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CHAPTER 5
Optimal Grouping Criteria

This chapter addresses the question of optimal grouping, and quantifies the amount of

efficiency lost through the use of grouped data rather than variables data.  As mentioned, in many

circumstances the group limits used to classify units are predetermined.  For example at Eaton

Yale Inc. (Hamilton, Ontario) creating step-gauges specifically for an application is not practical

due to the large number of different products produced.  As a result, at Eaton, they use existing

generic step-gauges that are incremented in thousands of an inch.  However, in some situations, it

is possible and practical to set application specific group limits.  Clearly, all group limit designs

will not be equally informative.  As a result, it is possible to determine the optimal grouping

criteria for particular applications.

Section 5.1 discusses gauge limit design for one-sided acceptance sampling plans to

detect mean shifts.  The results agree with past work (Beja and Ladany, 1974), and extend the

analysis to the more general multiple group case.  The results giving optimal group limits to

detect one-sided mean shifts in a normal distribution presented in Tables 5.1 and 5.2 also appear

in Steiner et al. (1993A).  Section 5.2 considers the further extension to two-sided tests.  The

analysis from Section 5.1 can also be used to determine optimal group limits in the two-sided test

case.  The resulting optimal group limits are applicable for both the two sets of weights approach

of Section 3.2.1 and the MLE approach of Section 3.2.2.  Group limit design for Shewhart

control charts is addressed in Section 5.3.  The optimal group limits found are applicable in all

four control chart design approaches from Section 3.3.  Optimal group limits to detect mean and

standard deviation shifts in a normal process are determined, as well as optimal limits to detect

shape and scale shifts of a Weibull process.  Note that Table 5.5 gives the optimal group limits to

detect mean shifts from a normal process and also appears in Steiner et al. (1993B).  For the case



2of Shewhart control charts, we also find optimal limits for simultaneous detection of parameter

shifts.  This is of interest since often a process may become “out of control” through either a

mean or standard deviation shift.  It is very interesting to note that the results in Section 5.3

appear elsewhere in the literature in a totally different context.  In Balakrishnan and Cohen

(1991), Chapter 7, the results in Table 5.10 appear in a slightly different format.  The problem

considered by Balakrishnan and Cohen (1991) is finding the best linear unbiased estimate

(BLUE) by selecting specific order statistics.  For more details and additional references see their

book.  In the problem to find the BLUE the objective is to minimize the estimate’s variance,

whereas in the optimal grouping problem, considered here, the objective is to maximize the

Fisher information available about a parameter.  The equivalence of the two problem exists

because by the Rao-Cramer inequality (Kendall et al. 1978) the inverse of the Fisher information

is a lower bound for the variance of an unbiased estimate, and a best estimate would attain this

bound.  The solution to find the BLUE is given in terms of percentage points which when

translated by the inverse cumulative density function give the optimal group limits.  In Section

5.4 optimal group probabilities for the correlation estimation Procedure I from Chapter 4 are

determined.  Procedure I is the only correlation estimation procedure presented where group

probabilities can be set a priori, however, the results also provide a guide for the other

procedures from Chapter 4.

5.1 One-Sided Acceptance Sampling Plans

Acceptance sampling problems are often given in terms of acceptable and rejectable

proportions of non-conforming or out-of-specification units.  As a result, we shall restrict our

attention in this section to the classical case where we are interested in detecting mean shifts

when the standard deviation is known.  For one-sided mean shift acceptance sampling plans with

single-step gauges, Beja and Ladany (1974), Sykes (1981), and Evans and Thyregod (1985) have

shown that when the error risks are equal, the optimal group limit to detect mean shifts from µa

to µ r  should be placed at µa + µ r( ) 2.  Beja and Ladany (1974) also suggested that the optimal



3group limits for a two-step gauge should be placed symmetrically about µa + µ r( ) 2.  Using this

rule of thumb, a one dimensional search for the optimal group limits is possible.  Note however

that this solution will only be optimal if the error risks are equal.  Our results for optimal group

limits to detect one-sided mean shifts agree with these past results, and extend the analysis to the

general k-step gauge and to the case when error rates are not necessarily equal.

Suppose we wish to design an acceptance sampling plan that will detect a one-sided mean

shift of a certain magnitude from a normal distribution with specified error rates.  In this

situation, the weight based methods presented in Section 3.1 will give the optimal testing

procedure.  If the error rates are small and/or the magnitude of the shift to be detected is small,

then the required sample size will be large enough so that z  (the average weight from Section

3.1) is approximately normally distributed.  In this case, the optimal group limits are determined

by minimizing expression (3.4), the required sample size, subject to the constraint that the group

limits remain ordered.  Formally, let t be the k dimensional vector of standardized group limits.

Then the multi-dimensional minimization problem is

minimize n(t) + m(t){ }

where

m t( ) =

  

M  if the t ' s are not ordered,

i.e.,  if t j > t j+1,  for any  j = 1,Kk

0  otherwise









M is a large number and n t( ) is expression (3.4).  Note that the solution to the above

minimization problem depends on the size of mean shift we wish to detect, and on the chart’s

error rates.  This optimization problem can be easily solved by the Nelder Mead multi-

dimensional Simplex Algorithm (Press et al., 1988).  The Nelder Mead algorithm is quite

efficient in most circumstances, however if efficiency is of great concern, it would be better to

use the Fletcher-Reeves algorithm (Press et al., 1988).  The Fletcher-Reeves algorithm is more

efficient because it uses not only the function, but also its gradient.  The calculation of the

gradient of equation (3.4) with respect to the unknown t j 's is not unduly difficult, but looks



4rather complex.  See Appendix D for the calculation of the gradient.  The amount of work

necessary to find the optimal group limits in the special case when the error rates α  and β  are

equal is reduced since the optimal group limits must be symmetric about µa + µ r( ) 2.  Using this

fact reduces in half the number of variables to consider.

The optimal standardized group limits for selected error rates and mean shifts of a half,

one, and one and a half sigma unit for a standard normal process are given in Tables 5.1 and 5.2.

To determine the actual group limits to use in a specific example, the standardized group limits

presented in the tables must be translated.  In the case of a N µ ,σ( )  process, simply multiple each

of the group limits given in the tables by σ  and add µ .



5Table 5.1: Optimal Group Limits and Weights
Standard Normal Distribution, α = β.

