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Abstract. Cooperative matching games (Shapley and Shubik) and Network bar-
gaining games (Kleinberg and Tardos) are games described by an undirected
graph, where the vertices represent players. An important role in such games
is played by stable graphs, that are graphs whose set of inessential vertices (those
that are exposed by at least one maximum matching) are pairwise non adjacent. In
fact, stable graphs characterize instances of such games that admit the existence
of stable outcomes.
In this paper, we focus on stabilizing instances of the above games by blocking as
few players as possible. Formally, given a graph G we want to find a minimum
cardinality set of vertices such that its removal from G yields a stable graph. We
give a combinatorial polynomial-time algorithm for this problem, and develop ap-
proximation algorithms for some NP-hard weighted variants, where each vertex
has an associated non-negative weight. Our approximation algorithms are LP-
based, and we show that our analysis are almost tight by giving suitable lower
bounds on the integrality gap of the used LP relaxations.

1 Introduction

Game theory is an active and important area of research in the field of Theoretical Com-
puter Science, and combinatorial optimization techniques are often crucially employed
in solving game theory problems [15]. For several games defined on networks, studying
the structure of the underlying graph that describes the network setting is important to
identify the existence of good outcomes for the corresponding games. Prominent ex-
amples are cooperative matching games introduced by Shapley and Shubik [17] and
network bargaining games studied by Kleinberg and Tardos [9]. These are games de-
scribed by an undirected graph G = (V,E), where the vertices represent players, and
the cardinality of a maximum matching in G, denoted by ν(G), represents a total value
that the players could gain by interacting with each other.

In an instance of a cooperative matching game [17], one seeks for an allocation of
the value ν(G) among players, described by a vector y ∈ RV≥0, in which no subset of
players S has an incentive to form a coalition to deviate. This is formally described by
the constraint

∑
v∈S yv ≥ ν(G[S]) for all subsets S, where G[S] denotes the subgraph

induced by the vertices in S. Such allocation y is called stable. It is well-known (see
e.g. [5]) that cooperative matching game instances that admit the existence of a stable



allocation are precisely the set of instances described by stable graphs: these are graphs
whose set of inessential vertices are pairwise non adjacent. We recall here that a vertex
v of a graph G is called inessential if there exists at least one maximum matching M in
G that exposes v, that is, v is not an endpoint of M , and it is called essential otherwise
(see Fig. 1 in Appendix A for an example).

Network bargaining games described by Kleinberg and Tardos [9] are network ex-
tensions of the classical Nash bargaining games [14]. In an instance of a network bar-
gaining game described by a graph G, the edges represent a set of potential deals of
unit value that the players (vertices) could make. An outcome of the game is given by
a matching M of G (representing the set of deals that the players made) together with
a value allocation y ∈ RV≥0 on each vertex (representing how the players decided to
split the values of the deals they made, if any). Kleinberg and Tardos [9] introduced
the notion of stable outcomes for such games, that are outcomes where no player has
an incentive to deviate, as well as the notion of balanced outcomes, that are stable out-
comes in which, in addition, the values are “fairly” split among the players. The authors
proved that a balanced outcome exists if and only if a stable outcome exists, and this
happens if and only if the graph G describing the instance is stable.

Since not all graphs are stable, there are instances of both network bargaining
games and cooperative matching games that do not admit stable solutions. This mo-
tivated many authors in past years to address the algorithmic problem of stabilizing
such instances by minimally modifying the underlying graph. Two very natural ways
to modify a graph in order to achieve some desired properties are via edge-removal or
vertex-removal operations. The authors in [4] looked at edge-removal operations, that
is, stabilizing instances of the above games by blocking potential deals that the players
could make. In this paper, we look at the vertex-removal counterpart, that is, stabilizing
instances by blocking players. Formally, this translates into the following problem:
Vertex-stabilizer problem: Given a graph G = (V,E), find a minimum cardinality
vertex-stabilizer, that is a set S ⊆ V whose removal from G yields a stable graph.
We also generalize and study this problem in the weighted setting (a formal definition
is in next subsection).

In addition to the connection with game theory, the vertex-stabilizer problem is also
of interest from a combinatorial optimization perspective. In fact, an alternative and
equivalent characterization of stable graphs can be given using linear programming and
the notion of fractional matchings and vertex covers, as we are now going to explain.
For a graph G = (V,E), a fractional matching is a feasible solution to the LP:

νf (G) := max
{∑
e∈E

xe :
∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V, x ≥ 0
}
,

where δ(v) denotes the set of edges incident into v. Note that, if we add binary con-
straints to the above LP we obtain a formulation to find a matching of G of maximum
cardinality ν(G). The dual of the above LP is:

τf (G) := min
{∑
v∈V

yv : yu + yv ≥ 1 ∀{u, v} ∈ E, y ≥ 0
}
.

Once again, note that if we add binary constraints to this dual LP we obtain the canon-
ical formulation for finding a vertex cover of G of minimum cardinality τ(G), that is,
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a min-cardinality subset of vertices covering all edges of the graph. For this reason,
fractional feasible solutions to the above dual LP are called fractional vertex covers.

By duality theory, we know that the following holds: ν(G) ≤ νf (G) = τf (G) ≤
τ(G). In general, there are graphs for which all the above inequalities are strict (e.g.
a triangle). However, for certain classes of graphs some of the above inequalities hold
tight. In particular, the class of König-Egerváry graphs ([18,11,12]) is formed by all
graphs G for which ν(G) = τ(G), that is, all the above inequalities hold tight. Note
that the class of König-Egerváry graphs is a proper superset of the class of bipartite
graphs. It is known (see e.g. [9]) that stable graphs are exactly the class of graphs for
which ν(G) = νf (G) = τf (G) ≤ τ(G), that is, graphs for which the cardinality of a
maximum matching (ν(G)) is equal to the minimum size of a fractional vertex cover
(τf (G)). We have therefore the following relation:

(Bipartite graphs) ( (König-Egerváry) ( (Stable graphs) ( (General graphs).
The algorithmic problems of turning a general graph into a bipartite one by removing
either a set of edges or a set of vertices of minimum weight/cardinality, have been
studied in the literature (see e.g. [1,8]). Similarly, the algorithmic problems of turning a
given graph into a König-Egerváry one by removing a min-cardinality subset of edges
or of vertices have been studied (see e.g [13]). Differently, as mentioned before, for
stable graphs only the edge-removal question has been investigated so far, and this
yields an additional motivation to study the vertex-removal question in this paper, both
in the unweighted and in the weighted setting.
Our results and techniques. We study the vertex-stabilizer problem in Section 2.
We first show a structural property of any minimal vertex-stabilizer. Namely, we prove
that removing any minimal vertex-stabilizer does not decrease the size of a maximum
matching in the resulting graph (Theorem 1). This theorem has an interesting interpre-
tation in network bargaining and cooperative matching games: it states that it is always
possible to stabilize instances by blocking a minimum number of players without de-
creasing the total value that the players could get. An analogue of Theorem 1 has been
proven by Bock et al. [4] for minimal edge-stabilizers3, however, their proof does not
hold for the vertex-removal setting, and therefore our proof is different. Interestingly,
despite this analogy, algorithmically the two problems appear to have a different com-
plexity: while finding a min-cardinality edge-stabilizer is at least as hard as finding a
minimum vertex cover [4], we here prove (Theorem 2) that finding a min-cardinality
vertex-stabilizer is a polynomial-time solvable problem. In addition, we can prove (The-
orem 6 in Appendix D) that the problem of blocking as few players as possible in order
to make a given set of deals realizable as a stable outcome is also polynomial-time solv-
able, once again in contrast with the edge-removal setting, where the analogous question
has been studied by [4] and shown to be vertex cover-hard. These three theorems are
proved using combinatorial techniques. Theorem 1 exploits the structure of maximum
matchings in graphs, that follows from the seminal works in [7,2]. Using Theorem 1,
one can compute a lower bound on the size of a minimum vertex-stabilizer (as is done
in [4]) exploiting properties of the so-called Edmonds-Gallai Decomposition (EGD) of
a graph (definition is in Section 2). By further exploiting the relation that interplays
between matchings and EGD, we get algorithms that prove Theorems 2 and 6.

3 These are subsets of edges such that their removal from G yields a stable graph.
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We study in Section 3 the weighted setting. In the vertex-stabilizer problem described
before, players are all equally considered, that is, from an objective function perspec-
tive, we are assuming that blocking a player u is as costly as blocking a player v, inde-
pendently on how u and v are connected to the rest of the players in the network. How-
ever, from a bargaining perspective, players might not all be equally powerful: as an
example, players corresponding to essential vertices have more bargaining power than
inessential ones. Moreover, blocking a player that is highly connected in the graph and
therefore have the potential to enter in many deals might be more costly than blocking
a less connected player. For this reason, blocking different players might have different
costs. We can model this by assigning a weight wv ≥ 0 to each vertex v. In this set-
ting, we could be interested in either minimizing the weight of the blocked players, or in
maximizing the weight of the remaining players. Two optimization problems then arise:

Min-weight vertex-stabilizer: Given a graph G = (V,E), and vertex weights wv ≥
0 ∀v ∈ V , find a vertex-stabilizer S that minimizes w(S) =

∑
v∈S wv .

Max-weight vertex-stabilizer: Given a graph G = (V,E), and vertex weights wv ≥
0 ∀v ∈ V , find a vertex-stabilizer S that maximizes w(V \ S) =

∑
v/∈S wv .

