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The Calculus of Logic

By George Boole.

The following abbreviations for
Boole’s publications on logic will
be used in the marginal notes:

MAL: Mathematical Analysis
of Logic (1847)
CL: The Calculus of Logic (1848)
LT: Laws of Thought (1854)

Boldface numbers in brackets, like

[184], indicate journal page num-

bers.

[Cambridge and Dublin Mathematical Journal,
Vol. III (1848), pp. 183–98]

In a work lately published,1 I have exhibited the application of a
new and peculiar form of Mathematics to the expression of the oper-
ations of the mind in reasoning. In the present essay I design to offer
such an account of a portion of this treatise as may furnish a correct
view of the nature of the system developed. I shall endeavour to state
distinctly those positions in which its characteristic distinctions consist,
and shall offer a more particular illustration of some features which are
less prominently displayed in the [184] original work. The part of the
system to which I shall confine my observations is that which treats of
categorical propositions, and the positions which, under this limitation,
I design to illustrate, are the following:

As in MAL, Boole augmented

the Aristotelian categorical propo-

sitions by allowing the subjects to

be of the form not-X. He briefly

mentions hypothetical propositions

at the end of this paper.(1) That the business of Logic is with the relations of classes, and
with the modes in which the mind contemplates those relations.

(2) That antecedently to our recognition of the existence of proposi-
tions, there are laws to which the conception of a class is subject,—laws
which are dependent upon the constitution of the intellect, and which
determine the character and form of the reasoning process.

(3) That those laws are capable of mathematical expression, and
that they thus constitute the basis of an interpretable calculus.

Boole’s laws were expressed by

equations.

(4) That those laws are, furthermore, such, that all equations which
are formed in subjection to them, even though expressed under func-
tional signs, admit of perfect solution, so that every problem in logic
can be solved by reference to a general theorem.

(5) That the forms under which propositions are actually exhibited,
in accordance with the principles of this calculus, are analogous with
those of a philosophical language.

Evidently a philosophical language

is precise, unambiguous.

(6) That although the symbols of the calculus do not depend for
their interpretation upon the idea of quantity, they nevertheless, in
their particular application to syllogism, conduct us to the quantitative
conditions of inference.

The symbols are those used in the

algebra of numbers, and the per-

missible reasoning is in good part

that of this algebra.

1The Mathematical Analysis of Logic, being an Essay towards a Calculus of
Deductive Reasoning. Cambridge, Macmillan; London, G. Bell.
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It is specially of the two last of these positions that I here desire
to offer illustration, they having been but partially exemplified in the
work referred to. Other points will, however, be made the subjects
of incidental discussion. It will be necessary to premise the following
notation.

The universe of conceivable objects is represented by 1 or unity.
This I assume as the primary and subject conception. All subordinate
conceptions of class are understood to be formed from it by limitation,
according to the following scheme.

Elective symbols make their last

stand in CL; they disappear in LT.

Suppose that we have the conception of any group of objects con-
sisting of Xs Ys, and others, and that x, which we shall call an elective
symbol, represents the mental operation of selecting from that group
all the Xs which it contains, or of fixing the attention upon the Xs to
the exclusion of [185] all which are not Xs, y the mental operation of
selecting the Ys, and so on; then, 1 or the universe being the subject
conception, we shall have

The confusion created by having x

denote both an elective operation

and a class disappears in LT where

x denotes only a class.

x 1 or x = the class X,

y 1 or y = the class Y,

xy 1 or xy = the class each member of which is both X and Y,

and so on.

In like manner we shall have

1− x = the class not-X,

1− y = the class not-Y,

x(1− y) = the class whose members are Xs but not-Ys,

(1− x)(1− y) the class whose members are neither Xs nor Ys,
&c.

Furthermore, from consideration of the nature of the mental oper-
ation involved, it will appear that the following laws are satisfied.

Representing by x, y, z any elective symbols whatever,

x(y + z) = xy + xz, (1)

xy = yx, &c., (2)

xn = x, &c. (3)

From the first of these it is seen that elective symbols are distributive
in their operation; from the second that they are commutative. The
third I have termed the index law; it is peculiar to elective symbols.

In MAL Boole believed that these
three laws and the axiom (A) stated
on the next page justified using
the equational reasoning of Com-
mon Algebra, the algebra of num-
bers. This is incorrect. In LT he
added more laws, but still not quite
enough.