The calculation of n assumes α = β = 0.001

µ1 k n λ i    = 1 2 3 4 5 6 7
0.5 1 235.5 0 ti 0.25

zi –0.4001 0.4001

2 186.0 0 ti –0.3417 0.8417

zi –0.6052 0 0.6052

3 179.6 0 ti –0.6925 0.2500 0.925

zi –0.74 –0.2188 0.2188 0.74

4 164.6 0 ti –0.9384 0.1139 0.6139 1.4384

zi –0.8395 –0.3667 0 0.3667 0.8395

5 161.1 0 ti –1.1254 –0.3743 0.2500 0.8743 1.6254

zi –0.9172 –0.4771 –0.1511 0.1511 0.4771 0.9172

6 158.9 0 ti –1.2749 –0.5751 –0.0142 0.5142 1.0751 1.7749

zi –0.9804 –0.5642 –0.2653 0 0.2653 0.5642 0.9804

1 1 55.6 0 ti 0.5000

zi –0.8070 0.8070

2 44.4 0 ti –0.0424 1.0424

zi –1.1789 0 1.1789

3 41.2 0 ti –0.3428 0.5000 1.3428

zi –1.4062 –0.3972 0.3972 1.4062

4 0.0 0 ti –0.5373 0.1813 0.8187 1.5373

zi –1.5600 –0.6495 0 0.6495 1.5600

5 9.2 0 ti –0.6723 –0.0357 0.5000 1.0357 1.6723

zi –1.6692 –0.8257 –0.2615 0.2615 0.8257 1.6692

6 8.8 0 ti –0.7697 –0.1941 0.2767 0.7233 1.1941 1.7697

zi –1.7492 –0.9553 –0.4503 0 0.4503 0.9553 1.7492

1.5 1 22.4 0 ti 0.7500

zi –1.2275 1.2275

2 18.1 0 ti 0.2661 1.2339

zi –1.7172 0 1.7172

3 17.0 0 ti 0.0273 0.7500 1.4727

zi –1.9817 –0.5190 0.5190 1.9817

4 16.6 0 ti –0.1068 0.4829 1.0171 1.6068

zi –2.1358 –0.8189 0 0.8189 2.1358

5 16.4 0 ti –0.1867 0.3132 0.7500 1.1868 1.6867

zi –2.2293 –1.0090 –0.3225 0.3225 1.0090 2.2293

6 16.3 0 ti –0.2365 0.1971 0.5706 0.9294 1.3029 1.7365

zi –2.2882 –1.1366 –0.5429 0 0.5429 1.1366 2.2882



6Table 5.2: Optimal Group Limits and Weights
Standard Normal Distribution, α = 0.001, β = 0.005

µ1 k n λ i    = 1 2 3 4 5 6 7
0.5 1 198.1 0.0070 ti 0.2889

 zi –0.3878 0.4125

2 156.3 0.0090 ti –0.2954 0.8870

 zi –0.5880 0.0204 0.6220

3 144.0 0.0099 ti –0.6405 0.3009 1.2428

 zi –0.7197 –0.1949 0.2423 0.7603

4 138.4 0.0103 ti –0.8812 0.0587 0.6685 1.4929

 zi –0.8162 –0.3402 0.0263 0.3925 0.8620

5 135.4 0.0106 ti –1..0634 –0.3151 0.3079 0.9321 1.6839

 zi –0.8913 –0.4483 –0.1227 0.1791 0.5048 0.9418

6 133.6 0.0107 ti –1.2084 –0.5121 –0.0468 0.5746 1.1359 1.8372

 zi –0.9521 –0.5333 –0.2351 0.0297 0.2948 0.5936 1.0070

1 1 46.6 0.0256 ti 0.5725

 zi –0.7618 0.8533

2 37.3 0.0333 ti 0.0459 1.1288

 zi –1.1147 0.0792 1.2429

3 34.6 0.0367 ti –0.2387 0.5968 1.4438

 zi –1.3259 –0.3028 0.4901 1.4854

4 33.5 0.0385 ti –0.4178 0.2891 0.9254 1.6528

 zi –1.4649 –0.5414 0.1037 0.7552 1.6533

5 32.9 0.0395 ti –0.5384 0.0827 0.6141 1.1525 1.8020

 zi –1.5608 –0.7049 –0.1481 0.3741 0.9436 1.7760

6 32.6 0.0402 ti –0.6230 –0.0658 0.3983 0.8443 1.3207 1.9127

 zi –1.6290 –0.8229 –0.3278 0.1193 0.5716 1.0847 1.8684

1.5 1 18.8 0.0498 ti 0.8471

 zi –1.1378 1.3202

2 15.2 0.0654 ti 0.3034 1.3495

 zi –1.5924 0.1616 1.8456

3 14.3 0.0717 ti 0.1636 0.8762 1.6076

 zi –1.8291 –0.3309 0.7057 2.1367

4 13.9 0.1082 ti 0.0443 0.6198 1.1540 1.7579

 zi –1.9625 –0.6099 0.2005 1.0273 2..3134

5 13.7 0.0762 ti –0.0250 0.4587 0.8917 1.3331 1.8502

 zi –2.0414 –0.7843 –0.1104 0.5349 1.2347 2.4245

6 13.6 0.0771 ti –0.0676 0.3493 0.7170 1.0763 1.4567 1.9090

 zi –2.0903 –0.9006 –0.3216 0.2176 0.7654 1.3757 2.4958



7Table 5.3: Optimal Group Limits and Weights
Standard Weibull Distribution, α = β
The calculation of n assumes α = β = 0.001

µ1 k n λ i     = 1 2 3 4 5 6 7
0.5 1 110.1 0.0068 ti 0.5934

zi –0.8764 0.3872

2 90.5 0.0104 ti 0.3044 0.9060

zi –1.2995 –0.2719 0.5120

3 85.0 0.0122 ti 0.1964 0.5372 1.1057

zi –1.5657 –0.6410 –0.0069 0.5714

4 82.7 0.0132 ti 0.1442 0.3743 0.7126 1.2454

zi –1.7478 –0.8848 –0.3300 0.1464 0.6044

5 81.5 0.0138 ti 0.1152 0.2855 0.5218 0.8492 1.3484

zi –1.8772 –1.0579 –0.5563 –0.1383 0.2464 0.6245

6 80.8 0.0143 ti 0.0978 0.2313 0.4101 0.6441 0.9587 1.4273

zi –1.9711 –1.1859 –0.7246 –0.3467 –0.0069 0.3164 0.6376

1 1 1.4 0.0369 ti 0.8591

zi –1.5449 0.7278

2 6.2 0.0508 ti 0.5466 1.2247

zi –2.1412 –0.3949 0.9482

3 4.9 0.0569 ti 0.4308 0.8507 1.4481

zi –2.4468 –0.9031 0.0622 1.0550

4 4.4 0.0599 ti 0.3770 0.6815 1.0614 1.6015

zi –2.6151 –1.1947 –0.3962 0.3244 1.1157

5 4.1 0.0616 ti 0.3485 0.5874 0.8677 1.2176 1.7137

zi –2.7131 –1.3779 –0.6907 0.0877 0.4948 1.1536

6 4.0 0.0627 ti 0.3320 0.5285 0.7508 1.0125 1.3386 1.7992

zi –2.7735 –1.5007 –0.8960 –0.3704 0.1222 0.6141 1.1788

1.5 1 14.9 0.089 ti 1.1408

zi –2.0899 1.0529

2 12.6 0.1127 ti 0.8224 1.5417

zi –2.7530 –0.4487 1.3437

3 12.0 0.1205 ti 0.7106 1.1712 1.7656

zi –3.0436 –1.0135 0.1300 1.4802

4 11.8 0.1235 ti 0.6616 1.0014 1.3934 1.9076

zi –3.1843 –1.3137 –0.3990 0.4497 1.5561

5 11.7 0.1249 ti 0.6368 0.9059 1.2014 1.5481 2.0046

zi –3.2592 –1.4934 –0.7263 –0.0325 0.6510 1.6028

6 11.7 0.1255 ti 0.6228 0.8454 1.0832 1.3488 1.6619 2.0742

zi –3.3027 –1.6105 –0.9493 –0.3549 0.2124 0.7884 1.6337
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Table 5.4: Optimal Group Limits and Weights
Standard Weibull Distribution, α = 0.001,  β = 0.005