This weighted setting poses more algorithmic challenges, and this is technically the
most interesting part of the paper. We prove that both the above problems become NP-
hard already if 2 different weights are involved (Theorem 7 in Appendix E). For this
reason, we focus on approximation algorithms. We give a 2-approximation algorithm
for the max-weight vertex-stabilizer problem (Theorem 3), and a O(γ)-approximation
algorithm for the min-weight vertex-stabilizer problem, (Theorem 4), where γ is the size
of the so-called Tutte-set of the graph G (a formal definition is in Section 2). Both our
algorithms are LP-based and rely on the following strategy. As a first step, we identify
a suitable LP-relaxation to use for our problems. To this extent, we show that we can
reduce our problems to vertex-deletion problems in a bipartite graph, in which the goal
is to remove a subset of vertices in order to turn some special nodes into essential
vertices in the remaining graph. This reinterpretation of the problem allows us to write
a formulation that uses a set of flow-type valid constraints, and exploiting the properties
of this flow will be crucial to round fractional solutions into integral ones.
In addition, we show lower bounds on the integrality gap of the LP relaxations we use,
that show that our analysis are almost tight. We give a 3

2 lower bound on the integrality
gap in the max-weight case (in Appendix G), and aΩ(γ) lower bound in the min-weight
case (in Appendix H), that asymptotically matches the developed approximation factor.
The lower bound for the min-weight case holds even on graph with bounded (constant)
degree, and to construct it we rely on suitable unbalanced bipartite expander graphs.
We conclude by showing that we can give an algorithm for the min-weight vertex-
stabilizer problem whose approximation factor is bounded by the maximum degree of
a vertex in G, if we have an additional information: namely, if we know which is the
set of essential vertices in the final graph (Theorem 5). From a network bargaining
perspective, this corresponds to stabilize instances enforcing that some specific players
will always be able to enter in a deal in any stable outcome. Also for this latter case
we show a matching lower bound on the integrality gap of the LP relaxation we use (in
Appendix F). Our lower bounds show that to improve significantly our approximation
factors a different strategy or at least different formulations have to be used.
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Related works. Removing vertices or edges from a graph as to satisfy certain proper-
ties has been widely studied in the literature in many variants. The paper that is most
closely related to our work is [4] that studied the edge-stabilizer problem in the un-
weighted setting, and in addition to the results previously mentioned, they give effi-
cient approximation algorithms for sparse graphs and for regular graphs. Biró et al. [3]
also studied the edge-stabilizer problem, but considering maximum-weight matchings
instead of maximum-cardinality matchings, and showed NP-hardness for this case.
Könemann et al. [10] studied a related problem of computing a minimum-cardinality
blocking set, that is a set of edges F such thatG\F has a fractional vertex cover of size
at most ν(G) (but note that G \ F might not be stable). They give approximation al-
gorithms for sparse graphs. Mishra et al. [13] studied vertex-removal and edge-removal
problems to turn a graph into a König-Egerváry graph. Among other results, they give a
O(log n log log n) approximation for the vertex-removal case in the unweighted setting,
and show that assuming Unique Game Conjecture, both the minimum vertex-removal
and edge-removal problems do not admit a constant factor approximation algorithm.
We note that their hardness results do not seem to be helpful for our setting, since the
graphs used in their reductions are in fact stable.

2 Minimum cardinality vertex-stabilizers
We first prove that the removal of any minimal vertex-stabilizer does not decrease the
cardinality of a maximum matching in the resulting graph. HereG\S denotes the graph
obtained by removing from G = (V,E) the subset of vertices S ⊆ V .

Theorem 1. For any minimal vertex-stabilizer S ⊆ V of a graph G = (V,E), we have
ν(G \ S) = ν(G).

Before giving a proof, we need a proposition (see [9]) that follows from standard
results in matching theory, and uses the notion of M -flower for a maximum matching
M of G. An M -flower is a subgraph of G formed by a u, v-path of even length that
alternates edges in E \M and edges in M , plus a cycle containing v of 2k + 1 edges,
for some integer k ≥ 1, in which exactly k edges are in M (see Fig. 2 in Appendix A).

Proposition 1. [9] Given graph G, the following are equivalent characterizations of
a stable graph: (i) The set of inessential vertices of G are pairwise non adjacent, (ii)
ν(G) = τf (G), (iii) There is no M -flower in G for any maximum matching M . More-
over, if G is not stable, then for every maximum matching M there is an M -flower.

Proof of Theorem 1. Let S be a minimal vertex-stabilizer of G = (V,E), and M be a
maximum matching of G \ S. Suppose by contradiction that |M | < ν(G). By classical
results on matching theory [2], since M is not a maximum matching in G there exists
an M -augmenting path P in G, that is, a path P that alternates edges from E \M and
edges from M with endpoints s and t which are exposed by M . Clearly, we must have
|S ∩ {s, t}| ≥ 1, otherwise P would be an augmenting path in G \ S, contradicting
maximality of M . We distinguish two cases.
Case 1: |S ∩ {s, t}| = 1. Without loss of generality, assume s ∈ S. In this case, we
will show that S′ = S \ {s} is a vertex-stabilizer of G, which is a contradiction to the
minimality of S. Consider the matching M ′ = M∆P , where ∆ denotes the symmetric

5



difference operator. M ′ is a matching of G \ S′ and |M ′| = |M |+ 1. Since adding one
vertex to an arbitrary graph can increase the size of maximum matching by at most one,
we deduce thatM ′ is a maximum matching ofG\S′, hence ν(G\S′) = |M ′|. We now
prove that G \S′ is stable by showing that ν(G \S′) = τf (G \S′). Let y ∈ RV \S≥0 be a
minimum size fractional vertex cover of G \S. By stability of G \S, ν(G \S) = 1T y.
Define vector y′ ∈ RV \S

′

≥0 as y′v = yv for all v ∈ V \ S, and y′s = 1. Obviously y′

is a fractional vertex cover of G \ S′. So we have τf (G \ S′) ≤ 1T y′ = 1T y + 1 =
ν(G \ S) + 1 = ν(G \ S′), i.e., G \ S′ is stable.
Case 2: |S ∩ {s, t}| = 2. We first observe that (G \ S) ∪ {s} does not contain any M -
augmenting path. Otherwise, by the same arguments as in Case 1, we can deduce that
S\{s} is a vertex-stabilizer, and obtain a contradiction. Similarly, (G\S)∪{t} does not
contain any M -augmenting path. Let S′ = S \ {s, t}, and M ′ = M∆P . We first show
that M ′ is a maximum matching in G \ S′. If not, then ν(G \ S′) ≥ ν(G \ S) + 2. Let
M ′′ be maximum matching inG\S′. If we remove s fromG\S′, we delete at most one
edge ofM ′′. Therefore, ν((G\S)∪{s}) ≥ ν(G\S)+1. However, this implies thatM
is not a maximum matching in (G\S)∪{s}, and therefore (G\S)∪{s} contains anM -
augmenting path contradicting our first observation. Since M ′ is a maximum matching
in G \ S′, and G \ S′ is not stable, by Proposition 1 there exists an M ′-flower F , with
vertex set u1, . . . , up, with u1 being the M ′-exposed vertex on the even-length path
(see Fig. 3 in Appendix A). Note that F cannot be vertex disjoint from P : otherwise, F
would be an M -flower as well in G \ S, contradicting stability of G \ S. It follows that
F ∪ P is a connected subgraph of G. Let ui be the node with the smallest index i that
belongs to both F and P . Note that i 6= 1, since u1 is M ′-exposed and every node in P
is instead M ′-covered. Moreover, i is necessarily an even number: if odd, then the edge
{ui−1, ui} is in both P and F , contradicting our choice of i. Furthermore, note that the
edge {ui, ui+1} belongs to both P and F . Consider the path Q1 that is the subpath of
P connecting ui to either s or t in P \ {ui, ui+1}, and the path Q2 that is the subpath
in F with vertex set u1, . . . , ui. Their union Q1 ∪ Q2 forms a path from u1 to either s
or t, say s (the other case is similar). In this case, Q1 ∪Q2 is an M -augmenting path in
(G \ S) ∪ {s} (see Fig. 3 in Appendix A), contradicting our first observation. ut

We now state our algorithm to find a minimum cardinality vertex-stabilizer, that
relies on the notion of Edmonds-Gallai Decomposition (EGD) of a graph. The EGD of
a graph G = (V,E) is a partition of the set of vertices V into 3 sets (B,C,D) where
B is the set of inessential vertices of G, C is the set of essential vertices of G that have
at least one adjacent vertex in B, and D is the remaining essential vertices of G (see
Fig. 4 in Appendix A). The set C is called the Tutte-set of G.

Algorithm 1
1. Compute the EGD (B,C,D) of G, and a maximum matching M∗ of G that covers
the maximum possible number of isolated vertices in the graph G[B].
2. Let G1, . . . , Gk be the non-singleton components of G[B] with one vertex exposed
by M∗. Set S :=

⋃k
i=1{vi} where vi is the M∗-exposed vertex of Gi.

Theorem 2. Algorithm 1 is a polynomial-time algorithm to compute a minimum cardi-
nality vertex-stabilizer S of a given graph G.
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We here sketch the main ideas of the proof. Let k be as in Algorithm 1. First, we note
that k is a lower bound on the size of any minimum vertex-stabilizer. This has been
proved by Bock et al. [4] for edge-stabilizers, but their proof in fact extends to vertex-
stabilizers if one can assume Theorem 1 (see Lemma 8 in Appendix B). Then, we show
that G \ S is stable, by constructing a fractional vertex cover of G \ S of size equal to
|M∗|. This uses structural properties of maximum matchings and EGD of graphs. Since
the techniques we use here are similar to [4], we defer the full proof to Appendix C.

3 The weighted case

We here deal with the vertex-stabilizer problem in the weighted setting, that is much
more challenging than the unweighted one. To develop our approximation results, we
first find a reformulation of our problems in bipartite graphs. Next lemma follows easily
from Theorem 1 (proof in Appendix C).

Lemma 1. Let (B,C,D) be the EGD of a graph G. Let G1, G2, · · · , Gp be the com-
ponents of G[B] where Gi = (Vi, Ei). Let S be an optimal solution to a min-weight
vertex-stabilizer (resp. max-weight vertex-stabilizer) instance defined on G. Then, (i) S
is a subset of B, (ii) |S ∩ Vi| ≤ 1, (iii) if |S ∩ Vi| = 1, then the vertex gi ∈ S of Gi is a
minimum weight vertex in Gi.

We can use Lemma 1 to simplify our input. If S contains a vertex from a component
Gi, then it must be one of the vertices with minimum weight in Gi. Therefore, we
shrink each non-singleton componentGi to a vertex gi with minimum weight among the
vertices in the component, and we call it a pseudonode (we remove multiple copies of
the same edge created with this operation, if any). Additionally, we know that S ∩D =
∅, so we can safely ignore these vertices and temporarily remove them from G. Lastly,
we remark that it is well-known (see e.g. [16]) that every maximum matching of G
matches all vertices in C to vertices in different components of G[B]; therefore, we
ignore and remove edges between vertices in C from G. In this way we construct from
G a weighted bipartite graph Gb = (B̃ ∪ C, Ẽ), where Ẽ ⊆ E, and B̃ consists of two
sets of vertices: the set of pseudonodes, call this set B1, and vertices corresponding to
singletons in G[B], call this set B2. By construction and our previous remark, ν(Gb) =
|C| and S naturally corresponds to a subset of B̃ of the same weight.

