CHAPTER 5
Optimal Grouping Criteria

This chapter addresses the question of optimal grouping, and quantifies the amount of
efficiency lost through the use of grouped data rather than variables data. As mentioned, in many
circumstances the group limits used to classify units are predetermined. For example at Eaton
Yae Inc. (Hamilton, Ontario) creating step-gauges specifically for an application is not practical
due to the large number of different products produced. As aresult, at Eaton, they use existing
generic step-gauges that are incremented in thousands of an inch. However, in some situations, it
is possible and practical to set application specific group limits. Clearly, all group limit designs
will not be equally informative. As aresult, it is possible to determine the optimal grouping
criteriafor particular applications.

Section 5.1 discusses gauge limit design for one-sided acceptance sampling plans to
detect mean shifts. The results agree with past work (Beja and Ladany, 1974), and extend the
analysis to the more general multiple group case. The results giving optimal group limits to
detect one-sided mean shiftsin anormal distribution presented in Tables 5.1 and 5.2 also appear
in Steiner et al. (1993A). Section 5.2 considers the further extension to two-sided tests. The
analysis from Section 5.1 can also be used to determine optimal group limitsin the two-sided test
case. Theresulting optimal group limits are applicable for both the two sets of weights approach
of Section 3.2.1 and the MLE approach of Section 3.2.2. Group limit design for Shewhart
control charts is addressed in Section 5.3. The optimal group limits found are applicable in all
four control chart design approaches from Section 3.3. Optimal group limits to detect mean and
standard deviation shifts in a normal process are determined, as well as optimal limits to detect
shape and scale shifts of aWeibull process. Note that Table 5.5 gives the optimal group limitsto

detect mean shifts from a normal process and also appearsin Steiner et al. (1993B). For the case



of Shewhart control charts, we also find optimal limits for simultaneous detection of paramete?
shifts. Thisis of interest since often a process may become “out of control” through either a
mean or standard deviation shift. It is very interesting to note that the results in Section 5.3
appear elsewhere in the literature in a totally different context. In Balakrishnan and Cohen
(1991), Chapter 7, the results in Table 5.10 appear in a slightly different format. The problem
considered by Balakrishnan and Cohen (1991) is finding the best linear unbiased estimate
(BLUE) by selecting specific order statistics. For more details and additional references see their
book. In the problem to find the BLUE the objective is to minimize the estimate’ s variance,
whereas in the optimal grouping problem, considered here, the objective is to maximize the
Fisher information available about a parameter. The equivalence of the two problem exists
because by the Rao-Cramer inequality (Kendall et al. 1978) the inverse of the Fisher information
is alower bound for the variance of an unbiased estimate, and a best estimate would attain this
bound. The solution to find the BLUE is given in terms of percentage points which when
translated by the inverse cumulative density function give the optimal group limits. In Section
5.4 optimal group probabilities for the correlation estimation Procedure | from Chapter 4 are
determined. Procedure | is the only correlation estimation procedure presented where group
probabilities can be set a priori, however, the results also provide a guide for the other

procedures from Chapter 4.

5.1 One-Sided Acceptance Sampling Plans

Acceptance sampling problems are often given in terms of acceptable and rejectable
proportions of non-conforming or out-of-specification units. As a result, we shall restrict our
attention in this section to the classical case where we are interested in detecting mean shifts
when the standard deviation is known. For one-sided mean shift acceptance sampling plans with
single-step gauges, Beja and Ladany (1974), Sykes (1981), and Evans and Thyregod (1985) have
shown that when the error risks are equal, the optimal group limit to detect mean shifts from p,

to u, should be placed at (u, +44,)/2. Bejaand Ladany (1974) also suggested that the optimal



group limits for a two-step gauge should be placed symmetrically about (ua + ur) /2. Using thid

rule of thumb, a one dimensional search for the optimal group limits is possible. Note however
that this solution will only be optimal if the error risks are equal. Our results for optimal group
limits to detect one-sided mean shifts agree with these past results, and extend the analysis to the
general k-step gauge and to the case when error rates are not necessarily equal.

Suppose we wish to design an acceptance sampling plan that will detect a one-sided mean
shift of a certain magnitude from a normal distribution with specified error rates. In this
situation, the weight based methods presented in Section 3.1 will give the optimal testing
procedure. If the error rates are small and/or the magnitude of the shift to be detected is small,
then the required sample size will be large enough so that z (the average weight from Section
3.1) is approximately normally distributed. In this case, the optimal group limits are determined
by minimizing expression (3.4), the required sample size, subject to the constraint that the group
limits remain ordered. Formally, let t be the k dimensional vector of standardized group limits.

Then the multi-dimensional minimization problem is

minimize {n(t) + m(t)}

where
[M if thet'sare not ordered,
m(t) = E i.e, ift, >t,, forany j=1...k
H) otherwise

M is a large number and n(t) is expression (3.4). Note that the solution to the above
minimization problem depends on the size of mean shift we wish to detect, and on the chart’s
error rates. This optimization problem can be easily solved by the Nelder Mead multi-
dimensional Simplex Algorithm (Press et al., 1988). The Nelder Mead algorithm is quite
efficient in most circumstances, however if efficiency is of great concern, it would be better to
use the Fletcher-Reeves algorithm (Press et al., 1988). The Fletcher-Reeves algorithm is more

efficient because it uses not only the function, but also its gradient. The calculation of the

gradient of equation (3.4) with respect to the unknown t;'s is not unduly difficult, but looks



rather complex. See Appendix D for the calculation of the gradient. The amount of work
necessary to find the optimal group limits in the special case when the error rates a and g are
equal is reduced since the optimal group limits must be symmetric about (1, + . )/2. Using this
fact reduces in half the number of variables to consider.

The optimal standardized group limits for selected error rates and mean shifts of a half,
one, and one and a half sigma unit for a standard normal process are given in Tables 5.1 and 5.2.
To determine the actual group limits to use in a specific example, the standardized group limits
presented in the tables must be translated. In the case of a N(/J, a) process, simply multiple each

of the group limitsgiveninthetablesby o andadd u.



Table5.1:

Standard Normal Distribution, a = 3.