Boole did not explain that the third

law only applies to elective sym-

bols, not to terms in general. For

example, one cannot conclude that

(x+ y)2 = x+ y.
The truth of these laws does not at all depend upon the nature, or

the number, or the mutual relations, of the individuals included in the
different classes. There may be but one individual in a class, or there
may be a thousand. There may be individuals common to different
classes, or the classes may be mutually exclusive. All elective symbols
are distributive, and commutative, and all elective symbols satisfy the
law expressed by (3).

A class with no elements was still

not accepted—that will happen in

LT.

These laws are in fact embodied in every spoken or written language.
The equivalence of the expressions “good wise man” and “wise good
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man,” is not a mere truism, but an assertion of the law of commutation
exhibited in (2). And there are similar illustrations of the other laws.

So far only the mental operation

connected with multiplication has

been discussed. Now he consid-

ers addition, but not subtraction.

He doesn’t mention that addition

is only defined for disjoint classes.

With these laws there is connected a general axiom. We have seen
that algebraic operations performed with elective [186] symbols rep-
resent mental processes. Thus the connexion of two symbols by the
sign + represents the aggregation of two classes into a single class, the
connexion of two symbols xy as in multiplication, represents the mental
operation of selecting from a class Y those members which belong also
to another class X, and so on. By such operations the conception of a
class is modified. But beside this the mind has the power of perceiv-
ing relations of equality among classes. The axiom in question, then,
is that if a relation of equality is perceived between two classes, that
relation remains unaffected when both subjects are equally modified by
the operations above described. (A). This axiom, and not “Aristotle’s
dictum,” is the real foundation of all reasoning, the form and character
of the process being, however, determined by the three laws already
stated.

In LT Boole no longer claimed that

axiom (A) should replace Aristo-

tle’s dictum.

Boole’s combinations of elective

symbols are now called terms.

It is not only true that every elective symbol representing a class
satisfies the index law (3), but it may be rigorously demonstrated that
any combination of elective symbols φ(xyz. .), which satisfies the law
φ(xyz. .)n = φ(xyz. .), represents an intelligible conception,—a group
or class defined by a greater or less number of properties and consisting
of a greater or less number of parts.

The four categorical propositions upon which the doctrine of ordi-
nary syllogism is founded, are

All Ys are Xs. A,
No Ys are Xs. E,
Some Ys are Xs. I,
Some Ys are not Xs. O.

We shall consider these with reference to the classes among which re-
lation is expressed.

A. The expression All Ys represents the class Y and will therefore
be expressed by y, the copula are by the sign =, the indefinite term,
Xs, is equivalent to Some Xs. It is a convention of language, that the
word Some is expressed in the subject, but not in the predicate of a
proposition. The term Some Xs will be expressed by vx, in which v is
an elective symbol appropriate to a class V, some members of which
are Xs, but which is in other respects arbitrary. Thus the proposition
A will be expressed by the equation

y = vx. (4)
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The proposition “No Ys are Xs” is

equivalent to “All Ys are not-Xs”.

E. In the proposition, No Ys are Xs, the negative particle appears
to be attached to the subject instead of to the [187] predicate to which
it manifestly belongs.2 We do not intend to say that those things which
are not-Ys are Xs, but that things which are Ys are not-Xs. Now the
class not-Xs is expressed by 1−x; hence the proposition No Ys are Xs,
or rather All Ys are not-Xs, will be expressed by

y = v(1− x). (5)

I. In the proposition Some Ys are Xs, or Some Ys are Some Xs, we
might regard the Some in the subject and the Some in the predicate as
having reference to the same arbitrary class V, and so write

vy = vx,

but it is less of an assumption to refrain from doing this. Thus we
should write

vy = v′x, (6)

v′ referring to another arbitrary class V′.

In LT Boole will abandon the idea

of using two parameters v and

v′ to express particular categorical

propositions.

O. Similarly, the proposition Some Ys are not-Xs, will be expressed
by the equation

vy = v′(1− x). (7)

It will be seen from the above that the forms under which the four
categorical propositions A, E, I, O are exhibited in the notation of elec-
tive symbols are analogous with those of pure language, i.e. with the
forms which human speech would assume, were its rules entirely con-
structed upon a scientific basis. In a vast majority of the propositions
which can be conceived by the mind, the laws of expression have not
been modified by usage, and the analogy becomes more apparent, e.g.
the interpretation of the equation

z = x(1− y) + y(1− x),

[187] is, the class Z consists of all Xs which are not-Ys and of all Ys
which are not-Xs.