Definition 1. Let H = (U ∪W,F ) be a bipartite graph and U1 ⊆ U . We call S ⊆ U
a U1-essentializer if all vertices in U1 \ S are essential in the graph H \ S.

Next lemma (proof in Appendix C) basically shows that there is an approxima-
tion preserving reduction between the min-weight (resp. max-weight) vertex-stabilizer
problem defined on G, and the problem of finding a suitable B1-essentializer S that
minimizes

∑
v∈S wv (resp. maximizes

∑
v/∈S wv) in the weighted bipartite graph Gb.

Lemma 2. Let S̃ ⊆ B̃ be a B1-essentializer of Gb that satisfies ν(Gb \ S̃) = ν(Gb).
Then S̃ corresponds to a vertex-stabilizer of G (of the same weight). Let S ⊆ V be an
optimal solution to a min-weight vertex-stabilizer (resp. max-weight vertex-stabilizer)
instance defined on G. Then S corresponds to a B1-essentializer in Gb (of the same
weight) that satisfies ν(Gb \ S) = ν(Gb).
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Next, we give an integer programming description of the set ofB1-essentializers, whose
relaxation will be at the heart of our algorithms.

Integer programming description. Given Gb = (B̃ ∪ C, Ẽ), with B̃ = B1 ∪ B2,
we introduce a binary variable zv for v ∈ B̃ to denote if v is in a B1-essentializer S
(i.e. zv = 1 if v ∈ S). We also introduce a binary variable y for v ∈ B̃ ∪ C with the
following meaning: for v ∈ B̃, we let yv = 1 denote if v is an essential node in Gb \ S;
for v ∈ C instead, we let yv = 1 denote if v is always matched to an inessential node
in any maximum matching of Gb \ S. For a set of vertices T , we let y(T ) =

∑
v∈T yv ,

and N(T ) denote the set of neighbours (i.e. adjacent vertices) of T . We let

PI :=
{

(z, y) : yv + zv ≥ 1, for v ∈ B1 (1)

yv + yu + zv ≥ 1, for {u, v} ∈ Ẽ, v ∈ B2, u ∈ C (2)
y(N(A)) ≥ |A| − y(A), for A ⊆ C (3)

y(V ) = |C|, (4)

z ∈ {0, 1}B̃ , y ∈ {0, 1}B̃∪C
}
.

Let us give an intuition of the meaning of the linear constraints. Inequality (1) states that
a vertex in B1 is either essential in Gb \ S or it is removed (as required by Definition
1). Inequality (2) states that if a vertex v in B2 is not removed then either v is essential
in Gb \ S or all of its neighbours have to be matched to inessential vertices in Gb \ S.
The reason is that, if v is inessential in Gb \ S but some neighbour u of v is matched
to an essential vertex v′ in some maximum matching M of Gb \ S, then it is possible
to construct an even length M -alternating path between some M -exposed vertex to
v′, contradicting the fact that v′ is essential. Inequality (3) is a translation of Hall’s
theorem, and states that there exists a matching between vertices in C with y-value 0
and their neighbours with y-value 1, that covers all vertices in C with y-value 0. The
reason is that such vertices will always be matched to essential vertices inGb \S by any
maximum matching. Inequality (4) basically ensures that there is a partition of vertices
in C into those that will always be matched to inessential vertices and those that will
always be matched to essential vertices ofGb\S by any maximum matching. We would
like to emphasize that inequalities (3) are crucial to have a meaningful formulation for
our problem. Next lemma (proof in Appendix C) makes this intuition rigourous.

Lemma 3. PI describes the set of B1-essentializers of the graph Gb.

We denote by Pf the polytope obtained by relaxing the binary constraints of PI , i.e.
replacing them with 0 ≤ z ≤ 1 and 0 ≤ y ≤ 1. When dealing with fractional points,
Inequality (3) does not correspond to Hall’s theorem anymore, but it naturally ensures
the existence of a flow of value |C| − y(C) from vertices in C to vertices in B̃. Among
other things, this also implies that although this set contains exponentially (in the size
of Gb) many inequalities, we can separate over them in polynomial time. Proof of next
lemma is in Appendix C.

Lemma 4. Construct a directed networkN= (VN , AN ) from graph Gb = (B̃∪C, Ẽ)
with VN = B̃ ∪ C ∪ {s, t} and AN = {(s, u) : u ∈ C} ∪ {(v, t) : v ∈ B̃} ∪ Ẽ where
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the edges in Ẽ are oriented from C to B̃. Let (z, y) ∈ Pf . Assign yv amount of capacity
to each arc (v, t), (1 − yu) amount of capacity to each arc (s, u), and ∞ capacity to
arcs in Ẽ. Then, there exists a maximum s− t flow in Nof value y(B̃) = |C| − y(C).

Exploiting the structure of this flow, we can derive useful properties on the extreme
points of Pf . In particular, we have the following lemma (proof in Appendix C):

Lemma 5. Let (z, y) be an extreme point of Pf . There exists a maximum matching in
Gb between the set of vertices {v ∈ B̃ : yv > 0} and the set of vertices {u ∈ C : yu <
1} of cardinality |{v ∈ B̃ : yv > 0}|.

Finally, we note that the problem of finding a B1-essentializer S that maximizes∑
v/∈S wv , or minimizes

∑
v∈S wv , can be formulated respectively as

max
{∑
v∈B̃

wv(1− zv) : (z, y) ∈ PI
}
, and min

{∑
v∈B̃

wvzv : (z, y) ∈ PI
}
. (5)

Algorithm for max-weight vertex-stabilizer. Given a graphG = (V,E) with weights
wv ≥ 0 ∀v ∈ V , we construct from G a weighted bipartite graph Gb = (B̃ ∪ C, Ẽ),
with B̃ = B1∪B2, as described in the beginning of Section 3. We then apply Algorithm
2 that relies on solving the LP relaxation of the maximization IP in (5).
Algorithm 2
1. Let (z∗, y∗)← optimal extreme point of max{

∑
v∈B̃(1− zv) : (z, y) ∈ Pf}.

2. Set B+ := {v ∈ B̃ : 0 < y∗v}; B1
0 := {v ∈ B̃ : y∗v = 0, z∗v = 1}; Bf0 := {v ∈ B̃ :

y∗v = 0, 0 < z∗v < 1}.
3. if w(B+) ≤ w(Bf0 ) then set S = (B+ ∪B1

0), else set S = (Bf0 ∪B1
0).

4. While ν(Gb \ S) < |C| do: find v ∈ S such that ν(Gb \ (S \ {v})) > ν(Gb \ S),
and set S := S \ {v}.

Theorem 3. There is a polynomial-time LP-based 2-approximation algorithm for the
max-weight vertex-stabilizer problem.

Proof. We consider the set S output by Algorithm 2. Note that if S is a B1-essentializer
and ν(Gb \ S) = ν(Gb), then it corresponds to a vertex-stabilizer in G by Lemma
2. Still, Lemma 2 implies that to prove the claimed approximation guarantee, it is
enough to prove that S is a 2-approximated solution for the problem of finding a B1-
essentializer for Gb that maximizes the weight of the non selected vertices.
First, we show that (a) ν(Gb \S) = ν(Gb) and (b) every vertex in B1 \S is essential in
Gb\S, i.e. S is aB1-essentializer. Note that (a) holds by construction after step 4 (recall
that ν(Gb) = |C| and S ∩C = ∅, therefore it is always possible to perform step 4 until
the while condition is not satisfied anymore). Moreover, all vertices added in step 4 are
essential vertices. We are left with (b). Define Cf = {u ∈ C : y∗u < 1}. Furthermore,
partition the set of vertices in B̃ in 4 sets: B+, B

1
0 , B

f
0 and B0

0 := {v ∈ B̃ : z∗v =
0 & y∗v = 0} (the definition of the first 3 sets is given in Algorithm 2). Note that the
vertices in B1 are either in B1

0 or B+, so if S = B+ ∪B1
0 , then Gb \S does not contain

any B1 vertex, and we have nothing to show. Suppose instead S = Bf0 ∪ B1
0 . Note
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that there does not exist any edge between v ∈ B0
0 and u ∈ Cf , because y∗v + z∗v = 0

holds for v and y∗u < 1 holds for u, and therefore Inequality (2) will be violated for the
edge {v, u}, contradicting feasibility of (z∗, y∗). Therefore, the neighbours of vertices
Cf in Gb \ S are vertices in B+ and by Lemma 5, we know that there is a matching
between Cf and B+ covering all vertices in B+. Since every maximum matching in
Gb \ S covers all the vertices in C, it must cover all vertices in Cf , therefore it must
be the case that |Cf | = |B+| and every maximum matching in Gb \ S covers all the
vertices in B+, i.e. all the vertices in B+ are essential. Since (B1 \S) ⊆ B+, the result
follows.
To conclude the proof, we argue that the weight of the vertices in Gb \ S is at least 1

2

the optimal value of the LP. Let w0 = w(B0
0), w1 = w(B+), w2 = w(Bf0 ). Note that

the weight of the vertices in the graph Gb \ S is at least w0 + max(w2, w1) which is
at least half of w0 + w1 + w2 =

∑
v∈B̃ wv −

∑
v:z∗v=1 wv , which is clearly an upper

bound on the optimal value of the LP. ut

Algorithm for min-weight vertex-stabilizer. Given a graphG = (V,E) with weights
wv ≥ 0 ∀v ∈ V , we construct a weighted bipartite graph Gb = (B̃ ∪ C, Ẽ), with
B̃ = B1 ∪ B2 obtained from G as described in the beginning of Section 3. We then
apply Algorithm 3 that relies on solving the LP relaxation of the minimization IP in (5).

Algorithm 3
1. Solve the LP: min

{∑
v∈B̃ wvzv : (z, y) ∈ Pf

}
to get an extreme point optimal

solution (z, y), and set S := {v : zv ≥ 1
|C|+1}.

2. While ν(Gb \ S) < |C| do: find v ∈ S such that ν(Gb \ (S \ {v})) > ν(Gb \ S),
and set S := S \ {v}.

Theorem 4. There is a polynomial-time LP-based (γ + 1)-approximation algorithm
for the min-weight vertex-stabilizer problem, where γ is the size of the Tutte-set of G.

