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Preface

In his two books and one paper from the mid 1800s on reduc-

ing logical reasoning about classes to mathematical reasoning,

Boole had a tendency to incompletely formulate definitions and

explanations, or even omit them altogether. Some of his notions

were vague and his proofs mysterious, and there were some du-

bious claims.

With all these problems nonetheless his algebraic methods,

based on Common Algebra and idempotent variables, for deriving

conclusions from ‘primary’ and ‘secondary’ propositions, seemed

to work surprisingly well. They would provide the foundation and

inspiration for others with mathematical experience to rapidly

start developing what we now call Boolean Algebra, and even

the more general subject of equational logic.

The original goal of this project was to recast Boole’s work on

logic in the style and language of modern mathematics in such a

way that missing details would be filled in and the reader could

easily compare the new versions with the originals to see that

the new were reasonably faithful to the original. The optimism

for being able to carry out this project was largely founded on

reading the remarkable analysis of Boole’s work in logic pub-

lished in 1976/1986 by Theodore Hailperin [19]—he had found

an explanation for why Boole’s system worked.

This project turned out to be far more evasive than expected,

requiring explanatory notes that often dwarfed the original text;

it was eventually abandoned. Instead his original texts have been

presented with marginal notes. A lengthy set of introductory

notes has been added to the annotated version of his first book.
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Notes on Boole’s MAL

Following these Notes, which occupy pages i–lxvi, there is

an annotated version of Boole’s first book on logic, MAL,

where the content of each page is the same as in Boole’s

original. Arabic page numbers in the Notes or in marginal

comments will refer to pages in MAL unless specified oth-

erwise.

The published work of George Boole (1815–1864) on logic

consists of a small book (MAL), a paper (CL), and a second book

(LT) (a substantial portion of which is for applications of his logic

to probability):

MAL (1847) The Mathematical Analysis of Logic, Being an Es-

say Towards a Calculus of Deductive Reasoning. Originally

published in Cambridge by Macmillan, Barclay, & Macmil-

lan, 1847. Reprinted in Oxford by Basil Blackwell, 1951.

CL (1848) The Calculus of Logic, The Cambridge and Dublin

Mathematical Journal, 3 (1848), 183-198.

LT (1854) An Investigation of The Laws of Thought on Which

are Founded the Mathematical Theories of Logic and Proba-

bilities. Originally published by Macmillan, London, 1854.

Reprint by Dover, 1958.

When Boole wrote MAL in 1847 he was a highly regarded 31-

year old school master, running a private school in Lincolnshire

to help support his parents and siblings.∗ By this time he was

also a respected mathematician in the British Isles, having won

a gold medal from the Royal Society three years earlier for the

∗His father John Boole, a shoemaker, had instilled a great love of learning

in his son, so much so that George went on to absorb higher mathematics

and several languages on his own. After John’s business failed, George, still

a teenager, became the primary breadwinner for the family. For the life

of George Boole, see [22] by Desmond MacHale and [23] by MacHale and

Yvonne Cohen.

i
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paper [3] on differential equations, using the rather new concepts

of differential operators and symbolical algebra.

In the preface of LT Boole claimed to have completed writing

MAL in a few weeks in 1847, but we have only scant information

on how his ideas for this book developed. His sister MaryAnn

wrote a biography of Boole that she never published, but now

an edited version has appeared in [23], pp. 15–50. From this

one finds that indeed Boole had a long-standing interest in a

mathematical treatment of logic ([23], p. 41):

He told me that from boyhood he had the conviction

that Logic could be reduced to a mathematical science,

and that he had often made himself ill on the attempt

to prove it, but that it was not until 1847 that the true

method flashed upon him.

...

When in 1847 the true light flashed upon him and he

entered upon the investigations that resulted in The

Laws of Thought, he was literally like a man dazzled

with excess of light, . . . If he could have communicated

his thoughts and feelings to some sympathetic mind it

would have been a relief to him, but his father was gone,

and there was no one near to whom he could have made

himself intelligible.

We do not know what aspect of MAL represents the “true

method” that galvanized Boole’s efforts to publish a mathemat-

ical treatment of logic, or more precisely, of deductive logic,

which at the time meant a version of Aristotelian logic. From

Boole’s remarks on p. 45 about the contributions of Charles

Graves (1812–1899) to his algebra of logic, it seems that Boole

had been in contact with Graves while working out the details for

Aristotelian logic, and perhaps that had been largely carried out

before 1847. Unfortunately no correspondence between the two

has been found. A plausible guess for Boole’s 1847 breakthrough

that his sister mentioned was his discovery of the properties of

constituents along with the expansion of any term into a linear

combination of constituents; this was the foundation of his gen-

eral theory starting on p. 60.

When it came to the axiomatic foundations of mathematics,

in particular for algebra, he had simply borrowed the wholly in-

adequate axioms from an 1839 paper [18] by his young Cambridge
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mentor Duncan Fahrquharson Gregory (1813-1844). These were

the same axioms that Boole had used in his prize-winning pa-

per of 1844. Boole, perhaps inspired by Gregory, had become

a strong believer in symbolical algebra (which had provided his

framework for studying differential operators), and he said it jus-

tified parts of his general results at the end of MAL, in particular

his use of division to solve equations.

In the modern Boolean Algebra of classes one starts with the

fundamental operations of union (∪), intersection (∩) and com-

plement (′), and with the two constants empty class (Ø) and uni-

verse (U). Then one finds suitable equational axioms and rules

of inference, and proves that every valid equation and equational

inference can be obtained from these. A key result is that an

equation or an equational inference is valid iff it holds in the

two-element Boolean Algebra.∗

Boole, on the other hand, evidently used the reverse of this

process—he started with the equational algebra of numbers, with

the operation symbols addition (+), multiplication (×) and sub-

traction (−), and with the two constants 0 and 1, and found a

way to make it work as an algebra of logic, but only after adding

the index law xn = x (which it turns out only applied to vari-

ables). In LT the index law is replaced by x2 = x, and in the

form x(1− x) = 0 it is called the law of duality.

Forcing Aristotelian logic into the world of ordinary algebra,

the algebra of numbers, came at a price—the operations of addi-

tion and subtraction of classes in Boole’s Algebra are only par-

tially defined! It turns out that an equation or equational argu-

ment is valid in Boole’s Algebra iff it is valid in the integers Z
when the variables are restricted to the values 0 and 1.

In MAL, for each class X he introduced an elective operation

x that, when applied to a class Y, selected all the elements of Y

that were in X. This captured Boole’s understanding of one way

the mind formed new concepts of classes from previous ones; he

viewed MAL as a study of the science of the mind.†

His algebra appears, on first glance, to be an algebra of elec-

∗The same procedure applies to developing the modern Boolean Algebra

of propositions, with the fundamental operations being or (∨), and (∧) and

not (¬), with the two constants true (T) and false (F). The two algebras are

essentially the same as far as valid equations and equational inferences are

concerned.
†Perhaps Boole was aiming to parallel what Newton, also a son of Lin-

colnshire, had done for the science of the physical world.
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tive operations, combined into equations like xy = yx and equa-

tional inferences like 2x = 0 ∴ x = 0. But is it really just a

disguised form of the algebra of classes that Boole uses in LT?

Aristotelian logic presented a catalog of the fundamental

valid arguments (the conversions and syllogisms) for categori-

cal and hypothetical propositions. As for the categorical propo-

sitions, the original goal of MAL was to provide an equational

way to determine the catalog for a modestly extended version

of Aristotelian logic, namely one that permitted contraries like

not-X for the terms in categorical propositions. Such categorical

propositions will be called BC-propositions.

In MAL Boole only considered syllogisms for which the premises

were traditional Aristotelian categorical propositions, but the

conclusion could be a BC-proposition. In his 1848 paper CL

he offered a simple description of valid categorical syllogisms

where the premises were also allowed to be BC-propositions.∗

He claimed to give an algebraic proof of this in Chap. XV of LT.

The algebra Boole used in MAL to analyze logical reasoning

is quite elementary, at least until the general theory starts on

p. 60. But there is much that needs to be clarified—on many a

page one can ask “Exactly what did Boole mean to say here?” In

his 1959 JSL review article [16] Michael Dummett (1925–2011)

said

anyone unacquainted with Boole’s works will receive

an unpleasant surprise when he discovers how ill con-

structed his theory actually was and how confused his

explanations of it.

These Notes, along with the marginal comments, will hopefully

provide plausible resolutions to some queries regarding MAL.

Boole made definite progress in clarifying his algebra of logic

with his second book LT, starting by getting rid of the annoying

elective operations, but the major breakthrough for the modern

reader is due to Theodore Hailperin (1916-2014) [19] in 1976/86.†

His insights, plus subsequent investigations, form the basis for the

explanations given in these Notes and the marginal comments to

MAL. An important development that appeared after Hailperin’s

work has been a proper understanding of the role that the algebra

of the integers Z played in Boole’s Algebra.

∗For another simple determination of the valid BC-syllogisms see pp. xiv.
†This work has roots in the 1933 use of characteristic functions by Hassler

Whitney [26] to convert Boolean Algebra into ordinary algebra.
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Boole’s Algebra of logic has two components:

A) the translation of propositions into equations, and vice-

versa;

B) algebraic methods to derive best possible equational conclu-

sions, with desired restrictions, from equational premises.

His process of going from propositional premises to propositional

conclusion(s) is pictured in Tbl. 1. This process for the 1st

Fig. AAA syllogism for categorical propositions is given in Tbl. 2.

Propositions Translations Equations

Premisses
Expression−→ Premisses

.........∨

y(apply algebra)

Conclusion(s)
Interpretation←− Conclusion(s)

Tbl. 1. Applying Algebra to Logic

Propositions Translations Equations

All Y is Z.

All X is Y.

Expression−→ y = yz

x = xy

.........∨

y(apply algebra)

All X is Z.
Interpretation←− x = xz

Tbl. 2. Simple Example of Boole’s Algebraic Method

Boole called the translation (→) of a proposition into an equation Expression and

Interpretationexpression, and the reverse translation (←) was interpretation.

Boole’s mathematical analysis of this extended Aristotelian

logic was fairly detailed, taking place in pages 15–59, which is

more than half of the content of MAL. Had he stopped on p. 59,

with no further development of his algebra of logic, chances are

that his work would have faded away into obscurity. It was the

general theory being developed on pp. 60–82 that led to a sig-

nificant expansion of Aristotelian logic, with algebraic methods

to produce conclusions to complex propositional premisses. This
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was reworked and extended in the logic portion of LT, published

seven years later, where he focused primarily on algebraic algo-

rithms for determining the most general conclusions one could

obtain, under specified constraints, from any number of premises

with any number of class or propositional variables. (This differs

from modern treatments that have a significant focus on deter-

mining if a given argument is valid.) The fascination which Boole

exhibited for Aristotelian logic in MAL gave way to a rather se-

vere dislike for the same in LT (see Chap. XV of LT).

Topics in these Notes on MAL

Categorical Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
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CATEGORICAL LOGIC

This section reviews Aristotle’s logic of categorical proposi-

tions, as commonly understood in the mid 19th century,∗ and

summarizes Boole’s extension of this logic.

Categorical Propositions. The structure of a categorical

proposition is indicated in Tbl. 3.

Quantifier Subject Copula Predicate

Tbl. 3. Structure of a Categorical Proposition

The four forms of Aristotelian categorical propositions,

along with their classification as to kind, quantity and quality (see

p. 20)† are listed in Tbl. 4.

Kind Proposition Quantity Quality

A All X is Y universal affirmative

E No X is Y universal negative

I Some X is Y particular affirmative

O Some X is not Y particular negative

Tbl. 4. The Four Aristotelian Categorical Propositions

with X as Subject, Y as Predicate

The phrase Aristotelian categorical proposition will usually be

AC-proposition

Boole did not use function no-

tation like Φ(X,Y) for proposi-

tions.

abbreviated to AC-proposition. The phrase Φ(X,Y) is an AC-

proposition does not specify which of X,Y is the subject, thus

there are eight possibilities for an AC-proposition Φ(X,Y).

Conversion. Let Φ be an AC-proposition with subject X

and predicate Y, and let Ψ be an AC-proposition with subject Y

and predicate X. In Aristotelian logic, Ψ is a valid conversion of

Φ if Φ implies Ψ. The forms of valid conversions in Aristotelian

logic are given in Tbl. 5. Boole accepted the somewhat con-

troversial conversion by contraposition, described in Tbl. 6. It

was controversial only because there was lack of agreement as to

∗A popular logic textbook of this period was Elements of Logic [25] by

Richard Whately (1787-1863) of Oxford. First published in 1826, the 9th

edition is cited in Boole’s 1854 book LT, p. 239. It is not stated which

edition Boole cited in MAL (see pp. 7, 20).
†Only on p. 44 are the words quantity and quality used as properties of

categorical propositions.
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Proposition Conversion Kind of Conversion

No X is Y No Y is X simple

Some X is Y Some Y is X simple

All X is Y Some Y is X by limitation

No X is Y Some Y is not X by limitation

Tbl. 5. Aristotelian Conversions

Proposition Contrapositive

All X is Y No not-Y is X

Some X is not Y Some not-Y is X

Tbl. 6. Conversion by Contraposition

whether one should be allowed to use contraries, like not-Y, as

the subject of a categorical proposition.∗

Boole’s categorical propositions are a modest extension

of the AC-propositions, namely Tbl. 4 is increased by allowing X

to be replaced by not-X, and independently, Y by not-Y, giving

32 forms of categorical propositions Φ(X,Y). Such categorical

BC-propositionspropositions will be called BC-propositions, meaning Boole’s cat-

egorical propositions. From the comment on p. 30, that negating

a term (changing X to not-X, and vice-versa), does not change

the kind of a proposition, Boole used the A, E, I, O classifi-

cations for his categorical propositions. Thus, for example,

Some X is not not-Y would be of kind O, a particular negative

proposition, even though it is clearly equivalent to Some X is Y,

which is of kind I, a particular affirmative proposition.

In the following let AXY denote the proposition All X is Y, let The notations AXY, EXY,

IXY, OXY, AXY, etc.EXY denote the proposition No X is Y, etc. Let X denote not-X,

let Y denote not-Y, etc.; also X is X, Y is Y, etc. Each of the four

kinds A,E,I,O refers to four distinct forms of BC-propositions—

see Tbl. 7.

Equivalent BC-Propositions. There are four classes of

equivalent universal BC-propositions Φ(X,Y), each with four mem-

bers (see Tbl. 8); and likewise for the particular BC-propositions

(see Tbl. 9). The AC-propositions are in boldface type.

∗In the 4th item of the footnote on p. 44 Boole said “An Aristotelian

proposition does not admit a term of the form not-Z in the subject, . . . ”.

This clearly excludes conversion by contraposition. Boole said that the six

forms of conversions in Tbl. 5 and Tbl. 6 were the forms accepted by Whately

in [25].
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Kind Quantity Quality

A AXY AXY AXY AX Y universal affirmative

E EXY EXY EXY EX Y universal negative

I IXY IXY IXY IX Y particular affirmative

O OXY OXY OXY OX Y particular negative

Tbl. 7. The Sixteen Forms of Boole’s Categorical Propositions

with Subject X or X and Predicate Y or Y

AXY AY X EXY EYX

AYX AX Y EXY EYX

AXY AYX EXY EYX

AXY AYX EX Y EY X

Tbl. 8. Rows give Equivalent

Universal BC-propositions Φ(X,Y)

OXY OY X IXY IYX

OYX OX Y IXY IYX

OXY OYX IXY IYX

OXY OYX IX Y IY X

Tbl. 9. Rows give Equivalent

Particular BC-Propositions Φ(X,Y)

The Semantics of Class Symbols. One of the more annoying

issues that needs to be cleared up when reading MAL is to de-

cide how to handle the semantics of class symbols—Boole seems

to have been inconsistent. The M-semantics (or modern se- M-semantics of class symbols

mantics) for class symbols says that a class symbol X can denote

any subclass of the universe. With this semantics the universal

categorical propositions have no existential import. Since Boole

accepted the Aristotelian conversion by limitation, it is clear that

he was not using M-semantics. He also accepted the four categor-

ical syllogisms in Aristotelian logic with universal premises but

only a particular conclusion (see Tbl. 14 on p. xiv).

In his 1847 book ([15], pp. 110, 111) Augustus De Morgan

(1806–1871) was quite clear about the Aristotelian semantics of

class variables:

On looking into any writer on logic, we shall see that ex-

istence is claimed for the significations of all the names.

Never, in the statement of a proposition, do we find any

room left for the alternative, suppose there should be no
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such things. Existence as objects, or existence as ideas,

is tacitly claimed for the terms of every syllogism.

Following De Morgan’s observation, let the A-semantics (for A-semantics of class symbols

Aristotelian semantics) of class symbols be the requirement that

class symbols X can only denote non-empty classes.