In LT Boole generalized categori-

cal propositions to primary propo-

sitions, that is, propositions about

classes. Propositions about pri-

mary propositions were called sec-

ondary propositions, generalizing

hypothetical propositions. Evi-

dently Boole did not consider 6= to

truly be a relation between classes.

2There are but two ways in which the proposition, No Xs are Ys, can be under-
stood. 1st, In the sense of All Xs are not-Y. 2nd, In the sense of It is not true that
any Xs are Ys, i.e. the proposition “Some Xs are Ys” is false. The former of these is
a single categorical proposition. The latter is an assertion respecting a proposition,
and its expression belongs to a distinct part of the elective system. It appears to me
that it is the latter sense, which is really adopted by those who refer the negative,
not, to the copula. To refer it to the predicate is not a useless refinement, but a
necessary step, in order to make the proposition truly a relation between classes. I
believe it will be found that this step is really taken in the attempts to demonstrate
the Aristotelian rules of distribution.

The transposition of the negative is a very common feature of language. Habit
renders us almost insensible to it in our own language, but when in another language
the same principle is differently exhibited, as in the Greek, o ’υ φηµὶ for φηµὶ o ’υ, it
claims attention.
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General Theorems relating to Elective Functions.

We have now arrived at this step,—that we are in possession of a
class of symbols x, y, z, &c. satisfying certain laws, and applicable to
the rigorous expression of any categorical proposition whatever. It will
be our next business to exhibit a few of the general theorems of the
calculus which rest upon the basis of those laws, and these theorems
we shall afterwards apply to the discussion of particular examples.

Other important theorems from

MAL were a weak elimination the-

orem, and a way to reduce sev-

eral equations to a single equation.

Both were improved in LT.

Of the general theorems I shall only exhibit two sets: those which
relate to the development of functions, and those which relate to the
solution of equations.

Theorems of Development.

Boole did not require that all the

elective symbols of a function φ ap-

pear in the list following the symbol

φ. Thus φ(1) and φ(0) could de-

pend on other elective symbols, in

which case (8) would be a partial

expansion of φ(x). Etc.

(1) If x be any elective symbol, then

φ(x) = φ(1)x + φ(0)(1− x), (8)

the coefficients φ(1), φ(0), which are quantitative or common algebraic
functions, are called the moduli, and x and 1− x the constituents.

(2) For a function of two elective symbols we have

φ(xy) = φ(11)xy + φ(10)x(1−y) + φ(01)(1−x)y + φ(00)(1−x)(1−y),
(9)

in which φ(11), φ(10), &c. are quantitative, and are called the moduli,
and xy, x(1− y), &c. the constituents.

(3) Functions of three symbols,

φ(xyz) = φ(111)xyz + φ(110)xy(1− z)
+ φ(101)x(1− y)z + φ(100)x(1− y)(1− z)
+ φ(011)(1− x)yz + φ(010)(1− x)y(1− z)
+ φ(001)(1− x)(1− y)z + φ(000)(1− x)(1− y)(1− z), (10)

in which φ(111), φ(110), &c. are the moduli, and xyz, xy(1 − z), &c.
the constituents.

From these examples the general law of development is obvious.
And I desire it to be noted that this law is a mere consequence of the
primary laws which have been expressed in (1), (2), (3).

[189]

Boole uses ‘expand’ as a synonym

for ‘develop’.
Theorem. If we have any equation φ(xyz. .) = 0, and fully expand

the first member, then every constituent whose modulus does not vanish
may be equated to 0.

This enables us to interpret any equation by a general rule.

Rule. Bring all the terms to the first side, expand this in terms of
all the elective symbols involved in it, and equate to 0 every constituent
whose modulus does not vanish.
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For the demonstration of these and many other results, I must refer
to the original work. It must be noted that on p. 66, z has been,
through mistake, substituted for w, and that the reference on p. 80
should be to Prop. 2.

These errors in MAL can be seen

in the copy at Stanford; they have

been corrected in the copy at U

Toronto and in the Project Guten-

berg transcription.As an example, let us take the equation

x+ 2y − 3xy = 0. (11)

Here φ(xy) = x+ 2y − 3xy, whence the values of the moduli are

φ(11) = 0, φ(10) = 1, φ(01) = 2, φ(00) = 0,

so that the expansion (9) gives

x(1− y) + 2y(1− x) = 0,

which is in fact only another form of (11). We have, then, by the Rule

x(1− y) = 0, (11)

y(1− x) = 0; (12)

the former implies that there are no Xs which are not-Ys, the latter
that there are no Ys which are not-Xs, these together expressing the
full significance of the original equation.