Proof. We consider the set S output by Algorithm 3. As for the max-weight case, due
to Lemma 2 and step 2 of the algorithm, to prove the theorem it is enough to show
that S is a (|C| + 1)-approximated solution for finding a B1-essentializer for Gb that
minimizes the weight of the selected vertices. Trivially, w(S) ≤ (|C|+1)

∑
v∈B̃ wvzv ,

therefore the approximation factor guarantee holds. It remains to show that S is in fact
a B1-essentializer for Gb.
Let S̃ be the set S before executing step 2 of the algorithm. We will prove that each
v ∈ B1 \ S̃ is essential in Gb \ S̃. This is enough, since every vertex added back in
step 2 will be essential by construction, and this addition cannot make any vertex in B1

inessential. Let us assume by contradiction that v0 ∈ B1 \ S̃ is inessential in Gb \ S̃.
In this case, if we apply Edmonds’ Blossom Algorithm [7] in Gb \ S̃, we can find a
maximum matching M that exposes v0 and a so-called frustrated tree T = (VT , ET )
containing v0 with the following properties: (i) |ET ∩M | = |VT ∩C|, and all vertices in
VT \{v0} are covered byM , and (ii) the neighbours of the set of vertices VT∩B̃ inGb\S̃
are all in the tree T (we refer to [7,6] for details). Note that the neighbours of VT ∩ B̃ in
Gb \ S̃ are the same as the neighbours of VT ∩ B̃ in Gb, i.e. N(VT ∩ B̃) = VT ∩ C as
S̃ ⊆ B̃. Feasibility of (z, y) implies that for each matching edge {u, v} ∈ M , we have
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yu + yv + zv ≥ 1. Since S̃ removed all vertices with z-value ≥ 1
|C|+1 , for each edge

{u, v} ∈M , yu + yv > 1− 1
|C|+1 . Let MT := M ∩ ET . We have

y(VT ) = yv0 +
∑

{u,v}∈MT

(yu + yv) > (1− 1

|C|+ 1
) + |MT |(1−

1

|C|+ 1
)

= |MT |+ 1− |MT |+ 1

|C|+ 1
≥ |MT |,

where the first inequality follows from the Inequality (1) associated to v0, and the last
inequality follows from the fact that |MT | ≤ |C|. Furthermore, for set A = VT ∩ C,
since |MT | = |A| by (i), we have

y(A) + y(N(A) ∩ VT ) = y(VT ) > |MT | = |A|. (6)

If we consider the directed network N and the s − t flow as in Lemma 4, (6) says that
the capacity y(N(A)∩ VT ) of the arcs between t and N(A)∩ VT is strictly larger than
the flow sent on the arcs from s toA (that can be at most |A|−y(A)). Since a maximum
flow necessarily saturates all the edges from N(A) ∩ VT to t, there is a neighbour of
(N(A)∩ VT ) which is not in A who sends positive flow to some vertex in N(A)∩ VT ,
but this contradicts property (ii) of T , as N(N(A) ∩ VT ) = N(B̃ ∩ VT ) = A. ut

We remark here that we can show a tight lower bound ofΩ(γ) on the integrality gap
of the minimization IP in (5) that holds even on graphs with constant degree. However,
we now describe an algorithm whose approximation ratio is bounded by the maximum
degree (δ) of a vertex in G, which needs to know the set of essential vertices in the final
stable graph (our reduction in Theorem 7 shows that also this problem is NP-hard).

Theorem 5. There is a δ-approximation algorithm for the min-weight vertex-stabilizer
problem, if we know the set of essential vertices in the final stable graph.

This translates into knowing which subset B′ ⊆ B̃ of vertices of Gb must have y-value
1 in our formulation (5). In this setting, we therefore add to Pf the following constraints:
yv = 1 for v ∈ B′, and yv = 0 for v ∈ B̃ \B′. We call the resulting LP problem (P1).
To find good integral solution to (P1), we introduce a new optimization problem (P2)
which in fact corresponds to a minimum cost flow problem, as follows. We define a new
weight vector w for vertices in C as wu =

∑
v∈N(u)∩(B2\B′)

wv

δ . Then we remove all
vertices in B̃ but B′, obtaining graph G′b. For a set of vertices T , let N ′(T ) denote the
set of neighbours of T in G′b (while N(T ) denotes the neighbours in Gb). We introduce
a variable fu ∀u ∈ C, and let (P2) be the following problem:

min
{
w(B1\B′)+

∑
u∈C

wufu : |N ′(A)| ≥
∑
u∈A

fu ∀A ⊆ C,
∑
u∈C

fu = |B′|, 0 ≤ f ≤ 1
}
.

A part from the constant term (w(B1 \ B′)) in the objective function, this problem
corresponds to a minimum cost flow problem in a directed networkN constructed from
G′b via a similar process as in Lemma 4. Formally: (i) add a vertex s and for each vertex
u ∈ C add an arc (s, u) with capacity 1 and cost wu, (ii) orient all the edges from C to
B′ in G′b and set their capacity to infinity and their cost zero, (iii) add a vertex t and for
each v ∈ B′ add an arc (v, t) with capacity 1 and cost 0. An optimal solution to (P2) can
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be mapped to a minimum cost s− t flow of value |B′| inN , and vice versa. Therefore,
since all the capacities are integral, we know that (P2) has an optimal integral solution.
Next lemma (proof in Appendix C) maps solutions of these two optimization problems.

Lemma 6. An optimal solution of (P1) can be mapped into a solution of (P2) with no
greater weight. An integral solution of (P2) can be mapped into an integral solution of
(P1) whose weight is at most a δ-factor larger.

We can now replace step 1 of Algorithm 3 with solving (P2) and mapping the solution
into an integral solution of (P1) (we keep step 2). Combining Lemma 6 with Lemma 2,
one can easily see that this new algorithm yields a proof of Theorem 5.
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König-Egerváry Graphs. Technical Report 115, IBM Israel Scientific Center, 1982.
12. E. Korach, T. Nguyen, and B. Peis. Subgraph characterization of Red/Blue-Split Graph and
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A Omitted figures

Fig. 1: An example showing inessential vertices, shown by circle vertices, and essential
vertices, shown by square vertices, of a graph G along with a maximum matching M
shown by bold edges.

Fig. 2: Depiction of an M -flower, solid edges are M edges and dotted edges are E \M
edges.
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Fig. 3: Construction of an M -augmenting path with one endpoint in {s, t}. The solid
edges are M ′ edges and dotted edges are E \M ′ edges. Note that M ′ ∩Q2 = M ∩Q2

while M ∩Q1 = Q1 \M ′.

Fig. 4: Example of Edmonds-Gallai decomposition for graph G with maximum match-
ing M showed by bold edges.

B Preliminaries for the omitted proofs

In this section, we present the preliminaries needed for presenting the omitted proofs.
For this section, we assume that (B,C,D) is the EGD of the input graph G, and
G1, G2, · · · , Gr are the connected components of the graph G[B] induced by B.

The following lemma states some known properties of EGD of graphs. For a proof,
see e.g. [16].

Lemma 7. [16] Let (B,C,D) be Edmonds-Gallai Decomposition of a graph G. Let
G1, G2, · · · , Gr be the components of the graph G[B] induced by B. Then, for each
non-singleton component Gi = (Vi, Ei) and each v ∈ Vi, the graph Gi \ v admits a
perfect matching. Furthermore, ifM is a maximum matching inG, then: (a)M induces
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a perfect matching between vertices of D; (b) M matches C into distinct components
of G[B]; (c) M induces a near-perfect matching in each Gi, i.e., |M ∩ Ei| = |Vi|−1

2 .

The following lemma gives a lower bound on the size of a minimum vertex-stabilizer.
It has been proved by Bock et al. [4] for edge-stabilizers, but their proof extends to
vertex-stabilizers as well, assuming Theorem 1. We report here a proof for complete-
ness.

Lemma 8. [4] Let (B,C,D) be the EGD of a graph G, and let M∗ be a maximum
matching of G that covers the maximum possible number of isolated vertices (i.e. sin-
gletons) in the graph G[B]. Let k be the number of non-singleton components of G[B]
with one vertex exposed by M∗. Then for any minimal vertex-stabilizer S, we have
|S| ≥ k.

Proof. [4] Let M be a maximum matching in G that also matches the maximum pos-
sible number of isolated vertices in G[B]. Let G1, . . . , Gk denote the non-singleton
components in G[B] with at least one vertex exposed by M . Let S be a minimum
vertex-stabilizer and H = G \ S. For each component G1, . . . , Gk, at least one vertex
vi ∈ Gi becomes essential in H . If not, either we removed all vertices in Gi (but this
is not possible since it would decrease the the size of maximum matching) or it means
that inessential vertices do not form a stable set in H , again a contradiction.

Pick a maximum matchingN inH . Then,N will cover all these vertices v1, . . . , vk
that are essential inH . SinceGi is factor-critical andM matches all but one vertex inGi
using edges in Gi, we may assume without loss of generality, that M exposes all these
vertices. The graphM∆N is a vertex-disjoint union of even cycles and even paths since
|M | = |N | = ν(G). Consider the k disjoint paths starting at the vertices v1, . . . , vk in
M∆N . We observe that at least one vertex in each of these paths should belong to S,
otherwise we can obtain a maximum matching in H that exposes the starting vertex vi,
thus contradicting vi being an essential vertex in H . Hence |S| ≥ k. ut

The following two lemmas are keystones in most of the proofs presented in Ap-
pendix C.

Lemma 9. Let S be a vertex-stabilizer for a given graph G, and let M be a maximum
matching of G \ S with |M | = ν(G) (this matching exists by Theorem 1). Let Gi =
(Vi, Ei) be a non-singleton component of G[B], then all vertices of Vi \S are essential
inG\S. Moreover, everyM -exposed vertex v withM -alternating path inG to a vertex
in a non-singleton component of G[B] must be in S. Therefore, if Gi contains an M -
exposed vertex v, then v ∈ S.