µ1 k n λ i     = 1 2 3 4 5 6 7
0.5 1 94.5 0.0208 ti 0.6224

 zi –0.8456 0.4006

2 78.1 0.0277 ti 0.3281 0.9425

 zi –1.2530 –0.2324 0.5240

3 73.6 0..0308 ti 0.2179 0.5704 1.1441

 zi –1.5034 –0.5868 0.0291 0.5811

4 71.7 0.0324 ti 0.1648 0.4056 0.7505  1.2834

 zi –1.6695 –0.8169 –0.2803 0.1786 0.6122

5 70.7 0.0333 ti 0.1355 0.3157 0.5586  0.8894  1.3850

 zi –1.7837 –0.9769 –0.4951 –0.0930 0.2752  0.6308

6 70.2 0.0340 ti 0.1180 0.2608 0.4460 0.6840 0.9998 1.4618

 zi –1.8638 –1.0927 –0.6531 –0.2911 0.0345 0.3422 0.6427

1 1 27.3 0.0758 ti 0.9155

 zi –1.4598 0.7655

2 23.0 0.0994 ti 0.5991 1.2957

 zi –2.0218 –0.2825  0.9845

3 21.8 0.1090 ti 0.4838 0.9166 1.5263

 zi –2.2987 –0.7617 0.1671 1.0872

4 21.4 0.1137 ti 0.4311 0.7457  1.1341 1.6825

 zi –2.4459  –1.0315 –0.2685 0.4213 1.1436

5 21.2 0.1162 ti 0.4035 0.6507 0.9376 1.2938 1.7948

 zi –2.5295 –1.1986 –0.5467  0.0294 0.5841 1.1776

6 21.1 0.1177 ti 0.3877 0.5912 0.8190  1.0857 1.4164  1.8789

 zi –2.5800 –1.3096 –0.7395 –0.2394 0.2305  0.6965  1.1994

1.5 1 13.1 0.1512 ti 1.2196

 zi –1.9534 1.1143

2 11.1 0.1913 ti 0.8994 1.6413

 zi –2.5730 –0.2637 1.4069

3 10.6 0.2051 ti 0.7897 1.2643 1.8807

 zi –2.8341 –0.7956 0.3119 1.5424

4 10.4 0.2110 ti 0.7422 1.0926 1.4980 2.0361

 zi –2.9576 –1.0745 –0.1931 0.6312 1.6170

5 10.3 0.2139 ti 0.7182 0.9961 1.3017 1.6625 2.1451

 zi –3.0226 –1.2402 –0.5041 0.1685 0.8341 1.6628

6 10.3 0.2155 ti 0.7047 0.9349 1.1810 1.4571 1.7854 2.2260

 zi –3.0601 –1.3480 –0.7150 –0.1402 0.4119  0.9742 1.6931



9Tables 5.3 and 5.4 present the optimal group limits and weights for a standard Weibull

process where the mean and standard deviation are equal to unity.  Comparing the optimal limits

for normal and Weibull group limits shows that the Weibull limits are not symmetric even when

the error rates are equal.  To compare the optimal limit in Tables 5.1 and 5.2 to the optimal

Weibull process limits it is necessary to add unity to the normal process limits.  In general, the

optimal Weibull limits are shifted to lower values when compared to the optimal limits for a

normal process.

5.2 Two-Sided Acceptance Sampling Plans

This section derives optimal group limits for the two-sided acceptance sampling plans of

Section 3.2.  For two-sided mean shift acceptance sampling plans or acceptance control charts I

know of no previous work on optimal gauge design.  Section 3.2  considers the hypothesis tests

where the difference between µa
+  and µa

−  is large in terms of sigma units, and thus the two-sided

hypothesis test can be thought of as equivalent to two one-sided tests.   As a result, the optimal

group limits for two-sided mean shift detection will be in two clusters, half near µa
+  and the other

half near µa
− .  Since the two clusters of group limits are so far apart, the lower cluster of limits

has very little effect on the ability to detect mean shifts to µr
+ , and vice versa.  As a result, the

optimal group limits for the two sided test can be determined accurately from the analysis done

for the one-sided tests in Section 5.1.  Since adding a group limit near µa
+ + µa

−( ) 2 will also

have little effect, it is recommended that an even number of group limits be chosen.  Half of the

group limits will be determined by considering the lower hypothesis test, and the other half

determined based on the upper hypothesis test.  In other words, for the normal process use Tables

5.1 and 5.2, and for a Weibull process use Tables 5.3 and 5.4.

For example, say we wish to design an acceptance sampling plan or acceptance control

chart based on 6 group limits that is to detect mean shifts of one sigma unit when µa
+  = 10, µa

−  =

5 σ  = 0.6, (thus µr
+  = 10.6, µr

−  = 4.4), α  = 0.001, β  = 0.005, and the process is approximately

normal.  Then, from Table 5.2, the optimal standardized group limits for 3 step-gauge are



10–0.2387, 0.5968, 1.4438.  Thus the optimal group limits for this two-sided problem are

–0.2387*0.6+5 = 4.86, 0.5968*0.6+5 = 5.36, 5.87, –0.2387*0.6+10 = 9.86, 10.36, 10.87.  Notice

that there are two distinct groups of gauge limits.

5.3 Shewhart Control Charts

The design of step-gauges for Shewhart type control charts is motivated by Stevens

(1948).  Stevens proposed designing two-step gauges so that they maximize the expected Fisher

information about the null hypothesis.  Shewhart charts attempt to detect whenever the process is

no longer stable at the target value (or null hypothesis).  As a result, the problem of determining

the best group limits for control, may be thought of as equivalent to designing a step-gauge to

best estimate the parameter of interest when the null hypothesis holds.  This implies that the

grouping criteria that maximizes the expected Fisher information at the null hypothesis should be

used.  Stevens considers only the case of detecting mean and standard deviation shifts of a

normal process with a two-step gauge.  This section extends the methodology, first to the general

multiple group case, and second to the Weibull process.  In addition, the process is often

monitored for both mean and standard deviation shifts using data from the same step-gauge.

However, the optimal step-group limits are not the same for these two purposes, so the issue of a

compromise gauge design for simultaneous parameter shift detection is also considered.

As mentioned above, we are interested in assessing the expected Fisher information in a

sample of size n.  The information about the parameterθ  in the sample of data from a k-step

gauge is given by:

I θ Q( ) =
∂ ln(L(θ Q))

∂θ






2

=
Qj

π j (θ )

dπ j (θ )

dθj =1

k +1

∑







2

. (5.1)

However, the log-likelihood for a sample of size n will be formed by the sum of n log-

likelihoods, each of identical expectation (Edwards, 1972).  As a result, it is equivalent, for our



11purposes, to consider the expected information in a single observation.  The expected

information in a sample of size one at θ , E I θ( )( ) , may be obtained by conditioning on the group

into which the observation is classified.  In particular, if e1, e2 , ..., ek+1 denote the unit vectors of

length (k+1), then

E I θ( )( ) = I(θ e j )π j (θ )
j =1

k +1

∑

=
1

π j (θ )

dπ j (θ )

dθ




j =1

k +1

∑
2

. (5.2)

The parameter θ  can represent any parameter of interest.  The optimal group limits to

detect mean or standard deviation shifts of a normal distribution are determined in Section 5.3.1.

In Section 5.3.2 the optimal group limits for Weibull shape and scale parameter shifts are given.

In each case, the group probability function π j θ( ), is adapted to the particular parameter and

distribution of interest.

5.3.1 Normal Process

For the normal distribution the group probabilities are

π j µ,σ( ) = φ y( )dy
tj−1

t j

∫ =
1

2πσ
t j−1

t j

∫ exp − y − µ( )2

2σ 2







dy .

The standardized group limits tj  are utilized since ultimately interest lies in finding the

information about the standard normal.  Assume, without loss of generality, σ  = 1.  Then,

φ y( ) =
1
2π

exp −
y − µ( )2

2







,

and
dπ j µ( )

dµ
= φ t j−1( ) − φ t j( ),

and the expected information about µ  from a single observation is
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E I µ( )( ) =
φ(t1;µ )2

π1(µ )
+

φ(t j−1;µ ) − φ(t j ;µ )( )2

π j (µ )j=2

k

∑ + φ(tk ;µ )2

πk+1(µ )
. (5.3)

The group limit design problem is to find the standardized group limits t j’s, that

maximize this expected information.  Without loss of generality, the calculations in the table

assume µ  = 0.  Finding the best location for the physical group limits x j ’s, from the optimal

standardized limits is straightforward.  If the process produces units that match a normal

distribution with mean µ  and standard deviation σ  then x j = σ t j + µ .