We can, however, often recombine the constituents with a gain of
simplicity. In the present instance, subtracting (12) from (11), we have

x− y = 0,
or x = y,

that is, the class X is identical with the class Y. This proposition is
equivalent to the two former ones.

All equations are thus of equal significance which give, on expansion,
the same series of constituent equations, and all are interpretable.

The constituent equations of

φ(x..) = 0 are those of the form

constituent = 0

described in the above Theorem.General Solution of Elective Equations.

(1) The general solution of the equation φ(xy) = 0, in which two
elective symbols only are involved, y being the [190] one whose value
is sought, is

y =
φ(10)

φ(10)− φ(11)
x +

φ(00)

φ(00)− φ(01)
(1− x). (13)

The coefficients

φ(10)

φ(10)− φ(11)
,

φ(00)

φ(00)− φ(01)

are here the moduli.

(2) The general solution of the equation φ(xyz) = 0, z being the
symbol whose value is to be determined, is

z =
φ(110)

φ(110)− φ(111)
xy +

φ(100)

φ(100)− φ(101)
x(1− y)

+
φ(010)

φ(010)− φ(011)
(1− x)y +

φ(000)

φ(000)− φ(001)
(1− x)(1− y),

(14)
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the coefficients of which we shall still term the moduli. The law of their
formation will readily be seen, so that the general theorems which have
been given for the solution of elective equations of two and three sym-
bols, may be regarded as examples of a more general theorem applicable
to all elective equations whatever. In applying these results it is to be
observed, that if a modulus assume the form 0

0 it is to be replaced by
an arbitrary elective symbol w, and that if a modulus assume any nu-
merical value except 0 or 1, the constituent of which it is a factor must
be separately equated to 0. Although these conditions are deduced
solely from the laws to which the symbols are obedient, and without
any reference to interpretation, they nevertheless render the solution
of every equation interpretable in logic. To such formulae also every
question upon the relations of classes may be referred. One or two very
simple illustrations may suffice.

Evidently Boole considers a modu-
lus of the form m

0
, m 6= 0, to be

a numerical value different from 0
and 1.

It is best to regard Boole’s gen-

eral solutions to elective equations

as clever mnemonic devices.

There is no example (2).(1) Given yx = yz + x(1− z). (a)

The Ys which are Xs consist of the Ys which are Zs and the Xs which
are not-Zs. Required the class Z.

Here φ(xyz) = yx− yz − x(1− z),

φ(111) = 0, φ(110) = 0, φ(101) = 0,

φ(100) = −1, φ(011) = −1, φ(010) = 0,

φ(001) = 0, φ(000) = 0;

[191] and substituting in (14), we have

z =
0

0
xy + x(1− y) +

0

0
(1− x)(1− y)

= x(1− y) + wxy + w′(1− x)(1− y). (15)

Hence the class Z includes all Xs which are not-Ys, an indefinite number
of Xs which are Ys, and an indefinite number of individuals which are
neither Xs nor Ys. The classes w and w′ being quite arbitrary, the
indefinite remainder is equally so; it may vanish or not.3

Since 1− z represents a class, not-Z, and satisfies the index law

(1− z)n = 1− z,

as is evident on trial, we may, if we choose, determine the value of this
element just as we should determine that of z.

3This conclusion may be illustrated and verified by considering an example such
as the following.

Let x denote all steamers, or steam-vessels,
y . . . . . . . . . armed vessels,
z . . . . . . . . . vessels of the Mediterranean.

Equation (a) would then express that armed steamers consist of the armed vessels
of the Mediterranean and the steam-vessels not of the Mediterranean. From this it
follows—

(1) That there are no armed vessels except steamers in the Mediterranean.
(2) That all unarmed steamers are in the Mediterranean (since the steam-vessels

not of the Mediterranean are armed). Hence we infer that the vessels of the Mediter-
ranean consist of all unarmed steamers; any number of armed steamers; and any
number of unarmed vessels without steam. This, expressed symbolically, is equation
(15).
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Let us take, in illustration of this principle, the equation y = vx,
(All Ys are Xs), and seek the value of 1− x, the class not-X.

