Table of Contents

Prefaceii
Overview ix
Notation Guide xv
Part 1. Additive Number Systems 1
Chapter 1. Background From Analysis 3
1.1 Series and infinite products 4
1.2 Power series expansions9
1.3 Big O, little o, and $\sim$ notation12
1.4 The radius of convergence and $RT_\rho$13
1.5 Growth rate of coefficients15
Chapter 2. Counting Functions, Fundamental Identities17
2.1 Defining additive number systems17
2.2 Examples of additive number systems21
2.3 Counting functions, fundamental identities25
2.4 Global counts33
2.5 Alternate version of the fundamental identity34
2.6 Reduced additive number systems37
2.7 Finitely generated number systems39
2.8 $a^\star (n)$ is eventually positive43
Chapter 3. Density and Partition Sets45
3.1 Asymptotic density45
3.2 Dirichlet density48
3.3 The standard assumption51
3.4 The set of additives of an element51
3.5 Partition sets54
3.6 Generating series of partition sets57
3.7 Partition sets have Dirichlet density58
3.8 Schur's Tauberian Theorem62
3.9 Simple partition sets67
3.10 The asymptotic density of $\gamma P$68
3.11 Adding an indecomposable70
Chapter 4. The Case $\rho = 1$75
4.1 The fundamental results when $\rho = 1$75
4.2 The Bateman and Erd\"os Result77
4.3 Stewart's Sum Theorem83
4.4 $\rho = 1$ does not imply $RT_1$84
4.5 Further Results on $RT_1$85
Chapter 5. The Case $0< \rho < 1$87
5.1 Compton's Tauberian Theorem87
5.2 When is $\delta (B) = 0$?90
5.3 The density of $\overline{B}$91
5.4 Compton's Density Theorem92
5.5 The Knopfmacher, Knopfmacher, Warlimont asymptotics93
Chapter 6. Monadic Second-Order Limit Laws103
6.1 First-order logic103
6.2 Monadic second-order logic104
6.3 Asymptotic density of subsets of $K$106
6.4 Quantifier rank and equivalent formulas107
6.5 Ehrenfeucht-Fraiss\'e games109
6.6 Adequate classes of structures119
Part 2. Multiplicative Number Systems125
Chapter 7. Background from Analysis127
7.1 Series and infinite products127
7.2 Dirichlet series expansions133
7.3 The abcissa of convergence and $RV_\alpha $136
7.4 Growth rate of coefficients140
Chapter 8. Counting Functions and Fundamental Identities143
8.1 Defining multiplicative number systems143
8.2 Examples of multiplicative number systems144
8.3 Counting functions, fundamental identities145
8.4 Alternate version of the fundamental identity153
8.5 Finitely generated multiplicative number systems156
Chapter 9. Density and Partition Sets159
9.1 Asymptotic density159
9.2 Dirichlet density160
9.3 The standard assumption164
9.4 The set of multiples of an element164
9.5 Partition sets166
9.6 Generating series of partition sets169
9.7 Partition sets have Dirichlet density170
9.8 Discrete multiplicative number systems174
9.9 When sets $bA$ have global asymptotic density177
9.10 The strictly multiplicative case and $RV_\alpha$181
9.11 The discrete case and $RV_\alpha$181
9.12 Analog of Schur's Tauberian Theorem182
9.13 Simple partition sets188
9.14 The asymptotic density of $P^\gamma$ 189
9.15 Adding an indecomposable191
9.16 First conjecture194
Chapter 10. The Case $\alpha = 0$195
10.1 The fundamental results when $\alpha = 0$195
10.2 Odlyzko's Product Theorem196
10.3 Further results on $RV_0$198
10.4 Second conjecture199
Chapter 11. The Case $0 < \alpha < \infty $201
11.1 Analog of Compton's Tauberian Theorem201
11.2 When is $\Delta (B) = 0$?204
11.3 The density of $\overline{B}$205
11.4 S\'ark\"ozy's Density Theorem206
11.5 Generalizing Oppenheim's asymptotics208
11.6 Third conjecture216
Chapter 12. First-Order Limit Laws217
12.1 Asymptotic density of subsets of $K$217
12.2 The Feferman-Vaught Theorem218
12.3 Skolem's analysis of the first-order calculus of classes223
12.4 $K_\phi$ is a disjoint union of partition classes226
12.5 Applications227
12.6 Finite dimensional structures231
12.7 The main problem231
Appendix A. Formal Power Series233
Appendix B. Refined Counting251
Appendix C. Consequences of $\delta (P) = 0$261
Appendix D. On the Monotonicity of $a(n)$ When $p(n) \leq 1$269
Appendix E. Results of Woods273
Bibliography281
Symbol Index285
Subject Index287