OPT (I ′) ≤ OPT (I).

Now suppose there exists an α-approximation algorithm A for LBkCentO problem. We
use this algorithm to obtain an α-approximation solution for LBkSupO instance I. First, we use
AlgorithmA on LBkCentO instance I ′. Let (F ′, σ′) be an output of AlgorithmAwith maximum
radius r. Then we use Algorithm 3 described below to find a solution (F, σ) with radius r. Since
r ≤ α. ·OPT (I ′), r ≤ αOPT (I) as well and we have an α-approximation algorithm.

Algorithm 3 Algorithm for constructing feasible assignment LBkSupO solution (F, σ)

Input: LBkCentO instance I, Instance LBkCentO solution (F ′, σ′) found by Algorithm A(I ′).
1: F ← F ′.
2: Construct network N = (V,E) where V = {s, t} ∪ D ∪ F and E = {si : i ∈ F} ∪ {ij :
i ∈ F, j ∈ D, c(i, j) ≤ r} ∪ {jt : j ∈ D}.

3: uij = 1 for each ij ∈ E, i ∈ F, j ∈ D.
4: lsi = Li for each si ∈ E, i ∈ F .
5: ujt = 1 for each jt ∈ E, j ∈ D.
6: f ← max−flow(N ) respecting lower bounds l and upper bounds u on edges.
7: if value of f is ≥ n−m then,
8: σ(j) = i if fjt = 1 and fij = 1 for i ∈ F .
9: σ(j) = out if fjt = 0.

10: return (F, σ).

Lemma 4.8.1. Let (F ′, σ′) be a feasible solution of LBkCentO instance I ′ with maximum radius
at most r, then solution (F, σ) is a feasible solution to LBkSupO instance I with maximum radius
at most r where σ is an output of Algorithm 3.

Proof. Consider any set S ⊆ F ′. There are at least
∑

i∈S N ·Li clients inD′ assigned to S by σ′.
Since there are N −1 facilities inD′, there are at least

∑
i∈S N ·Li−(N−1)

N
clients at distance at most

r from S. Note that the smallest number greater than
∑
i∈S N ·Li−(N−1)

N
is
∑

i∈S Li, so there are at
least

∑
i∈S Li clients in neighbor set of any S in F = F ′. Since each client at distance at most r

from F can let 1 unit of flow through from F , there exists a flow f satisfying lower bounds and
upper bounds on the edges.

It remains to show that value of f is at least n −m. If there is an incoming edge to a client
j in N , then a flow of 1 can be sent through j. So we want to bound the number of clients with
no incoming edge in N . If some copy of client j is assigned to some facility in solution (F ′, σ′)
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then j is at distance at most r of some facility in F = F ′. Since there are at most Nm+ (N − 1)

outliers in (F ′, σ′), there are at most Nm+(N−1)
N

clients with no incoming edge in N . Therefore
there are at most m clients with no incoming edge as the largest integer smaller than Nm+(N−1)

N

is m. So there are at most m outliers.
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Chapter 5

Conclusions

In this thesis, we consider some sophisticated facility-location problems that better abstract some
real-world settings than the basic FL problems like UFL, CFL, k-median. We develop techniques
for tackling these problems by leveraging our understanding of basic FL problems, and our tech-
niques yield the first and/or the best approximation guarantees for these problems. Our results
open many avenues for future work, some of which are presented below.

Mobile facility location problem (MFL). An immediate question is whether the approxima-
tion factor can be improved. As mentioned in Chapter 2, MFL generalizes k-median problem
and our (3 + ε)-approximation ratio matches the best approximation ratio for k-median based
on local-search technique. Shortly after our result, Li and Svensson [64] followed by Byrka
et al. [16], presented LP-based approaches yielding (2.732 + ε) and (2.675 + ε) approximation
ratios, respectively. One interesting question is whether these improved LP-based methods for
k-median can be utilized to obtain analogous improvements for MFL.

Our local-search based approach fails to deliver a good solution in the case that facilities
and clients move in different metrics (see Section 2.8). All algorithms with O(1) approximation
ratio for this case are based on linear programming [34, 79]. A natural question is whether a
combinatorial algorithm or local-search based algorithm with constant factor approximation for
this case can be developed.

More generally, MFL (even with different client-assignment and facility-movement metrics)
is a special case of the matroid median problem [60, 79]. A captivating open question is whether
a combinatorial approximation algorithm can be developed for matroid median.
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Minimum load k-facility location (MLkFL). This problem is rather poorly understood and
other than our result for the line-metrics, star-metrics and tree-metrics, no approximation except
the trivial O(k)-approximation, obtained by returning a k-median solution, is known. The most
prominent open question is to find a true (non-bicriteria) approximation algorithm for the general
case.

Our algorithm for line metrics is quite involved and an interesting question is whether a
simple algorithm with a constant factor approximation can be obtained. One step in this direction
would be to understand whether there exists a near-optimal solution without any crossings, i.e.,
a solution where client-assignments form a laminar family and the cost of the solution is within
a constant factor of optimal cost.