The assumption that Boole was using the A-semantics of class

symbols is consistent with his results on BC-propositions with

one important exception, namely his second law of lawful trans-

formations (see Tbl. 10) which includes: Some not-X is Y follows

from All not-X is Y. Evidently Boole wanted the contrary not-X

of a class symbol X to be non-empty, which is the same as re-

quiring that X is not the universe. This suggests Boole was using

something more restrictive than A-semantics, the B-semantics

of class symbols, namely class symbols X can only denote

B-semantics of class symbols

non-empty and non-universe classes. However B-semantics

clashes with exactly one claim of Boole (see Tbl. 18), namely that

the premises AZY, AXY cannot be completed to a valid syllogism

where the conclusion is a BC-proposition. With B-semantics one

has the valid conclusion IX Z (simply replace the premises by

their contrapositives). Another argument against Boole having

used B-semantics is the fact that he said on p. 65 that a deriva-

tion of x = 0 needs contradictory propositions, but he made no

claim that deriving x = 1 indicated a problem.

The B-semantics of class symbols gives a simpler, more el-

egant version of Boole’s categorical logic than the A-semantics,

so the discussion in these Notes of Boole’s categorical

logic will be based on B-semantics. However changes that

need to be made if one uses A-semantics or M-semantics will be

indicated. For the application of his algebra to hypothetical syl-

logisms Boole evidently accepted M-semantics (since equations

like x = 0 and x = 1 are used).

Lawful Transformations. After noting (p. 28) that Aris-

totelian logic omitted the valid argument

No X is Y therefore All Y is not-X,

Boole finished the chapter on conversions by considering the

wider question of when a BC-proposition Ψ(X,Y) was a con-

sequence of another BC-proposition Φ(X,Y). If so, he said Ψ

was a lawful transformation of Φ. From Tbl. 8 and Tbl. 9 one

can readily read off all the lawful transformations:
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• For Φ(X,Y) and Ψ(X,Y) universal BC-propositions, one

has:

Ψ(X,Y) is a lawful transformation of Φ(X,Y)

iff

Φ(X,Y) and Ψ(X,Y) are equivalent, that is, iff they are in

the same row of Tbl. 8.

• Likewise with ‘universal’ replaced by ‘particular’, using Tbl. 9.

• If Φ(X,Y) is universal and Ψ(X,Y) is particular, then:

Ψ(X,Y) is a lawful transformation of Φ(X,Y)

iff

either Φ(X,Y) is in the first two rows of Tbl. 8 and Ψ(X,Y)

is in the last two rows of Tbl. 9, or Φ(X,Y) is in the last

two rows of Tbl. 8 and Ψ(X,Y) is in the first two rows of

Tbl. 9. [With A-semantics, the subject of Φ(X,Y) must be a class

symbol, that is, X or Y.]

Instead of an explicit description of lawful transformations,

Boole gave a set of three laws (p. 30) for lawful transformations,

and claimed that every lawful transformation could be obtained

by applying a suitable sequence of these laws. Letting X̂ be either

of X and not-X, and letting Ŷ be either of Y and not-Y, his laws

of lawful transformation are in Tbl. 10. Conversions occur

only in the Third Law; they are simple. [For A-semantics, change X̂

to X in the second law; for M-semantics delete the second law.]

Proposition Transform

First Law All X̂ is Ŷ No X̂ is Ŷ

No X̂ is Ŷ All X̂ is Ŷ

Some X̂ is Ŷ Some X̂ is not Ŷ

Some X̂ is not Ŷ Some X̂ is Ŷ

Second Law All X̂ is Ŷ Some X̂ is Ŷ

No X̂ is Ŷ Some X̂ is not Ŷ.

Third Law No X̂ is Ŷ No Ŷ is X̂

Some X̂ is Ŷ Some Ŷ is X̂.

Tbl. 10. Laws of Lawful Transformations

for Boole’s Categorical Propositions

Tbl. 11 shows all possible instances Φ(X,Y) ⇒ Ψ(X,Y) of

Boole’s laws of lawful transformation stated in Tbl. 10. [For A-

semantics remove all ⇒ from a universal to a particular if the subject of
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the universal is not a class symbol; for M-semantics remove all ⇒ from a

universal to a particular.]

AXY ⇐⇒ EXY ⇐⇒ EYX ⇐⇒ AY X

⇓ ⇓ ⇓ ⇓
IXY ⇐⇒ OXY OYX ⇐⇒ IY X

m m
IYX ⇐⇒ OYX OXY ⇐⇒ IX Y

⇑ ⇑ ⇑ ⇑
AYX ⇐⇒ EYX ⇐⇒ EXY ⇐⇒ AX Y

AXY ⇐⇒ EXY ⇐⇒ EYX ⇐⇒ AYX

⇓ ⇓ ⇓ ⇓
IXY ⇐⇒ OXY OYX ⇐⇒ IYX

m m
IYX ⇐⇒ OY X OX Y ⇐⇒ IXY

⇑ ⇑ ⇑ ⇑
AYX ⇐⇒ EY X ⇐⇒ EX Y ⇐⇒ AXY

Tbl. 11. Instances of Laws of Lawful Transformations

Ψ(X,Y) is a lawful transformation of Φ(X,Y) iff there is a

directed path in this table from Φ(X,Y) to Ψ(X,Y). Thus, for

example, AY X and OXY are lawful transformations of AXY,

the latter requiring B-semantics.

Boole’s work on lawful transformations did not survive in LT,

perhaps because there were difficulties in treating contraries not-

X of class variables the same as class variables X. For example

one has All not-Y is not-X implying Some not-Y is not-X, which

leads to All X is Y implies Some not-Y is not-X.

Aristotelian Categorical Syllogisms. In Aristotelian logic

a categorical syllogism, or more briefly an AC-syllogism, is an AC- AC-syllogism

propositional argument which has the form

Φ1(Y,Z), Φ2(X,Y) ∴ Φ(X,Z), (1)

with Z the predicate and X the subject of Φ, that is, Φ has the

form (quantifier) X (copula) Z.

Major premise/term

Minor premise/ term

Middle term

The first premiss Φ1 is the major premiss and Z the major term;

the second premiss Φ2 is the minor premiss and X the minor

term. The two premises share a common term Y, called the

middle term, which is eliminated in the conclusion.

There are 8 × 8 × 4 = 256 AC-syllogisms of the form (1) in

Aristotelian logic, but only a few are valid AC-syllogisms, that Valid AC-syllogism

is, valid AC-arguments. Among the valid AC-syllogisms, special
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attention has been paid to those where the conclusion is most

general, that is, the conclusion cannot be strengthened; these

Valid ACmg-syllogismwill be called valid ACmg-syllogisms. For example,

All Y is Z, All X is Y ∴ Some X is Z

is a valid AC-syllogism, but it is not a valid ACmg-syllogism

because the conclusion can be strengthened to give

All Y is Z, All X is Y ∴ All X is Z

which is a valid ACmg-syllogism.

Mood and Figure. A simple classification system for AC-

syllogisms using 4 figures and 64 moods has long been standard.

The mood of an AC-syllogism is given by three consecutive letters, Mood

each being one of A, E, I, O, denoting the kinds of the first

premiss, the second premiss and the conclusion. For example,

the mood AEO means that the kind of the first premiss is A, of

the second premiss is E, and of the conclusion is O.

FigureThe figure of an AC-syllogism is determined by the placement

of the middle term in the premises—see Tbl. 12 where the dashes

are place-holders for the quantifier and the copula, and the mid-

dle term is in boldface type. Except for the choice of letters

First Second Third Fourth

—Y—Z —Z—Y —Y—Z —Z—Y

—X—Y —X—Y —Y—X —Y—X

Tbl. 12. The Four Figures of AC-Syllogisms

X,Y,Z used for the three terms, an AC-syllogism is completely

determined by its figure and mood. The figure plus mood will

AC-specificationbe called an AC-specification, for example, 3rd Fig. AAI is an

AC-specification of a valid AC-syllogism. An AC-specification

Valid AC-specificationof a valid AC-syllogism will be called a valid AC-specification.

There is a bijection between the 24 valid AC-specifications and

the forms (1) of valid AC-syllogisms; thus to describe the forms of

the valid AC-syllogisms it suffices to describe their specifications,

which is done in Tbl. 13.

1st Fig. AAA EAE AAI EAO AII EIO

2nd Fig. AEE EAE AEO EAO AOO EIO

3rd Fig. AAI EAO AII IAI OAO EIO

4th Fig. AAI AEE EAO AEO IAI EIO

Tbl. 13. The 24 Valid AC-Specifications
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A valid AC-specification is a valid ACmg-specification if it de- Valid ACmg-specification

scribes a valid ACmg-syllogism, that is, where the conclusion

is most general. The 19 valid ACmg-specifications are given in

Tbl. 14.

1st Fig. AAA EAE AII EIO

2nd Fig. AEE EAE AOO EIO

3rd Fig. AAI EAO AII IAI OAO EIO

4th Fig. AAI AEE EAO IAI EIO

Tbl. 14. The 19 Valid ACmg-Specifications

The modern version of Aristotelian logic does not recognize

the existential import of universal propositions. This means that

limitation is not valid in lawful transformations, and the num-

ber of valid AC-specifications of syllogisms is reduced to 15 (see

Fig. 15), all of them being ACmg-specifications.

1st Fig. AAA EAE AII EIO

2nd Fig. AEE EAE AOO EIO

3rd Fig. AII IAI OAO EIO

4th Fig. AEE IAI EIO

Tbl. 15. The 15 Valid Modern AC-Specifications

BC-Syllogisms. Given two AC-premises Φ1(Y,Z), Φ2(X,Y),

Boole noted that in some cases there was a conclusion relating X

and Z which could be expressed by a BC-proposition Φ(X,Z), but

not by an AC-proposition; or perhaps it could be expressed by an

AC-proposition, but not with the subject and predicate in the re-

quired order to give an AC-syllogism. Boole captured these valid

conclusions with his generalization of AC-propositions, allowing

the subject and/or predicate to be contraries in the conclusion,

and by dropping the Aristotelian restriction on the order of the

terms in the conclusion.

BC-syllogisms are arguments of the form BC-syllogism

Φ1(Y,Z), Φ2(X,Y) ∴ Φ(X,Z), (2)

where Φ1, Φ2 and Φ are BC-propositions. Unlike AC-syllogisms,

it is not required that Z appear in the predicate of Φ(X,Z). If

such a syllogism is a correct argument then it will be called a
Valid BC-syllogismvalid BC-syllogism. Thus given a valid BC-syllogism, switching

the order of the premises always gives a valid BC-syllogism.

Given a BC-syllogism (2), one can permute the premises

and/or replace the premises and conclusion by any of the BC-
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propositions that are equivalent to them (as per Tbl. 8 and

Tbl. 9) and have a BC-syllogism that is valid iff the original

BC-syllogism is valid—two such BC-syllogisms will be said to be

equivalent. Equivalent BC-syllogisms

To determine the valid BC-syllogisms, first note that, from

the first and third laws in Tbl. 10, every universal BC-proposition

Φ(X,Y) is equivalent to one in the form All Ŷ is X̂, where Ŷ is Y

or Y, and X̂ is X or X. Likewise every particular BC-proposition

Φ(X,Y) is equivalent to one of the form Some Ŷ is X̂. Thus the

premises Φ1(Y,Z), Φ2(X,Y) of a BC-syllogism can be put in the

form

(?)
Q1 Ŷ is Ẑ

Q2 Ỹ is X̂

where Q1 and Q2 are quantifiers; Ŷ, Ỹ are each Y or Y; X̂ is X

or X; and Ẑ is Z or Z.

With the B-semantics of class symbols, the following two cases

fully classify the premises in the form (?) above of valid BC-

syllogisms:

CASE: Ŷ = Ỹ

Q1 Q2 Most general conclusion Φ(X,Z)

All All Some X̂ is Ẑ

All Some Some X̂ is Ẑ

Some All Some X̂ is Ẑ

Some Some (None)

[In this case, for M-semantics change the first Some X̂ is Ẑ in the above

table to (None). For A-semantics, append provided Ŷ = Ỹ = Y to the

first Some X̂ is Ẑ.]

CASE: Ŷ = Ỹ

Q1 Q2 Most general conclusion Φ(X,Z)

All All All X̂ is Ẑ

All Some (None)

Some All (None)

Some Some (None)

[No changes in this case for either M- or A-semantics.]
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Boole’s B̂C-syllogisms. In MAL, Boole only considered the

BC-syllogisms where the premises were AC-propositions.

Such will be called B̂C-syllogisms.∗

Boole considered only

B̂C-syllogisms

Note that every BC-syllogism (2) with premises from the first

three rows of Tbl. 8 and Tbl. 9 is equivalent to a B̂C-syllogism.

However a BC-syllogism with a premise from row 4 of Tbl. 8 or

Tbl. 9 is not equivalent to a B̂C-syllogism.

For a B̂C-specification Boole used part of the AC-specification

of ‘figure plus mood’, namely the B̂C-specification was the ‘figure

B̂C-specification

plus the first two letters of the mood’, that is, it had the form

ith Fig. αβ, where 1 ≤ i ≤ 4 and α, β are from {A,E, I,O}.
There are 64 B̂C-specifications, and each determines a sin-

gle pair Φ1(Y,Z), Φ2(X,Y) of AC-premises. For example, the

B̂C-specification 4th Fig. AI determines the pair of AC-premises

AZY, IYX. There is a bijection between the 64 B̂C-specifications

ith Fig. αβ and the pairs Φ1(Y,Z), Φ2(X,Y) of AC-propositions.

Valid B̂C-specificationA B̂C-specification is valid if it specifies the AC-premises of a

valid BC-syllogism. For such premises, if there is a valid universal

conclusion, then it will be most general. Otherwise any valid

particular conclusion will be most general.

Completion of a pair

Φ1(Y,Z), Φ2(X,Y)

If the pair Φ1(Y,Z), Φ2(X,Y) belongs to a valid B̂C-specification

ith Fig. αβ, then the pair is completed by a BC-proposition

Φ(X,Z) iff (2) is a valid syllogism.

Two B̂C-specifications will be called conjugates if they fit one Conjugate B̂C-

specificationsof the following three descriptions:

• 1st Fig. αβ and 4th Fig. βα

• 2nd Fig. αβ and 2nd Fig. βα

• 3rd Fig. αβ and 3rd Fig. βα.

Thus, for example, 1st Fig. AO and 4th Fig. OA are conjugates,

as are 2nd Fig. AO and 2nd Fig. OA. Given two conjugate B̂C-

specifications, either both are valid, or neither is valid.

A valid B̂C-specification ith Fig. αβ will be said to be directly

determinable by the Aristotelian Rules if it is a B̂C-specification

Directly determinable

by Aristotelian Rules

of a pair of AC-premises Φ1(Y,Z), Φ2(X,Y) which can be com-

pleted to an AC-syllogism.

∗By not considering all BC-syllogisms Boole failed to recognize a simple

classification. See p. xix for how he recovered from this oversight in CL.
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A valid B̂C-specification ith Fig. αβ which is not directly de-

Indirectly determinable

by Aristotelian Rules

terminable by the Aristotelian Rules will be said to be indirectly

determinable by the Aristotelian Rules if it is conjugate to a

B̂C-specification that is directly determinable by the Aristotelian

Rules.∗

From Tbl. 14 one immediately has 19 valid B̂C-specifications

in Boole’s logic—they are displayed in Tbl. 16. These are valid

1st Fig. AA EA AI EI

2nd Fig. AE EA AO EI

3rd Fig. AA EA AI IA OA EI

4th Fig. AA AE EA IA EI

Tbl. 16. Nineteen Valid B̂C-Specifications Derived

from the Valid Specifications in Aristotelian Logic

B̂C-specifications that are directly determinable from Aristotle’s

Rules. Taking their conjugates adds 8 more valid B̂C-specifications

in Boole’s logic, displayed in Tbl. 17—these are valid B̂C-specifications

1st Fig. AE IE

2nd Fig. OA IE

3rd Fig. AE AO IE

4th Fig. IE

Tbl. 17. Eight more Valid Syllogisms

Determined Using Conjugates

that are indirectly determinable from Aristotle’s Rules. At this

point one has 27 valid B̂C-specifications of syllogisms; only a few

more remain to complete the list.

Boole classified the valid B̂C-specifications in the chapter Of

Syllogisms, pp. 31–47. His results are summarized in Tbl. 18.

Those which are directly derived from the 19 valid Aristotelian

syllogisms (see Tbl. 16) are indicated by enclosing the kinds of

the two premises in a box, for example, 1st Fig. AA .

Boole divided the B̂C-specifications into four classes as fol-

lows:†

∗Boole’s definition of indirectly determinable specification requires that

it be obtained from a directly determinable specification by changing the

order of the premises or using conversion.
†See p. xxxvii for a discussion of how the four classes correspond to four

ways of dealing with equational expressions of the premises.
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Class Figure

Valid by

Aristotle’s Rules

Directly or Indirectly

Other Valid

Specifications

Invalid

Specifications

1st 1st AA , EA

2nd AE , EA AA

3rd

4th AA , AE

2nd 1st AE EE

2nd EE

3rd AA , AE, EA EE

4th EA EE

3rd 1st AI , EI , IE OE AO, EO, IA, OA

2nd AO , OA, EI , IE AI, IA, EO, OE

3rd AI , IA , AO, OE,

EO, OA , EI , IE

4th IA , IE EO OA, OE, AI, EI , AO

4th 1st II, IO, OI, OO

2nd II, IO, OI, OO

3rd II, IO, OI, OO

4th II, IO, OI, OO

Tbl. 18. Summary of Boole’s Classification of B̂C-Specifications

• The 1st class has universal premises which can be com-

pleted to a universal conclusion either directly or indirectly

using Aristotle’s rules.