Put 1 − x = z then y = v(1 − z), and if we write this in the form
y−v(1−z) = 0 and represent the first member by φ(vyz), v here taking
the place of x, in (14), we shall have

φ(111) = 1, φ(110) = 0, φ(101) = 0, φ(100) = −1,

φ(011) = 1, φ(010) = 1, φ(001) = 0, φ(000) = 0;

the solution will thus assume the form

z =
0

0− 1
vy +

−1

−1− 0
v(1−y) +

1

1− 1
(1−v)y +

0

0− 0
(1−v)(1−y),

or

1− x = v(1− y) +
1

0
(1− v)y +

0

0
(1− v)(1− y). (16)

The infinite coefficient of the second term in the second member permits
us to write

y(1− v) = 0, (17)

[192] the coefficient 0
0 being then replaced by w, an arbitrary elective

symbol, we have

1− x = v(1− y) + w(1− v)(1− y),

or
1− x = {v + w(1− v)}(1− y). (18)

We may remark upon this result that the coefficient v+w(1− v) in
the second member satisfies the condition

{v + w(1− v)}n = v + w(1− v),

as is evident on squaring it. It therefore represents a class. We may
replace it by an elective symbol u, we have then

1− x = u(1− y), (19)

the interpretation of which is

All not-Xs are not-Ys.

Boole does not pursue this relation

between the two somes in LT.

This is a known transformation in logic, and is called conversion by
contraposition, or negative conversion. But it is far from exhausting
the solution we have obtained. Logicians have overlooked the fact,
that when we convert the proposition All Ys are (some) Xs into All
not-Xs are (some) not-Ys there is a relation between the two (somes),
understood in the predicates. The equation (18) shews that whatever
may be that condition which limits the Xs in the original proposition,—
the not-Ys in the converted proposition consist of all which are subject
to the same condition, and of an arbitrary remainder which are not
subject to that condition. The equation (17) further shews that there
are no Ys which are not subject to that condition.

9



We can similarly reduce the equation y = v(1 − x), No Ys are Xs,
to the form x = v′(1− y) No Xs are Ys, with a like relation between v
and v′. If we solve the equation y = vx All Ys are Xs, with reference
to v, we obtain the subsidiary relation y(1 − x) = 0 No Ys are not-
Xs, and similarly from the equation y = v(1 − x) (No Ys are Xs) we
get xy = 0. These equations, which may also be obtained in other
ways, I have employed in the original treatise. All equations whose
interpretations are connected are similarly connected themselves, by
solution or development.

On Syllogism.

The forms of categorical propositions already deduced are

y = vx, All Ys are Xs,
y = v(1− x), No Ys are Xs,
vy = v′x, Some Ys are Xs,
vy = v′(1− x), Some Ys are not-Xs,

[193] whereof the two first give, by solution, 1−x = v′(1−y). All not-
Xs are not-Ys, x = v′(1−y), No Xs are Ys. To the above scheme, which
is that of Aristotle, we might annex the four categorical propositions

This was done in MAL.

1− y = vx, All not-Ys are Xs,
1− y = v(1− x), All not-Ys are not-Xs,

v(1− y) = v′x, Some not-Ys are Xs,
v(1− y) = v′(1− x), Some not-Ys are not-Xs,

the two first of which are similarly convertible into

1− x = v′y, All not-Xs are Ys,
x = v′y, All Xs are Ys,

or No not-Xs are Ys,

If now the two premises of any syllogism are expressed by equations
of the above forms, the elimination of the common symbol y will lead
us to an equation expressive of the conclusion.

Ex. 1. All Ys are Xs, y = vx,
All Zs are Ys, z = v′y,

the elimination of y gives
z = vv′x,

the interpretation of which is

All Zs are Xs,

the form of the coefficient vv′ indicates that the predicate of the con-
clusion is limited by both the conditions which separately limit the
predicates of the premises.

Ex. 2. All Ys are Xs, y = vx,
All Ys are Zs, y = v′z.

10



The elimination of y gives

v′z = vx,

which is interpretable into Some Zs are Xs. It is always necessary that
one term of the conclusion should be interpretable by means of the
equations of the premises. In the above case both are so.

Such a condition for syllogisms

made it difficult to extend the use

of equations for “Some” to more

(and more complex) premises. In

the 1890s Ernst Schröder claimed

one needed to use negated equa-

tions “p 6= 0” to handle existen-

tial import. A satisfactory treat-

ment of elimination when dealing

with both equations and negated

equations would not appear until

the 1919 paper of Thoralf Skolem.