Optimal Group Limits and Weights

The calculation of n assumes a = =0.001

Uy n A = 1 2 3 4 5 6 7
05 2355 0 g 0.25
z -0.4001  0.4001
1860 0 f -03417  0.8417
z -06052 0 0.6052
1796 0 f —06925 02500 0.925
z 074 02188 02188 074
1646 0 g -09384 01139 06139 14384
z -0.8395 -0.3667 O 03667  0.8395
1611 0 f -11254 -03743 02500 08743 16254
z -09172 -04771 -01511 01511 04771 09172
1589 0 f -12749 -05751 -00142 05142 10751 1.7749
z -09804 -05642 -02653 O 02653 05642  0.9804
1 55.6 0 t 05000
z -0.8070  0.8070
444 0 f 00424 1.0424
z -11789 0 1.1789
412 0 g -03428 05000 1.3428
z -1.4062 -03972 03972  1.4062
0.0 0 f -05373 01813 08187 15373
z -15600 -06495 0 06495 15600
92 0 f -06723 -00357 05000 10357 16723
z ~16692 -0.8257 -0.2615 02615 08257 1.6692
8.8 0 g -0.7697 -01941 02767 07233 11941  1.7697
z -1.7492 -09553 -0.4503 0 04503 09553  1.7492
15 224 0 t 0.7500
z -12275 12275
18.1 0 g 02661  1.2339
z 17172 0 17172
17.0 0 g 00273 07500 14727
z -1.9817 -05190 05190 1.9817
16.6 0 f -01068 04829 10171  1.6068
z —21358 -08189 0 08189 21358
16.4 0 g -01867 03132 07500 11868 16867
z 22293 -1.0090 -0.3225 03225 1.0090  2.2293
16.3 0 , -02365 01971 05706 09294 13029  1.7365
z —22882 -1.1366 -05429 0 05429 11366 22882




Table5.2:

Optimal Group Limits and Weights
Standard Normal Distribution, a = 0.001, = 0.005

n A i 1 2 3 4 5 6 7
1981 00070 0.2889

z -03878 04125
1563 00090 t; —0.2954  0.8870

z —05880 00204  0.6220
1440 00099 -06405 03009 12428

z -07197 -01949 02423  0.7603
1384 00103 -0.8812 00587 06685 14929

z -08162 -03402 00263 03925 0.8620
1354 00106 t; ~1.0634 -03151 03079 09321 16839

z —0.8913 -04483 —0.1227 01791 05048 0.9418
1336 00107 -12084 -05121 -00468 05746 11359  1.8372

z -09521 -05333 -02351 00297 02948 05936  1.0070
466 00256 05725

z —0.7618  0.8533
373 00333 00459  1.1288

z -11147 00792  1.2429
346 00367 -02387 05968 1.4438

z -1.3259 -03028 04901  1.4854
335 00385 —04178 02891 09254  1.6528

z ~1.4649 -05414 01037 07552 16533
329 00395 -05384 00827 06141 11525 1.8020

z -15608 -0.7049 -01481 03741 09436  1.7760
326 00402 -06230 -00658 03983 08443 13207 19127

z -16290 -0.8229 -03278 01193 05716 10847 1.8684
188 00498 {; 0.8471

z -11378  1.3202
152 00654 03034  1.3495

z -15924 01616  1.8456
143 00717 01636 08762 16076

z -1.8201 -03309 07057 21367
139 01082 { 00443 06198 11540 1.7579

z ~1.9625 -06099 02005 10273 2.3134
137 00762 -00250 04587 08917 1.3331  1.8502

z —20414 -07843 -01104 05349 12347 24245
136 00771 —00676 03493 07170 10763 14567  1.9090

z —20903 -09006 -03216 02176 07654 13757 24958




Table5.3:  Optima Group Limits and Weights
Standard Weibull Distribution, a =3
The calculation of n assumes a = 3 =0.001

Y, k n A 1 2 3 4 5 6 7
0.5 1 110.1  0.0068 0.5934
-0.8764  0.3872
2 90.5 0.0104 0.3044  0.9060
-1.2995 -0.2719  0.5120
3 85.0 0.0122 0.1964 05372  1.1057
-1.5657 -0.6410 -0.0069 0.5714
4 82.7 0.0132 0.1442 03743 0.7126  1.2454
-1.7478 -0.8848 -0.3300 0.1464  0.6044
5 815 0.0138 0.1152 02855 05218 0.8492 1.3484
-1.8772 -1.0579 -0.5563 -0.1383 0.2464  0.6245
6 80.8 0.0143 0.0978 02313 04101 06441 09587  1.4273
-1.9711 -1.1859 -0.7246 -0.3467 -0.0069 0.3164 0.6376
1 1 14 0.0369 0.8591
-1.5449  0.7278
2 6.2 0.0508 0.5466  1.2247
—2.1412 -0.3949  0.9482
3 49 0.0569 0.4308 0.8507  1.4481
—2.4468 -0.9031 0.0622  1.0550
4 44 0.0599 03770 06815 10614 1.6015
-2.6151 -1.1947 -0.39%2 03244 11157
5 4.1 0.0616 0.3485 05874 08677 12176  1.7137
-2.7131 -1.3779 -0.6907 0.0877 0.4948  1.1536
6 4.0 0.0627 03320 05285 07508 1.0125 1.3386  1.7992
—2.7735 -1.5007 -0.8960 -0.3704 0.1222 0.6141 1.1788
15 1 14.9 0.089 1.1408
—2.0899  1.0529
2 12.6 0.1127 0.8224  1.5417
—2.7530 -0.4487  1.3437
3 12.0 0.1205 07106  1.1712  1.7656
-3.0436 -1.0135 0.1300 1.4802
4 11.8 0.1235 06616  1.0014 13934 19076
-3.1843 -1.3137 -0.3990 0.4497 1.5561
5 11.7 0.1249 0.6368 0.9059 1.2014 15481  2.0046
-3.2592 -1.4934 -0.7263 -0.0325 0.6510 1.6028
6 11.7 0.1255 0.6228 0.8454 1.0832 1.3488 16619 20742
-3.3027 -1.6105 -0.9493 -0.3549 0.2124 0.7884  1.6337