• The 2nd class has universal premises which can only be

completed to a particular conclusion.

• The 3rd class is for one universal premiss and one particular

premiss; the conclusion is always particular.

• The 4th class is for two particular premises, from which one

never has a valid conclusion.

Four errors in Boole’s classifi-

cation.

The first error assumes B-

semantics. With A-semantics

it is not an error.

Four entries in Tbl. 18 are in bold-face type to indicate errors

in Boole’s classification:

(1) On p. 35 Boole said that 2nd Fig. AA is invalid; but with B-

semantics the premises All Z is Y, All X is Y can be completed by

Some not-Z is not-X; just replace the premises by their contrapositives

and use the fact that Y is not empty.
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(2,3) The 3rd Fig. OE and EO specifications should be in the column

Other Valid Specifications.

(4) The 4th Fig. EI can be completed to a valid AC-syllogism 4th

Fig. EIO, so it is directly determinable.

Boole’s treatment of BC-Syllogisms in CL. In CL Boole’s

only significant contribution was a simple description of the valid

BC-syllogisms with most general conclusions.∗ First he changed

the usage of the words quantity and quality so that they applied

to the quantified subject and to the predicate of a categorical

proposition, not to the whole proposition:

quantified subject quantity quality

All X universal affirmative

All not-X universal negative

Some X particular affirmative

Some not-X particular negative

predicate quantity quality

Z particular affirmative

not-Z particular negative

In the premises Φ1(Y,Z),Φ2(X,Y) of a BC-syllogism, each of the

four indicated class variables can appear either affirmatively or

negatively. The terms which involve X and Z are the extremes,

the two terms which involve Y are the middle terms. The middle

terms of the premises have like qualities if they are both affirma-

tive or both negative, otherwise they have opposite qualities.

(1): Φ1(Y,Z),Φ2(X,Y) have middle terms of like qualities, and

(at least) one is universal. The conclusion leaves the quality

and quantity of both extremes unchanged.

(2): Φ1(Y,Z),Φ2(X,Y) have middle terms of opposite qualities.

There are two cases to consider:

(2a): (At least) one extreme is universal. For the con-

clusion choose a universal extreme and change its quality

and quantity but leave the other extreme unchanged.

(2b): The two middle terms are universal. For the

conclusion change the quality and quantity of one of the

extremes, leave the other extreme unchanged.

∗In LT he claimed to justify this description in Chapter XV using two

substantial applications of his strong Elimination Theorem.
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Boole noted that this description of the most general valid

B-syllogisms does away with the need for moods, figures and the

order of the premises.

Here is a list is of valid syllogisms according to Boole’s rules,

where in each syllogism X̂ is either X or not-X, etc.

Possibilities for (1):

All Ŷ is X̂, All Ẑ is Ŷ, therefore All Ẑ is X̂.

All Ŷ is X̂,

{
Some Ẑ is Ŷ

Some Ŷ is Ẑ

}
therefore

{
Some X̂ is Ẑ

Some Ẑ is X̂

}
.

All Ŷ is X̂, All Ŷ is Ẑ, therefore

{
Some X̂ is Ẑ

Some Ẑ is X̂

}
.

Possibilities for (2a):

All X̂ is Ŷ, All Ẑ is not-Ŷ, therefore

{
All X̂ is not-Ẑ

All Ẑ is not-X̂

}
.

All X̂ is Ŷ, All not-Ŷ is Ẑ, therefore Some not-X̂ is Ẑ.

Possibilities for (2b):

All Ŷ is X̂, All not-Ŷ is Ẑ, therefore

{
All not-X̂ is Ẑ

All not-Ẑ is X̂

}
.



HYPOTHETICAL SYLLOGISMS

Boole adopted the accepted theory of hypothetical syllogisms.

On p. 48 he defined a hypothetical proposition “to be two or

more categoricals united by a copula (or conjunction)”. The

standard forms of hypothetical propositions were: (Conditional)

If X then Y, and (Disjunctive) X or Y or . . . , where X, Y, etc.,

denote categorical propositions. In modern logic X,Y, etc., are

called propositional variables.

Certain arguments based on hypothetical propositions were

generally accepted to be valid hypothetical syllogisms—Boole

stated them on pp. 56–57, using his reduction of categorical

propositions to propositional variables X, Y, Z, W. These are

listed below.∗

1. Disjunctive Syllogism (two versions)

X or Y (exclusive ‘or’)

X

∴ Not Y.

X or Y (inclusive ‘or’)

Not X

∴ Y.

2. Constructive Conditional Syllogism

If X then Y

X

∴ Y.

3. Destructive Conditional Syllogism

If X then Y

Not Y

∴ Not X.

4. Simple Constructive Dilemma

If X then Y

If Z then Y

X or Z (exclusive ‘or’)

∴ Y.

5. Complex Constructive Dilemma

If X then Y

If W then Z

X or W (inclusive ‘or’)

∴ Y or Z (inclusive ‘or’).

∗To convert Boole’s versions of the hypothetical syllogisms back to the

forms based on categorical propositions that Whately would have used, re-

place X by ‘A is B’, Y by ‘C is D’, Z by ‘E is F’, and W by ‘G is H’.
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6. Complex Destructive Dilemma (two versions)

If X then Y

If W then Z

Not Y or not Z (exclusive ‘or’)

∴ Not X or not W (inclusive ‘or’).

If X then Y

If W then Z

Not Y or not Z (inclusive ‘or’)

∴ Not X or not W (inclusive ‘or’).

Boole noted on p. 57 that one could easily extend the list,

for example, by using propositions that were blends of the con-

ditional and disjunctive forms such as

If X is true, then either Y is true, or Z is true.

But he did not describe the concept of an arbitrary propositional

formula, that is, an arbitrary Boolean combination of proposi-

tional variables. Instead he limited his work to the simple forms

one might encounter in ordinary discourse.



BOOLE’S EQUATIONAL ALGEBRA

Today the word “Boolean” has a meaning in algebra that was

established in the first half of the 20th century by the Harvard

philosopher Josiah Royce (1855–1916) and his students, following

the lead of Charles Sanders Peirce (1839–1914)—see [11]. It refers

to an important simplification of Boole’s approach to the algebra

of logic that started with the work [21] of William Stanley Jevons

(1835–1882) in 1864.∗ Consequently, when referring to what

Boole actually did, the word Boolean will be avoided.

Boole’s Algebra will be used for what Boole did instead of Boolean

algebra. When the word Boolean is used, it will be in the modern

sense.

The modern approach to creating an algebra of logic for

classes is to start with the three fundamental operations—union

(∪), intersection (∩) and complement (′)—and determine the ba-

sic laws and rules of inference. This leads to Boolean algebra.

Boole’s approach was essentially the reverse—he started with

the laws and rules of inference of common algebra, defined multi-

plication, then realized he needed to add another law (the index

law). Addition and subtraction were then forced to be partially

defined operations (see [9]). When studying the equational the-

ory of a partial algebra, or a collection of partial algebras, in

general one cannot proceed as with total algebras, but Boole

was fortunate in that his partial algebra approach to the logic of

classes could be developed as though one were working with total

algebras (where the fundamental operations are totally defined).

At times Boole would start with equational premises that were

totally defined, use equational inferences that gave only partially

defined equations in some of the intermediate steps, and end up

with totally defined equations which he claimed were valid con-

clusions. This puzzled those who wanted to understand why his

algebra of logic gave correct results.

∗In 1863–1864 Jevons corresponded with Boole describing his alternate

approach to the algebra of logic, where + is totally defined and one has

x + x = x. Boole flatly rejected this approach, saying that x + x = x was

not true in the algebra of logic. For details see the 1991 article [17] by Ivor

Grattan-Guinness (1941–2014). It is easy to understand Boole’s opposition

to adding x + x = x as a law of his algebra—it would have obstructed his

approach, based on Common Algebra and the index law, since x + x = x

implies x = 0 in Common Algebra.
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Common Algebra. Boole said his algebra was common al-

gebra augmented by the index law xn = x (for variables only as

it turns out). By Common Algebra he meant the equa-

tions and equational reasoning that hold in numerical

algebra, the algebra of numbers. It suffices to restrict ones

attention to the modern algebraic structureZZZ consisting of the set

of integers Z equipped with the three binary operations addition

(+), multiplication (·), subtraction (−) and the two numerical

constants 0 and 1.∗ This structure is written more briefly as

ZZZ = 〈Z,+, ·,−, 0, 1〉.†

Common Algebra had been brought to a refined state by

Boole’s time, and Boole was expert in using it. Readers of these

notes will likely have had an introductory algebra course and

consequently will be able to understand and use the many con-

ventions that have been developed to expedite carrying out alge-

braic manipulations. First there are conventions to avoid using

parentheses as much as possible, for example when writing sums

p1 + p2 + · · · + pn and products p1 · p2 · · · pn. One justifies this

by saying that addition and multiplication are associative, but

surprisingly Boole never mentioned the associative laws.

Subtraction on the other hand is not associative as one sees

from the example (3 − 2) − 1 6= 3 − (2 − 1), so a convention is

needed for an expression like p1 − p2 − · · · − pn. The standard

approach is to use the minus sign “−” in two ways, one as the

binary operation of subtraction as in p − q, and the other is as

the unary operation of taking the negative of, as in −p. They are

intimately connected by the equations −p = 0 − p and p − q =

p+(−q).Then the modern convention is to read p1−p2−· · ·−pn
as p1 + (−p2) + · · · + (−pn), but in Boole’s algebra it would be

read as (· · · (p1 − p2)− · · · )− pn.

Given a mixture of sums, differences and products, it is un-

derstood that multiplication precedes addition, subtraction and

taking the negative of; taking the negative of precedes addi-

tion and subtraction, so −pq − r + s means −(pq) + (−r) + s.

Then of course there are all the rules for handling the unary mi-

∗Boole used the symbol ‘×’ instead of ‘·’ for multiplication. One fre-

quently abbreviates p · q to pq.
†In modern algebra the unary minus is taken as a fundamental operation,

and subtraction is defined. Then the algebraic structure ZZZ = 〈Z,+, ·,−, 0, 1〉
is called the ring of integers. However Boole took subtraction as fundamental,

and simply used the unary minus as in common algebra. Boole’s choice will

be followed in these notes because it is essential to expressing propositions

in his partial algebra—see p. xxxi .
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nus such as −(−p) = p, (−p)q = −(pq), (−p)(−q) = pq, and

−(p − q) = (−p) + q. p added to itself n times is np; p mul-

tiplied by itself n times is expressed by pn, introducing expo-

nential notation. One has the familiar laws for exponentiation:

pm · pn = pm+n, pn · qn = (pq)n and (pm)n = pmn.

Using these laws and conventions, along with the distributive

law and commutative laws, complex algebraic expressions can be

put in polynomial form, for example, (x−y)3 = x3−3x2y+3xy2−
y3. Polynomials are highly regarded by algebraists because they

have no parentheses, making them easier to read.

Boole was counting on his readers being familiar with these

aspects of common algebra, enabling him to carry out algebraic

manipulations without detailed explanations. Furthermore, be-

ing quite fluent with common algebra he would have been able

to rapidly work through lots of examples (such as the catalog of

syllogisms) to check the merits of various translations between

propositions and equations.

Algebraic Terms versus Logical Terms. In modern logic,

terms for the language of ZZZ are defined recursively by:

• variables∗ are terms

• 0 and 1 are terms

• if p and q are terms then so are (p+ q), (p · q) and (p− q).

logical terms

(algebraic) terms

Such terms will be called logical terms—as they get larger, the

accumulation of parentheses can make them difficult to read. In

these notes terms, or algebraic terms, will refer not only to log-

ical terms, but to any of the algebraic expressions obtained by

the above-mentioned conventions and abbreviations. Thus, for

example, (x+ (y · z)) is a logical term, and x+ yz is a term.

Given a term p, in modern notation one writes p(x1, . . . , xn)

for p to indicate that the variables occurring in p are among

x1, . . . , xn. Each term† p(x1, . . . , xn), more briefly p(~x), is nat-

urally associated with a function pZZZ(~x) : Zn → Z, called the
term-function

ZZZ-equivalent terms

term-function defined on ZZZ by p(~x). Two terms p and q are ZZZ-

equivalent if pZZZ(~x) = qZZZ(~x) for some/any list ~x of variables con-

taining the variables of both p and q. Every term is ZZZ-equivalent

∗Boole used the word variable sparingly in MAL, and not at all in LT,

preferring instead symbol or letter.
†p(x1, . . . , xn) is simply called a term instead of the more accurate phrase:

term p with a specified list of variables containing the variables of p.
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to a logical term as well as to a polynomial (with integer coeffi-

cients).

Starting on p. 60 Boole used the notations φ(x), φ(x, y), etc.,

to denote terms with a partial, perhaps complete list of the vari-

ables appearing in the term. In this commentary on Boole’s

algebra, modern notation such as p(~x, ~y) will be used for a term

which Boole might have expressed as φ(~x).

Laws and Valid Inferences of Common Algebra. A ZZZ-

equation is an expression p = q where p and q are terms. p = q ZZZ-equation

holds in ZZZ if p and q are ZZZ-equivalent; then p = q is a ZZZ-law. For ZZZ-law

example, (x+ y)2 = x2 + 2xy + y2 is a ZZZ-law.

It is a standard result that two terms areZZZ-equivalent iff there

is a polynomial to which they are both ZZZ-equivalent. This gives

an algorithm to determine if a ZZZ-equation is a ZZZ-law.

Valid inference for ZZZA ZZZ-equational inference p1 = q1, . . . , pk = qk ∴ p = q is

valid for (or holds in) ZZZ if every assignment of values to the

variables which make all the pi
ZZZ = qi

ZZZ true also makes pZZZ = qZZZ

true. This includes simple inferences like 2p = 0 ∴ p = 0,

and difficult to prove inferences like the even power instances of

Fermat’s Last Theorem, namely x2n + y2n = z2n ∴ xyz = 0,

for n = 2, 3, . . . In contrast to the laws of ZZZ, the collection of

ZZZ-equational inferences that hold in ZZZ is not decidable.

Laws and Valid Inferences of Boole’s Algebra. A ZZZ-

equation is a law of Boole’s Algebra iff it can be derived from∗ Law of Boole’s Algebra

the ZZZ-laws, the index law xn = x, and the ZZZ-equational inferences

that hold in ZZZ. Thus one has (x+y)2 = x2+2xy+y2 = x+2xy+y

in Boole’s Algebra. Two terms p and q are equivalent in Boole’s Equivalent terms in Boole’s Al-

gebraAlgebra if p = q is a law of Boole’s Algebra.

Valid inferences of Boole’s Al-

gebra

A ZZZ-equational inference is valid in Boole’s Algebra iff the

conclusion can be derived from the premises using the ZZZ-laws,

the index law and valid ZZZ-equational inferences. Thus in Boole’s

Algebra one has the valid inference (x+ y)2 = x+ y ∴ xy = 0.

From now on the ZZZ- prefix to various concepts mentioned Dropping ZZZ- prefix

above will be assumed understood, and omitted.

The Rule of 0 and 1. In recent years (see [8], [12]) it

has been noted that Boole stated a simple algorithm in LT to

determine the laws and valid inferences of his algebra.† For ϕ a

∗For a precise definition of what is meant by a derivation see p. XXX of

these notes.
†For the laws see the discussion of Prop. 1 on pp. 61, 62 of MAL; for the

laws and valid inferences see item 15, p. 37 of LT.
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first-order formula let ZZZ |=01 ϕ mean that ϕ holds in ZZZ provided

the variables, bound and unbound, are restricted to 0,1. Then

one has the Rule of 0 and 1, or simply R01:∗

Defn. of ZZZ |=01 ϕ(~x)

The Rule of 0 and 1

I. An equation ε holds in Boole’s Algebra iff ZZZ |=01 ε.

II. An equational argument ε1, . . . , εk ∴ ε is valid in Boole’s

Algebra iff ZZZ |=01

(∧k
i=1 εi

)
→ ε.

Although the algorithmic approach to Boole’s Algebra using

ZZZ |=01 is easier to develop than the axiomatic approach, it is

the latter, using derivations of equations, that one mainly sees in

Boole’s work on logic.†

General Solutions. In the mathematical analysis of his ex-

pansion of Aristotelian logic in pp. 15–59, Boole used the general

solution of very simple equations, namely ŷ = v(1 − x̂) is the

General solution

general solution of x̂ ŷ = 0 for x̂ either x or 1− x and ŷ either y

or 1−y.‡ Boole used this in the form: if x̂ ŷ = 0 then ŷ = v(1−x̂)

for some v. (This is not an equational inference because of the

phrase “for some v ”.) This evidently inspired Boole to examine

the general solution of an equation p(~x, y) = 0, for y in terms of

~x.