The function E I µ( )( )  is not concave.  If the first (k – 1) group limits are fixed and the kth

group limit is allowed to become arbitrarily large, the expected information asymptotically

approaches a minimum.  Extensive experimentation suggests, however, that the expected

information function is unimodal.  As a result, this non-linear optimization problem may be

solved using either the Nelder-Mead multi-dimensional simplex method or the Fletcher Reeves

algorithm (Press, et al., 1988).  The Fletcher Reeves algorithm is more efficient but requires the

gradient of (5.3) with respect to t.  The gradient of (5.3) is given in Appendix E.  Moreover, the

optimal group limits are symmetric about zero, thus the number of variables in the problem can

be reduced by one half.

Table 5.5 (see also Kulldorff, 1961) gives the optimal group limits and the efficiency of a

k-step gauge relative to exact measurement.  Efficiency is defined as the ratio of the statistical

information available using groups to the information available using variables.  Clearly, the use

of more than two or three groups significantly increases the efficiency of an observation.  Table

5.5 shows that more information about µ  is available in ten five-group optimally gauged

observations, than is available in nine exact measurements.  If exact measurement is

uneconomical, then a properly designed gauge is an excellent alternative.



13Table 5.5: Optimal Group Limits to Detect Mean Shifts
assume that when process is “in control” µ  = 0

k Efficiency t1 t2
t3 t4

t5 t6

1 0.6366 0.0

2 0.8098 –0.6120 0.6120

3 0.8825 –0.9817 0.0 0.9817

4 0.9201 –1.244 –0.3824 0.3824 1.244

5 0.9420 –1.4468 –0.6589 0.0 0.6589 1.4468

6 0.9560 –1.6108 –0.8744 –0.2803 0.2803 0.8744 1.6108

The expected Fisher information approach can also be used to design group limits when the

objective is to detect shifts in the standard deviation of a process.  Assuming Y to be normally

distributed with µ  = 0 gives

φ y;σ( ) =
1

2πσ
exp

−y2

2σ 2







dπ j σ( )
dσ

=
1
σ

t j−1φ t j−1;σ( ) − t jφ t j ;σ( )( ).

Thus the expected information about σ , for a single observation, is written:

E I σ( )( ) =
t1

2φ(t1;σ )2

σ π1(σ )
+

t j −1φ(t j −1;σ ) − t jφ(t j ;σ )( )2

σ π j (σ )j =2

k

∑ + tk
2φ(tk ;σ )2

σ πk +1(σ )
. (5.4)

Again we wish to find the group limits t j’s, that maximize this expected information.

Without loss of generality, assume σ  = 1.  If the expected information is to be maximized when

the process standard deviation is σ , multiple the group limits found for the case where σ  = 1 by

the desired σ  value.  Since extensive empirical study suggests this function is unimodal, the

maximization problem can also be efficiently solved by the Nelder Mead or Fletcher Reeves

algorithm.  The gradient of E I σ( )( )  is given in Appendix E.  The results are shown in Table 5.6.

Note that for an even number of groups, the middle step gauge placement has arbitrary sign, and



14is not zero as in the mean shift case.  This is because, to detect standard deviation shifts, a group

limit placed at t = 0 will provide no additional information.

Table 5.6: Optimal Group Limits to Detect Sigma Shifts
assume that when process is “in control” σ  = 1

k Efficiency t1 t2
t3 t4

t5 t6

1 0.3042 ±1.5758

2 0.6522 –1.4825 1.4825

3 0.7074 –1.4520 1.1855 2.0249

or 3 0.7074 –2.0249 –1.1855 1.4520

4 0.8244 –1.9956 –1.1401 1.1401 1.9956

5 0.8588 –1.9827 –1.1193 0.9837 1.6189 2.3267

or 5 0.8588 –2.3269 –1.6190 –0.9837 1.1190 1.9821

6 0.8943 –2.3130 –1.6002 –0.9558 0.9558 1.6002 2.3130

The group limits that maximize the expected information about σ  are not the same as

those that maximize the expected information about µ .  As a result, since charts are often used to

monitor for mean shifts and standard deviation shifts simultaneously a compromise gauge design

is considered.  Often the detection of mean shifts is given priority.  For this reason, the proposed

methodology for the grouping design allows some flexibility in the amount of emphasis given to

detecting mean and standard deviation shifts.  The analysis proceeds by using the weighted sum

of efficiency ratings for mean and standard deviation estimation as the optimization criteria.  In

other words, maximize

Eff µ,σ;d( ) = d Eff µ( ) + 1 − d( )Eff σ( ),

where d is the weight, Eff µ( ) is the efficiency of mean estimation, and Eff σ( )  is the efficiency

of standard deviation estimation.  Unfortunately, this new combined efficiency criteria is a

bimodal function, and therefore the optimization procedure may yield a local maximum.  There

is a boundary at around d = 0.35 where the improved mean estimate yielded by using a group

limit at t = 0 is outweighed by the better standard deviation estimate obtained by staggering the



15group limits around t = 0.  Empirical results suggest that the global maximum can be found using

two different specific starting guesses for the group limits.  The best group limits with the middle

limit at t = 0 and the best group limits staggered about t = 0 are found and the solution with the

largest Eff µ,σ;d( ) value is chosen.  Tables 5.7 presents the optimal 3-group gauge limits for

different weights found in this manner.  Table 5.8 gives the optimal compromise group designs

for various number of group limits when the mean estimation is given greater weight (d = 0.7).

Table 5.7: Suggested 3-Group Limits to Detect Mean and Sigma Shifts
assume that if a process is “in control” µ  = 0 and σ  = 1

weight
d

Efficiency
µ

Efficiency
σ

t1 t2 t3

0.1 0.6543 0.7335 –1.3974 1.0861 1.9584

0.2 0.7030 0.7248 –1.3384 0.9559 1.8742

0.3 0.7587 0.7060 –1.2835 0.7752 1.7625

0.4 0.8523 0.6481 –1.3906 0 1.3906

0.5 0.8569 0.6446 –1.3577 0 1.3577

0.6 0.8623 0.6379 –1.3117 0 1.3117

0.7 0.8685 0.6262 –1.2529 0 1.2529

0.8 0.8749 0.6066 –1.1779 0 1.1779

0.9 0.8803 0.5757 –1.0859 0 1.0859

Table 5.8: Optimal Group Limits to Detect Mean and Sigma Shifts
d = 0.7, assume that if process is “in control” µ  = 0 and σ  = 1

k Efficiency
µ

Efficiency
σ

t1 t2 t3 t4 t5 t6

1 0.6366 0 0

2 0.7822 0.4664 –0.8487 0.8487

3 0.8685 0.6262 –1.2529 0 1.2529

4 0.9082 0.7384 –1.5500 –0.5295 0.5295 1.5500

5 0.9333 0.8039 –1.7703 –0.8768 0 0.8768 1.7703

6 0.9489 0.8486 –1.9481 –1.1366 –0.3889 0.3889 1.1366 1.9481



165.3.2 Weibull Process

When designing a step-gauge for Shewhart control charts when the underlying

distribution is Weibull the methodology presented in Section 5.3.1 is used.  However, since the

Weibull is defined in terms of shape and scale parameters a and b, the optimal step-gauge design

to detect shifts in a and b independently are first considered.   Later the optimal group design for

detecting shifts in both parameters simultaneously are discussed.  The group limit designs for

simultaneous parameter detection would be appropriate if, for example, we are interested in

detecting mean and/or standard deviation shifts of a Weibull process.