Ex. 3. All Xs are Ys, x = vy,
No Zs are Ys, z = v′(1− y).

[194] Instead of directly eliminating y let either equation be trans-
formed by solution as in (19). The first gives

1− y = u(1− x),

u being equivalent to v+w(1−v), in which w is arbitrary. Eliminating
1− y between this and the second equation of the system, we get

z = v′u(1− x),

the interpretation of which is

No Zs are Xs.

Had we directly eliminated y, we should have had

vz = v′(v − x),

the reduced solution of which is

z = v′{v + w(1− v)}(1− x),

in which w is an arbitrary elective symbol. This exactly agrees with
the former result.

These examples may suffice to illustrate the employment of the
method in particular instances. But its applicability to the demonstra-
tion of general theorems is here, as in other cases, a more important
feature. I subjoin the results of a recent investigation of the Laws of
Syllogism.

In MAL Boole analyzed in de-

tail syllogisms whose premises were

Aristotelian propositions, but his

more general propositions were al-

lowed in the conclusion. Now he al-

lowed the premises to be more gen-

eral as well, but no detail to justify

his laws of syllogism is given—that

must wait till Chap. XV of LT.

While those results are characterized by great simplicity and bear,
indeed, little trace of their mathematical origin, it would, I conceive,
have been very difficult to arrive at them by the examination and com-
parison of particular cases.

Laws of Syllogism deduced from the Elective Calculus.

We shall take into account all propositions which can be made out
of the classes X, Y, Z, and referred to any of the forms embraced in
the following system,

A, All Xs are Zs. A′, All not-Xs are Zs.

E, No Xs are Zs. E′,
{

No not-Xs are Zs, or
(All not-Xs are not-Zs.)

I, Some Xs are Zs. I′, Some not-Xs are Zs.

O, Some Xs are not-Zs. O′, Some not-Xs are not-Zs.
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It is necessary to recapitulate that quantity (universal and partic-
ular) and quality (affirmative and negative) are [195] understood to
belong to the terms of propositions which is indeed the correct view.4

This is not a recapitulation since it

was not stated before.

Thus, in the proposition All Xs are Ys, the subject All Xs is universal-
affirmative, the predicate (some) Ys particular-affirmative.

In the proposition, Some Xs are Zs, both terms are particular-
affirmative.

The proposition No Xs are Zs would in philosophical language be
written in the form All Xs are not-Zs. The subject is universal-affirmative,
the predicate particular-negative.

In the proposition Some Xs are not-Zs, the subject is particular-
affirmative, the predicate particular-negative. In the proposition All
not-Xs are Ys the subject is universal-negative, the predicate particular-
affirmative, and so on.

Traditionally the premises of a syl-

logism had only 3 terms. Instead

of one middle term, Boole had two

middle terms, one in each premise.

In a pair of premises there are four terms, viz. two subjects and
two predicates; two of these terms, viz. those involving the Y or not-Y
may be called the middle terms, the two others the extremes, one of
these involving X or not-X, the other Z or not-Z.

The following are then the conditions and the rules of inference.

Case 1st. The middle terms of like quality.

Condition of Inference. One middle term universal.

Rule. Equate the extremes.

Case 2nd. The middle terms of opposite qualities.

1st. Condition of Inference. One extreme universal.

Rule. Change the quantity and quality of that extreme, and equate
the result to the other extreme.

2nd. Condition of inference. Two universal middle terms.

Rule. Change the quantity and quality of either extreme, and
equate the result to the other extreme.

I add a few examples,

1st. All Ys are Xs.
All Zs are Ys.

This belongs to Case 1. All Ys is the universal middle term. The
extremes equated give All Zs are Xs, the stronger term becoming the
subject.

4When propositions are said to be affected with quantity and quality, the quality
is really that of the predicate, which expresses the nature of the assertion, and the
quantity that of the subject, which shews its extent.
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2nd. All Xs are Ys
No Zs are Ys

}
=

{
All Xs are Ys.
All Zs are not-Ys.

[196] This belongs to Case 2, and satisfies the first condition. The
middle term is particular-affirmative in the first premise, particular-
negative in the second. Taking All Zs as the universal extreme, we have,
on changing its quantity and quality, Some not-Zs, and this equated to
the other extreme gives

All Xs are (some) not-Zs = No Xs are Zs.