Table5.4: Optima Group Limits and Weights
Standard Weibull Distribution, a = 0.001, B = 0.005

m nh A i =1 2 3 4 5 6 7
0.5 94.5 0.0208 % 0.6224
Z —0.8456 0.4006
78.1 0.0277 t 0.3281 0.9425
z -1.2530 -0.2324 0.5240
73.6 0..0308 t; 0.2179 0.5704 1.1441
z -1.5034 -0.5868 0.0291 0.5811
71.7 0.0324 t; 0.1648 0.4056 0.7505 1.2834
Z -1.6695 -0.8169 -0.2803 0.1786 0.6122
70.7 0.0333 t 0.1355 0.3157 0.5586 0.8894 1.3850
z -1.7837 -0.9769 -0.4951 -0.0930 0.2752 0.6308
70.2 0.0340 ; 0.1180 0.2608 0.4460 0.6840 0.9998 1.4618
z -1.8638 -1.0927 -0.6531 -0.2911 0.0345 0.3422 0.6427
1 27.3 0.0758 t 0.9155
Z —1.4598 0.7655
23.0 0.0994 t; 0.5991 1.2957
z -2.0218 -0.2825 0.9845
21.8 0.1090 t; 0.4838 0.9166 1.5263
Z -2.2987 -0.7617 0.1671 1.0872
21.4 0.1137 t 0.4311 0.7457 1.1341 1.6825
Z —2.4459 -1.0315 -0.2685 0.4213 1.1436
21.2 0.1162 t; 0.4035 0.6507 0.9376 1.2938 1.7948
z -25295 -1.1986 -0.5467 0.0294 0.5841 1.1776
21.1 0.1177 % 0.3877 0.5912 0.8190 1.0857 1.4164 1.8789
z -2.5800 -1.3096 -0.7395 -0.2394 0.2305 0.6965 1.1994
15 13.1 0.1512 t 1.2196
z -1.9534 1.1143
11.1 0.1913 t; 0.8994 1.6413
z -2.5730 -0.2637 1.4069
10.6 0.2051 % 0.7897 1.2643 1.8807
Z -2.8341 -0.7956 0.3119 1.5424
10.4 0.2110 t 0.7422 1.0926 1.4980 2.0361
z —2.9576 -1.0745 -0.1931 0.6312 1.6170
10.3 0.2139 t; 0.7182 0.9961 1.3017 1.6625 2.1451
z -3.0226 -1.2402 -0.5041 0.1685 0.8341 1.6628
10.3 0.2155 % 0.7047 0.9349 1.1810 1.4571 1.7854 2.2260
Z -3.0601 -1.3480 -0.7150 -0.1402 0.4119 0.9742 1.6931




Tables 5.3 and 5.4 present the optimal group limits and weights for a standard Weibul®
process where the mean and standard deviation are equal to unity. Comparing the optimal limits
for normal and Weibull group limits shows that the Weibull limits are not symmetric even when
the error rates are equal. To compare the optimal limit in Tables 5.1 and 5.2 to the optimal
Weibull process limits it is necessary to add unity to the normal process limits. In general, the
optimal Weibull limits are shifted to lower values when compared to the optimal limits for a

normal process.

5.2 Two-Sided Acceptance Sampling Plans

This section derives optimal group limits for the two-sided acceptance sampling plans of
Section 3.2. For two-sided mean shift acceptance sampling plans or acceptance control charts |
know of no previous work on optimal gauge design. Section 3.2 considers the hypothesis tests
where the difference between i, and p, islargein terms of sigma units, and thus the two-sided
hypothesis test can be thought of as equivalent to two one-sided tests. As a result, the optimal
group limits for two-sided mean shift detection will be in two clusters, half near u, and the other
half near u,. Since the two clusters of group limits are so far apart, the lower cluster of limits
has very little effect on the ability to detect mean shiftsto p, and vice versa. As aresult, the
optimal group limits for the two sided test can be determined accurately from the analysis done
for the one-sided tests in Section 5.1. Since adding a group limit near (/,l; +/,l;)/2 will also
have little effect, it is recommended that an even number of group limits be chosen. Half of the
group limits will be determined by considering the lower hypothesis test, and the other half
determined based on the upper hypothesistest. In other words, for the normal process use Tables
5.1 and 5.2, and for aWeibull process use Tables 5.3 and 5.4.

For example, say we wish to design an acceptance sampling plan or acceptance control
chart based on 6 group limits that is to detect mean shifts of one sigma unit when p; =10, u, =
5 0 =0.6, (thus u =10.6, u, =4.4), a =0.001, B = 0.005, and the process is approximately

normal. Then, from Table 5.2, the optimal standardized group limits for 3 step-gauge are



—0.2387, 0.5968, 1.4438. Thus the optimal group limits for this two-sided problem &@
—0.2387*0.6+5 = 4.86, 0.5968* 0.6+5 = 5.36, 5.87, -0.2387*0.6+10 = 9.86, 10.36, 10.87. Notice

that there are two distinct groups of gauge limits.

5.3 Shewhart Control Charts

The design of step-gauges for Shewhart type control charts is motivated by Stevens
(1948). Stevens proposed designing two-step gauges so that they maximize the expected Fisher
information about the null hypothesis. Shewhart charts attempt to detect whenever the processis
no longer stable at the target value (or null hypothesis). As aresult, the problem of determining
the best group limits for control, may be thought of as equivalent to designing a step-gauge to
best estimate the parameter of interest when the null hypothesis holds. This implies that the
grouping criteria that maximizes the expected Fisher information at the null hypothesis should be
used. Stevens considers only the case of detecting mean and standard deviation shifts of a
normal process with atwo-step gauge. This section extends the methodology, first to the genera
multiple group case, and second to the Weibull process. In addition, the process is often
monitored for both mean and standard deviation shifts using data from the same step-gauge.
However, the optimal step-group limits are not the same for these two purposes, so the issue of a
compromise gauge design for simultaneous parameter shift detection is also considered.

As mentioned above, we are interested in assessing the expected Fisher information in a
sample of size n. The information about the parameter 6 in the sample of data from a k-step
gaugeisgiven by:

9In(L(6] Q) I

(61Q) 76

1 Q dn(6)0

D 76 ds (5.1)

However, the log-likelihood for a sample of size n will be formed by the sum of n log-

likelihoods, each of identical expectation (Edwards, 1972). As aresult, it is equivalent, for our



purposes, to consider the expected information in a single observation. The expectéd

information in asample of sizeoneat 8, E(1(6)), may be obtained by conditioning on the group
into which the observation is classified. In particular, if e, e,, ..., €., denote the unit vectors of

length (k+1), then

E(1(8)) = il(e\ej)nj(e)

= :ﬁ g%g. (52)

The parameter 8 can represent any parameter of interest. The optimal group limits to
detect mean or standard deviation shifts of a normal distribution are determined in Section 5.3.1.

In Section 5.3.2 the optimal group limits for Weibull shape and scale parameter shifts are given.
In each case, the group probability function 77,(6), is adapted to the particular parameter and

distribution of interest.

5.3.1 Normal Process

For the normal distribution the group probabilities are

1lno) = oy = [t ewr ) Gy

The standardized group limits t; are utilized since ultimately interest lies in finding the

information about the standard normal. Assume, without loss of generality, o = 1. Then,

o) L g (- H)

and

o
_g_ -~
=
11
=
=
=

and the expected information about ¢ from asingle observation is
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The group limit design problem is to find the standardized group limits t;’s, that

maximize this expected information. Without loss of generality, the calculations in the table

assume ¢ = 0. Finding the best location for the physical group limits x;’s, from the optimal
standardized limits is straightforward. If the process produces units that match a normal
distribution with mean y and standard deviation o then x; = ot; + .