If the process produces parts that are best modeled by a Weibull distribution, the group

probabilities can be written:

π j a,b( ) = exp −
tj−1

b






a





− exp −

tj

b






a






The standard Weibull is defined to have unit shape and scale parameters,  a = b = 1.

With interest focused on the shape parameter of the Weibull distribution, and assuming,

without loss of generality, that b = 1, we can write:

π j a( ) = exp −tj−1
a( ) − exp −tj

a( ),

and thus,
dπ j a( )

da
= tj

a ln tj( )exp −tj
a( ) − tj−1

a ln tj−1( )exp −tj−1
a( ).

We can assume b = 1 because, as will be explained later, the optimal limits found for the

standard Weibull are easily translated to any value of b.  From the above expressions, the

expected information about the shape parameter, from a single observation, is:

E I a( )( ) =
tj

a ln tj( )exp −tj
a( ) − tj−1

a ln tj−1( )exp −tj−1
a( )( )2

exp −tj−1
a( ) − exp −tj

a( )j=1

k+1

∑ (5.5)

This equation can be maximized using either the Nelder Mead multi-dimensional simplex

algorithm, or more efficiently by Fletcher Reeves algorithm (see Appendix D for details on the



17gradients of E I a( )( ) and E I b( )( )).  Table 5.9 presents the results of the maximization problem.

The efficiency rating is calculated relative to the amount of information available in variables

data.

When the scale parameter of the Weibull is of interest a similar analysis is possible.

Assuming, without loss of generality, that a = 1, gives the group probabilities

π j b( ) = exp −
tj−1

b







− exp −
tj

b






,

and therefore,
dπ j b( )

db
=

tj−1

b2 exp −
tj−1

b






−
tj

b2 exp −
tj

b






.

So E I b( )( ) =

tj−1

b2 exp −
tj−1

b






−
tj

b2 exp −
tj

b












2

exp −tj−1 b( ) − exp −tj b( )j=1

k+1

∑ . (5.6)

The group limits that maximize expression (5.6) above are given in Table 5.10.

Table 5.9: Optimal Group Limits to Detect Shape Shifts
assume that if the process is “in control” a = 1

k Efficiency t1 t2
t3 t4

t5 t6

1 0.2801 0.1189

2 0.6557 0.1418 3.2891

3 0.7527 0.1505 2.6936 4.5643

4 0.8285 0.0516 0.2486 2.6173 4.4970

5 0.8692 0.0534 0.2580 2.3339 3.6005 5.3934

6 0.8990 0.0245 0.1154 0.3257 2.2921 3.5641 5.3593



18Table 5.10: Optimal Group Limits to Detect Scale Shifts
assume that if the process is “in control” b = 1

k Efficiency t1 t2
t3 t4

t5 t6

1 0.6476 1.5936

2 0.8203 1.0176 2.6112

3 0.8910 0.7540 1.7716 3.3652

4 0.9269 0.6004 1.3545 2.3720 3.9656

5 0.9476 0.4999 1.0998 1.8538 2.8714 4.4650

6 0.9606 0.4276 0.9269 1.5273 2.2813 3.2989 4.8925

Often we are interested in both parameters simultaneously.  This is the case when interest

lies in the mean and/or the standard deviation of a Weibull process.  For that reason, the optimal

step-gauge design is determined for shifts in both parameters.  As the relationship between shape

and scale parameters and the corresponding mean and standard deviation is complex, an

optimization criteria based on the average efficiency is proposed.  Table 5.11 presents the results,

showing the step-gauge design that has the highest average efficiency to detect scale and shape

parameter shifts.  For this compromise solution, the non-linear optimization procedure may give

only a local maximum.  Extensive empirical study suggests that we get different local maxima of

the average of (5.5) and (5.6) depending on how many of the initial gauge limits start on either

side of the mean value of the standardize Weibull, i.e. t = 1.  Consequently, for a k-step gauge

there are (k+1) local maximums.



19Table 5.11: Optimal Group Limits to Detect Shape and Scale Shifts
assume that when the process is “in control” a = b = 1

k Average
Efficiency

t1 t2
t3 t4

t5 t6

1 0.4096 2.4552

2 0.6351 0.2591 2.5473

3 0.7613 0.2148 1.7140 3.6038

4 0.8257 0.1181 0.6377 2.0668 3.9147

5 0.8736 0.0814 0.4054 1.4950 2.7639 4.5538

6 0.9021 0.0626 0.3027 1.0291 2.0483 3.2591 5.0264

The empirical results also suggest that to obtain the global optimal, as presented in Table

5.11, a starting solution must have an equal number of group limits on either side of t =1.  For the

case of a odd number of group limits, the extra group limit is better placed on the upper side of

the mean.  So, for example, the best gauge placement using only k = 3 gauge limits, would be at

0.215, 1.715, and 3.6, and this grouping criterion has an average efficiency of 76% for detecting

scale and shape parameter shifts.

The optimal group limits presented in Tables 5.9-5.11 all show the best group limits for

detecting shifts in the standard Weibull when a = b = 1.  Fortunately, these optimal limits can

easily be rescaled for the general Weibull.  To translate the optimal group limits from the case a

= b = 1, use the formula:

xi = bti
a

  i = 1, K, k + 1

where ti  represent the standardized group limits presented in Tables 5.9-5.11, and xi  are the

rescaled group limits.

5.4 Destructive Testing Procedure I

This section addresses the question of optimal group probabilities to estimate the

correlation using Procedure I of Section 4.1.  Note that in Chapter 4 the group divisions were

defined in terms of group probabilities rather than group limits.  However, group probabilities



20can easily be translated to group limits through the use of the inverse cumulative density function

of the normal distribution, i.e. t1 = Φ−1 p( ).  Given an actual correlation ρab  and the sample size

n, the values of pa and pb  that minimize the predicted standard deviation given in equation (4.6)

can be found.  Due to the well behaved nature of the function that approximates the standard

deviation of ρab
*  Nelder Mead multidimensional simplex method (Press et al. 1988) is

appropriate.  The results showing the pair of pa and pb  values that minimize the approximate

standard deviation for ρab
*  for actual ρab  between -0.95 and 0.95 are plotted in Figure 5.1.
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,
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Figure 5.1: Optimal pa and pb Values to Estimate ρab

‘o’ = best pa, ‘x’ = best pb

The plots for optimal pa and pb  values appear approximately quadratic and cubic in nature

respectively, and can be very closely approximated by fitting polynomial regression lines.  This

gives

best pa = 0.733 – 0.165ρab
2

best pb = 0.499 –  0.184ρab  + 0.146 ρab
3 (5.7)

Determining the optimal values for pa and pb  requires a prior estimate for the correlation

ρab .  However, due to the relative insensitivity of the standard deviation of ρab
*  near the optimal

pa and pb  values (explored in the Section 4.1.1), choosing good pa and pb  values can be done

even with little idea of the actual ρab .  With little prior information regarding the correlation



21level, proof-load levels close to pa  = 0.65 and pb  = 0.45 are recommended.  These proof-load

levels provide correlation estimates with close to optimal standard deviation values for any true

correlation level.  Procedure I utilizes a single proof-load in each mode, thus in each dimension

there is a single group limit.  Based on the above suggested group probabilities, the best group

limits are –0.126 and 0.385 for strength mode A and B respectively.  These group limits are

given in terms of a standardized normal process.



CHAPTER 6
Summary, Conclusion and Possible Extensions

This thesis develops quality control and improvement techniques based on grouped data.