If we take All Xs as the universal extreme we get

No Zs are Xs.

3rd. All Xs are Ys.
Some Zs are not Ys.

This also belongs to Case 2, and satisfies the first condition. The
universal extreme All Xs becomes, some not-Xs, whence

Some Zs are not-Xs.

4th. All Ys are Xs.
All not-Ys are Zs.

This belongs to Case 2, and satisfies the second condition. The
extreme Some Xs becomes All not-Xs,

. . . All not-Xs are Zs.

The other extreme treated in the same way would give

All not-Zs are Xs,

which is an equivalent result.

If we confine ourselves to the Aristotelian premises A, E, I, O, the
second condition of inference in Case 2 is not needed. The conclusion
will not necessarily be confined to the Aristotelian system.

Ex. Some Ys are not-Xs
No Zs are Ys

}
=

{
Some Ys are not-Xs.
All Zs are not-Ys.

This belongs to Case 2, and satisfies the first condition. The result is
Some not-Zs are not-Xs.

These appear to me to be the ultimate laws of syllogistic inference.
They apply to every case, and they completely abolish the distinction
of figure, the necessity of conversion, the arbitrary and partial5 rules

5Partial, because they have reference only to the quantity of the X, even when
the proposition relates to the not-X. It would be possible to construct an exact
counterpart to the Aristotelian rules of syllogism, by quantifying only the not-X.
The system in the text is symmetrical because it is complete.
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of distribution, &c. If all logic [197] were reducible to the syllogism
these might claim to be regarded as the rules of logic. But logic, con-
sidered as the science of the relations of classes has been shewn to
be of far greater extent. Syllogistic inference, in the elective system,
corresponds to elimination. But this is not the highest in the order
of its processes. All questions of elimination may in that system be
regarded as subsidiary to the more general problem of the solution of
elective equations. To this problem all questions of logic and of reason-
ing, without exception, may be referred. For the fuller illustrations of
this principle I must however refer to the original work. The theory of
hypothetical propositions, the analysis of the positive and negative ele-
ments, into which all propositions are ultimately resolvable, and other
similar topics are also there discussed.

Solving an equation for y leads to

(1) the equation obtained by elim-

inating y plus (2) a parametric ex-

pression for y. All questions of

logic and reasoning that Boole con-

sidered could be handled by such.

However within a few years the do-

main of the algebra of logic was

vastly expanded by Peirce’s work

on the algebra of relations.

Boole’s confidence in having found

an axiomatic foundation for logic

disappears in LT, replaced by his

Rule of 0 and 1.

Undoubtedly the final aim of speculative logic is to assign the con-
ditions which render reasoning possible, and the laws which determine
its character and expression. The general axiom (A) and the laws (1),
(2), (3), appear to convey the most definite solution that can at present
be given to this question. When we pass to the consideration of hypo-
thetical propositions, the same laws and the same general axiom which
ought perhaps also to be regarded as a law, continue to prevail; the only
difference being that the subjects of thought are no longer classes of
objects, but cases of the coexistent truth or falsehood of propositions.
Those relations which logicians designate by the terms conditional, dis-
junctive, &c., are referred by Kant to distinct conditions of thought.
But it is a very remarkable fact, that the expressions of such relations
can be deduced the one from the other by mere analytical process.
From the equation y = vx, which expresses the conditional proposi-
tion, “If the proposition Y is true the proposition X is true,” we can
deduce

yx + (1− y)x + (1− y)(1− x) = 1,

which expresses the disjunctive proposition, “Either Y and X are to-
gether true, or X is true and Y is false, or they are both false,” and
again the equation y(1 − x) = 0, which expresses a relation of coexis-
tence, viz. that the truth of Y and the falsehood of X do not coexist.
The distinction in the mental regard, which has the best title to be
regarded as fundamental, is, I conceive, that of the affirmative and the
negative. From this we deduce the direct and the inverse in operations,
the true and the false in propositions, and the opposition of qualities
in their terms.

[198] The view which these enquiries present of the nature of lan-
guage is a very interesting one. They exhibit it not as a mere collection
of signs, but as a system of expression, the elements of which are subject
to the laws of the thought which they represent. That those laws are as
rigorously mathematical as are the laws which govern the purely quan-
titative conceptions of space and time, of number and magnitude, is a
conclusion which I do not hesitate to submit to the exactest scrutiny.
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