The function E(I (,u)) isnot concave. If thefirst (k— 1) group limits are fixed and the kth

group limit is allowed to become arbitrarily large, the expected information asymptotically
approaches a minimum. Extensive experimentation suggests, however, that the expected
information function is unimodal. As a result, this non-linear optimization problem may be
solved using either the Nelder-Mead multi-dimensional simplex method or the Fletcher Reeves
algorithm (Press, et al., 1988). The Fletcher Reeves algorithm is more efficient but requires the
gradient of (5.3) with respect tot. The gradient of (5.3) isgiven in Appendix E. Moreover, the
optimal group limits are symmetric about zero, thus the number of variables in the problem can
be reduced by one half.

Table 5.5 (see also Kulldorff, 1961) gives the optimal group limits and the efficiency of a
k-step gauge relative to exact measurement. Efficiency is defined as the ratio of the statistical
information available using groups to the information available using variables. Clearly, the use
of more than two or three groups significantly increases the efficiency of an observation. Table
5.5 shows that more information about p is available in ten five-group optimally gauged
observations, than is available in nine exact measurements. If exact measurement is

uneconomical, then a properly designed gauge is an excellent aternative.



Table5.5: Optimal Group Limitsto Detect Mean Shifts 13
assume that when processis“in control” ¢ =0

k  Efficiency t, t, i t, tg ls
1 0.6366 0.0

2 0.8098 -0.6120 0.6120

3 0.8825 -0.9817 0.0 0.9817

4 0.9201 -1.244 -0.3824 0.3824 1.244

5 0.9420 -1.4468 —0.6589 0.0 0.6589  1.4468

6 0.9560 -1.6108 -0.8744 -0.2803 0.2803 0.8744 1.6108

The expected Fisher information approach can also be used to design group limits when the
objective is to detect shifts in the standard deviation of a process. Assuming Y to be normally
distributed with ¢ =0 gives

2

] 1 -y
#y:0) \2mo *PHo2H

dr (o)

J

do %(tj—lw(tj—lia)_ti(p(ti;a))'

Thus the expected information about o, for a single observation, is written:

2
'[f(p(tl;O')2 N K (tj—lfp(tj—l;a)_tjqo(tj;a)) +tlf(p(tk;o-)2

. (5.4)
o 7-[1(0) ]=2 o 7-[] (0) o nk+1(a)

(1(0) -

Again we wish to find the group limits t;’s, that maximize this expected information.

Without loss of generality, assume o = 1. If the expected information is to be maximized when
the process standard deviation is o, multiple the group limits found for the case where o = 1 by
the desired o value. Since extensive empirical study suggests this function is unimodal, the
maximization problem can also be efficiently solved by the Nelder Mead or Fletcher Reeves
algorithm. The gradient of E(I (0)) isgivenin Appendix E. The results are shown in Table 5.6.

Note that for an even number of groups, the middle step gauge placement has arbitrary sign, and



isnot zero as in the mean shift case. Thisis because, to detect standard deviation shifts, a grolig

limit placed at t = 0 will provide no additional information.

Table5.6: Optimal Group Limitsto Detect Sigma Shifts
assume that when processis“in control” o =1

k Efficiency t, t, t; t, i ts
1 0.3042 +1.5758

2 0.6522 —1.4825 1.4825

3 0.7074 —1.4520 11855 2.0249
or3 0.7074 —2.0249 -1.1855 1.4520

4 0.8244 -1.9956 -1.1401 1.1401 1.9956

5 0.8588 —1.9827 -1.1193 09837 16189 2.3267
or5 0.8588 23269 -16190 -0.9837 11190 1.9821

6 0.8943 —2.3130 —1.6002 -0.9558 0.9558  1.6002  2.3130

The group limits that maximize the expected information about o are not the same as
those that maximize the expected information about p. Asaresult, since charts are often used to
monitor for mean shifts and standard deviation shifts simultaneously a compromise gauge design
isconsidered. Often the detection of mean shiftsis given priority. For this reason, the proposed
methodology for the grouping design allows some flexibility in the amount of emphasis given to
detecting mean and standard deviation shifts. The analysis proceeds by using the weighted sum
of efficiency ratings for mean and standard deviation estimation as the optimization criteria. In

other words, maximize

Eff(u,0;d) = dEff(u)+(1-d)Eff(0),

where d isthe weight, Eff (u) is the efficiency of mean estimation, and Eff (o) is the efficiency

of standard deviation estimation. Unfortunately, this new combined efficiency criteriais a
bimodal function, and therefore the optimization procedure may yield alocal maximum. There
is a boundary at around d = 0.35 where the improved mean estimate yielded by using a group
limit at t = 0 is outweighed by the better standard deviation estimate obtained by staggering the



group limitsaround t = 0. Empirical results suggest that the global maximum can be found usi t§
two different specific starting guesses for the group limits. The best group limits with the middle
limit at t = 0 and the best group limits staggered about t = 0 are found and the solution with the
largest Eff (u,a;d) value is chosen. Tables 5.7 presents the optimal 3-group gauge limits for
different weights found in this manner. Table 5.8 gives the optima compromise group designs
for various number of group limits when the mean estimation is given greater weight (d = 0.7).

Table5.7: Suggested 3-Group Limits to Detect Mean and Sigma Shifts
assumethat if aprocessis“incontrol” y =0and o0 =1

weight  Efficiency  Efficiency t, t, t,
d u o
0.1 0.6543 07335 ~ 13974 10861 19584
0.2 0.7030 07248  -1.3384 0.9559 18742
03 0.7587 07060  -1.2835 0.7752 17625
0.4 0.8523 06481  -13906 O 1.3906
05 0.8569 06446  -13577 0 1.3577
0.6 0.8623 06379  -13117 0 1.3117
0.7 0.8685 06262  -12529 0 1.2529
0.8 0.8749 06066  -11779 0 1.1779
0.9 0.8803 05757 10859 0 1.0859

Table5.8: Optimal Group Limitsto Detect Mean and Sigma Shifts
d=0.7, assumethat if processis“incontrol” y =0and o0 =1

K Effi(:Lilency Effic(ijency t, t, t, t, ts 15
1 0.6366 0 0

2 0.7822 0.4664 -0.8487 0.8487

3 0.8685 0.6262 -1.2529 0 1.2529

4 0.9082 0.7384 -1.5500 -0.5295 0.5295 1.5500

5 0.9333 0.8039 -1.7703 -0.8768 O 0.8768 1.7703

6 0.9489 0.8486 -1.9481 -1.1366 -0.3889 0.3889 1.1366 1.9481




5.3.2 Weibull Process 16

When designing a step-gauge for Shewhart control charts when the underlying
distribution is Weibull the methodology presented in Section 5.3.1 is used. However, since the
Welbull is defined in terms of shape and scale parameters a and b, the optimal step-gauge design
to detect shiftsin a and b independently are first considered. Later the optimal group design for
detecting shifts in both parameters simultaneously are discussed. The group limit designs for
simultaneous parameter detection would be appropriate if, for example, we are interested in
detecting mean and/or standard deviation shifts of a Weibull process.