Proof. To prove this lemma, we exploit a key property of non-singleton components of
G[B] in EGD: each non-singleton component Gi = (Vi, Ei) of G[B] is factor-critical
which means that for every vertex v ∈ Vi, Gi − v has a perfect matching denoted by
Mv . SinceM is a maximum matching ofG, so by Lemma 7, |M∩Ei| = |Vi|−1

2 . Now if
Vi ∩ S = ∅, every vertex of v′ ∈ Vi must be essential as otherwise if a vertex v′ ∈ Vi is
inessential inG\S, then every vertex v′′ ∈ Vi is inessential but since inessential vertices
in a stable graph must form an independent set, this cannot happen. If Vi ∩ S 6= ∅ then
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since M does not cover at most one vertex v in Vi, then Vi ∩S = {v} and by Lemma 7
and Theorem 1, every vertex of Vi \S is essential in G\S. So every vertex of Vi \S for
non-singleton component Gi = (Vi, Ei) is essential which means that any M -exposed
vertex v with an alternating path to Gi must be in S as otherwise this vertex makes
the vertices of Gi inessential. Since there is a trivial path (with length zero) from an
M -exposed vertex v in a non-singleton component Gi to itself, v ∈ S. ut

Lemma 10. Given a set S ⊆ V and a maximum matching M of a graph G \ S with
size ν(G), a set S is a vertex-stabilizer if it includes any M -exposed vertex v with
M -alternating path to a vertex in a non-singleton component of G[B]. We call M a
vertex-stabilizer-certificate of S.

Proof. Let S be a set satisfying the condition in the lemma. We prove that G \ S is
stable by showing τf (G \S) = ν(G \S) = |M |. Partition B into two sets: B1 and B2,
whereB2 contains the singleton vertices inG[B] andB1 = B\B2. Before describing a
fractional cover y, we prove any vertex v ∈ B1 \S is essential in G\S which is needed
in proving that y is a fractional cover. Let set B′ ⊆ B \ S denote the set of vertices
with M -alternating path to a vertex in B1 \ S (so B1 \ S ⊆ B′). Since we removed
all M -exposed vertices with alternating path to B1 \ S, B′ only includes M -covered
vertices. A vertex in B′ is either matched to a vertex in B′ or to a vertex in C. Let C ′

denote the set of vertices matched to some vertex in B′. Note that C ′ vertices do not
have a neighbour inB \ (S∪B′) as any vertex v inB \ (S∪B′) with a neighbour in C ′

has an M -alternating path to a vertex v′ in B′ and since v′ has an M -alternating path
to a vertex in B1 \S, so v has an M -alternating path to B1 \S which is a contradiction
as v must have been in S. Moreover, B′ vertices do not have a neighbour in C \ C ′ as
otherwise since such a vertex u is matched to a vertex v ∈ B (C vertices are essential),
v has an M -alternating path to B′, and consequently to a vertex in B1 \ S which is
a contradiction as v must be in B′ in this case. So M induces a perfect matching on
B′ ∪C ′ and these vertices do not have a neighbour in V \ (S ∪B′ ∪C ′ ∪D), therefore
any maximum matching of G \ S must induce a perfect matching on this set (note
D vertices are always matched to each other by Lemma 7). Hence all vertices in B′

including B1 \ S are essential.
Now we describe a fractional vertex cover y ∈ R≥0 with 1T y = |M |: For each

essential vertex v ∈ V \ (S ∪C), let yv = 0.5, for a vertex u ∈ C if u is matched to an
essential vertex by M in G \ S, let yu = 0.5, otherwise let yu = 1, and for the rest of
vertices, i.e., inessential vertices define yv = 0.

First, we show that 1T y = |M |. For an edge e = uv ∈ M , we claim yu + yv = 1.
By Lemma 7, either u, v ∈ D, u, v ∈ B, or u ∈ C, v ∈ B. In the first case, the claim
holds trivially. Since in the second case, by reasoning above, both u and v are essential
inG\S, yu+yv = 0.5+0.5 = 1. For the last case, depending on whether v is essential
or not, we get yu + yv = 0.5 + 0.5 = 1 or yu + yv = 1 + 0 = 1, respectively. Since
any v exposed by M is inessential, i.e., yv = 0, 1T y = |M |.

It remains to show that y is a vertex cover. In order to do so, we just need to show
that a vertex v with yv = 0 is not adjacent to a vertex u with yu = 0.5. This follows
from the above argument that all C ′ vertices are only adjacent to B′ vertices and they
do not have a neighbour in B \ (B′ ∪ S). ut
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Next, we provide some useful lemmas on the structure of extreme points of Pf
which are helpful in proving Lemma 5. Since we are working with fractional solution
now, the Inequality (3) does not correspond to Hall’s theorem any more, but it corre-
sponds to a flow problem instead. Define a network N = (VN , AN ) as in Lemma 4,
and let F be a corresponding maximum flow of y(B̃) = |C|−y(C) from s to t (proved
existence in Lemma 4). Let Fe denote the flow on edge e = (u, v) ∈ AN . We can as-
sume that F is acyclic on Ẽ edges as otherwise we can do the usual {+,−} operations
on the edges of a cycle in F , and obtain a new acyclic flow. So F gives us a collection
of trees T1, T2, · · · , Tr on B̃ ∪ C. Now we can prove the following lemmas for each
tree Ti. We would like to note that B̃-vertices with yv = 0 form singleton components
(or trivial components) and all the following lemmas hold for them trivially. So we can
assume the trees in the claims are non-trivial components.

Lemma 11. Let (y, z) be an extreme point of Pf , and let Ti be any tree obtained by
flow F in network N . Then, there is at most one vertex v with 0 < yv, zv < 1 in tree
Ti.

Proof. Let us assume the contrary, i.e, there are two vertices v1, v2 ∈ B with 0 <
yv1 , zv1 , yv2 , zv2 < 1 in Ti. UsingF , we construct feasible solution (y+, z+), (y−, z−) ∈
Pf such that (y, z) = (y+,z+)+(y−,z−)

2 which is a contradiction. LetP = {e1, e2, · · · , e2l}
be unique path in Ti from v1 to v2. All the edges in P have non-zero flow in F . Let
ε = mine∈P Fe. Define F+, z+, y+ and F−, z−, y− as follows

F+
e =


Fe + ε if e = e2i,

Fe − ε if e = e2i−1,

Fe otherwise.
z+v =


zv + ε if v = v1,

zv − ε if v = v2,

zv otherwise.
y+v =


yv − ε if v = v1,

yv + ε if v = v2,

yv otherwise.

F−e =


Fe − ε if e = e2i,

Fe + ε if e = e2i−1,

Fe otherwise.
z−v =


zv − ε if v = v1,

zv + ε if v = v2,

zv otherwise.
y−v =


yv + ε if v = v1,

yv − ε if v = v2,

yv otherwise.

We claim that (y+, z+) and (y−, z−) are inPf . Note that for each v ∈ B̃, z++y+v =
z−v + y−v = zv + yv , so Inequalities (1) and (2) are satisfied. Moreover y+(V ) =
y−(V ) = y(V ) = |C|, so Inequality (4) is satisfied as well. Inequality (3) is satisfied
as we can send flow of 1− yu on edge su for each u ∈ C, then send flow of F+

e (F−e )
on each edge e ∈ Ẽ, and then flow of y+v (y−v ) on edge vt for each v ∈ B̃ which show
that Inequality (3) is satisfied as F+(s) = F−(s) = F (s) = |C| − y(C). Note that
(y, z) = (y+,z+)+(y−,z−)

2 which is a contradiction, so the claim follows. ut

Corollary 1. Let (y, z) be an extreme point of Pf , and let Ti be any tree obtained by
flow F in network N . Then, there is at most one B̃-leaf in Ti.

Proof. Let v be a leaf of Ti in B̃ and let u be a neighbour of v in Ti which must be in
C. Note that yv + zv ≥ 1 − yu by Inequality (1) or (2). If zv = 0 then the capacity of
the arc (v, t) which is yv , is enough for routing all the flow coming to u from s which
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is 1− yu. Therefore, if u sends some flow to some other vertex v′ ∈ B̃, it means that zv
must be non-zero (note that all the edges from B̃ to C are saturated by F ). Using this
argument, we can see that any leaf in B̃ with a neighbour with degree greater than one
has non-zero z value, Therefore there cannot exist two leaves in B̃ by Lemma 11 (Note
that any B̃ vertex in a non-trivial tree has positive y value). ut

C Omitted proofs

In this section, we present the omitted proofs due to space limitation.

Proof. (Full Proof of Theorem 2). We consider Algorithm 1. First, note that the algo-
rithm is a polynomial-time algorithm, since the EGD can be computed using Edmonds’
Blossom algorithm (see [16]), and the matching M∗ can be computed by reducing the
problem to maximum weighted matching on a bipartite graph, as follows: consider the
bipartite graph obtained by first taking G[B ∪C], then removing the edges between C-
vertices, and finally shrinking each non-singleton component ofG[B] into one pseudon-
ode (ignore multiple copies of edges created by this last operation, if any). Assign zero
weight to the edges incident into pseudonodes, and unit weight to all other edges. Then
compute aC-perfect matching M̄ of maximum weight on this bipartite weighted graph.
It is not difficult to show that M̄ can be extended to a maximum matching M∗ of G
with the desired property, by adding a perfect matching between vertices in D, and a
near-perfect matching in each non-singleton component of G[B] as to fulfill properties
(a),(b),(c) of Lemma 7.