In [4], we present a QPTAS for tree-metrics and a poly-time algorithm with constant factor
approximation when the tree defining the metrics is a star. It is open to obtain a PTAS for tree
metrics, or even a constant-factor polytime approximation. It would also be interesting to obtain
an O(1)-approximation for Euclidean metrics, and we conjecture that such an algorithm exists.

Lower-bounded clustering. The main open question is whether our techniques, which are
guided by the Lagrangian-relaxation paradigm but circumvent the difficulty posed by not hav-
ing a Lagrangian-multiplier-preserving algorithm, can be applied to other problems, such as,
most notably, k-median with outliers. Our approach uses different insights about the solutions
obtained by the primal-dual algorithm. These insights should be helpful in devising an approxi-
mation algorithm for k-median with outlier as well. The only true-approximation result known
for k-median problem with outliers is by Chen [23] who obtained a large constant-factor approx-
imation for this problem (the constant is not calculated in [23] and its value is at least in the
hundreds).

A closely related problem to the lower-bounded clustering problems that we consider, is
lower-bounded facility location. Recall that in this problem, the cost of the solution consists of
the sum of the facility cost and client assignment costs. The only results known for this problem
are in the setting of uniform lower-bounds and the current state-of-the-art is 83 by [6]. Even
for the case that the facility opening costs are zero, no approximation is known for non-uniform
lower-bounds.

In terms of lower-bounds for the approximability of the min-sum-of-radii problem, it is only
known that the problem is NP-hard; its complexity is not yet settled even for shortest-path metrics
of unweighted graphs with only a quasipolytime (exact) algorithm known [36]. One fundamental
question is to understand the hardness of this problem more precisely, either by proving stronger
lower-bounds on the approximability or devising a polynomial time approximation scheme.
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[75] David B. Shmoys and Éva Tardos. An Approximation Algorithm for the Generalized As-
signment Problem. Mathematical Programming, 62(3):461–474, 1993.
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[78] Zoya Svitkina and Éva Tardos. Facility location with hierarchical facility costs. ACM
Transactions on Algorithms (TALG), 6(2):37:1–37:22, 2010.

[79] Chaitanya Swamy. Improved approximation algorithms for matroid and knapsack median
problems and applications. In ACM Transactions on Algorithms (TALG), volume 12, pages
49:1–49:22, 2016.

[80] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge university press, 2011.

126

http://fnd2012.mimuw.edu.pl/qa/index.php,qa=4&qa_1=approximating-star-cover-problems
http://fnd2012.mimuw.edu.pl/qa/index.php,qa=4&qa_1=approximating-star-cover-problems

	List of Figures
	List of Tables
	Introduction
	Models studied in this thesis
	Mobile facility location
	Minimum load k-facility location
	Clustering problems with lower-bounds and outliers

	Related work
	Notation used in the thesis

	Mobile Facility Location
	Introduction
	Summary of results
	Related work

	Problem definition and preliminaries
	The local-search algorithm
	Analysis leading to a 5-approximation
	The swaps used and their analysis
	Polynomial time local search approach

	Improved analysis leading to a 3-approximation
	Extension to the weighted case
	Reduction from k-median to MFL
	Bad locality gap with arbitrary facility-movement costs

	Minimum-Load k Facility Location
	Introduction
	Summary of results
	Related work

	Problem definition and preliminaries
	A PTAS for line metrics
	Structure of near optimum solutions
	Finding a well-formed solution

	A constant-factor approximation algorithm for MLkFL in star metrics
	A well-structured near-optimal solution
	A dynamic-programming algorithm for finding a well-structured solution

	Hardness of the problem
	 Integrality-gap lower bounds
	An unbounded locality gap for the multi-swap local-search algorithm for MLkFL

	Clustering problems with lower bounds and outliers
	Introduction
	Summary of Results
	Related Work

	Problem Definition and Preliminaries
	Minimizing the maximum radius with lower bounds and outliers
	Finding a distance-3 assignment for LBkSup.
	Finding a distance-5 assignment for LBkSupO.

	Minimizing sum of radii with lower bounds and outliers
	Approximation algorithm for LBkSR
	Primal Dual Algorithm
	Algorithm k-BSAlg
	Analysis of LBkSR Algorithm employing k-BSAlg
	Improved Approximation Ratio for LBkSR

	Approximation algorithm for LBkSRO
	Combination subroutine A(to.(F1,rad 1),(F2,rad 2))to.
	Subroutine B(to.(F1,f1,OUT 1,rad 1,1,1),(F2,f2,OUT 2,rad 2,2,2))to.
	Analysis of k-BSAlgo Algorithm and LBkSRO Algorithm

	Proof of Lemma  ?? (continuity lemma)
	Equivalence of lower-bounded k-supplier with outliers and lower-bounded k-center with outliers 

	Conclusions
	References