Elimination of one Variable from two Equations. Us-

ing ZZZ |=01 gives an algorithm to check if an equational argument

∗Dummett [16], p. 206, claimed that the interpretation in the integers,

using ZZZ |=01, gave a consistency proof for Boole’s Algebra. But he did not

realize that the same could be used, under M-semantics of class variables, to

justify the application of Boole’s Algebra to logic.

With M-semantics for class variables one can strengthen R01 to

III. A Horn formula ϕ holds in Boole’s Algebra iff ZZZ |=01 ϕ.

This goes well beyond Boole’s equational logic; it is used in [12] to prove

precise versions of his main theorems (Expansion, Reduction, Elimination

and Solution) using the M-semantics of class variables.
†In the chapter First Principles Boole claimed that the three equational

laws

 x(y + z) = xy + xz

xy = yx

xn = x (for variables)

 and the inference rule (which he

called an axiom) “equivalent operations performed upon equivalent subjects

produce equivalent results” gave a foundation for his algebra of logic (see

pp. 17, 18). On p. 18 he said, quite incorrectly, that the first two laws—the

distributive law and the commutative law—justify the use of all the processes

of Common Algebra. Boole’s axiomatic foundation of Common Algebra was

just window-dressing for the use of Common Algebra that follows.
‡With M-semantics this can be justified using R01, namely by showing

that

ZZZ |=01 x̂ ŷ = 0 ↔ (∃v)
[
ŷ = v(1− x̂)

]
.
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is valid in Boole’s Algebra. However, given equational premises

ε1, . . . , εk, Boole was mainly interested in algorithms for find-

ing the most general equational conclusion ε, subject to vari-

ous restrictions. For example, given the equations ε1(y, z) and

ε2(x, y) for the premises of a syllogism, he wanted an algorithm to

find the most general equation ε(x, z) that followed from the two

premises. Such an algorithm would be an elimination procedure

(since y has been eliminated in the conclusion).

In MAL, Boole’s primary mathematical tool to eliminate the

middle term from the premises of a syllogism was a simple Elim-

ination Theorem from Common Algebra (see p. 32):

Weak Elimination Theoremay + b = 0, cy + d = 0 ∴ ad− bc = 0. (3)

However this is not the most general elimination result for his

algebra, consequently it will at times be referred to as the weak

elimination theorem. The strong version, using the reduction and

elimination theorems of LT, is∗

ay+ b = 0, cy+ d = 0 ∴ (b2 + d2)
[
(a+ b)2 + (c+ d)2

]
= 0. (4)

It is a nice exercise to show that the conclusion of (4) implies the

conclusion of (3) in Boole’s Algebra.

The Semantics of Boole’s Algebra. In MAL Boole used

X,Y,Z, . . . to denote classes in the logic of categorical proposi-

tions, and to denote categorical propositions in the logic of hy-

pothetical propositions.

For a class X he let x be the elective operation which, for any

class Z, selects the elements of Z that are in X, giving the class

Elective operation

X ∩ Z (see p. 15).† Nowadays we would write x(Z) = X ∩ Z, but

Boole never used the notation x(Z).

Furthermore (see pp. 15, 20), Boole used the symbol 1 to

denote the Universe, and the same symbol to denote the identity

elective operation, that is, 1(X) = X.

It is very tempting to assume Boole was working with an

algebra of elective operations, defining the operations of multi-

plication, addition, and subtraction on the collection of elective

∗To derive (4) by the methods of LT, first reduce the two premise equa-

tions ay+ b = 0, cy+ d = 0 to the single equation (ay+ b)2 + (cy+ d)2 = 0.

Letting f(y) denote the left side of this equation, the result in LT of elimi-

nating y is f(0)f(1) = 0, giving (4).
†His decision to work with elective operations acting on classes, rather

than directly with classes (as he would in LT), was likely inspired by his

previous successes with differential operators.
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operations. But his comments on pages 15 and 16 cast doubt on

this view. He said that when no subject is expressed then one is

to assume the universe 1 is the subject, and gives the example

x = x (1),

meaning what we would write as

x(1) = x(1),

that is, X = X. Thus it appears that by the equation x = x he

really means the equation X = X.

Then he goes into some detail on the nature of the product

xy:

From these premises it will follow, that the prod-

uct xy will represent, in succession, the selection of

the class Y, and the selection from the class Y of

such individuals of the class X as are contained in it,

the result being the class whose members are both

Xs and Ys. And in like manner the product xyz will

represent a compound operation of which the succes-

sive elements are the selection of the class Z, the se-

lection from it of such individuals of the class Y as are

contained in it, and the selection from the result thus

obtained of all the individuals of the class X which it

contains, the final result being the class common to

X, Y, and Z.

If Boole were working with an

algebra of elective operations

then xy would be the elective

operation determined by the

class X∩Y, and not simply the

class X ∩Y.

Thus the product xy is not an elective operation but a class,

namely the class x(y(1)), in modern notation X ∩ Y. This defi-

nition of multiplication as an intersection is the one real impact

of his use of elective operations; otherwise it is the proverbial al-

batross hanging around the neck, adding an unnecessary layer of

complication to his algebra. One is left to wonder why Boole did

not simply define his algebraic operations on classes and com-

pletely omit elective operations as he would in LT. Actually one

sees that he was moving in this direction in his 1848 paper CL

where he wrote

x1 = x = X,

but still that paper used elective expressions. In LT the letters

x, y, etc. denote classes.

His operation of addition is not clearly formulated in MAL,

and subtraction is explained only for the expression 1−x. Based
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on the algebra of logic in LT, one can make reasonable assump-

tions regarding how to define addition and subtraction in MAL:∗

Definitions of multiplication,

addition and subtraction of

elective operations.

1) multiplication: xy = X ∩Y, xyz = X ∩Y ∩ Z, etc.

2) addition: x + y = X ∪ Y provided X and Y are disjoint

classes, and

3) subtraction: x− y = X r Y provided Y is a subclass of X.

Addition and subtraction are undefined if the stated con-

ditions on X and Y do not hold; thus these two operations

are not total. This seemed to be of little concern to Boole—he

carried out equational reasoning just as one would with totally

defined operations.†

Boole’s goal regarding Aristotelian logic was to show that his

algebra, and his translations between propositions and equations,

were such that one could apply the procedure in Tbl. 1 to derive

precisely the lawful transformations of BC-propositions as well as

the valid B̂C-syllogisms. For the hypothetical syllogisms he relied

on a standard claim that such could be reduced to reasoning

about categorical propositions. However Boole did not note the

fact that the semantics of class variables was not the same in

the two situations—for the logic of hypothetical propositions he

appeared to be using M-semantics, permitting the equations x =

0 and x = 1.

An Alternative to using Elective Operations. When

reading MAL, if one is not comfortable with elective operations,

one can replace the variables x, y, . . . by the corresponding class

symbols X,Y, . . ., with the operations being defined on classes

by

1) multiplication XY is the intersection X ∩Y;

2) addition X + Y is the union X ∪ Y, provided X and Y are

disjoint classes, and undefined otherwise;

3) subtraction X− Y is the difference X r Y, provided Y is a

subclass of X; and undefined otherwise.

∗In a previous version of these Notes the operations of multiplication,

addition and subtraction were defined to map pairs of elective operations to

an elective operation. That effort is now regarded as misguided.
†In LT Boole tried to justify this in his discussion of the Principles of

Symbolical Reasoning. The analysis was not correct (see [14]), but never-

theless one can justify the use of ordinary equational reasoning (for total

algebras) when working with Boole’s Algebra.
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This is the semantics of the operations of addition, subtrac-

tion and multiplication in LT, but the notation is somewhat

different—usually lower case letters x, y, . . . represent classes in

LT. 1 still denotes the universe. The empty class is intro-

duced and denoted by 0. Thus the equations of MAL look much

the same as those in LT, but the variables represent different

objects—elective operations in the former, classes in the latter.

The somewhat strange looking definitions of addition and

subtraction, as partial operations, are actually forced by Com-

mon Algebra and the index law once multiplication has been

defined as intersection (see [9]). To see how Boole ended up in

this awkward situation, for classes X and Y suppose X + Y is

defined (as a class). Then (X + Y)2 = X + Y by the index law.

By Common Algebra one has X2 + 2XY + Y2 = X + Y, and from

the index law this gives X+2XY+Y = X+Y. Common Algebra

then gives XY = 0. Thus if X + Y is defined then X and Y are

disjoint classes. A similar argument applies to subtraction.

Boole’s Algebra has more in common with Boolean Rings

than with Boolean Algebra. In Boole’s Algebra one can express

familiar operations on classes by totally defined terms:∗

X′ = 1−X

X ∩Y = X ·Y
X ∪Y = X + (1−X) ·Y
X r Y = X · (1−Y)

X4Y = X · (1−Y) + (1−X) ·Y

The same results hold in the Boolean ring of classes, where mul-

tiplication is intersection and addition is symmetric difference.

By the Rule of 0 and 1 it is seen that Boole’s Algebra is closer

than Boolean Rings to the algebra of the integers in that all the

equations and equational arguments valid in the integers are valid

in Boole’s Algebra. Boolean Rings satisfy all the equations valid

in the integers but not all the equational arguments, for example,

x+ x = 0 implies x = 0 fails in Boolean Rings.

∗For such expressions it was essential that Boole’s partial algebra took the

binary operation of subtraction as fundamental instead of the unary additive

inverse that is fundamental in ring theory. The latter choice would have

made it impossible to find a totally defined term to express the complement

of a class since −X is only defined for X = 0 in Boole’s partial algebra.
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Boole’s Equational Expressions of Categorical Propo-

sitions. The existential import of universal categorical proposi-

tions in Aristotelian logic led Boole to introduce in MAL multi-

ple equational expressions for categorical propositions in order to

handle the various valid arguments that drew particular conclu-

sions from universal premises. Tbl. 19 states the most important

of Boole’s equational expressions for AC-propositions.∗

Equation

Type Proposition Primary Secondary

A All X is Y x = xy x = vy

E No X is Y xy = 0 x = v(1− y)

I Some X is Y v = xy vx = vy

O Some X is not Y v = x(1− y) vx = v(1− y).

Tbl. 19. Equational Expressions of Aristotelian Propositions

when using Aristotelian Semantics for Class Variables

For each of the universal propositions (A, E), the secondary

equation implies the primary equation (in Boole’s Algebra). Boole

justifies the converses, for example x = xy ∴ x = vy, by claiming

that the secondary is the general solution of the primary.†

For the particular propositions (I, O), the secondary equa-

tions follow from the primary equations in Boole’s Algebra, but

not conversely. What is most notable about the particular propo-

sitions is that Boole required a new variable v to express them as

equations. (Boole frequently uses the letter v for this, but it could

be any letter that has not been used so far in the equations.)

The same equational expressions are used for BC-propositions

Φ(X,Y), provided not-X is expressed by 1−x and not-Y by 1−y.

For example, the equational expressions for No not-X is not-Y are:

primary (1−x)(1− y) = 0, and secondary 1−x = v(1− (1− y)),

which simplifies to 1− x = vy.

∗The four secondary equations in Tbl. 19 became the primary equations

of LT.
†When using the modern semantics of class variables, this can be handled

using ZZZ|=01 by putting an existential quantifier on v, namely

ZZZ |=01 x = xy ←→ (∃v)(x = vy).



boole’s algebra and categorical logic xxxiii

An important thing to remember is that each introduction of

a v in an algebraic derivation requires a new v, for otherwise one

can run into false deductions in the propositional interpretation.

For example, if one has the premises All Z is Y and All X is Y, and

expresses them as z = vy and x = vy, using the same v, then

one immediately has z = x, and thus X = Z, which is not a valid

conclusion.

Another key item is knowing when v can be interpreted as

‘Some’ since Boole is far from clear on this. If v is introduced

in a derivation by any of the expressions x = vy, v = xy or

vx = vy, then one has the interpretations ‘Some X’ for vx and

‘Some Y’ for vy. Furthermore, if vx can be read as ‘Some X’,

and one can derive vx = y or vx = vy, then vy can be read as

‘Some Y’. Actually if one can derive x = ty or, given that vx can

be interpreted as ‘Some X’, vx = ty, for any term t, then this

equation can be interpreted as ‘Some X is Y’. Similar statements

hold if we replace y by 1− y and Y by not-Y.∗

Although v may have been introduced into a derivation with

the interpretation ‘Some’, algebraic manipulations can lead to

results that are false if v is taken to mean ’Some’ in the wrong

context. For example, Boole permits one to express ‘Some X is Y’

by vx = vy. From this equation one can easily derive v(1− x) =

v(1− y). If one interprets v as ‘Some’ in this equation then one

has ‘Some not-X is not-Y’, which is not a valid conclusion from

‘Some X is Y’—one does not want to interpret v as ‘Some’ in this

last equation.

When carrying out an equational derivation in Boole’s Alge-

bra, it can be useful to make marginal notes whenever an expres-

sion like vx or v(1− x) occurs that can be interpreted as ‘Some

X’, respectively ‘Some not-X’.

Syllogisms and the Elimination Theorem. Boole re-

garded syllogisms as arguments based on eliminating the middle

term from the premises. He believed that the elimination theo-

rem (3) on p. xxviii from Common Algebra was the perfect tool

to determine which syllogism premises led to valid syllogisms,

and if so, to find the most general conclusion.

The first step in applying the elimination theorem is to note

that the equational expressions, primary or secondary, for any

∗There is one exception to this discussion, namely on p. 43 Boole ex-

presses Some X is not Y by vy = v(1− x) when it is only the case that v can

be interpreted as ‘Some’ for the terms vx and v(1− y).
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pair Φ1(Z,Y), Φ2(Y,X) of categorical premises can be put in the

form ay + b = 0, cy + d = 0, where y does not appear in any of

the coefficients a, b, c, d.

Boole’s method (for AC-premises) is as follows:

(a) If the premises are both universal

(a1) use the primary expressions for the premises and

apply the elimination theorem from Common Alge-

bra.

If that fails to give an equation that can be inter-

preted as a categorical proposition, then

(a2) use the secondary expression for one of the premises,

and carry out the elimination.

If that fails to give an equation that can be inter-

preted as a categorical proposition, then the premises

do not belong to a valid syllogism.

(b) If one premiss is universal and one is particular, use the pri-

mary expression for the universal premiss and the secondary ex-

pression for the particular premiss, and apply the elimination

theorem.

If that fails to produce an equation that can be interpreted

as a categorical proposition, then the premises do not belong to

a valid syllogism.

(c) If both premises are particular propositions use the secondary

expressions for them. This will always fail to give a conclusion

equation that can be interpreted as a categorical proposition.

Examples from MAL.

Here are some examples of Boole’s method to analyze syllo-

gisms:

Example where (a1) succeeds. The 1st Fig. AA premises on

p. v are expressed by the primary equations y(1 − z) = 0 and

x(1 − y) = 0. Putting them in the form of the premises of the

elimination theorem one has (1 − z)y + 0 = 0 and xy − x = 0.

Thus a = 1 − z, b = 0, c = x and d = −x. By the elimination

theorem one has

(1− z)y = 0, xy − x = 0 ∴ x(1− z) = 0.

The conclusion equation is interpreted as All X is Z, giving the

well-known valid 1st Fig. AAA AC-syllogism on p. v.
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Example where (a1) fails but (a2) suceeds. Applying the elim-

ination theorem to the 3rd Fig. AA primary premiss equations

gives

(1− z)y = 0, (1− x)y = 0 ∴ 0 = 0.

Thus (a1) fails to yield a valid syllogism.

Use the secondary equation for one of the premises, say the

second premiss. Then the elimination theorem gives

(1− z)y = 0, y = vx ∴ vx(1− z) = 0.

Boole interprets this as Some Xs are Zs, showing that the 3rd

Fig. AAI AC-syllogism is valid.

However vx(1 − z) = 0 is not equivalent to either of the

equations that Boole gave to express Some X is Z, namely v = xz

and vx = vz. Another translation rule is needed: if vx can be

interpreted as Some X, then vx(1− z) = 0 can be interpreted as

Some X is Z.

Example where (a) shows that the premises do not belong to a

valid syllogism. For the 1st Fig. EE specification one has the

primary expressions zy = 0 and xy = 0. Applying elimination

gives 0=0, so (a1) fails.

Using the secondary expression for the second premiss one has

zy = 0 and x = v(1− y). Applying elimination gives (v − x)z =

0. This does not lead to an equation that is interpretable as a

categorical proposition.

Example where (a) shows that the premises do not belong to a

valid syllogism. Applying the elimination theorem to the 2nd

Fig. AA primary premiss equations gives

z(1− y) = 0, x(1− y) = 0 ∴ zx = zx.

The conclusion zx = zx is equivalent to 0 = 0.

Next, using the secondary equation for the second premiss,

the elimination theorem gives

z(1− y) = 0, x = vy ∴ xz = vz

This does not lead to an equation that is interpretable as a cat-

egorical proposition.

For premises that are particular, Boole used only secondary

translations.