Second, note that |S| = k, matching the lower bound given in Lemma 8. Therefore,
to finish the proof, we only need to show thatG\S is stable. We do this by constructing
a fractional vertex-cover y of G\S with 1T y = |M∗|. Since M∗ is clearly a maximum
matching in G \ S, this proves stability. Partition the set B into two sets: B1 and B2,
whereB2 contains the singleton vertices inG[B] andB1 all the rest. Note that S ⊆ B1.
Let C1 ⊆ C be the set of vertices that are matched to vertices in B1 by M∗. We assign
yv = 1

2 for all v ∈ D ∪ (B1 \ S) ∪ C1. Then we repeat the following process: for each
v ∈ B2 that is adjacent to some node in u ∈ C with current assigned value yu = 1

2 , set
yv = 1

2 and yw = 1
2 , where w ∈ C is the vertex matched to v by M∗. Note that such

w must exists, i.e., v cannot be a vertex in B2 exposed by M∗: if this is the case, then it
is easy to realize that there is an M∗-alternating path P of even length between v ∈ B2

and some vertex v̄ ∈ B1: taking P∆M∗ we would obtain another maximum matching
in G that exposes one less singleton vertex in G[B], namely v, contradicting our choice
of M∗. We repeat this process until each vertex v ∈ B2 that does not have an assigned
y-value is adjacent only to vertices in C that also do not have an assigned y-value. At
this point, we set yv = 0 for all remaining vertices in B2 and yu = 1 for all remaining
vertices in C. Note that all vertices with y-value 1 in C are matched to (a subset of)
vertices of y-value 0 by M∗, and M∗ induces a perfect matching on the set of vertices
with y-value 1

2 . Therefore, by construction, 1T y = |M∗|. Furthermore, y is a fractional
vertex cover of G \ S, since vertices with y-value 0 are only adjacent to vertices with
y-value 1. The result follows. ut
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Proof. (Proof of Lemma 1) Since any minimum weight stabilizer is a minimal stabilizer,
by Theorem 1, ν(G \ S) = ν(G), so S ⊆ B as otherwise ν(G \ S) < ν(G). Note that
if Gi is a singleton, (ii) and (iii) hold trivially. So let us assume Gi is a non-singleton
component of G[B], and let M be maximum matching of G \ S. Suppose M exposes
a vertex v of Gi, so by Lemma 9, Vi ∩ S = {v}. Suppose v is not a vertex with
minimum weight in Gi, and let gi be a vertex in Gi with minimum weight. We claim
S′ = S \ {v} ∪ {gi} is a vertex-stabilizer. Let P be an M -alternating path in Gi from
v to gi which exists as Gi is factor-critical and both M and M ′ induce a near perfect
matching in Gi. Let M ′ = M∆P . We show that M ′ is a vertex-stabilizer-certificate
of S′ (see Lemma 10). We need to show that there does not exist an M ′-alternating
path to a vertex in Gi. This follows from the fact that we removed some vertex from
Gi and by Lemma 7, all vertices in a non-singleton component after a removal of one
vertex, are essential. So M ′ is a vertex-stabilizer-certificate of S′ and by Lemma 10, S′

is a vertex-stabilizer but this gives a contradiction as S′ has a smaller weight than S.
Therefore, if S ∩ Vi 6= ∅ then S includes a minimum weight vertex of Vi. ut

Proof. (Proof of Lemma 2) Suppose S̃ is a B1-essentializer. We construct a vertex-
stabilizer S of G from S̃ as follows: for each v ∈ S̃, if vertex v = gi ∈ B1, then
include a minimum weight vertex gi of Gi in S, otherwise v ∈ B2, so include the
corresponding singleton v in S. By construction of Gb, S has the same weight as S̃.
Now we construct a maximum matching M which is a vertex-stabilizer-certificate of
S. Let M̃ be a maximum matching of Gb. The matching M̃ translates to a matching
between C vertices and B vertices (covering all C vertices). Add edges corresponding
to M̃ to M . Also add a perfect matching between D vertices to M . Now for each
non-singleton component Gi, if gi ∈ S add a near-perfect matching of Gi − gi to M ,
otherwise since all vertices in B1 \ S are essential (by Definition 1), a vertex gi in Gb
is matched by M̃ , equivalently some vertex v in Gi is matched by M , so add a near-
perfect matching in Gi − v to M . Note that M is a matching in G \ S and it satisfies
all the conditions in Lemma 7, so M is a maximum matching of G (and G \ S). Now,
we show that there cannot exist an M -alternating path from an M -exposed vertex v
in G to a vertex in a non-singleton component Gi, so by Lemma 10 S is a vertex-
stabilizer. Assume the contrary. Let P be a subpath that contains exactly one vertex v′

in Gi. Note that this path does not use an edge from C to D as if we start at v′ and
continue along P whenever P reaches a C vertex (from B side), in the next step it
should use a matching edge which is between B and C (by Lemma 7), and at last we
reach vertex v′ which is matched by M (to a C vertex). In fact, this path translates to
an M̃ -alternating path in Gb as the only vertex in a non-singleton component is the last
vertex, i.e., intermediate vertices are either in C or B2. This gives us a contradiction as
this path makes gi inessential, so S̃ is not a B1-essentializer.

Now suppose S ⊆ V is a minimum weight vertex-stabilizer. Define S̃, by including
a vertex gi if S ∩ Gi 6= ∅ or including v ∈ B2 if v ∈ S. Since by Lemma 1, if
S∩Gi 6= ∅, S includes a minimum weight vertex ofGi, S and S̃ have the same weight.
By Theorem 1, there exists a maximum matching M of G which lies in G \ S. By
Lemma 7, M matches all C vertices to a subset of B which cannot contain two vertices
from the same non-singleton component of G[B], so M gives a matching M̃ covering
all C vertices ofGb \ S̃ (|M̃ | = |C|). Therefore, ν(Gb \ S̃) = ν(Gb) = |C|. Note that if
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aB1-vertex gi is not essential inGb\S̃, then either gi is not matched by M̃ which means
that there exists aM -exposed vertex inGi which is a contradiction by Lemma 9. Now if
gi is matched by M̃ but it is inessential, it means that there exists a M̃ -alternating path
from an M̃ -exposed vertex in Gb \ S̃ to gi. Let P denote the subpath containing exactly
oneB1-vertex, say gi′ (might be different from gi). Note that P only uses edge between
B and C and contains exactly one B1-vertex so P translate to an M -alternating path
from an M -exposed vertex in G to a vertex in Gi′ which is contradiction by Lemma 9.

ut

Proof. (Proof of Lemma 3) Let S̃ be aB1-essentializer ofGb. Let (Bb, Cb, Db) be EGD
of Gb \ S̃. Note that Bb is a subset of B2 by definition of B1-essentializer, so Cb ⊆ C.
Set Db includes C \Cb, call these vertices Db(C), and any vertex in B̃ \ (S̃ ∪Bb), call
these vertices Db(B̃). Moreover, by Lemma 7, there exists a perfect matching between
vertices of Db, and since Gb is bipartite this means that there exists a perfect matching
between Db(C) and Db(B̃), i.e., M̃ defines a bijection σ between Db(C) and Db(B̃).
Now we define a feasible (y, z) corresponding to S̃. Define variable y as follows: for
v ∈ B̃, yv = 1 if v ∈ Db(B̃) and yv = 0 otherwise, and for u ∈ C let yu = 1 if u ∈ Cb
and yu = 0 otherwise. For v ∈ B̃, define zv = 1 if v ∈ S̃, and zv = 0 otherwise. For
each u ∈ B1, Inequality (1) is satisfied since S̃ is a B1-essentializer, either v ∈ S̃, i.e.,
zv = 1, or v is essential which means that it belongs to Db(B̃), i.e., yv = 1. For each
v ∈ B2, Inequality (2) is satisfied as either v ∈ Db(B̃), so yv = 1, or v ∈ S̃, so zv = 1,
or v ∈ Bb, so v is inessential and every neighbour u of v is in Cb, so yu = 1. y satisfies
Inequality (3), since using bijection σ, for any u ∈ A with yu = 0, we have yσ(u) = 1
and σ(u) ∈ N(u). y also satisfies Inequality (4), since for u ∈ C either C has yu = 1
or yσ(u) = 1. Clearly, the binary constraints are satisfied for y and z.

Now let (y, z) be a point of PI . Define set S̃ = {v : zv = 1}. Define the set
Db(C) = {u ∈ C : yu = 0} and Db(B̃) = {v ∈ B̃ : yv = 1}. Note that for
every v ∈ B1 \ S̃, we have yv = 1 by Inequality (1), so v ∈ Db(S̃). Moreover, for
any set A ⊆ Db(C), we have y(N(A)) ≥ |A|. Therefore, by Hall’s condition, there
exists a matching M which matches each vertex of Db(C) to Db(B̃). Since for any
u ∈ C \ Db(C), yu = 1, by Inequality (4), first |Db(C)| = |Db(B̃)|, and second for
any v ∈ B̃ \ Db(B̃), we must have yv = 0 as

∑
v∈C∪Db(B̃) yv = |C|. Since (y, z)

satisfies Inequality (2), each vertex v in B̃ \ Db(B̃) which is not in S̃, i.e., zv = 0,
cannot be a neighbour of u ∈ Db(C). Since there exists a perfect matching inside
Gb(1) any maximum matching of Gb \ S̃ induces a perfect matching in Gb(1) and so
every v ∈ B1 \ S̃ is essential. ut

Proof. (Proof of Lemma 4) We show an existence of a max s − t flow in N of value
y(B̃) = |C| − y(C) by showing that the minimum-cut capacity in N is |C| − y(C).
Let S be a min-cut inN . Since {s} is a s− t cut with capacity |C| − y(C), capacity of
S is at most |C| − y(C). Let A = S ∩ C. Since S cannot contain an edge in Ẽ (they
have capacity∞), N(A) ⊆ S, so the capacity of S is at least∑

u∈C\A

1− yu +
∑

v∈N(A)

yv = |C \A| − y(C \A) + y(N(A))

≥ |C \A| − y(C \A) + |A| − y(A) = |C| − y(C).
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where the inequality follows from the fact that (y, z) is a feasible solution and satisfies
Inequality (3). Hence a min-cut has capacity |C| − y(C) and by Max-Flow Min-Cut
Theorem there exists a desired flow. ut

Proof. (Proof of Lemma 5) LetB′ = {v ∈ B̃ : yv > 0}. Each v ∈ B′ belongs to a non-
trivial tree Ti (obtained from a networkN constructed in Appendix B). By Corollary 1,
there is at most one leaf B′-vertex in each tree. Root each of tree Ti at a leaf B′-vertex
if there exists any or at a C-vertex otherwise, then match each B′ vertex to one of its
children. Note that this is always possible since in each of these rooted trees, there does
not exists a B′-leaf which is not a root. So there exists a matching from B̃ to C-vertices
lying in some tree, i.e., vertices with 1− yu > 0 with size |B′|. ut

Proof. (Proof of Lemma 6) Let us restate (P2) labelling its inequalities as follows:

min w(B1 \B′) +
∑
u∈C wufu (P2)

s.t. |N ′(A)| ≥
∑
u∈A fu, ∀A ⊆ C (7)∑

u∈C fu = |B′|, (8)
0 ≤ fu ≤ 1, ∀u ∈ C.

We first prove that an optimal solution of (P1) can be mapped into a solution of
(P2) with no greater weight.