If the process produces parts that are best modeled by a Weibull distribution, the group

probabilities can be written:

m(ab) = expgrgfgg—expg—%gg

The standard Weibull is defined to have unit shape and scale parameters, a=b = 1.
With interest focused on the shape parameter of the Weibull distribution, and assuming,

without loss of generality, that b = 1, we can write:

m(a) = exp(—tf‘_l)—exp(—tf‘),
T L U S G A E Co|

We can assume b = 1 because, as will be explained later, the optimal limits found for the
standard Weibull are easily translated to any value of b. From the above expressions, the
expected information about the shape parameter, from a single observation, is:

K+l (tja In(tj ) exp(—t].a) -t | n(tj _1) eXp(_tja_l))2
& exp(—t?,) - exp(-t7)

E(I(a)) =

(5.5)

This equation can be maximized using either the Nelder Mead multi-dimensional simplex

algorithm, or more efficiently by Fletcher Reeves algorithm (see Appendix D for details on the



gradients of E(I(a)) and E(I(b))). Table 5.9 presents the results of the maximization probler

The efficiency rating is calculated relative to the amount of information available in variables

data.

When the scale parameter of the Weibull is of interest a similar analysis is possible.

Assuming, without loss of generality, that a = 1, gives the group probabilities

m(b) =
and therefore, dn’—(b) =
db
So E(1(b)) =

B o
E)_ % @ &P % Q

et
Z exp(—j_l/b)— '

exp(—tj / b)

(5.6)

The group limits that maximize expression (5.6) above are given in Table 5.10.

Table5.9: Optimal Group Limitsto Detect Shape Shifts
assume that if the processis“in control” a =

k Efficiency t, t, t; t, i ts
1 0.2801 0.1189

2 0.6557 0.1418  3.2801

3 0.7527 0.1505 2.6936 45643

4 0.8285 00516 02486 2.6173  4.4970

5 0.8692 00534 02580 23339 3.6005 5.3934

6 0.8990 00245 01154 03257 22921 35641  5.3593




Table 5.10: Optimal Group Limitsto Detect Scale Shifts 18
assume that if the processis“in control” b=1

k  Efficiency t, t, t; t, t ts
1 0.6476 1.5936

2 0.8203 10176  2.6112

3 0.8910 07540 17716 3.3652

4 0.9269 06004 13545 23720 3.9656

5 0.9476 04999 10998 18538 2.8714  4.4650

6 0.9606 04276 09269 15273 22813 3.2989  4.8925

Often we are interested in both parameters ssmultaneously. Thisis the case when interest
lies in the mean and/or the standard deviation of a Weibull process. For that reason, the optimal
step-gauge design is determined for shifts in both parameters. As the relationship between shape
and scale parameters and the corresponding mean and standard deviation is complex, an
optimization criteria based on the average efficiency is proposed. Table 5.11 presents the results,
showing the step-gauge design that has the highest average efficiency to detect scale and shape
parameter shifts. For this compromise solution, the non-linear optimization procedure may give
only alocal maximum. Extensive empirical study suggests that we get different local maxima of
the average of (5.5) and (5.6) depending on how many of the initial gauge limits start on either
side of the mean value of the standardize Weibull, i.e. t = 1. Consequently, for ak-step gauge

there are (k+1) local maximumes.,



Table 5.11: Optimal Group Limitsto Detect Shape and Scale Shifts 19
assume that when the processis“in control” a=b=1

k Average t, t, t, t, t; ts
Efficiency

1 0.4096 2.4552

2 0.6351 0.2501  2.5473

3 0.7613 0.2148  1.7140 3.6038

4 0.8257 0.1181 06377 20668 3.9147

5 0.8736 0.0814 04054 14950 27639 4.5538

6 0.9021 0.0626 03027 1.0291 2.0483 32501  5.0264

The empirical results also suggest that to obtain the global optimal, as presented in Table
5.11, a starting solution must have an equal number of group limits on either side of t =1. For the
case of a odd number of group limits, the extra group limit is better placed on the upper side of
the mean. So, for example, the best gauge placement using only k = 3 gauge limits, would be at
0.215, 1.715, and 3.6, and this grouping criterion has an average efficiency of 76% for detecting
scale and shape parameter shifts.

The optimal group limits presented in Tables 5.9-5.11 all show the best group limits for
detecting shifts in the standard Weibull when a=b = 1. Fortunately, these optimal limits can
easily be rescaled for the general Weibull. To translate the optimal group limits from the case a

=b=1, usetheformula

where t, represent the standardized group limits presented in Tables 5.9-5.11, and X, are the

rescaled group limits.

5.4 Destructive Testing Procedure |
This section addresses the question of optimal group probabilities to estimate the
correlation using Procedure | of Section 4.1. Note that in Chapter 4 the group divisions were

defined in terms of group probabilities rather than group limits. However, group probabilities



can easily be tranglated to group limits through the use of the inverse cumulative density functi@d

of the normal distribution, i.e. t, = ®™(p). Given an actual correlation p,, and the sample size
n, thevaluesof p, and p, that minimize the predicted standard deviation given in equation (4.6)
can be found. Due to the well behaved nature of the function that approximates the standard
deviation of p, Nelder Mead multidimensional simplex method (Press et al. 1988) is
appropriate. The results showing the pair of p, and p, values that minimize the approximate

standard deviation for p,, for actual p,, between -0.95 and 0.95 are plotted in Figure 5.1.