Example Eliminating y in the 1st Fig. EI premiss equations gives

zy = 0, vy = vx ∴ vxz = 0.
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This is interpreted as Some X is not Z.

Example Eliminating y in the 1st Fig. II premiss equations gives

vy = vz, wx = wy ∴ vwx = vwz.

This does not lead to an equation that is interpretable as a cat-

egorical proposition.

Secondary expressions suffice. In a long footnote, start-

ing on p. 42, Boole claimed that one could obtain all the valid

B̂C-specifications ith Fig. αβ by using only the secondary expres-

sions. Boole essentially noted that each AC-proposition Φ(X,Y)

can be expressed in exactly one of the following two forms (p. 44):

ay = bx (affirmative) or ay = b(1− x) (negative),

where the coefficients a, b belonged to {1, v}. This follows from

an enumeration of all possible cases (see p. 43):

AXY vy = x AYX y = vx

EXY y = v(1− x) EYX y = v(1− x)

IXY vy = vx IYX vy = vx

OXY vy = v(1− x) OYX vy = v(1− x)

It is important to note that in each of these expressions the

variable v can be interpreted as ‘Some’ except in the expression

for OXY. In this expression one actually has vx interpreted as

‘Some X’, and v(1− y) as ‘Some not-Y’.∗

Given two AC-premises Φ1(Y,Z) and Φ2(X,Y), let them be

expressed as above by ay = bẑ, and cy = dx̂, where x̂ = x or 1−x,

ẑ = z or 1−z, and the coefficients a, b ∈ {1, v} and c, d ∈ {1, v′}.
Then the result of (weakly) eliminating y is adx̂ = bcẑ, and the

coefficients ad and bc are in {1, v, v′, vv′}.
He gave details for only a single example of analyzing a syl-

logism, namely for the premises AYZ, AXY (see pp. 42,43). The

premises are expressed as y = vz and x = v′y; the elimination of

y yields x = vv′z, which interprets as AXZ.

The advantage of this way of expressing the AC-propositions

is that as long as one avoids syllogisms with either OZY or OXY

in the premisses then the elimination of y immediately gives the

correct result, that is, an equation that either immediately inter-

prets into a BC-proposition that is the desired valid conclusion,

∗A sketch of an analysis of syllogisms using secondary expressions, but

with the improved Elimination Theorem, would be given in Chap. XV of LT.

OXY would be expressed by v(1 − y) = vx; and OZY by v(1 − y) = vz,

restoring the ‘Some’ interpretation of v.
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or it cannot be so interpreted, in which case there is no valid

conclusion. Dealing with OZY and OXY require further details.

After Boole’s single example of a syllogism he presented five

general results on syllogisms, noting in conclusion that “many

other general theorems may in like manner be proved.”

1st result, p. 43: A valid B̂C-syllogism with affirmative premises

has an affirmative AC-conclusion. The affirmative premisses

Φ1(Y,Z) and Φ2(X,Y) can be expressed as ay = bz and cy = dx.

Eliminating y gives adx = bcz, which expresses an affirmative

AC-conclusion.

2nd result, p. 44: A valid B̂C-syllogism with an affirmative premise

and a negative premise has a negative AC-conclusion. The premises

are expressed by equations ay = bẑ and cy = dx̂ with {x̂, ẑ} =

{x, 1− z} or {x̂, ẑ} = {1− x, z}. Elimination gives either adx =

bc(1 − z) or ad(1 − x) = bcz, and each of these interprets as a

negative AC-proposition.

3rd result, p. 44: A valid B̂C-syllogism with both premises negative

has a conclusion with both subject and predicate negated. The

premises are expressed by equations ay = b(1 − z) and cy =

d(1− x). Elimination gives ad(1− x) = bc(1− z).
4th result, p. 44: Let Φ1(Y,Z), Φ2(X,Y) be the premises of a valid

AC-syllogism. If Φ2(X,Y) is changed in quality (from affirmative

to negative, or vice-versa), and perhaps in quantity, one can no

longer complete the premises to a valid syllogism.

5th result, p. 44: Let Φ1(Y,Z), Φ2(X,Y) be the premises of a

valid AC-syllogism. If Φ2(X,Y) is replaced by its contradictory,

one can no longer complete the premises to a valid syllogism.

The four classes of B̂C syllogisms. Boole said his subdi-

vision of the B̂C-specifications into four Classes in Tbl. 18 was

motivated by his mathematical analysis.

• 1st Class. Valid B̂C-specifications ith Fig. αβ with α

and β universal (that is, each is A or E), and whose Aris-

totelian instance Φ1(Y,Z), Φ2(X,Y) can be completed by a

universal conclusion Φ(X,Z)—all but the 4th Fig. AA are

directly determinable by the Aristotelian Rules. The 4th

Fig. AA can be completed to an Aristotelian syllogism with

a particular conclusion; its conjugate can be completed us-

ing a universal BC-proposition. Boole claimed that all

cases in the 1st class can be mathematically ana-

lyzed using the primary equational expressions for

the premises. The details of two cases are presented: 1st
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Fig. AA, 2nd Fig. AE.

• 2nd Class. Valid B̂C-specifications ith Fig. αβ of two uni-

versal premises that can only be completed by a particular

conclusion. He subdivided the cases into those that were di-

rectly or indirectly determinable by the Aristotelian Rules,

and those cases not so determinable. Boole claimed that

all 2nd Class cases can be mathematically analyzed

using the primary equational expression for one of

the premises, the secondary equational expression

for the other. Details of three cases are presented: 1st

Fig. AE, 3rd Fig. AA and 1st Fig. EE.

• 3rd Class. Valid B̂C-specifications ith Fig. αβ of one uni-

versal premiss and one particular premiss. Such premises

can only be completed by a particular conclusion. For

the mathematical analysis, the universal premiss

is expressed by its primary equation, the particu-

lar premiss by its secondary equation. The cases are

subdivided into those that are directly or indirectly deter-

minable by the Aristotelian Rules, and those cases not so

determinable. The non-valid specifications of one univer-

sal premiss and one particular premiss are also listed, with

the claim that in such cases one always ends up with the

equation 0 = 0 when eliminating y, using auxiliary equa-

tions from p. 25 where necessary. Details of four cases are

presented: 1st Fig. AI, 2nd Fig. AO, 1st Fig. AO and 2nd

Fig. AI.

• 4th Class. B̂C-specifications ith Fig. αβ for two particular

premises, both of which are expressed by their sec-

ondary equations. These specifications are never valid,

but in some cases Boole noted that he was not able to

achieve 0 = 0 by elimination and the use of his auxiliary

equations. Details of two cases are presented: 3rd Fig. II

and 1st Fig. IO.

Adapting Boole’s Translations of Categorical proposi-

tions to the Modern Semantics for Class Variables. The

existential import of universal categorical propositions in Aris-

totelian logic created complications for Boole to handle with

equational reasoning. Now a quick summary is given of how

elegant his approach becomes when one uses the modern seman-

tics of class symbols (introduced by Peirce and reinforced by
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Schröder in the last two decades of the 19th century). Tbl. 20

gives translations for the four types of categorical propositions,

in both directions (expression and interpretation).

Type Proposition Equation

A All X is Y x = xy

E No X is Y xy = 0

I Some X is Y v = vxy

O Some X is not Y v = vx(1− y).

Tbl. 20. Equational Expressions of Aristotelian Propositions

when using Modern Semantics for Class Variables

Versions of the variable v, like v, v′ or v1, are to be used

only when expressing particular propositions. If there are sev-

eral premiss propositions that are particular, then the equational

expressions for them must have distinct v’s.

Let Φ1, . . . ,Φk ∴ Φ be an argument with all propositions

categorical, and let ε1, . . . , εk be equational expressions of the

premises as per the above. Then the propositional argument is

valid iff there is an equation ε expressing Φ that can be derived

from the premiss equations using Boole’s Algebra, that is, using

the laws and valid inferences of the integers along with the index

law xn = x; or equivalently, such that ZZZ |=01
∧k
i=1 εi → ε.

Unlike Boole’s system, there is no need to keep track of when

a variable v can be read as Some. Details are presented in the

context of the modern Boolean algebra of classes in [13].

Consequences of using Common Algebra. Did Boole

find an optimal way of expressing categorical propositions using

an algebra that includes Common Algebra, that is, the equa-

tional reasoning for the integers Z? It seems unlikely that one

can find definitions of the three binary operations +, ·,− that are

totally defined on classes such that Common Algebra holds, and

for which one can find equations to express the categorical propo-

sitions such that the validity of propositional arguments can be

determined by algebraic means.

If one defines multiplication to correspond to intersection,

that is, xy = z iff X ∩ Y = Z, then one has the index law and

one can prove that addition and subtraction with the largest pos-

sible domains of definition must be the partial operations used
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by Boole.∗ (See [9].) Thus an interesting alternative to Boole’s

definitions of the three binary operations requires a different def-

inition of multiplication—no such algebra is known.

∗Actually one just needs a part of Boole’s subtraction, namely one only

needs 1− x to be totally defined.
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BOOLE’S ALGEBRA AND HYPOTHETICALS

At the time that Boole was writing MAL, it was well-known

that hypothetical propositions could be converted into “categori-

cal propositions”.∗ For example, in Whately’s book [25] one sees

examples of the hypothetical If X then Y changed into exam-

ples of The case that X is the case that Y.† Boole had an algebra

of logic for categorical propositions, so it was only natural to

use it with hypothetical propositions converted into categorical

propositions.

He started by defining on p. 49 the hypothetical universe;

it was denoted by 1 and made up of all cases and conjunctures

of circumstances, which was usually abbreviated to just cases.

Given a hypothetical proposition X he defined the elective op-

eration x to select all the cases in which the proposition X was

true.

Although not clearly stated, Boole’s goal was to express hy-

pothetical propositions Ψ(~X) as elective equations ψ(~x) = 1 such

that a hypothetical inference
Although Boole correctly

translates several hypothetical

propositions into elective

equations, his explanation

of why this is correct is not

convincing.

Φ1(~X), . . . ,Φk(~X) ∴ Φ(~X)

was valid iff the corresponding equational inference

φ1(~x) = 1, . . . , φk(~x) = 1 ∴ φ(~x) = 1

was valid in Boole’s Algebra.

Rather than work solely with the hypothetical universe, he

introduced a switch from the plural ‘cases’ to the singular ‘case’,

reading If X then Y as ‘the case where X is true is the case where

Y is true’, and introduced the universe of a proposition with

two cases, ‘the proposition is true’ and ‘the proposition is false’.

Then he presented his method to find ψ(~x) given Ψ(~X); it looks

rather like a fragmentary relative of modern propositional logic

with truth tables.‡

∗This undefined notion of categorical proposition is not exactly the same

as that stated earlier. It is more like Boole’s notion of a primary proposition

in LT, that is, a proposition about classes.
†In LT (p. 176) Boole credited Wallis’s Institutio Logicae of 1687 for

giving him the idea to use cases to convert hypothetical propositions into

categorical propositions.
‡Boole abandoned the True/False table approach to propositional logic in

LT, replacing it by a time based approach, namely each hypothetical propo-

sition was assigned the (class of) times for which it was true.
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On pp. 49, 50 he stated, for various assignments of truth-

values to three propositional variables, the associated algebraic

expressions. For two variables X, Y one has Tbl. 21. In terms

Cases Expression

X Y

T T xy

T F x(1− y)

F T (1− x)y

F F (1− x)(1− y)

Tbl. 21. Algebraic Expressions

of the hypothetical universe this is easily understood as saying

that xy expresses the proposition ‘X and Y’, that is, it selects

the cases for which X is true and Y is true. Likewise, x(1 − y)

expresses the proposition ‘X and not-Y’, etc.

His general method for finding an algebraic expression ψ(~x)

for a propositional formula Ψ(~X) can be found on p. 52, namely

the assertion of Ψ(~X) says that a disjunction of certain truth-

valued assignments to the variables must hold. (Such truth-

valued assignments will be said to belong to Ψ(~X).)∗ For ex-

ample, the assertion of If X then Y is viewed as saying that if

X is assigned T then Y must be assigned T, so the assignments

belonging to If X then Y are TT, FT, FF. Boole does not give an

algorithm to determine if a truth-valued assignment belongs to

a proposition.

The expression ψ(~x) for Ψ(~X) is just the sum of the expres-

sions associated to the truth-valued assignments belonging to the

assertion of Ψ(~X). Then the assertion Ψ(~X) is expressed by the

equation ψ(~x) = 1. For example, the truth-valued assignments

belonging to the proposition If X then Y are the first, third and

fourth rows of Tbl. 21, so the expression of If X then Y is

ψ(x, y) = xy + (1− x)y + (1− x)(1− y)

= 1− x(1− y),

Setting this equal to 1 gives the equational expression 1− x(1−
y) = 1 for If X then Y, which reduces to x(1− y) = 0.

∗In modern terminology they are the assignments of truth values to the

variables Xi which make Ψ(~X) true—but apparently Boole did not view Ψ(~X)

as a truth-valued function.
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Here are Boole’s examples expressing hypothetical proposi-

tions by equations (pp. 51–54):∗

• ‘X is true’ is expressed by x = 1.

• ‘X is false’ is expressed by x = 0.

• ‘X is true and Y is true’ is expressed by xy = 1.

• ‘X is true or Y is true’, with ‘or’ inclusive, is expressed by

xy + x(1− y) + (1− x)y = 1, and thus by x+ y − xy = 1.

• ‘X is true or Y is true’, with ‘or’ exclusive, is expressed by

x(1− y) + (1− x)y = 1, and thus by x+ y − 2xy = 1.

• ‘X is false or Y is false’, with ‘or’ inclusive, is expressed by

x(1−y)+(1−x)y+(1−x)(1−y) = 1, and thus by xy = 0.

• ‘X is false or Y is false’, with ‘or’ exclusive, is expressed by

x(1− y) + (1− x)y = 1, and thus by x+ y − 2xy = 1.

• ‘X is true or Y is true or Z is true’, with ‘or’ exclusive, is

expressed by x(1−y)(1−z)+(1−x)y(1−z)+(1−x)(1−y)z =

1, and thus by x+ y + z − 2(xy + xz + yz) + 3xyz = 1.

• ‘X is true or Y is true or Z is true’, with ‘or’ inclusive,

is expressed by (1 − x)(1 − y)(1 − z) = 0, and thus by

x+ y + z − (xy + xz + yz) + xyz = 0.

• ‘If X is true then Y is true’ is expressed by xy+ (1− x)y+

(1− x)(1− y) = 1, and thus by x(1− y) = 0.

• ‘If X is true then Y is false’ is expressed by x(1− y) + (1−
x)y + (1− x)(1− y) = 1, and thus by xy = 0.

• ‘If X is false then Y is false’ is expressed by xy+x(1− y) +

(1− x)(1− y) = 1, and thus by (1− x)y = 0.

Since Boole includes equations like x = 0 and x = 1, the

categorical logic that is needed evidently uses M-semantics for

class variables; this is not the semantics that he needed for his

version of Aristotelian categorical logic.

Certain arguments using hypothetical propositions were stan-

dard examples of valid hypothetical syllogisms—Boole stated

them on pp. 56–57, using his reduction of categorical propositions

∗It is in this chapter, on p. 53, that one first sees expressions with nu-

merical coefficients other than 0,±1.
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to propositional variables X, Y, Z, W. These are listed below,

along with their equational expressions.∗

1. Disjunctive Syllogism (two versions)

X or Y (exclusive ‘or’) x+ y − 2xy = 1

X x = 1

∴ Not Y ∴ y = 0.

X or Y (inclusive ‘or’) x+ y − xy = 1

Not X x = 0

∴ Y ∴ y = 1.

2. Constructive Conditional Syllogism

If X then Y x(1− y) = 0

X x = 1

∴ Y ∴ y = 1.

3. Destructive Conditional Syllogism

If X then Y x(1− y) = 0

Not Y y = 0

∴ Not X ∴ x = 0.

4. Simple Constructive Dilemma

If X then Y x(1− y) = 0

If Z then Y z(1− y) = 0

X or Z (exclusive ‘or’) x+ z − 2xz = 1

∴ Y ∴ y = 1.

5. Complex Constructive Dilemma

If X then Y x(1− y) = 0

If W then Z w(1− z) = 0

X or W (inclusive ‘or’) x+ w − xw = 1

∴ Y or Z (inclusive ‘or’) ∴ y + z − yz = 1.

6. Complex Destructive Dilemma (two versions)

If X then Y x(1− y) = 0

If W then Z w(1− z) = 0

Not Y or not Z (exclusive ‘or’) y + z − 2yz = 1

∴ Not X or not W (inclusive ‘or’) ∴ xw = 0.

∗Boole noted that these ‘hypothetical syllogisms’ did not have the form

of a syllogism, namely two premises with three variables, with one variable

common to the two premises.

To convert Boole’s versions of the hypothetical syllogisms back to the forms

based on categorical propositions that Whately would have used, replace X

by ‘A is B’, Y by ‘C is D’, Z by ‘E is F’, and W by ‘G is H’.
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If X then Y x(1− y) = 0

If W then Z w(1− z) = 0

Not Y or not Z (inclusive ‘or’) yz = 0

∴ Not X or not W (inclusive ‘or’) ∴ xw = 0.