Let (z, y) be an optimal solution of (P1). Define fu = 1 − yu for u ∈ C. For
A ⊆ C, y(N(A)) ≥ |A| − y(A) =

∑
v∈A(1 − yv) = f(A), and since y(N(A)) =

|N(A) ∩ B′| = |N ′(A)|, we have that f satisfies Inequality (7). Inequality (8) is also
satisfied since f(C) = |C| − y(C) which is equal to y(B̃) = |B′| by Inequality (4).
Note that optimality of (z, y) implies zv = 0 for v ∈ B′, zv = 1 for v ∈ B1 \ B′, and
zv = maxu∈N(v) (1− yu) for v ∈ B2 \B′. We get∑
v∈B̃

wvzv = w(B1\B′)+
∑

v∈B2\B′
wv max

u∈N(v)
(1− yu) ≥ w(B1\B′)+

∑
v∈B2\B′

wv
∑

u∈N(v)

1− yu
δ

=

= w(B1 \B′) +
∑
u∈C

∑
v∈N(u)∩(B2\B′)

wv
δ

(1− yu) = w(B1 \B′) +
∑
u∈C

wufu.

We now prove that an integral solution of (P2) can be mapped into an integral
solution of (P1) whose weight is at most a δ-factor larger.

Given an integral f , construct an integral solution (z, y) of (P1) as follows. (i) Set
yu = 1 − fu for u ∈ C, yv = 1 for v ∈ B′, and yv = 0 for v ∈ B̃ \ B′. (ii) Set
zv = maxu∈N(v)(1 − yu) for v ∈ B2 \ B′. (iii) Set zv = 1 − yv for v ∈ B1 \ B′.
(iv) Set zv = 0 for v ∈ B′. Clearly this solution is integer. We now show feasibility.
Inequality (1) and (2) hold trivially. Inequality (3) is satisfied, since for each A ⊆ C,
y(N(A)) = N ′(A) and therefore this inequality is equivalent to inequality (7), satisfied
by f . Inequality (4) holds as y(C) = |C|−f(C) = |C|−|B′| and y(B̃) = |B′|. Finally,
we get:∑
v∈B̃

wvzv =
∑

v∈B1\B′
wv+

∑
v∈B2\B′

wv( max
u∈N(v)

fu) ≤ w(B1\B′)+
∑

v∈B2\B′
wv

∑
u∈N(v)

fu
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≤ δ
(
w(B1 \B′) +

∑
u∈C

∑
v∈N(u)∩(B2\B′)

(
wv
δ

)fu

)
= δ
(
w(B1 \B′) +

∑
u∈C

wufu

)
.ut

D Polynomial-time algorithm for the M -stabilizer problem

We consider in this section the optimization problem of blocking as few players as pos-
sible in order to make a given set of deals realizable as a stable outcome. This translates
into finding a min-cardinality vertex-stabilizer S with the additional constraint that S
must avoid (i.e. must be element-disjoint from) a given maximum matchingM . We call
such S an M -vertex-stabilizer.

We prove that this problem is polynomial-time solvable. This is in contrast with the
edge-removal setting, where the analogous question has been studied by [4] and shown
to be as hard as finding a minimum vertex-cover.

Theorem 6. There is a polynomial-time algorithm to compute a minimum M -vertex-
stabilizer in a given graph, both in the unweighted and in the weighted setting.

Proof. Let us first consider the unweighted setting. Let S contain all M -exposed ver-
tices with an alternating path to a vertex in a non-singleton component. Note that by
Lemma 9, any M -vertex-stabilizer S′, which is also a vertex-stabilizer, along with
matchingM has to include S. By Lemma 10, S is a vertex-stabilizer, so S is a minimum
cardinality M -vertex-stabilizer. Note that S can be computed in polytime by running
a modified breadth first search (BFS) algorithm for each M -exposed vertex which is
only allowed to use M edges at even levels.

At last, we point out that in the weighted case, the set S obtained as above is in
fact a min-weight M -vertex-stabilizer. This is because any vertex included in S by the
algorithm, must actually be in any minimum vertex-stabilizer by reasoning in Lemma 9
and Lemma 10, and we showed that removal of such vertices yields a stable graph. ut

E Finding Minimal Vertex-Stabilizer is NP-hard

Our goal is to prove the following theorem:

Theorem 7. The min-weight vertex-stabilizer problem and the max-weight vertex-stabilizer
problem are NP-hard, even if there are only 2 distinct weights.

We will show that the problem is NP-hard by using a reduction from minimum
weight satisfiability (MIN SAT) problem. A MIN SAT instance in the Boolean vari-
ables x1, x2, · · · , xn is composed of a collection of clauses C1, C2, · · · , Cm and a
non-negative weights w1, w2, · · · , wm associated with each clause. Each clause Ci =
z1∨z2 · · ·∨zki for some ki ≥ 1 where each zj is called a literal and is either a variable
xl or its negation xl. The goal is to assign each x1, x2, · · · , xn a value true or false so
that the total weight of satisfied clauses are minimized. A clause is said to be satisfied
if one of its literals is assigned value of true.
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MIN SAT was introduced by Kohli et al.4 and they showed that the problem is NP-
hard even for the unweighted version where each clause contains exactly two literals.
They also showed that the problem remains NP-hard even if all clauses are Horn clauses
(i.e., each clause has at most one complemented variable).

We start with proving the following.

Theorem 8. Finding minimum weight B1-essentializer is NP-hard.

Proof. We show that there is a correspondence between an optimal solution of MIN SAT
instance in the unweighted case and the minimum weight B1-essentializer. Consider a
MIN SAT instance defined as above with unit weight for each clause. Define graph
Gb = (B̃ ∪ C, Ẽ) with B̃ = B1 ∪B2 as follows (see Fig. 5):

– Let C = ∪nj=1{Tj , Fj}, i.e., one vertex for each possible assignment for variable
xj .

– Let B1 = ∪nj=1xj , i.e., one pseudonode associated with each variable.
– Let B2 = ∪mi=1Ci ∪nj=1 {T 1

j , T
2
j , F

1
j , F

2
j }, i.e., B2 consists of a set of vertices

associated with clauses and four extra vertices for each variable xj .
– The edge set Ẽ is defined as follows:
• For each Tj put edges (Tj , xj), (Tj , T

1
j ), (Tj , T

2
j ) and one edge for each clause

Ci containing xj .
• For eachFj put edges (Fj , xj), (Fj , F

1
j ), (Fj , F

2
j ) and one edge for each clause

Ci containing xj .
– Define wv = 4n + m + 1 for each v ∈ B1, i.e., variables x1, x2, · · · , xn, and
wv = 1 for each v ∈ B2.

First we show that how to obtain a B1-essentializer S̃ from an assignment of vari-
ables. For each variable xj , if it is assigned to true then define M(j) = Tj and oth-
erwise M(j) = Fj . For each xj , include all neighbours of M(j) except xj in S̃. We
claim ν(Gb \ S̃) = |C| = 2n. This is because for each j ∈ [n], M(j) can be matched
to xj and {Tj , Fj} \ {M(j)} can be matched to one of T 1

j , T
2
j or F 1

j , F
2
j depending on

whether M(j) = Tj or M(j) = Fj . Since for each j ∈ [n], xj is the only neighbour of
M(j), so any maximum matching in Gb \ S covers xj , therefore all xj’s are essential.
Hence, the set S is a B1-essentializer. Now let us calculate the weight of S. For each
M(j), we have to remove two vertices {T 1

j , T
2
j } or {F 1

j , F
2
j } depending on whether

M(j) = Tj orM(j) = Fj and any clause connected toM(j), these clauses are exactly
the clauses that are satisfied by the assignment. So the weight of S is 2 × n plus the
number of satisfied clauses by the assignment.

Now let S∗ be a minimum weight B1-essentializer. We claim S∗ does not contain
any pseudonode. If we remove all B2 vertices, we get a graph that all B1 vertices are
essential. Since the weight of allB2 vertices is strictly less than the weight of a singleB1

vertex, S∗ cannot contain a B1 vertex. Now, consider a maximum matching M of Gb \
S∗. Let M(j) be the vertex in C that xj is assigned to by M (xj is essential so M(j) is
well-defined). For each xj , without loss of generality, suppose M(j) = Tj then T 1

j and

4 R. Kohli, R. Krishnamurti, and P. Mirchandani. The minimum satisfiability problem. SIAM
Journal on Discrete Mathematics, 7(2):275283, 1994.
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T 2
j must be in S∗ as these two vertices are exposed by M and they have M -alternating

path to xj . We claim any clause Ci which is a neighbour of Tj is in S∗. Suppose not,
then Ci has to be essential, so it will be matched to some u = Tj′ or u = Fj′ for
some j′ 6= j, but with similar argument {T 1

j′ , T
2
j′} or {F 1

j′ , F
2
j′} must be in S∗ which

is contradiction to S∗ being minimum weight since we can remove Ci instead of these
two vertices and obtain another B1-essentializer with a smaller weight. This argument
shows that any minimum weight B1-essentializer yields a matching which matches
each xj to M(j) ∈ {Tj , Fj}, and it includes all vertices in N(M(j)) \ {xj}. Note that
removing these vertices yields a graph in which all B1 vertices are essential as they are
the only neighbours of ∪j∈[n]M(j). Since S∗ has a minimum weight, it only includes
these vertices and so it has a weight 2n plus the number of clauses satisfied by assigning
xj to true if M(j) = Tj and false otherwise. So there is a one-to-one correspondence
between minimum weight B1-essentializer and MIN SAT instance constructed above.
So if we could solve the problem of finding a minimum weight B1-essentializer in
polytime, then we can solve MIN SAT in polytime which is not possible unless P =
NP . ut

Note that our proof shows a reduction from MIN SAT to finding a minimum weight
B1-essentializer that also preserves the cardinality of a maximum matching. It fol-
lows that finding a min-weight vertex-stabilizer is NP-hard as well. Since minimizing∑
v∈S wv is equivalent to maximizing

∑
v/∈S ws, the hardness holds as well for max-

weight vertex-stabilizer. That is, we proved Theorem 7.

F Integrality Gap of Linear Programming Formulation (P1)

We show that the integrality gap of linear programming (P1) is Ω(δ) even if we know
yv ∈ {0, 1} for v ∈ B̃ where δ is the maximum degree of vertices in B2. The gap
instance is a graph Gb = (B̃ ∪ C, Ẽ) where B̃ = B1 ∪ B2 for B1 = v0 and B2 =
{v1, v2, · · · , vn2}, C = {u1, u2, · · · , un}, and E = {(u, v) : u ∈ C, v ∈ B} for inte-
ger n > 1. Define the weight function w to assign weight n2 to v0 and assign 1 to all the
vertices in B2. Assume B′ = {v0}. A feasible solution (x, y) of linear programming
(P1) is shown in Fig. 6.