0.8
075 Ceec oo, |
07" - ;
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actual correlation, Pap

Figure5.1: Optimal p, and p, Vauesto Estimate p,,
‘o' =best p,, ‘x’ =best p,
The plots for optimal p, and p, values appear approximately quadratic and cubic in nature

respectively, and can be very closely approximated by fitting polynomial regression lines. This

gives

best p, = 0.733-0.1650%,

best p, = 0.499— 0.184p,, +0.14605, (5.7)

Determining the optimal valuesfor p, and p, requires aprior estimate for the correlation
p.,- However, due to the relative insensitivity of the standard deviation of p, near the optimal
p, and p, values (explored in the Section 4.1.1), choosing good p, and p, values can be done

even with little idea of the actual p,,. With little prior information regarding the correlation



level, proof-load levels closeto p, = 0.65 and p, = 0.45 are recommended. These proof-lodd

levels provide correlation estimates with close to optimal standard deviation values for any true
correlation level. Procedure | utilizes a single proof-load in each mode, thus in each dimension
there is a single group limit. Based on the above suggested group probabilities, the best group
limits are —0.126 and 0.385 for strength mode A and B respectively. These group limits are

given in terms of a standardized normal process.



CHAPTER 6
Summary, Conclusion and Possible Extensions

This thesis devel ops quality control and improvement techniques based on grouped data.
Grouped data commonly occur in industry when exact measurements are either prohibitively
expensive or impossible. The methodology presented allows the creation of acceptance sampling
plans, acceptance control charts, and Shewhart control charts based on grouped data. 1n addition,
a number of correlation estimation procedures are derived that are applicable when data is
grouped due to destructive testing.

In Chapter 1 the concept of grouped data is introduced, and an outline of the three major
areas of application is presented. The three application areas are acceptance sampling plans,
control charts and correlation estimation under destructive tests. Chapter 1 also provides a
detailed literature survey of previous research relating to the use of grouped data in quality
control and improvement problems. In Chapter 2, much of the notation used in the thesis is
defined, and algorithms, derived from existing work in the literature, for the calculation of
maximum likelihood parameter estimates from grouped data are presented. In addition, Chapter
2 shows that existing ad hoc quality control techniques often used in industry for grouped data
are inadequate. Chapter 3 turns to the derivation of one-sided and two-sided acceptance
sampling plans, acceptance control charts and Shewhart control charts based on grouped data.
The solution methodology is based on the asymptotic properties of the chosen test statistic. In
each case, different solution strategies are compared and contrasted. In addition, Chapter 3
discusses in detail the design of such plans and charts when utilizing small sample sizes. Chapter
4 presents four different procedures that use proof-loading to estimate the correlation between
destructively measured strength properties. Unlike existing techniques, all the procedures

involves grouping units in two modes and require no precise measurements. The first two



procedures are adaptations of existing techniques that use a single proof-load in each mode a2d
give only estimates of the correlation. The second two procedures are further extensions that
utilize two proof-loads in each mode. The resulting additional information allows the estimation
of the two individual means and standard deviations as well as the correlation. Chapter 5
addresses the issue of optimal grouping criteria. The best way to group observations depends on
the application, but the optimal groupings for acceptance sampling plans, Shewhart control charts
for normal or Weibull processes, and correlation estimation under destructive testing are derived
through optimization techniques.

The ultimate goal of Statistical Process Control (SPC) is increased quality in
manufactured products or services provided. For the most part, SPC techniques have been
developed for two types of data: variables data and dichotomous data. However, existing quality
control tools will not work well if they are inappropriate for the situation. For example,
variables-based SPC techniques are commonly applied in an ad hoc way to grouped data and
may lead to misleading results and incorrect decisions. Grouping datainto two or more groupsis
anatural compromise between variables data and dichotomous data. Grouped data are common
in industry and occur when precise measurement is expensive but gauging articles into groupsis
feasible. In this thesis the SPC methodology presented is developed and designed for grouped
data. The derived sampling plans, control charts and correlation estimation procedures for
grouped data are quite competitive, in terms of required sample size, to variables based methods.
The dlight loss in efficiency is often more than compensated by lower data collection costs, since
grouping data may be easier and cheaper. In addition, the resulting charts and plans are easily
implemented in a shop floor environment.

In a more general context, the presented methodology provides a framework to deal with
grouped data in the areas of parameter estimation and hypothesis testing. The methods have
been described in the context of quality improvement, but they are more widely applicable. The
solution approaches suggested are very adaptable. The likelihood approach is appropriate for

grouped data from any underlying distribution, and with any parameter of interest, since, due to



the data grouping, the appropriate distribution is always multinomial. Thus, for any underlyi@g
distribution of the quality characteristic only the group probabilities change leaving the proposed
design methodology unchanged. As a result, the techniques are also applicable when the
underlying distribution of the quality characteristic is non-normal. For example, the proposed
techniques have application in the service industry where service times are often modeled as
exponentials. The weights-based methods are also very appealing due to their ssmplicity. Inthe
weights-based methods each unit is assigned a weight based on the group into which it is
classified, and the average weight of a sample is used as the test statistic. Thus, the weights-
based methods are easily implemented since these cal culations can be done without sophisticated
measuring devices or computers.

A number of interesting extensions to this work are possible and are currently being
pursued. Likelihood methods can be extended to sequential sampling methods through the
sequential probability ratio test. Sequential procedures have the advantage of requiring, on
average, smaller sample sizes to achieve the same operating characteristics as the fixed sample
size solutions. Sequential testing procedures, however, have several drawbacks. The sample
size required to reach a decision is not known a priori, and units must be considered one at a
time. This extension would be of particular interest since it would allow the design of
cumulative sum (CUSUM) charts. CUSUM charts are currently very popular in the literature
since they are easy to use and are better at detecting small parameter shifts than Shewhart charts.
Another possible extension is to develop hypothesis testing procedures for the correlation under
destructive testing. A methodology similar to the one presented in Chapter 3 would probably
also be applicable in this case. A third extension involves the application of grouped data to
experimental design. The ultimate goal of both experimental design and control chartsis quality
improvement. However, control charts passively monitor the output of a process until an “out of
control” signal is obtained, and then investigate and remove the cause of the problem. Designed
experiments, in contrast, provide a more active statistical tool for achieving quality improvement.

With designed experiments a number of possible input conditions are tried, and through a



statistical analysis the probable optimal combination of process inputs is determined. 1np@S
consist of such things as raw materials, temperature and machine settings. Often the correct
combination of inputs results in a reduction in the “natural variation” of a process. This thus
leads directly to more consistent and higher quality outputs.

These proposed extensions, together with the work from this thesis, would provide
practitioners with a fairly complete quality control and improvement system designed for
grouped data. The thesis material makes the first important steps in this direction, and provides a
methodology that can be extended to the other areas. In conclusion, the presented SPC
techniques based on grouped data will be a valuable addition to a quality practitioner’s repertoire
of quality control and improvement techniques, and provide a methodology for parameter

estimation and hypothesis testing based on grouped datain general.
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APPENDICES



Appendix A: Notation

This appendix summarizes most of the notation and acronyms used in this thesis.