The equational arguments given for these hypothetical syllogisms

are easily seen to be valid in Boole’s Algebra.∗

Boole noted on p. 57 that one could easily extend the list of

hypothetical syllogisms by using propositions that were blends of

the conditional and disjunctive forms such as “If X is true, then

either Y is true, or Z is true”. But he did not seem to have had

the general idea of a propositional formula, that is, a Boolean

combination of propositional variables.

The hypothetical propositions Ψ(~X) that Boole worked with

were quite simple, and the assertion of such could easily be viewed

as asserting that certain assignments of truth-values to the propo-

sitional variables must hold. There is no indication that an as-

signment of truth-values to the propositional variables implied

an assignment of a truth value to Ψ(~X), much less a recursive

procedure for assigning truth-values to arbitrary propositional

formulas. Otherwise Boole might have been credited with intro-

ducing truth-tables into propositional logic.

At the end of the chapter on hypotheticals (p. 59) Boole

claimed that “Every Proposition which language can express may

be represented by elective symbols . . . ”. However the examples

he gave in MAL stayed close to the standard simple categorical

and hypothetical propositions of the time. LT would have more

complex examples.

A Rigorous Version. Now a version of Boole’s treatment

of hypotheticals will be given that meets modern standards. In

the context of hypothetical propositions, 1 will be used to denote

True, and 0 to denote False.

A propositional formula Ψ(~X) can be viewed as a mapping

(defined in the usual recursive fashion) on {0, 1} so that given a

list σ = σ1, . . . , σm of truth-values, Ψ(σ) is a truth-value. Define

a hypothetical inference

Φ1(~X), . . . ,Φk(~X) ∴ Φ(~X) (5)

∗It seems Boole had discovered the switching functions of ordinary

algebra—the ψ(~x) are idempotent when the variables are restricted to {0, 1}.
These would be used, credited to Boole, in the late 1940s by Howard Aiken

[1] at the Harvard Computing Laboratory.
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to be valid iff any assignment σ of truth values to the Xi that

makes the premisses true also makes the conclusion true, that is

Φ1(σ) = 1, . . . ,Φk(σ) = 1 ∴ Φ(σ) = 1 (6)

is valid for all σ.

For any Ψ(~X) define ψ(~x) to be the sum of the constituents

Cσ(~x) (see p. lv) such that Ψ(σ) = 1. Then for all σ,

Ψ(σ) = 1 iff ψ(σ) = 1. (7)

By (6) and (7) the validity of inference (5) is equivalent to saying

that

φ1(σ) = 1, . . . , φk(σ) = 1 ∴ φ(σ) = 1 (8)

is valid for all σ. By R01 this is equivalent to the inference

φ1(~x) = 1, . . . , φk(~x) = 1 ∴ φ(~x) = 1 (9)

being valid in Boole’s Algebra.



THE RULE OF 0 AND 1

This is a good place to present a detailed equational proof sys-

tem for Boole’s Algebra, and use it to prove the Rule of 0 and

1.∗ There are three binary operation symbols (+, ·,−) and two

constants (0, 1).

Definition 1 A derivation of an equation ε from equations ε1, . . . , εk

is a list δ1, . . . , δt of equations such that δt is ε, and each δi sat-

isfies one of the following:

0. δi is one of the premises ε1, . . . , εk;

1. δi is a law of Common Algebra (a law of ZZZ);

2. δi is an instance of the index law (xn = x);

3. there are i1, . . . , ij, all less than i, such that δi1 , . . . , δij ∴ δi

is a valid argument in Common Algebra (valid for ZZZ).

One has a derivation of an equation ε if the above holds with

condition 0 removed (so there are no premises to be considered).

The notation ε1, . . . , εk ` ε means that there is a derivation

of ε from ε1, . . . , εk. An equational argument ε1, . . . , εk ∴ ε is

said to be valid in Boole’s Algebra if there is a derivation of the

conclusion from the premises.

The notation ` ε means that there is a derivation of ε. In

this case one says ε is a law of Boole’s Algebra.

In the following let ~x be the list x1, . . . , xm of variables, let ~y

be the list y1, . . . , yn of variables, and for j a positive integer let

Sj be the set of sequences σ of 0s and 1s of length j.

Lemma 2 If

(?) ε1(~x), . . . , εk(~x) ` ε(~x)

∗One can reduce the equational axioms in item 1 to the collection of

all substitution instances of the usual axioms for commutative rings with

unity, but with t + (−t) = 0 replaced by t − t = 0 and t + (0 − t) = 0 for

t a term. One can replace xn = x in item 2 by x2 = x and the inference

rules of item 3 by the familiar reflexive, symmetric and transitive rules, the

replacement rule, and the rule nt = 0 ∴ t = 0, for t a term. Note that

unlike the standard Birkhoff equational logic, substitution is not a valid rule

of inference. However the laws and valid arguments for ZZZ are closed under

substitution—only the index law makes problems for the substitution rule.
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then there is a derivation δ1(~x), . . . , δt(~x) of (?) that does not use

any variables besides those attached to the premisses and conclu-

sion.

Proof: Let δ1(~x, ~y), . . . , δt(~x, ~y) be a derivation for (?). Let τ be

the sequence of 0s in Sn. The following proves that δ1(~x, τ), . . . , δt(~x, τ)

is also a derivation of (?):

0. If δi(~x, ~y) is one of the premises ε1(~x), . . . , εk(~x) then so is

δi(~x, τ).

1. If δi(~x, ~y) is a law of Common Algebra (a law of ZZZ), then

so is δi(~x, τ).

2. If δi(~x, ~y) is xj
n = xj , for some j and n, then so is δi(~x, τ).

If δi(~x, ~y) is yj
n = yj , for some j and n, then δi(~x, τ) is

0n = 0, a law of ZZZ.

3. If there are i1, . . . , ij , all less than i, such that δi1(~x, ~y), . . . , δij (~x, ~y) ∴

δi(~x, ~y) is a valid argument in Common Algebra (valid for

ZZZ), then so is δi1(~x, τ), . . . , δij (~x, τ) ∴ δi(~x, τ).

Lemma 3 (Substitution) If

(?) ε1(~x, ~y), . . . , εk(~x, ~y) ` ε(~x, ~y)

then for σ ∈ Sm one has

(??) ε1(σ, ~y), . . . , εk(σ, ~y) ` ε(σ, ~y)

Proof: Given a derivation δ1(~x, ~y), . . . , δt(~x, ~y) for (?), one can

(as in the previous lemma) readily verify that δ1(σ, ~y), . . . , δt(σ, ~y)

is a derivation for (??).

Lemma 4 For ground equations ε1, . . . , εk, ε,

ε1, . . . , εk ` ε iff ZZZ |=
(∧

i

εi

)
→ ε iff ZZZ |=01

(∧
i

εi

)
→ ε.

Proof: There are no variables in ground equations, thus there

is no difference between ZZZ |= and ZZZ |=01. This means the second

“iff” holds.

Suppose ε1, . . . , εk ` ε. In view of Lemma 2 there is a

ground derivation δ1, . . . , δt. The proof that ZZZ |=
(∧

i εi

)
→ ε

follows from proving by induction on s that ZZZ |=
(∧

i εi

)
→ δs.
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One has δ1 being either a law of ZZZ or one of the εi. Thus ZZZ |=(∧
i εi

)
→ δ1.

For the induction hypothesis suppose ZZZ |=
(∧

i εi

)
→ δr for

1 ≤ r < s ≤ t. The goal is to prove ZZZ |=
(∧

i εi

)
→ δs. If

δs is one of the εi or a law of ZZZ, then ZZZ |= δs. The only other

possibility is that there are s1, . . . , sj , all less than s, such that

δs1 , . . . , δsj ∴ δs is valid in ZZZ. By the induction hypothesis it

follows that ZZZ |=
(∧

i εi

)
→ δs.

For the converse assume that ZZZ |=
(∧

i εi

)
→ ε. This says

that ε1, . . . , εk ∴ ε is a valid inference for ZZZ, thus it follows that

ε1, . . . , εk, ε is a derivation of ε from ε1, . . . , εk. This means that

ε1, . . . , εk ` ε.

Definition 5 A term p is idempotent if ` p2 = p.

Lemma 6 x and 1−x are idempotent. A product of idempotent

terms is again idempotent.

Proof: Clearly ` x2 = x. The following gives a derivation for

` (1− x)2 = 1− x:

1. (1− x)2 = 1− 2x+ x2 Common Algebra

2. x2 = x index law

3. (1− x)2 = 1− 2x+ x 1, 2 ∴ 3 Common Algebra

4. 1− 2x+ x = 1− x Common Algebra

5. (1− x)2 = 1− x 3, 4 ∴ 5 Common Algebra.

Definition 7 Let C1(x) = x and C0(x) = 1 − x. For σ ∈ Sm

define the constituent Cσ(~x) of ~x by

Cσ(~x) =
∏
i

Cσ(i)(xi).

The key properties of constituents are in the next lemma.

Lemma 8 For σ and τ in Sm,

1. ` Cσ(~x)2 = Cσ(~x)

2. ` Cσ(~x)Cτ (~x) = 0 if σ 6= τ

3. `
∑

σ Cσ(~x) = 1

4. ` Cσ(σ) = 1, and for σ 6= τ , ` Cσ(τ) = 0.
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Proof:

(1) By Lemma 6, Cσ(~x) is a product of idempotent terms, hence

it is also idempotent.

(2) If σ 6= τ then for some i one has σ(i) 6= τ(i), and thus

` Cσ(i)(xi) ·Cτ(i)(xi) = xi−x2
i . Then ` Cσ(i)(xi) ·Cτ(i)(xi) = 0,

which leads to ` Cσ(~x)Cτ (~x) = 0.

(3) Starting with `
∏
i

(
C0(xi) + C1(xi)

)
= 1, multiplying out

gives the desired result.

(4) This follows from the definition of Ci(j) for i, j ∈ {0, 1}.

Theorem 9 (Expansion) For any term p(~x, ~y), the expansion

of the term about ~x is give by

` p(~x, ~y) =
∑
σ

p(σ, ~y)Cσ(~x).

The complete expansion of a term p(~x) is given by

` p(~x) =
∑
σ

p(σ)Cσ(~x).

Proof: By induction on the length m of ~x. For m = 1 first use

Common Algebra to write p(x, ~y) as a polynomial in x:

` p(x, ~y) = a(~y) + b1(~y)x+ · · ·+ bn(~y)xn.

Next use the index law to obtain

` p(x, ~y) = a(~y) + b1(~y)x+ · · ·+ bn(~y)x.

Setting b(~y) equal to b1(~y) + · · · + bn(~y) one has, by Common

Algebra,

` p(x, ~y) = a(~y) + b(~y)x.

Using the Substitution Lemma 3 yields

` p(0, ~y) = a(~y)

` p(1, ~y) = a(~y) + b(~y),

and thus, by Common Algebra

` a(~y) = p(0, ~y)

` b(~y) = p(1, ~y)− p(0, ~y),

which by Common Algebra leads to

` p(x, ~y) = p(0, ~y) +
(
p(1, ~y)− p(0, ~y)

)
x

= p(1, ~y)x+ p(0, ~y)(1− x)

= p(1, ~y)C1(x) + p(0, ~y)C0(x).
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For the induction step, assume the expansion theorem holds for

~x of length m. Then by the induction hypothesis and the ground

step, for σ ∈ Sm

` p(~x, xm+1, ~y) =
∑
σ

p(σ, xm+1, ~y)Cσ(~x)

=
∑
σ

(
p(σ, 1, ~y)xm+1 + p(σ, 0, ~y)(1− xm+1)

)
Cσ(~x)

=
∑
σ

p(σ, 1, ~y)Cσ(~x)xm+1 +
∑
σ

p(σ, 0, ~y)Cσ(~x)(1− xm+1)

=
∑
τ

p(τ, ~y)Cτ (~x, xm+1),

where τ ∈ Sm+1.

Corollary 10{
p(σ)Cσ(~x) = 0 : σ ∈ Sm

}
` p(~x) = 0

p(~x) = 0 ` p(σ)Cσ(~x) = 0 for σ ∈ Sm.

Proof: The complete expansion of p(~x) easily yields the first

result. For the second, by the same expansion one has

p(~x) = 0 `
(∑

τ

p(τ)Cτ (~x)
)

= 0.

Multiplying both sides of the conclusion of the last assertion by

Cσ(~x), where σ ∈ Sm, one has, by properties of the constituents

of ~x, (∑
τ

p(τ)Cτ (~x)
)

= 0 ` p(σ)Cσ(~x) = 0,

and thus p(~x) = 0 ` p(σ)Cσ(~x) = 0 for σ ∈ Sm.

Theorem 11 (Reduction) Given terms p1, . . . , pk,

p1 = 0, . . . , pk = 0 `
(∑

i

pi
2
)

= 0(∑
i

pi
2
)

= 0 ` pj = 0 for 1 ≤ j ≤ k.

Proof: From

ZZZ |=
(∧

i

pi = 0
)
↔
(∑

i

pi
2
)

= 0

Lemma 4 gives the desired conclusions.
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Theorem 12 (Rule of 0 and 1)

ε1(~x), . . . , εk(~x) ` ε(~x) iff ZZZ |=01

(∧
i

εi(~x)
)
→ ε(~x).

Proof: Use Common Algebra to write the εi(~x) as pi(~x) =

0, and ε(~x) as q(~x) = 0. Let p(~x) =
∑

i pi(~x)2. Then by the

Reduction Theorem it suffices to prove

p(~x) = 0 ` q(~x) = 0 iff ZZZ |=01 p(~x) = 0→ q(~x) = 0.

Suppose p(~x) = 0 ` q(~x) = 0. Then by the Substitution Lemma

one has for σ ∈ Sm, p(σ) = 0 ` q(σ) = 0. By Lemma 4 one has,

for σ ∈ Sm, ZZZ |= p(σ) = 0 → q(σ) = 0, that is, ZZZ |=01 p(~x) =

0→ q(~x) = 0.

For the converse suppose ZZZ |=01 p(~x) = 0 → q(~x) = 0. Then

for any τ ∈ Sm, ZZZ |= p(τ) = 0 → q(τ) = 0, and from this it

follows that

ZZZ |=
(∧

τ

p(τ)Cτ (~x) = 0
)
→
(∧

τ

q(τ)Cτ (~x) = 0
)

and thus, for σ ∈ Sm,{
p(τ)Cτ (~x) = 0 : τ ∈ Sm

}
` q(σ)Cσ(~x) = 0.

By Corollary 10, for τ ∈ Sm,

p(~x) = 0 ` p(τ)Cτ (~x) = 0,

and thus, for σ ∈ Sm,

p(~x) = 0 ` q(σ)Cσ(~x) = 0.

Again by the Expansion Theorem,{
q(σ)Cσ(~x) = 0 : σ ∈ Sm

}
` q(~x) = 0,

and thus p(~x) = 0 ` q(~x) = 0.
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Boole’s definition of an elective function on p. 16 is simply an

expression involving elective symbols. It surely includes what are

here called terms, and likely the quotients of terms—in Common

Algebra such quotients can be written as quotients of polynomi-

als, and these are called rational functions. Boole made a modest

attempt to include the division operation in his algebra of logic in

MAL, but in LT he gave up on the possibility of doing this in gen-

eral, with the only application of division being in his solution

theorem where formal division, followed by formal expansion,

gave a useful mnemonic. Consequently, except for the discussion

of the solution theorem, the comments on elective functions will

be restricted to terms.

There is an important difference between Boole’s notation

for an elective function and modern terminology, namely when

he writes φ(~x) for a term, there is the possibility that some vari-

ables of φ do not appear in the list ~x. Writing a term p as p(~x) in

modern notation means that all the variables of p appear in the

list ~x, and perhaps other variables. Terms in Boole’s notation will

be expressed using Greek letters, like φ(~x), whereas in the com-

ments latin letters like p(~x) will be used with the understanding

that this is modern notation.

The Expansion Theorem. The chapter Properties of

Elective Functions is the first of two chapters on general

results for Boole’s Algebra. It starts off on p. 60 with a power

series expansion of an elective function,

φ(x) =
∑
n

(1/n!) φ(n)(0) xn,

from which he proved the Expansion Theorem in one variable:

φ(x) = φ(1)x+ φ(0)(1− x).

Boole’s reason for bringing in power series is not known; perhaps

it was in the hopes of extending his results to include rational

functions, to justify his work with division. When working with

terms the power series expansion just gives a polynomial; in such

cases perhaps Boole viewed the power series expansion as a con-

venient way to describe the polynomial that is equivalent to φ(x).

Boole’s above expansion theorem in modern notation is

` p(x, ~y) = p(1, ~y)x+ p(0, ~y)(1− x), (10)
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where p(x, ~y) is a term. His proof started with expanding p(x, ~y)

as a polynomial in x, say

` p(x, ~y) = p0(~y) + p1(~y) · x+ · · ·+ pn(~y) · xn.