Grouped data commonly occur in industry when exact measurements are either prohibitively

expensive or impossible.  The methodology presented allows the creation of acceptance sampling

plans, acceptance control charts, and Shewhart control charts based on grouped data.  In addition,

a number of correlation estimation procedures are derived that are applicable when data is

grouped due to destructive testing.

In Chapter 1 the concept of grouped data is introduced, and an outline of the three major

areas of application is presented.  The three application areas are acceptance sampling plans,

control charts and correlation estimation under destructive tests.  Chapter 1 also provides a

detailed literature survey of previous research relating to the use of grouped data in quality

control and improvement problems.  In Chapter 2, much of the notation used in the thesis is

defined, and algorithms, derived from existing work in the literature, for the calculation of

maximum likelihood parameter estimates from grouped data are presented.  In addition, Chapter

2 shows that existing ad hoc quality control techniques often used in industry for grouped data

are inadequate.  Chapter 3 turns to the derivation of one-sided and two-sided acceptance

sampling plans, acceptance control charts and Shewhart control charts based on grouped data.

The solution methodology is based on the asymptotic properties of the chosen test statistic.  In

each case, different solution strategies are compared and contrasted.  In addition, Chapter 3

discusses in detail the design of such plans and charts when utilizing small sample sizes.  Chapter

4 presents four different procedures that use proof-loading to estimate the correlation between

destructively measured strength properties.  Unlike existing techniques, all the procedures

involves grouping units in two modes and require no precise measurements.  The first two



23procedures are adaptations of existing techniques that use a single proof-load in each mode and

give only estimates of the correlation.  The second two procedures are further extensions that

utilize two proof-loads in each mode.  The resulting additional information allows the estimation

of the two individual means and standard deviations as well as the correlation.  Chapter 5

addresses the issue of optimal grouping criteria.  The best way to group observations depends on

the application, but the optimal groupings for acceptance sampling plans, Shewhart control charts

for normal or Weibull processes, and correlation estimation under destructive testing are derived

through optimization techniques.

The ultimate goal of Statistical Process Control (SPC) is increased quality in

manufactured products or services provided.  For the most part, SPC techniques have been

developed for two types of data: variables data and dichotomous data.  However, existing quality

control tools will not work well if they are inappropriate for the situation.  For example,

variables-based SPC techniques are commonly applied in an ad hoc way to grouped data and

may lead to misleading results and incorrect decisions.  Grouping data into two or more groups is

a natural compromise between variables data and dichotomous data.  Grouped data are common

in industry and occur when precise measurement is expensive but gauging articles into groups is

feasible.  In this thesis the SPC methodology presented is developed and designed for grouped

data.  The derived sampling plans, control charts and correlation estimation procedures for

grouped data are quite competitive, in terms of required sample size, to variables based methods.

The slight loss in efficiency is often more than compensated by lower data collection costs, since

grouping data may be easier and cheaper.  In addition, the resulting charts and plans are easily

implemented in a shop floor environment.

In a more general context, the presented methodology provides a framework to deal with

grouped data in the areas of parameter estimation and hypothesis testing.  The methods have

been described in the context of quality improvement, but they are more widely applicable.  The

solution approaches suggested are very adaptable.  The likelihood approach is appropriate for

grouped data from any underlying distribution, and with any parameter of interest, since, due to



24the data grouping, the appropriate distribution is always multinomial.  Thus, for any underlying

distribution of the quality characteristic only the group probabilities change leaving the proposed

design methodology unchanged.  As a result, the techniques are also applicable when the

underlying distribution of the quality characteristic is non-normal.  For example, the proposed

techniques have application in the service industry where service times are often modeled as

exponentials.  The weights-based methods are also very appealing due to their simplicity.  In the

weights-based methods each unit is assigned a weight based on the group into which it is

classified, and the average weight of a sample is used as the test statistic.  Thus, the weights-

based methods are easily implemented since these calculations can be done without sophisticated

measuring devices or computers.

A number of interesting extensions to this work are possible and are currently being

pursued.  Likelihood methods can be extended to sequential sampling methods through the

sequential probability ratio test.  Sequential procedures have the advantage of requiring, on

average, smaller sample sizes to achieve the same operating characteristics as the fixed sample

size solutions.  Sequential testing procedures, however, have several drawbacks.  The sample

size required to reach a decision is not known a priori, and units must be considered one at a

time.  This extension would be of particular interest since it would allow the design of

cumulative sum (CUSUM) charts.  CUSUM charts are currently very popular in the literature

since they are easy to use and are better at detecting small parameter shifts than Shewhart charts.

Another possible extension is to develop hypothesis testing procedures for the correlation under

destructive testing.  A methodology similar to the one presented in Chapter 3 would probably

also be applicable in this case.  A third extension involves the application of grouped data to

experimental design.  The ultimate goal of both experimental design and control charts is quality

improvement.  However, control charts passively monitor the output of a process until an “out of

control” signal is obtained, and then investigate and remove the cause of the problem.  Designed

experiments, in contrast, provide a more active statistical tool for achieving quality improvement.

With designed experiments a number of possible input conditions are tried, and through a



25statistical analysis the probable optimal combination of process inputs is determined.  Inputs

consist of such things as raw materials, temperature and machine settings.  Often the correct

combination of inputs results in a reduction in the “natural variation” of a process.  This thus

leads directly to more consistent and higher quality outputs.

These proposed extensions, together with the work from this thesis, would provide

practitioners with a fairly complete quality control and improvement system designed for

grouped data.  The thesis material makes the first important steps in this direction, and provides a

methodology that can be extended to the other areas.  In conclusion, the presented SPC

techniques based on grouped data will be a valuable addition to a quality practitioner’s repertoire

of quality control and improvement techniques, and provide a methodology for parameter

estimation and hypothesis testing based on grouped data in general.
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APPENDICES



Appendix A:  Notation
This appendix summarizes most of the notation and acronyms used in this thesis.

Latin alphabet

a Weibull shape parameter
b Weibull scale parameter
c arbitrary constant
CLT central limit theorem
f N probability density function (p.d.f.) of the normal distribution
FN cumulative density function (c.d.f) of the normal distribution
fW p.d.f of the Weibull distribution
FW c.d.f. of the Weibull distribution
GLR generalized likelihood ratio
H0 null hypothesis
H1 alternate hypothesis
H−1 alternative hypothesis in the downward direction
i unit index
j group index
LACL lower acceptance control limit
LCL lower control limit
m multiple of sigma units used to set control limits for Shewhart charts
MLE maximum likelihood estimate
n sample size
OC operating characteristic
pa probability of failure under proof-load in mode A.

pa
* maximum likelihood estimate of pa

PLa proof-load level in mode A.
Q vector of sample grouping
Qi observed number of units in group i
ti location of standardized gauge limits
UACL upper acceptance control limit
UCL upper control limit
w weights associated with H−1 vs. H1

Xi location of physical gauge limits
Y random variable representing value of quality characteristic
z weights associated with H0  vs. H1  test
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Greek Alphabet

α type I error rate
′α actual type I error rate

β type II error rate
′β actual type II error rate

γ * critical GLR value
φ probability density function
Φ cumulative distribution function of the standard normal distribution
λ critical likelihood ratio value
λα adjustment of λ  for sample size increase based on false alarm equation
λβ adjustment of λ  for sample size increase based on power equation
µ mean of the normal distribution
µ0 stable mean value
µ1 alternative mean value greater than µ0

µ−1 alternative mean value less than µ0

µa acceptable mean value
µ r rejectable mean value
µw expected average w weight
µz expected average z weight
π j probability of falling into group j

ρab correlation between strength modes A and B

ρab
* MLE for ρab

θ parameter of interest
θa acceptable parameter value
θr rejectable parameter value
θ0 target parameter value
θ1 parameter value of interest greater than θ0

θ−1 parameter value of interest less than θ0

σ standard deviation of the normal distribution
σw standard deviation of the w weights
σz standard deviation of the z weights



Appendix B:  Interpretation of Weights

The group weight for group j, as expressed by equation (3.16), can be rescaled to be

approximately equal the expected value of an observation that falls into group j given µ = µ0 .