Latin alphabet
a Weibull shape parameter
b Weibull scale parameter
C arbitrary constant
CLT central limit theorem
fu probability density function (p.d.f.) of the normal distribution
Fu cumulative density function (c.d.f) of the normal distribution
f,  p.d.f of the Weibull distribution
F,  c.d.f.of the Weibull distribution
GLR generalized likelihood ratio
H,  null hypothesis
H,  alternate hypothesis
H_, alternative hypothesisin the downward direction
i unit index
] group index
LACL lower acceptance control limit
LCL lower control limit
m multiple of sigma units used to set control limits for Shewhart charts
MLE maximum likelihood estimate
n sample size
OC  operating characteristic
P, probability of failure under proof-load in mode A.
p,  maximum likelihood estimate of p,
PL, proof-loadlevel in modeA.
Q vector of sample grouping
Q observed number of unitsin group i
t. location of standardized gauge limits
UACL upper acceptance control limit
UCL upper control limit
w weights associated with H_; vs. H,
X location of physical gauge limits
Y random variable representing value of quality characteristic
z weights associated with H, vs. H, test



Greek Alphabet

EEEE>>>08S®®]A

e -
-

Q0P DPDODDOD NFE

typel error rate

actual typel error rate

typell error rate

actua typell error rate

critical GLR value

probability density function

cumulative distribution function of the standard normal distribution
critical likelihood ratio value

adjustment of A for sample size increase based on false alarm equation
adjustment of A for sample size increase based on power equation
mean of the normal distribution

stable mean value

alternative mean value greater than L,

alternative mean value less than L,

acceptable mean value

rejectable mean value

expected average w weight

expected average z weight

probability of falling into group |

correlation between strength modes A and B

MLE for p,,

parameter of interest

acceptable parameter value

rejectable parameter value

target parameter value

parameter value of interest greater than 6,

parameter value of interest less than 6,

standard deviation of the normal distribution
standard deviation of the w weights

standard deviation of the z weights



Appendix B: Interpretation of Weights

The group weight for group j, as expressed by equation (3.16), can be rescaled to be
approximately equal the expected value of an observation that falls into group j given u = u,.

Since the weights can be rescaled, it is possible, without loss of generality, to restrict attention to

the case when i, =0 and o =1. For the normalized problem, p, represents the size of mean

shift we wish to detect given asamultiple of o.

First, find the expected group value given u = (.

g
X X)dx
t,[(p()

E(y| ydj® group) e
J’cp(x)dx
fiy

_ o At) -4y

Qitj—lltjj

where ox) = %T exp(-x*/2), the p.d . of the standard normal
N
y
Q(xy) = @(s)ds,

and the t;' s are the standardized gauge limits.

Now consider the Taylor expansion in p, of the weight assigned to all units that fall into

group j, see equation (3.16) (assume u, = —{_,).

my 1 []

0f x5 (x )

: . : O
weight for groupj = InD‘tJ‘1 5

1
EJ’ eXpB_E(X + yl)zgg
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= o u, + Ofu})
_v2 _ _v2
\ﬁ-([exp( X )dx @Toexp( X )dx

),
Qiwt) - '

2, E(y| y 0 " group) + O(1;)

For reasonable values of t;_, and t; (-5 <t < 5) the coefficients for all terms in the above
expansion of order higher than three is very small and decreasing as the order becomes higher.
For typical values of u,, such as 1 or 2, these higher terms can be ignored, and the group weight

for group j is approximately equal to 2u, times the expected value of an observation that falls

into group j given U = ;.



Appendix C: Expected Vaue of Proof-load MLES

This appendix contains the details of the proof that the MLESs given by equations (4.7)
and (4.11) are al unbiased estimates.
Showing that the MLEs given by equations (4.7) are unbiased requires the following

intermediate results:

E(na) = NP, E(nb) = n(pb_ panb)
E(m) = m(p.-p..,), E(m) = mp,
E(n,|n,+n,) = —papi(gz t:)i‘)mb
i B8
E(n,m,) = E(n,) E(m,)
E(mn,) = E(m,) E(n,)

Using these expressions gives

Cn, (m, +m,) 0_ E(n[n+n,)
Em|na+nb5_ n, +n, E(ma+mo)
T A
= n, j‘-nrtl’b (m( P = Pay) mpb)

:mp

a

Therefore, since this result does not depend on n, +n,

£ (m, +m,)0

H n +n, g™ ™

_mn, +n,)

Similarly,
m, +m,

D
g~ ™



Also, we have 38

- mn, E(na)E(mo | m, + mo) B E(nb)E(ma | m, + mo)

L]
Elm+m |m,+mp = m, +m,

R,y (M, + M) n(B, = Pans)(Pa = Pan)(M, + M)

- pa+pb_pamb pa+pb_panb
m, +m,
= npam b
Therefore, - mn, J n
WE P
and Ifnanb

BWE e

Thus, considering the MLEs in expressions (4.7),

o = n(n+n+m+m) _ n,(m, + m,)0
¢ (n+m)(n, +n,) n+mg| n+n, O
Therefore, E(p.) = njm(npa+mpa) = P
. 1 mo(n +n,)0
Similarly, p, = n+mHﬂj W
and therefore E(p;) = B
Also, . = (M ma)(n+n +m, +m,)
O (nem)(n ) (m +m)
o o_ 1 Omn-mn)  (mn, - mn)0
Panp =

n+mi m,+m, N, +1n,

. 1
O E(panb) = n+m(npamb + mpanb) = panb

Therefore, the MLEs given in equations (4.7) are all unbiased.



The MLEs given for Procedure 111 by equations (4.11) can be shown to be unbiased ir88

similar manner. To illustrate the technique it is shown that E(p;z) = p,, and E(p;%bz) = Paznbes

the unbiasedness of the MLES p,, B, P,y» Pa.pe @D Py, fOllow directly.

The following intermediate results are required:

E(n,,
E(m,,

( a2|na2+nb2

npaZ’ E(rl)2) = n( poz - pa2nb2)

(pa2 ~ Pazn b2)’ E(moz) mQ,,
paz(naz + noz)
Paz * Bz = Paznbe

)
)
)
) = Poa(M, + M)
)
) =

+
(moz | The ™ Mz Paz * Poz ~ Paznnz

E(n.,) E(m.)