This step belongs to Common Algebra; however Boole preferred

to make the coefficients explicit by bringing in the formula for a

power series expansion. Then he used the index law to obtain

` p(x, ~y) = p0(~y) +
[
p1(~y) + · · ·+ pn(~y)

]
· x.

Thus one has, for suitable terms a(~y) and b(~y),

` p(x, ~y) = a(~y) + b(~y) · x.

Boole’s next step is to substitute the idempotents 1 then 0 into

this equation to obtain the following, giving (10):

` p(1, ~y) = a(~y) + b(~y)

` p(0, ~y) = a(~y).

The expansion (10) about one variable is easily proved using

R01, as is the general Expansion Theorem

Boole used the less expressive

notation (see p. 58)

a1t1 + a2t2 · · ·+ artr

for the expansion, where ai

is the coefficient of the con-

stituent ti.

` p(~x, ~y) =
∑
σ

p(σ, ~y)Cσ(~x), (11)

for ~x the list of variables x1, . . . , xm, where σ runs over all se-

quences of 0s and 1s of length m, and Cσ(~x) is defined by

Cσ(~x) =
∏
i

Cσ(i)(xi)

where C1(xi) = xi, C0(xi) = 1− xi.
Equation (11) gives the expansion of p(~x, ~y) about ~x. If there

is no ~y, so that all the variables in p are included in ~x, then one

has a complete expansion

` p(~x) =
∑
σ

p(σ)Cσ(~x), (12)

and the coefficients are integers.

Moduli

Constituents

The p(σ, ~y) are the moduli of p(~x, ~y) with respect to the vari-

ables ~x, and in MAL the Cσ(~x) are the constituents of p(~x); it

would be more appropriate to call the Cσ(~x) the constituents of

the list of variables ~x.

For example letting p(x, y) be x+ y one has the expansion

` x+ y = (1 + y)x+ y(1− x)

about x, and the complete expansion

` x+ y = 2xy + x(1− y) + (1− x)y.

Regarding constituents, the following hold in Boole’s Algebra

(pp. 63, 64):
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Fundamental laws governing

constituents

(a) ` Cσ(~x)n = Cσ(~x),

(b) ` Cσ(~x) Cτ (~x) = 0 if σ 6= τ ,

(c) ` 1 =
∑

σ Cσ(~x).

One needs to add the obvious laws

(d) ` Cσ(τ) =

1 if σ = τ

0 otherwise,

where τ is also a sequence of 0s and 1s of length m.

Using the expansion theorem, Boole quickly arrived at a number

of results:∗

Boole claimed that items (P1)–

(P5) are consequences of the

expansion theorem

(P1) (Prop. 1, p. 61) ` p(~x, ~y) = q(~x, ~y) holds in Boole’s Algebra

iff the corresponding moduli with respect to ~x are equal,

that is, for all σ, ` p(σ, ~y) = q(σ, ~y). When the expansion

is complete, that is, there is no ~y, (P1) says that ` p(~x) =

q(~x) iff ZZZ |=01 p(~x) = q(~x). Thus Boole had R01 for laws

in MAL.

Two corollaries are given:

` p(~x, ~y)n = p(~x, ~y) ↔
∧
σ

(
p(σ, ~y)n = p(σ, ~y)

)
` p(~x, ~y)q(~x, ~y) = r(~x, ~y) ↔

∧
σ

(
p(σ, ~y)q(σ, ~y) = r(σ, ~y)

)
.

(P2) (Prop. 2, p. 64) p(~x) = 0 is equivalent to the collection

of constituent equations Cσ(~x) = 0 where p(σ) 6= 0. Thus

every equation is equivalent to a collection of totally inter-

pretable equations, since every constituent equation Cσ(~x) =

0 is totally interpretable.†

(P3) (Prop. 3, p. 66) An equation w = p(~x) is equivalent to

the collection of equations w =
∑
{Cσ(~x) : p(σ) = 1} and

Cσ(~x) = 0 whenever p(σ) /∈ {0, 1}.

(P4) (Prop. 4, p. 67) Given p(~x, ~y, z) and arbitrary terms aσ,

` p
(
~x, ~y,

∑
σ

aσCσ(~x)
)

=
∑
σ

p(~x, ~y, aσ)Cσ(~x).

∗For item (P5) one might prefer that MAL be developed using the algebra

of the rationals QQQ.
†Given a term p(~x), define the idempotent reduct p?(~x) of p(~x) to be∑
{Cσ(~x) : p(σ) 6= 0}. Then p?(~x) is idempotent and totally interpretable.

By P2, ` p(~x) = 0 ↔ p?(~x) = 0; hence every equation is equivalent to a

totally interpretable equation. (On p. 65 the preferred equivalent form of

p = 0 is p? = 0.)
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(P5) (Prop. 5, p. 67) Given propositions Φ and Ψ, Boole’s Prop. 5

says that if Φ implies Ψ then Ψ is either “equivalent” to Φ

or a “limitation” of Φ. His proof is as follows: let Φ and

Ψ be expressed by equations pΦ(~x) = 0 and pΨ(~x, ~y) = 0.

He seemed to say that there is q(~x, ~y) such that pΨ(~x, ~y) =

q(~x, ~y) · pΦ(~x). Then pΦ(σ) = 0 implies pΨ(σ, ~y) = 0, from

which Boole concluded that Ψ is a limitation of Φ.

In view of what looks like an important link to LT, consider the

special case of P5 when Ψ is expressed by pΨ(~x) = 0. Then the

following statements are equivalent:

(a) Φ ∴ Ψ is valid in propositional logic.

(b) pΦ(~x) = 0 ∴ pΨ(~x) = 0 is valid in Boole’s Algebra.

(c) pΨ(~x) = q(~x) · pΦ(~x), for some q(~x) with rational coeffi-

cients.

(d) pΦ(σ) = 0 implies pΨ(σ) = 0 for all σ.

(e) ZZZ |=01 pΦ(~x) = 0 → pΨ(~x) = 0.

The equivalence of these statements can be proved as follows. A

key tenet of Boole’s logic is that (a) and (b) are equivalent. The

fact that (b) implies (c) is in Boole’s proof of Prop. 5, p. 67. This

step evidently requires that one be permitted to choose q(~x) ∈
QQQ[x] (for example, to deduce x = 0 from 2x = 0).

(c) implies (d) is clear, as is the equivalence of (d) and (e).

The expansion theorem and (P4) above show that (d) implies

(b).

Then from (a) one has (d), consequently (a) implies{
Cσ(~x) = 0 : pΨ(σ) 6= 0

}
⊆
{

Cσ(~x) = 0 : pΦ(σ) 6= 0
}
.

This says, in view of (P2), that if Φ ∴ Ψ is valid then Ψ is either

equivalent to Φ, or it is a limitation of Φ.

The equivalence of (b) and (d) is a special case of R01.∗

∗The Rule of 0 and 1 appears, in words only, on pp. 37–38 of LT. The

item (P1) and its corollaries are not explicitly stated in LT, but they clearly

fall under the Rule of 0 and 1. (P2) appears on p. 83 of LT as a RULE, and

(P3) is essentially stated on p. 90 of LT. Neither (P4) nor (P5) appear in LT;

perhaps the Rule of 0 and 1 absorbed all that Boole wanted from these two

items.

The proof of Prop. 5, in particular of (c) above, suggests an alternative to

Hailperin’s axiomatization of Boole’s Algebra, which was as non-trivial com-
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The Reduction and Solution Theorems. In the final

chapter, Of the Solution of Elective Equations, Boole

gave two main results.

1) Reduction Theorem: (p. 78)

A system of equations

p1(~x) = 0, . . . , pk(~x) = 0

can be reduced to a single equation

p1(~x) + λ2p2(~x) + · · ·+ λkpk(~x) = 0.

The Lagrange multipliers λi are arbitrary parameters.∗ Lagrange multipliers

2) Solution Theorem (for one equation): (pp. 70-74)

For the algebraic analysis of his version of Aristotelian

logic, Boole only needed to solve some very simple equa-

tions like x(1 − y) = 0. Evidently this motivated him to

consider finding the general solution to an arbitrary equa-

tion p(~x,w) = 0 for w in terms of the other variables ~x. He

was no doubt pleased to announce (p. 7) that finding the

general solution was always possible.

To find the general solution of

p(~x,w) = 0 (13)

for w, let

J0 = {σ : p(σ, 1) 6= 0 = p(σ, 0)}
J1 = {σ : p(σ, 1) = 0 6= p(σ, 0)}
Jv = {σ : p(σ, 1) = 0 = p(σ, 0)}
J∞ = {σ : p(σ, 1) 6= 0 6= p(σ, 0)}.

mutative rings with unity with idempotent variables and no additive nilpo-

tents, that is, the additive group is torsion-free. “No additive nilpotents” is

expressed by the quasi-equations ns(~x) = 0→ s(~x) = 0, for n = 1, 2, . . . .

One could also axiomatize Boole’s Algebra as QQQ-algebra with idempotent

variables, the rational numbers being viewed as unary functions. This makes

it possible to give a purely equational axiomatization of Boole’s Algebra.

Then one would work with polynomials with rational coefficients, and the

Rule of 0 and 1 would have ZZZ replaced by QQQ. One would also have p1(~x) =

0, . . . , pk(~x) = 0 ∴ q(~x) = 0 is valid iff q(~x) =
∑
ri(~x) · pi(~x) is valid for some

choice of terms ri(~x).
∗This reduction theorem is stated in LT (replacing λi by ci), but the main

reduction used there is

p1(~x)2 + · · ·+ pk(~x)2 = 0,

avoiding the introduction of parameters.
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Then (13) is equivalent to the general solution (14) plus the

constraint equations (15) on the variables ~x:

w =
( ∑
σ∈J1

Cσ(~x)
)

+
( ∑
σ∈Jv

vσCσ(~x)
)

(14)

Cσ(~x) = 0 for σ ∈ J∞. (15)

The vσ are arbitrary parameters.∗

Remark: From the basic properties of constituents, the con-

stituent equations (15) can be replaced by

p(~x, 0) · p(~x, 1) = 0. (15′)

Boole did not present his solution theorem as above, but

rather by a simple heuristic. First note that equation (13) is

equivalent to (
p(~x, 0)− p(~x, 1)

)
· w = p(~x, 0). (16)

Apply formal division to obtain

w =
p(~x, 0)

p(~x, 0)− p(~x, 1)
. (17)

Next apply formal expansion to the right side of (17):

p(~x, 0)

p(~x, 0)− p(~x, 1)
=
∑
σ

p(σ, 0)

p(σ, 0)− p(σ, 1)
Cσ(~x). (18)

The following table gives the value Boole assigned to the coeffi-

cients of the Cσ(~x) in (18), for σ in the various J ’s:

Coeff. of Cσ(~x) Coeff. of Cσ(~x)

σ ∈ J0 0 σ ∈ J1 1

σ ∈ Jv 0
0 σ ∈ J∞ not 0, 1, 0

0

By remembering that 0/0 is to be thought of as an arbitrary

parameter v, and that σ ∈ J∞ signifies that Cσ(~x) must vanish,

by evaluating the coefficients of the right side of (18) one easily

arrives at the solution and constraint equations.

Boole believed his solution theorem offered a new and pow-

erful tool for studying the consequences of a collection of propo-

sitions. If there is more than one proposition in the collection,

he first used the Reduction Theorem to convert the equations of

∗Boole said that the form of the solution reminded him of the theory of

solving linear differential equations (see pp. 70,72), a subject in which he was

well-versed.
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the collection into a single equation. Some of the discussion of

solving equations in MAL is more complicated than in LT because

he was solving equations p(~x,~λ,w) = 0 which had Lagrange mul-

tipliers.∗

Solution Theorem (for a system of equations). The

main result on solving systems of equations in MAL is Boole’s

attempted general solution of three equations φ(x, y, z) = 0,

ψ(x, y, z) = 0, χ(x, y, z) = 0 in three variables for the variable z

(pp. 78–81). He said that this result contains all the key steps

for solving any number of equations in any number of variables

for one of the variables. From this claim one can deduce that,

given a system of equations pi(~x, z) = 0, his constraint equations,

when solving for z, would be pi(~x, 0) · pj(~x, 1) = pi(~x, 1) · pj(~x, 0)

for i 6= j. However the correct constraints, which one can find

using the sum of squares reduction theorem and the elimination

theorem in LT, are pi(~x, 0) · pj(~x, 1) = 0 for all i, j.†

Rather than trying to extend the algebra of logic to rational

expressions p(~x)/q(~x), as Boole attempted to do for his solution

theorem, it seems best to regard his ‘formal division followed by

formal expansion and interpretation’ as a clever and convenient

mnemonic device for solving an equation.

∗This complication does not enter into the discussion in LT because,

except for a single demonstration example, the reductions in LT are obtained

by summing squares.
†The proof is as follows (for M-semantics). First reduce the system of

equations to the single equation p(~x, y) = 0 where p(~x, y) =
∑
i pi(~x, y)2.

Then the constraint condition on ~x to guarantee that one can solve for y

is p(~x, 0)p(~x, 1) = 0, that is,
(∑

i pi(~x, 0)2
)
·
(∑

j pj(~x, 1)2
)

= 0, which is

equivalent to the collection of equations pi(~x, 0)pj(~x, 1) = 0 for all i, j.



Connections to LT (1854)

Seven years after publishing MAL, Boole gave a better orga-

nized account of his algebraic approach to logic in LT. Instead of

x denoting an elective operation determined by a class denoted

by X, the class would now be denoted by x, and the operations

of addition, subtraction and multiplication would be defined for

classes. Boole would prove, modulo certain unstated assump-

tions, that only two numbers could be used as names of classes,

namely 0 and 1; furthermore 0 had to denote Nothing (which is

called the empty class today) and 1 the Universe. In 1847 De

Morgan had introduced the concept of a limited universe ([15],

p. 41); Boole adopted this in LT, but used the name universe

of discourse (LT, p. 42), which also included the ‘actual’ uni-

verse. Constituents would continue to play a central role. The

elective operations would be employed only in his analysis of the

operations of the mind (which has met with little favor), and

the infinite series proof of the elimination theorem only appears

in a footnote, as an alternative for functions that have infinite

series expansions. (Perhaps he hoped to apply this to rational

functions.)

Most of the key ideas of Boole’s Algebra in his masterwork on

logic, LT, were present in some form in MAL, and LT is in good

part concerned with clarifying (and correcting) what was said in

MAL. More laws would be given for the Common Algebra, but

still not enough. His rules of inference were that the addition,

subtraction or multiplication of equals gives equals.

The validity of working with mathematical expressions that

were (at least partly) uninterpretable as classes became a central

issue in LT. Boole’s justification would be based upon his Princi-

ples of Symbolical Reasoning, which was incorrect—one cannot,

in general, take a collection of partial algebras with some laws

that hold where defined and assume that the sort of equational

deductions that one makes for total algebras will always yield

equations that hold in the partial algebras when defined. How-

lxi
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ever his equational algebra of logic is one of the cases where his

symbolical method has been justified (by Hailperin [19], using

M-semantics for class variables).

The focus of Boole’s Algebra in LT was on four theorems

already mentioned:

(EXPANSION) Essentially as in MAL:

p(~x, ~y) =
∑
τ

p(~x, τ)Cτ (~y).

(REDUCTION) Preference for sums of squares method instead of Lagrangian

multipliers:

p1 = · · · = pk = 0 iff
∑
i

p2
i = 0.

The Expansion and Reduction Theorems hold for the M-,

A- and B-semantics.

(ELIMINATION) This is greatly improved over the version in MAL. Elim-

inating ~y in an equation p(~x, ~y) = 0 is described by the

following inference:

p(~x, ~y) = 0 ∴
∏
τ

p(~x, τ) = 0.

The modern strengthening of this result, for M-semantics,

is:

(∃~y)
(
p(~x, ~y) = 0

)
iff

∏
τ

p(~x, τ) = 0.

Thus given p(~x, y) = 0, for M-semantics one has:

(∃y)
(
p(~x, y) = 0

)
iff p(~x, 0) · p(~x, 1) = 0.

To include the A- and B-semantics in this result let ϕ(~x)

be the formula (p? is defined in a footnote on p. lvi)

p(~x, 0) · p(~x, 1) = 0

and p?(~x, 1) 6= 1 for A- or B-semantics

and p?(~x, 0) 6= 1 for B-semantics.

Then one has (∃y)
(
p(~x, y) = 0

)
iff ϕ(~x).

(SOLUTION) For a single equation p(~x, y) = 0, essentially as in MAL, as

described on p. lviii, valid for M-semantics. Ernst Schröder

(1841–1902) gave an elegant formulation of the solution the-

orem for Boolean algebra on p. 447 of the first volume of his
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masterwork [24], and this readily translates into Boole’s Al-

gebra. With q meaning 1−q, using the formula ϕ(~x) above

one has for A-, B- or M-semantics:

p(~x, y) = 0 if and only if

ϕ(~x) and (∃v)
[
y = p?(~x, 0) · v + p?(~x, 1) · v

]
,

which is equivalent to

ϕ(~x) and (∃v)
[
y = p?(~x, 0) + v · p?(~x, 0) · p?(~x, 1)

]
,

and also to

ϕ(~x) and (∃v)
[
y = p?(~x, 0) + v ·

(
1− p?(~x, 0)− p?(~x, 1)

)]
.