Since the weights can be rescaled, it is possible, without loss of generality, to  restrict attention to

the case when µ0 = 0 and σ = 1.  For the normalized problem, µ1 represents the size of mean

shift we wish to detect given as a multiple of σ .

First, find the expected group value given µ = µ0 .

E y y ∈ j th group( ) =

xφ x( )dx
tj−1

t j

∫

φ x( )dx
tj−1

t j

∫

=
φ t j −1( ) − φ t j( )

Q tj −1,t j( )

where φ x( ) =
1
2π

exp − x2 2( ), the p.d.f. of the standard normal

Q x, y( ) = φ s( )ds
s= x

y

∫ ,

and the t j ' s  are the standardized gauge limits.

Now consider the Taylor expansion in µ1 of the weight assigned to all units that fall into

group j, see equation (3.16) (assume µ1 = −µ−1 ).

weight for group j = ln

exp − 1
2

x − µ1( )2





t j−1

t j

∫

exp − 1
2

x + µ1( )2





t j−1

t j

∫




















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=
2

1
2π

exp −t j −1
2 2( ) − 1

2π
exp −t j

2 2( )





1
2π

exp −x2( )dx − 1
2π

exp −x2( )dx
0

t j

∫
0

t j−1

∫
µ1 + O µ1

3( )

= 2
φ t j −1( ) − φ t j( )

Q tj −1,t j( ) µ1 + O µ1
3( )

= 2µ1 E y y ∈ j th group( ) + O µ1
3( )

For reasonable values of t j −1 and t j  (-5 < t  < 5) the coefficients for all terms in the above

expansion of order higher than three is very small and decreasing as the order becomes higher.

For typical values of µ1, such as 1 or 2, these higher terms can be ignored, and the group weight

for group j is approximately equal to 2µ1 times the expected value of an observation that falls

into group j given µ = µ0 .



Appendix C:  Expected Value of Proof-load MLEs

This appendix contains the details of the proof that the MLEs given by equations (4.7)

and (4.11) are all unbiased estimates.

Showing that the MLEs given by equations (4.7) are unbiased requires the following

intermediate results:

E na( ) = npa , E nb( ) = n pb − pa∩b( )
E ma( ) = m pa − pa∩b( ) , E mb( ) = mpb

E na na + nb( ) =
pa na + nb( )

pa + pb − pa∩b

E mb ma + mb( ) =
pb ma + mb( )

pa + pb − pa∩b

E namb( ) = E na( ) E mb( )
E manb( ) = E ma( ) E nb( )

Using these expressions gives

E
na ma + mb( )

na + nb

na + nb







=
E na na + nb( )

na + nb

E ma + mb( )

=

pa

pa + pb − pa∩b

na + nb( )
na + nb

m pa − pa∩b( ) + mpb( )

= mpa

Therefore, since this result does not depend on na + nb

E
na ma + mb( )

na + nb







= mpa

Similarly, E
mb na + nb( )

ma + mb







= npb



38Also, we have

E
mbna − manb

ma + mb

ma + mb







=
E na( )E mb ma + mb( ) − E nb( )E ma ma + mb( )

ma + mb

=

npa pb ma + mb( )
pa + pb − pa∩b

−
n pb − pa∩b( ) pa − pa∩b( ) ma + mb( )

pa + pb − pa∩b

ma + mb

= npa∩b

Therefore, E
mbna − manb

ma + mb







= npa∩b

and E
mbna − manb

na + nb







= mpa∩b

Thus, considering the MLEs in expressions (4.7),

pa
* =

na na + nb + ma + mb( )
n + m( ) na + nb( ) =

1
n + m

na +
na ma + mb( )

na + nb







Therefore, E pa
*( ) =

1
n + m

npa + mpa( ) = pa

Similarly, pb
* =

1
n + m

mb +
mb na + nb( )

ma + mb







and therefore E pb
*( ) = pb

Also, pa∩b
* =

mbna − manb( ) na + nb + ma + mb( )
n + m( ) na + nb( ) ma + mb( )

pa∩b
* =

1
n + m

mbna − manb( )
ma + mb

+
mbna − manb( )

na + nb







∴ E pa∩b
*( ) =

1
n + m

npa∩b + mpa∩b( ) = pa∩b

Therefore, the MLEs given in equations (4.7) are all unbiased.



39The MLEs given for Procedure III by equations (4.11) can be shown to be unbiased in a

similar manner.  To illustrate the technique it is shown that E pa2
*( )  = pa2  and E pa2∩b2

*( ) = pa2∩b2,

the unbiasedness of the MLEs pa1
* , pb1

* , pb2
* , pa1∩b2

*  and pa2∩b1
*  follow directly.

The following intermediate results are required:

E na2( ) = npa2 , E nb2( ) = n pb2 − pa2∩b2( )
E ma2( ) = m pa2 − pa2∩b2( ) , E mb2( ) = mpb2

E na2 na2 + nb2( ) =
pa2 na2 + nb2( )

pa2 + pb2 − pa2∩b2

E mb2 ma2 + mb2( ) =
pb2 ma2 + mb2( )

pa2 + pb2 − pa2∩b2

E na2mb2( ) = E na2( ) E mb2( )
E ma2nb2( ) = E ma2( ) E nb2( )

Using these expressions gives

E
na2 ma2 + mb2( )

na2 + nb2

na2 + nb2







=
E na2 na2 + nb2( )

na2 + nb2

E ma2 + mb2( )

=

pa2

pa2 + pb2 − pa2∩b2

na2 + nb2( )
na2 + nb2

m pa2 − pa2∩b2( ) + mpb2( )

= mpa2

Therefore, since this result does not depend on na2 + nb2

E
na2 ma2 + mb2( )

na2 + nb2







= mpa2

Also,

E
mb2na2 − ma2nb2

ma2 + mb2

ma2 + mb2







=
E na2( )E mb2 ma2 + mb2( ) − E nb2( )E ma2 ma2 + mb2( )

ma2 + mb2
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=

npa2 pb2 ma2 + mb2( )
pa2 + pb2 − pa2∩b2

−
n pb2 − pa2∩b2( ) pa2 − pa2∩b2( ) ma2 + mb2( )

pa2 + pb2 − pa2∩b2

ma2 + mb2

= npa2∩b2

Therefore, E
mb2na2 − ma2nb2

ma2 + mb2







= npa2∩b2

and E
mb2na2 − ma2nb2

na2 + nb2







= mpa∩b

Thus pa2
* =

na2 na2 + nb2 + ma2 + mb2( )
n + m( ) na2 + nb2( ) =

1
n + m

na2 +
na2 ma2 + mb2( )

na2 + nb2







Therefore, E pa2
*( ) =

1
n + m

npa2 + mpa2( ) = pa2

Also, pa2∩b2
* =

mb2na2 − ma2nb2( ) na2 + nb2 + ma2 + mb2( )
n + m( ) na2 + nb2( ) ma2 + mb2( )

pa2∩b2
* =

1
n + m

mb2na2 − ma2nb2( )
ma2 + mb2

+
mb2na2 − ma2nb2( )

na2 + nb2







∴ E pa2∩b2
*( ) =

1
n + m

npa2∩b2 + mpa2∩b2( ) = pa2∩b2

Therefore, the MLEs pa2
*  and pa2∩b2

*  given in equations (4.11) are unbiased.