Claim. The solution (x, y) is a feasible fractional solution and has objective value n.

Proof. Inequality (1) is satisfied as for v = v0, yv + zv = 1 ≥ 1. Inequality (2) is
satisfied as for any edge (u, v) for v ∈ B2 and u ∈ C, yv+zv+yu = 0+ 1

n + n−1
n ≥ 1.

In order to show Inequality (3) is satisfied, we show that there exists a maximum flow
that saturates all the edges in network N = (VN , AN ) constructed in Lemma 4: send
flow on 1

n for each (s, u) ∈ AN , forward the flow of 1
n from each u ∈ C to v0, and

finally send flow of 1 from v0 to t. Therefore Inequality (3) is satisfied as otherwise the
maximum flow should be strictly less than 1 in network N . Inequality (4) is trivially
satisfied as

∑
v∈B̃∪C yv = 1+nn−1n = n = |C|. Finally, since each v ∈ B2 has weight

1 and zv = 1
n , the objective value of this solution is n. ut
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In order to exhibit the integrality gap, it remains to show that an integral solution
has weight Ω(n2).

Claim. Any integral solution (x, y) has weight Ω(n2).

Proof. Since y(V ) = n and yv0 = 1, there exists at least one vertex u ∈ C with
yu = 0. Since every vertex v ∈ B2 has y-value zero, we must have zv = 1 for all
v ∈ B2 in order to satisfy Inequality (2). The objective function value for this solution
is then Ω(n2). ut

G Integrality gap of the maximization formulation in (5)

In this section we prove a 3
2 lower bound on the integrality gap of the maximization

formulation in (5). Consider Gb = (B̃ ∪ C, Ẽ) which is a complete bipartite graph
with B̃ = {v0, v1, . . . , vp} and C = {u1, u2}. We let wv0 =

∑p
i=1 wi = W , and

B1 = {v0}. An optimal integral solution removes all but one vertices in B̃ \ {v0}, that
is yv0 = yv1 = 1 and all other y-values are set to 0, zv0 = zv1 = 0 and all other
z-values are set to 1, and has objective function value W (1 + 1

p ). However, a fractional
solution can set: yv0 = 1, yu1

= yu2
= 1

2 , zv1 = zv2 = · · · = zvp = 1
2 , and set all

other variables to 0, and has objective function value W (1 + 1
2 ). For p→∞, the ratio

→ 3
2 .

H Integrality gap of the minimization formulation in (5)

In this section, we will show that the integrality gap of linear programming

min
{∑
v∈B̃

wvzv : (z, y) ∈ Pf
}
,

is Ω(n) where |C| = 6n − 1. This shows that our approximation ratio matches the
integrality gap up to a constant and our result is tight. We would like to point out that in
our example the maximum degree is constant. Since we have δ approximation algorithm
in case of integral y value, this shows that in our example we must have fractional y’s.
In order to present the example achieving large integrality gap, we first need to address
some results on bipartite expander graphs.

Definition 2. A bipartite multigraph G with bipartition U and V is called a (K,A)
vertex expander if for any set S ⊆ U with size at most K, the neighbourhood N(S) is
of size at least A · |S|

Let BiprN,D be the set of D-regular bipartite graphs with N vertices on each side.
Bassalygo5 proved the following theorem6

5 L. A. Bassalygo. Asymptotically optimal switching circuits. Problemy Peredachi Informatsii,
17(3):8188, 1981.

6 for proof see Chapter 4 of “S. P. Vadhan. Pseudorandomness. Now Publishers Inc., Hanover,
MA, USA, 2012.”

25



Theorem 9. For every constant D, there exists a constant α > 0 such that for all
N , a uniformly random graph from BiprN,D is an (αN,D − 2) vertex expander with
probability at least 1/2.

Using Theorem 9, we obtain the following result.

Corollary 2. There exists a bipartite graphG with bipartitions (U ∪U ′) and V (|U | =
|U ′| = |V | = N ) and maximum degree 2D such that for any set S ⊆ U ∪ U ′ of size at
most αN , |N(S)| ≥ |S| where α is a positive constant.

Proof. By Theorem 9 choosing D ≥ 4, there exists a D-regular bipartite graph G′ with
bipartition U ′ and V ′ (|U ′| = |V ′| = N ) which is (αN,D − 2) vertex expander for
constant α > 0. Let graph G be obtained from G′ by adding a copy u of each vertex
u′ in U ′ to G′, and connecting u to the same set of vertices as u′. Let U denote the set
containing copy of vertices in U ′ and V = V ′ denote the other partition of G. So the
degree of each vertex in U ∪ U ′ is D and the degree of each vertex in V is 2D.

We claim that G is (αN, 1) vertex expander. Let S ⊆ U ∪U ′ with size at most αN .
Define set S′ to be obtained from S by including u′ in S′ if at least one of u or u′ is in
S. Note that |S|2 ≤ |S

′| ≤ |S| ≤ αN and N(S) = N(S′) by construction of G. Since
G′ is (αN,D − 2) and D ≥ 4, we have

|N(S)| = |N(S′)| ≥ |S′|(D − 2) ≥ 2|S′| ≥ |S|.

ut

Now, we are ready to present the integrality gap example. Let bipartiteG be a graph
with bipartition U ∪U ′ and V ′ and edge setE′ forN = 2n and constantD in Corollary
2. Define graph G′ with bipartition B̃ = B1 ∪ B2 and C where B1 = V and B2 =
V ′ ∪W ∪W ′ and C = U ∪ U ′ ∪ U ′′ defined as follows

U = {ui}i∈[2n], U ′ = {u′i}i∈[2n], U ′′ = {u′′i }i∈[2n−1],

V = {vi}i∈[2n], V ′ = {v′i}i∈[2n],W = {wi}i∈[2n],W ′ = {w′i}i∈[2n].

The edge set Ẽ′ of G′ includes all the edges in G and the solid edges depicted in Fig. 7.
Define weight of v ∈ W ∪W ′ to be 1 and v ∈ V ∪ V ′ to be∞. Define solution (y, z)
for ε = 1

2n as follows:

– For v ∈ V , yv = 1 and zv = 0.
– For v′ ∈ V ′, yv′ = ε and zv′ = 0.
– For w ∈W ∪W ′, yw = 0 and zw = ε.
– For u ∈ U ∪ U ′, yu = 1− ε.
– For u ∈ U ′′, yu′′ = 0.

Claim. The solution (x, y) is a feasible solution and has objective value 2.
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Proof. Inequality (1) is satisfied as for each v ∈ B1, as yv = 1 and zv = 0. Inequal-
ity (2) is satisfied as for any edge (u, v) for v ∈ B2 and u ∈ C, yu = 1 − ε and
zv + yu = ε. In order to show Inequality (3) is satisfied, we show that there exists a
feasible flow that sends 1 − yu flow from each u ∈ C and each v ∈ B receives yv
flows. This flow is actually depicted in Fig. 7. Inequality (4 ) is trivially satisfied as∑
v∈B yv = 2n× 1 + 2n× ε and

∑
u∈C yu = 4n(1− ε) which sum up to 6n− 1 for

ε = 1
2n . Finally, since each w ∈ W ∪W ′ has weight 1 and zv = ε = 1

2n , the objective
value of this solution is 2. ut

In order to exhibit the integrality gap, it remains to show that the minimum B1-
essentializer in this graph has weight Ω(n). In fact, equivalently we will show that the
minimum B1-essentializer has weight at least αN where α > 0 is a constant from
Corollary 2 and N = 2n.

Claim. The minimum B1-essentializer for G has weight at least αN .

Proof. Any B1-essentializer S with finite cost does not remove any of vertices in V ∪
V ′. Since B1 = V , every vertex in V is essential in G′ \ S, so they have to be matched
by a maximum matching M∗ in G \ S. Note that |U ′′| = 2n − 1, so at least one of
v ∈ V must be matched to a vertex u ∈ U (see Fig. 8). Since vertices in V ′ have ∞
cost as well, all the neighbours N(u) ∩ V ′ must be essential as well. Let U1 denote the
set of vertices in U ∪ U ′ that vertices in N(u) ∩ V ′ are matched to by M∗ (see Fig. 8).
Note that similar argument holds for N(U1) ∩ V ′, and they must be matched by M∗

(see Fig. 8). We can generalize this argument. More precisely, let Ve denote the set of
essential nodes in V ′, and let Ue denote the set of vertices that Ve is matched to by M∗

(Ue does not include u as u is matched to v by M∗). All vertices in N(Ue ∪ {u}) ∩ V ′
must be essential, soN(Ue∪{u})∩V ′ ⊆ Ve. Since graphG is (αN, 1) vertex expander,
if |Ue∪{u}| ≤ αN , then |N(Ue∪{u})∩V ′| ≥ |Ue∪{u}| > |Ue|. On the other hand,
Ve which includes N(Ue ∪ {u}) ∩ V ′ is matched to Ue which is not possible. So size
of Ue is at least αN which means that the size of Ve is at least αN . For each ui ∈ Ue,
B1-essentializer must include wi or w′i depending on whether ui ∈ U or ui ∈ U ′,
respectively. Hence B1-essentializer has size at least αN or weight αN equivalently.

ut
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Fig. 5: Graph Gb corresponding to a MIN SAT instance. In this instance, C1 = x1 ∨x2,
C2 = x1∨x2∨xn,C3 = x1∨xn−1, andCm = x2∨xn. The setB1 = {x1, x2, · · · , xn}
(dotted circles), set C = ∪ni=1{Ti, Fi} (square vertices), and set B2 consists of the
remaining vertices (solid circles). The weight vector is defined to be 4n+m+ 1 for B1

vertices and 1 for B2 vertices.
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Fig. 6: An Instance showing large integrality gap. B̃ vertices are shown by circles: B1

vertices are dotted circles, and B2 vertices are solid circles. C vertices are shown by
square.
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Fig. 7: Graph G′ with B̃ vertices shown by circles: B1 vertices are dotted circles; B2

vertices are solid circles, and C vertices are shown by squares. The edge set of graph
includes solid edges and the edge set of graph G used in the construction of G′.

30



Fig. 8: Depiction of the process used in the proof of claim in Appendix H
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