E(m,,) E(n,)

E(n.m
E(m,n,;

Using these expressions gives

[h,(m, 2 o | Moo 1,
(my, +m,,) 0_ E(ne[ne+n,)
n,+n, | n, + nozE = n,+n, E(mdz + moz)
pa2 (na2 + nbz)
= BB ;:aiﬁr:; (m( Paz = Pazn bz) + mpoz)
= mpaZ

Therefore, since this result does not depend on n,, +n,,

n,,(m, +m,)0 _
WE mp,,

Also,

eMay ~ My o O E(ne)E(m, | My + M) = E(n,,) E(m, | my, +m,)
E M, + My 2Ty m, +m,




np,, pnz(maz + moz) _ n( Boz ~ Pazn bz)( Pz — pa2mb2)(rnaz + moz)

Paz T Poz = Paznbe Paz T Poz = Pazab2

m, +m,

= NPyap2

Therefore EDmoznaz — M,y O

E m,+m, E = NPyap2
Dmoznaz — My, O —

E =

and E naz T noz E mpan b
Coo (et tmetmy) 1 O ng(m,tmy)
Thus Pz (n+m)(n,, +n,,) nemB® " n,+n,
. 1

Therefore, E( paz) = m(npaz +Mp,)= P

AISO’ p;Zn b2 — (rn02nc12 - maznoz)(naz + n02 + rnaz + rnoz)

(n+m)(n, +n,;)(my +my,)
* _ 1 E(moznaz - maznoz) (moznaz - maznoz) O
P = imb mgrm,  natn,
0 E( p;anZ) = m(npaerbZ + mpaanZ) = Pazab2

Therefore, the MLEs p,, and p,,.,, diven in equations (4.11) are unbiased.
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Appendix D: Gradient of Sample Size Formula

In addressing the question of optimal gauge limits in the case of a one-sided acceptance
sampling plan it is necessary to find the gauge limits that minimize the required sample size.
Although this minimization problems can be solved directly through the use of the Nelder-Mead
multidimensional simplex algorithm more efficient techniques exist that utilize the gradient of
the function to be minimized. Asaresult, this appendix shows the calculation of the gradient.

To determine the optimal gauge limits to detect shifts in the mean of a normal
distribution, the sample size, as given in equation (3.4), must be minimized . For given a, (3,
and acceptable and rejectable mean values p, and p,, equation (3.4) is only a function of the

standardized gauge limitst. From Section 3.1, equation (3.4) is

0™ (1- B), (1) = P M@)o, (k)

n=
M, (1) = 1, (H,)

Taking the derivative with respect to the gauge limit t, gives:

on _ Do (a)o,(u,) - @7 (1-B)o,(u,)0
dt E IJZ(IJa) I'lz(/'lr)

EKD 1(0) ﬁo—z(l'la)/dti — (D_l(]_—lB) do_z(ur)/(?tl O
H Mo (H) = K (1)

Co(a)a, (1) - (- B)a,(u,) T, (1) A (,)C
(L) -muw)) 0 & & 0

where ‘9“0;5 A O CREI ((“))Eco(,, n "(Z ot
_ n]+1(l“l) D . J+1(IJr)
T ) 2 e



42

and ] z ' z,
X X X X
0z, oz, U
+27—[1(H)ZJE_J+27T]+1(“)21+1 0-{15
] J
Thisfollows since, as given in Section 3.1,
k+1 DTE(/J )D
) = N m(u) In=—=
1, (1) (1) 7(2)H
‘\“k+1 DT[(/J )D
o = |y m(u)Ing5= -2
k) |2 (1) 7(2)H K (u)
and




Appendix E: Normal Information Gradient

The optimal gauge limits for Shewhart control charts are the limits that maximize the
expected statistical information available in a sample. The maximization can be done most
quickly if also provided with gradients. The gradient of the expected information for the mean
and standard deviation of a normal distribution is derived below. For Shewhart type charts to

detect mean shifts it is necessary to maximize (5.3) which for given a, B, y, and p, is a

function only of the gauge limitst. The equation (5.3) is repeated below:

£(1() = LR s (ot - 2ti) | pltn)®
M) %S 1T (1) Tha (1)

Then since,

_ 1 01, O 00 _ pu-x_ 1 2[]
P(x.p) = ——expS(x u) 0 i N2ﬂexpD 2(x u) 0

% = ot,.u) Hl = -oft; 1)

Defining t, = —, and t,,, = o, the derivative of the expected information about the mean with

respect to the group limitsis:

o) _ Aob)-oll)ok) ()=o)

ot. 1T

J j+1

_2(‘”(51)_4’(5))0%“)—(‘0( ) ¢(t )) <0('[)

T




For Shewhart type charts to detect standard deviation shifts expression (5.4) must #é

maximized, which also for given a, 8, y, and u, is afunction just of the gauge limitst. The

equation (5.4) is repeated below:

E(I(0)) = L o(t,; 0)* +i(t1—1_tj) ((p(tj—l;a)_(p(tj;a)) _|_tfq0(tk;a)2

o (o) o 1(0) 0 14,,(0)

Using the above equations gives.

- Z(tj(ﬂ(tjl)Tj;t(j;-jl)w(tﬁl)) d‘zt(;‘i)J,( ) - :(;‘p(tl 1)) ot

ol )i o) (ool )- A g

(o) 7 (o)

] J I

gLy
(=
Q




Appendix F: Weibull Information Gradients

The optimal gauge limits for Shewhart control charts are the limits that maximize the
expected statistical information available. This appendix provides the gradients with respect to
the gauge limits for the expected information of a grouped Weibull distribution.

For Shewhart type charts to detect shape parameter shifts the expected information as
expressed in equation (5.5) must be maximized. Given a, B, y, and u, equation (5.5) is a

function only of the gauge limitst. Equation (5.5) is repeated below:

E(1(a)) = kZﬂ(t?m( Jerol-6) -l 12,

& exp(~t7,) - exp(-~t;)
Then defining
h = tIn(t)exp(-t)
and g = ah+t eXp(_tia) —aht?,
gives

(@) . 2h-h)a _ah- taexp()
2 wen(it)-en(t)) t(exp(tz,) tf"l p(te))
2(h.-h)g  alh. h)taexp(t)

enlt?) - () t(em(tr) -em(ts,))

For Shewhart type charts to detect scale parameter shifts from a Weibull distribution the

optimal gauge limits maximize the expected information as expressed in equation (5.6):

i1 é%exnﬁt f’zexpg %

& exp(—tj_l/b) - exp(— J./b)

E(1(b) =



Now define

ot 0tD
d = preP b

Then using the above definitions gives:

E(1(b)) _ Ad-d) *'159 be(d_, - d )’
x, t(exp(t./b) - exp(t/b)) (eX|o(ti_1/b)—exp(ti/b))2

ok _
z(di } di +1)EB ]%ji + bdi (di B di+1)2

1 {exp(t /b) ~explt. /b))t (explt,/b) - exp(t.., b))