Appendix D:  Gradient of Sample Size Formula

In addressing the question of optimal gauge limits in the case of a one-sided acceptance

sampling plan it is necessary to find the gauge limits that minimize the required sample size.

Although this minimization problems can be solved directly through the use of the Nelder-Mead

multidimensional simplex algorithm more efficient techniques exist that utilize the gradient of

the function to be minimized.  As a result, this appendix shows the calculation of the gradient.

To determine the optimal gauge limits to detect shifts in the mean of a normal

distribution, the sample size, as given in equation (3.4), must be minimized .  For given α , β ,

and acceptable and rejectable mean values µa  and µr , equation (3.4) is only a function of the

standardized gauge limits t.  From Section 3.1, equation (3.4) is

n =
Φ−1(1− β )σz(µr ) − Φ−1(α )σz(µa )

µz(µr ) − µz(µa )







2

.

Taking the derivative with respect to the gauge limit ti  gives:

∂n

∂ti

= 2
Φ−1(α )σz(µa ) − Φ−1(1− β )σz(µr )

µz(µa ) − µz(µr )







Φ−1(α )∂σz(µa ) ∂ti − Φ−1(1− β )∂σz(µr ) ∂ti

µz(µa ) − µz(µr )







Φ−1(α )σz(µa ) − Φ−1(1− β )σz(µr )

µz(µa ) − µz(µr )( )2







∂µz(µa )

∂ti

− ∂µz(µr )
∂ti







where
∂µz µ( )

∂tj

= φ(tj ,µ )(zj − zj+1) +
π j (µ )

π j (µr )
φ(tj ,µr ) −

π j (µr )

π j (µa )
φ(tj ,µa )








−
π j+1(µ )

π j+1(µr )
φ(tj ,µr ) −

π j+1(µr )

π j+1(µa )
φ(tj ,µa )







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and

∂σz µ( )
∂tj

= σz µ( )−1 −2µz µ( ) ∂µz µ( )
∂tj

+
∂π j µ( )

∂tj

zj
2 +

∂π j+1 µ( )
∂tj

zj+1
2





             +2π j µ( )zj

∂zj

∂tj

+ 2π j+1 µ( )zj+1

∂zj+1

∂tj





This follows since, as given in Section 3.1,

µz µ( ) = π j µ( )
j+1

k+1

∑ ln
π j µa( )
π j µr( )







,

σz µ( ) = π j µ( ) ln
π j µa( )
π j µr( )






j=1

k+1

∑ − µz
2 µ( )

and

π j µ( ) = φ y;µ( )dy
t j−1

t j

∫ ,

φ t,µ( ) =
1
2π

exp − 1
2

t − µ( )2





∂π j µ( )
∂tj

= φ t j ,µ( )
∂π j+1 µ( )

∂tj

= −φ t j ,µ( )



Appendix E:  Normal Information Gradient

The optimal gauge limits for Shewhart control charts are the limits that maximize the

expected statistical information available in a sample.  The maximization can be done most

quickly if also provided with gradients.  The gradient of the expected information for the mean

and standard deviation of a normal distribution is derived below.  For Shewhart type charts to

detect mean shifts it is necessary to maximize (5.3) which for given α , β , µ0  and µ1 is a

function only of the gauge limits t.  The equation (5.3) is repeated below:

E I µ( )( ) =
φ(t1;µ )2

π1(µ )
+

φ(t j−1;µ ) − φ(t j ;µ )( )2

π j (µ )j=2

k

∑ + φ(tk ;µ )2

πk+1(µ )

Then since,

π j µ( ) = φ y;µ( )dy
t j−1

t j

∫ ,

φ x,µ( ) =
1
2π

exp − 1
2

x − µ( )2





∂θ
∂x

=
µ − x

2π
exp − 1

2
x − µ( )2





∂π j

∂t j

= φ t j ,µ( ) ∂π j +1

∂t j

= −φ t j ,µ( )

Defining t0  = −∞ , and tk+1  = ∞, the derivative of the expected information about the mean with

respect to the group limits is:

∂E I µ( )( )
∂t j

=
2 φ t j( ) − φ t j +1( )( )

π j +1

∂φ t j( )
∂t j

+
φ t j( ) − φ t j +1( )( )2

π j +1
2 φ t j( )

−
2 φ t j −1( ) − φ t j( )( )

π j

∂φ t j( )
∂t j

−
φ t j −1( ) − φ t j( )( )2

π j
2 φ t j( )



44For Shewhart type charts to detect standard deviation shifts expression (5.4) must be

maximized, which also for given α , β , µ0  and µ1 is  a function just of the gauge limits t.  The

equation (5.4) is repeated below:

E I σ( )( ) =
t1

2φ(t1;σ )2

σ π1(σ )
+

t j−1 − t j( )2
φ(t j−1;σ ) − φ(t j ;σ )( )2

σ π j (σ )j=2

k

∑ + tk
2φ(tk ;σ )2

σ πk+1(σ )

Using the above equations gives:

∂E I σ( )( )
∂t j

=
2 t jφ t j( ) − t j +1φ t j +1( )( )

π j +1 σ( )
∂φ t j( )

∂t j

+
t jφ t j( ) − t j +1φ t j +1( )( )2

π j +1
2 σ( )

φ t j( )

−
2 t j −1φ t j −1( ) − t jφ t j( )( )

π j σ( )
∂φ t j( )

∂t j

−
t j −1φ t j −1( ) − t jφ t j( )( )2

π j
2 σ( )

φ t j( )



Appendix F:  Weibull Information Gradients

The optimal gauge limits for Shewhart control charts are the limits that maximize the

expected statistical information available.  This appendix provides the gradients with respect to

the gauge limits for the expected information of a grouped Weibull distribution.

For Shewhart type charts to detect shape parameter shifts the expected information as

expressed in equation (5.5) must be maximized.  Given α , β , µ0  and µ1  equation (5.5) is a

function only of the gauge limits t.  Equation (5.5) is repeated below:

E I a( )( ) =
tj

a ln tj( )exp −tj
a( ) − tj−1

a ln tj−1( )exp −tj−1
a( )( )2

exp −tj−1
a( ) − exp −tj

a( )j=1

k+1

∑

Then defining

hi = ti
a ln ti( )exp −ti

a( )
and gi = ahi + ti

a exp −ti
a( ) − ahiti

a ,

gives

∂E I a( )( )
∂tj

=
2 hi − hi−1( )gi

ti exp ti−1
a( ) − exp ti

a( )( ) −
a hi − hi−1( )2

ti
a exp ti

a( )
ti exp ti−1

a( ) − exp ti
a( )( )2

−
2 hi+1 − hi( )gi

ti exp ti
a( ) − exp ti+1

a( )( ) +
a hi+1 − hi( )2

ti
a exp ti

a( )
ti exp ti

a( ) − exp ti+1
a( )( )2

For Shewhart type charts to detect scale parameter shifts from a Weibull distribution the

optimal gauge limits maximize the expected information as expressed in equation (5.6):

E I b( )( ) =

tj−1

b2 exp −
tj−1

b






−
tj

b2 exp −
tj

b












2

exp −tj−1 b( ) − exp −tj b( )j=1

k+1

∑



Now define

di =
ti

b2 exp − ti

b






Then using the above definitions gives:

∂E I b( )( )
∂tj

=
2 di−1 − di( ) ti

b
−1



 di

ti exp ti−1 b( ) − exp ti b( )( ) −
bdi di−1 − di( )2

ti exp ti−1 b( ) − exp ti b( )( )2

−
2 di − di+1( ) ti

b
−1



 di

ti exp ti b( ) − exp ti+1 b( )( ) +
bdi di − di+1( )2

ti exp ti b( ) − exp ti+1 b( )( )2