In the case of M-semantics, this can be proved using R01.

LT has numerous examples worked out in detail—some are

likely too long and involve subject matter that is not so interest-

ing to a modern audience. Boole regarded his main contribution

in LT, aside from his improved version of the algebra of logic, to

be the application of this algebra to probability theory. History

has not supported this view—in this regard he is remembered for

being a pioneer in the algebra of logic, not in probability theory.

Hailperin concluded that the proper setting for Boole’s work

was non-trivial commutative rings with unity without additively

nilpotent elements, with the relevant models being algebras of

signed multi-sets. This passes over the subtlety that Boole was

actually working with partial algebras of classes for which there

were totally defined terms that defined union, intersection and

complement.

Boole’s idea of proving equational theorems for these partial

algebras by working with equations in a manner that is usually

reserved for total algebras turns out to be valid, although his

justification of this fact was wrong. Hailperin gave a proof based

on the fact that Boole’s partial algebras are isomorphic to the

restriction of powers of the integers to their idempotents.∗
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to translate equations and equational arguments in modern Boolean algebra
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Numerous modifications have been made to the Project Guten-

berg version in what follows, including making the page content

agree with that of the original MAL, highlighting text that I

found more relevant to understanding Boole’s work, the addition

of margin notes, and reverting the text to its original typograph-

ical and mathematical errors (except that the corrections of the

errata from the Stanford list have been made), pointing out the

errors in the margin.
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PREFACE.

In presenting this Work to public notice, I deem it not ir-

relevant to observe, that speculations similar to those which it

records have, at different periods, occupied my thoughts. In the
See p. 9 regarding the Hamilton–De

Morgan conflict. This Sir W. Hamil-

ton was the Scottish philosopher, not

the Irish mathematician.

spring of the present year my attention was directed to

the question then moved between Sir W. Hamilton and

Professor De Morgan; and I was induced by the interest

which it inspired, to resume the almost-forgotten thread

of former inquiries. It appeared to me that, although Logic

might be viewed with reference to the idea of quantity,∗ it had

also another and a deeper system of relations. If it was lawful to

regard it from without, as connecting itself through the medium

of Number with the intuitions of Space and Time, it was lawful

also to regard it from within, as based upon facts of another or-

der which have their abode in the constitution of the Mind. The

results of this view, and of the inquiries which it suggested, are

embodied in the following Treatise.

It is not generally permitted to an Author to prescribe the

mode in which his production shall be judged; but there are two

conditions which I may venture to require of those who shall

undertake to estimate the merits of this performance. The first

is, that no preconceived notion of the impossibility of its objects

shall be permitted to interfere with that candour and impartiality

which the investigation of Truth demands; the second is, that

their judgment of the system as a whole shall not be founded

either upon the examination of only . . . . . . . . . . . . (pagebreak in MAL)

∗See p. 42. [Note: Should this have been p. 4?]



a part of it, or upon the measure of its conformity with any re-

The general results start on p. 60.

ceived system, considered as a standard of reference from which

appeal is denied. It is in the general theorems which oc-

cupy the latter chapters of this work,—results to which

there is no existing counterpart,—that the claims of the

method, as a Calculus of Deductive Reasoning, are most

fully set forth.

TYPO: its truth. It also

What may be the final estimate of the value of the system,

I have neither the wish nor the right to anticipate. The esti-

mation of a theory is not simply determined by its truth It also

depends upon the importance of its subject, and the extent of

its applications; beyond which something must still be left to the

arbitrariness of human Opinion. If the utility of the application

of Mathematical forms to the science of Logic were solely a ques-

tion of Notation, I should be content to rest the defence of this

attempt upon a principle which has been stated by an able living

writer: “Whenever the nature of the subject permits the reason-

ing process to be without danger carried on mechanically, the

language should be constructed on as mechanical principles as

possible; while in the contrary case it should be so constructed,

that there shall be the greatest possible obstacle to a mere me-

chanical use of it.”∗ In one respect, the science of Logic differs

from all others; the perfection of its method is chiefly valuable

as an evidence of the speculative truth of its principles. To su-

persede the employment of common reason, or to subject it to

the rigour of technical forms, would be the last desire of one who

knows the value of that intellectual toil and warfare which im-

parts to the mind an athletic vigour, and teaches it to contend

with difficulties and to rely upon itself in emergencies.

Lincoln, Oct. 29, 1847.

∗Mill’s System of Logic, Ratiocinative and Inductive, Vol. ii. p. 292.



MATHEMATICAL ANALYSIS OF LOGIC.

INTRODUCTION.
By Symbolical Algebra Boole meant

equational reasoning, that is, given

equational axioms (which he called

laws) and rules of inference (which

he called axioms), deriving equations

from equations without reference to

models of the laws. He never suc-

ceeded in properly formalizing this

subject.

By “the laws of their combination” he

meant the equational axioms (laws),

each side of an equation being a com-

bination of symbols (called terms in

modern logic).

They who are acquainted with the present state of the the-

ory of Symbolical Algebra, are aware, that the validity of the

processes of analysis does not depend upon the interpretation

of the symbols which are employed, but solely upon the laws

of their combination. Every system of interpretation which

does not affect the truth of the relations supposed, is equally

admissible, and it is thus that the same process may, under one

scheme of interpretation, represent the solution of a question on

the properties of numbers, under another, that of a geometrical

problem, and under a third, that of a problem of dynamics or

optics. This principle is indeed of fundamental importance; and

it may with safety be affirmed, that the recent advances of

The “recent advances” seems to be a

reference to his own work in differen-

tial equations, using differential oper-

ators.

pure analysis have been much assisted by the influence which

it has exerted in directing the current of investigation.

But the full recognition of the consequences of this impor-

tant doctrine has been, in some measure, retarded by accidental

circumstances. It has happened in every known form of analy-

sis, that the elements to be determined have been conceived as

measurable by comparison with some fixed standard. The pre-

dominant idea has been that of magnitude, or more strictly, of

numerical ratio. The expression of magnitude, or (pagebreak in MAL)
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of operations upon magnitude, has been the express object for

which the symbols of Analysis have been invented, and for which

their laws have been investigated. Thus the abstractions of the

modern Analysis, not less than the ostensive diagrams of the

ancient Geometry, have encouraged the notion, that Mathematics

are essentially, as well as actually, the Science of Magnitude.

The consideration of that view which has already been stated,

as embodying the true principle of the Algebra of Symbols, would,

however, lead us to infer that this conclusion is by no means nec-

essary. If every existing interpretation is shewn to involve the

idea of magnitude, it is only by induction that we can assert

that no other interpretation is possible. And it may be doubted

whether our experience is sufficient to render such an induction

legitimate. The history of pure Analysis is, it may be said, too

recent to permit us to set limits to the extent of its applications.

Should we grant to the inference a high degree of probability,

we might still, and with reason, maintain the sufficiency of the

definition to which the principle already stated would lead us.

We might justly assign it as the definitive character of

a true Calculus, that it is a method resting upon the

employment of Symbols, whose laws of combination are

known and general, and whose results admit of a consis-

tent interpretation. That to the existing forms of Analysis

a quantitative interpretation is assigned, is the result of the cir-

cumstances by which those forms were determined, and is not to

be construed into a universal condition of Analysis. It is upon

the foundation of this general principle, that I purpose

to establish the Calculus of Logic, and that I claim for it

a place among the acknowledged forms of Mathematical

Analysis, regardless that in its object and in its instru-

ments it must at present stand alone.

That which renders Logic possible, is the existence in our

minds of general notions,—our ability to conceive of a class, and

to designate its individual members by a common name.
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The theory of Logic is thus intimately connected with

It was the tradition to ground the

subject of logic in mental facul-

ties and processes, like Conception,

Judgement and Reasoning. Boole fo-

cused on conceptions of classes and

their elective operations; and the op-

erations of multiplication, addition

and subtraction of elective operations

(in LT these three operations would

be applied directly to conceptions of

classes).

that of Language. A successful attempt to express logical

propositions by symbols, the laws of whose combinations should

be founded upon the laws of the mental processes which

they represent, would, so far, be a step toward a philosophical

language. But this is a view which we need not here follow into

detail.∗ Assuming the notion of a class, we are able,
Given a class X, let x be the

operation on classes Y defined by

x(Y) := X ∩ Y. x will be called the

elective operation determined by X.

Given elective operations x, y, . . .,

one can compose them to form

an elective operation xy · · · . This

parallels ordinary language, e.g.,

one can think of the phrase “big

green giants” as first selecting green

objects from the class of giants, and

then selecting big objects from the

resulting class. Thus “big green” is a

composition of big and green.

The phrase “subject to special laws”

sounds better than “subject to pecu-

liar laws”.

from any conceivable collection of objects, to separate by

a mental act, those which belong to the given class, and

to contemplate them apart from the rest. Such, or a simi-

lar act of election, we may conceive to be repeated. The group of

individuals left under consideration may be still further limited,

by mentally selecting those among them which belong to some

other recognised class, as well as to the one before contemplated.

And this process may be repeated with other elements

of distinction, until we arrive at an individual possessing all

the distinctive characters which we have taken into account, and

a member, at the same time, of every class which we have enu-

merated. It is in fact a method similar to this which we

employ whenever, in common language, we accumulate

descriptive epithets for the sake of more precise defini-

tion.

Now the several mental operations which in the above

case we have supposed to be performed, are subject to pecu-

liar laws. It is possible to assign relations among them, whether

as respects the repetition of a given operation or the succession of

different ones, or some other particular, which are never violated.

It is, for example, true that the result of two successive

acts is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pagebreak in MAL)

∗This view is well expressed in one of Blanco White’s Letters:—“Logic

is for the most part a collection of technical rules founded on classification.

The Syllogism is nothing but a result of the classification of things, which the

mind naturally and necessarily forms, in forming a language. All abstract

terms are classifications; or rather the labels of the classes which the mind

has settled.”—Memoirs of the Rev. Joseph Blanco White, vol. ii. p. 163.

See also, for a very lucid introduction, Dr. Latham’s First Outlines of Logic

applied to Language, Becker’s German Grammar, &c. Extreme Nominalists

make Logic entirely dependent upon language. For the opposite view, see

Cudworth’s Eternal and Immutable Morality, Book IV. Chap. iii.



introduction. 6

unaffected by the order in which they are performed; and This is the commutative law: xy =

yx. The other two laws are the index

law xn = x and the distributive law

x(y + z) = xy + xz. In LT the index

law is replaced by the idempotent law

x2 = x.

there are at least two other laws which will be pointed

out in the proper place. These will perhaps to some appear

so obvious as to be ranked among necessary truths, and so little

important as to be undeserving of special notice. And probably

they are noticed for the first time in this Essay. Yet it

may with confidence be asserted, that if they were other than

they are, the entire mechanism of reasoning, nay the very laws

and constitution of the human intellect, would be vitally changed.

A Logic might indeed exist, but it would no longer be the Logic

we possess.

Boole’s glowing account of what his

algebraic approach to logic achieves is

tempered by how limited the subject

of logic was in the mid 19th century.

Such are the elementary laws upon the existence of which,

and upon their capability of exact symbolical expression, the

method of the following Essay is founded; and it is presumed that

the object which it seeks to attain will be thought to have been

very fully accomplished. Every logical proposition, whether

categorical or hypothetical, will be found to be capa-

ble of exact and rigorous expression, and not only will

the laws of conversion and of syllogism be thence de-

ducible, but the resolution of the most complex systems

of propositions, the separation of any proposed element,

and the expression of its value in terms of the remaining

elements, with every subsidiary relation involved. Ev-

ery process will represent deduction, every mathemat-

ical consequence will express a logical inference. The

generality of the method will even permit us to express

arbitrary operations of the intellect, and thus lead to the

demonstration of general theorems in logic analogous,

in no slight degree, to the general theorems of ordinary

mathematics. No inconsiderable part of the pleasure which

we derive from the application of analysis to the interpretation

of external nature, arises from the conceptions which it enables

us to form of the universality of the dominion of law. The gen-

eral formulæ to which we are conducted seem to give to that

element a visible presence, and the multitude of particular cases

to which they apply, demonstrate the extent of its sway. Even

the symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(pagebreak in MAL)
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of their analytical expression may in no fanciful sense be deemed

indicative of its harmony and its consistency. Now I do not pre-

sume to say to what extent the same sources of pleasure are

opened in the following Essay. The measure of that extent may

be left to the estimate of those who shall think the subject worthy

of their study. But I may venture to assert that such occasions

of intellectual gratification are not here wanting. The laws we Those working in symbolic logic

have long given up claims that logic

gives valuable insights into how

the mind works. It is simply the

study of what we accept as correct

reasoning. Unfortunately in LT Boole

would follow up in greater detail on

the connections of his system with

mental processes.

Actually, given an equation, Boole

states an equational condition that is

necessary and sufficient for the given

equation to have a solution; and if

there is a solution then Boole shows

how to find the general solution.

have to examine are the laws of one of the most impor-

tant of our mental faculties. The mathematics we have

to construct are the mathematics of the human intellect.

Nor are the form and character of the method, apart from all re-

gard to its interpretation, undeserving of notice. There is even

a remarkable exemplification, in its general theorems, of that

species of excellence which consists in freedom from ex-

ception. And this is observed where, in the corresponding cases

of the received mathematics, such a character is by no means

apparent. The few who think that there is that in analysis which

renders it deserving of attention for its own sake, may find it

worth while to study it under a form in which every equation

can be solved and every solution interpreted. Nor will it

lessen the interest of this study to reflect that every peculiarity

which they will notice in the form of the Calculus represents a

corresponding feature in the constitution of their own minds.

It would be premature to speak of the value which this method

may possess as an instrument of scientific investigation. I speak

here with reference to the theory of reasoning, and to the prin-

ciple of a true classification of the forms and cases of Logic con-

sidered as a Science.∗ The aim of these investigations was

Treating Aristotelian logic, slightly

generalized by Boole, by algebraic

means is covered in pages 20–

59. Pages 60–81 present some gen-

eral theorems of Boole’s algebra—

examples of how to apply these theo-

rems, in some cases improvements of

these theorems, to logic will mainly

appear in LT.

in the first instance confined to the expression of the

received logic, and to the forms of the Aristotelian ar-

rangement, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pagebreak in MAL)

∗“Strictly a Science”; also “an Art.”—Whately’s Elements of Logic. In-

deed ought we not to regard all Art as applied Science; unless we are willing,

with “the multitude,” to consider Art as “guessing and aiming well”?—Plato,

Philebus.
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but it soon became apparent that restrictions were thus
The categorical propositions were

expressed by simple equations.

Boole believed that conversions and

syllogisms, the bread and butter

of Aristotelian logic, could be

presented in a more coherent fashion

when viewed from the equational

perspective.

The general theory that starts on

page 60 would evolve into the main

part of his algebra of logic in LT. In

LT Aristotelian logic receives only

one small chapter, Chap. XV.

In the categorical propositions

A All X is Y

E No X is Y

I Some X is Y

O Some X is not Y
Boole allowed X to be replaced by

not-X as well as Y by not-Y.

This led to his three laws on p. 30

for transforming a categorical propo-

sition Φ into any other categorical

proposition Ψ that logically follows

from Φ.

TYPO: Of the Conversion

introduced, which were purely arbitrary and had no foun-

dation in the nature of things. These were noted as they oc-

curred, and will be discussed in the proper place. When it became

necessary to consider the subject of hypothetical propositions (in

which comparatively less has been done), and still more, when an

interpretation was demanded for the general theorems of the Cal-

culus, it was found to be imperative to dismiss all regard

for precedent and authority, and to interrogate the method

itself for an expression of the just limits of its application. Still,

however, there was no special effort to arrive at novel results.

But among those which at the time of their discovery appeared

to be such, it may be proper to notice the following.

A logical proposition is, according to the method of this Es-

say, expressible by an equation the form of which determines the

rules of conversion and of transformation, to which the given

proposition is subject. Thus the law of what logicians term sim-

ple conversion, is determined by the fact, that the corresponding

equations are symmetrical, that they are unaffected by a mu-

tual change of place, in those symbols which correspond to the

convertible classes. The received laws of conversion were

thus determined, and afterwards another system, which

is thought to be more elementary, and more general. See

Chapter, On the Conversion of Propositions.

The elimination theorem Boole

used in MAL (see p. 32) was rather

limited—the full-strength elimination

theorem would appear in LT. In the

chapter on categorical syllogisms in

MAL, Boole chose the two premiss

propositions from among the four

types (A,E,I,O) in Aristotelian logic,

but the most general conclusion

might not be Aristotelian.

TYPO: Of Syllogisms.

The premises of a syllogism being expressed by equa-

tions, the elimination of a common symbol between them

leads to a third equation which expresses the conclusion,

this conclusion being always the most general possible,

whether Aristotelian or not. Among the cases in which no

inference was possible, it was found, that there were two distinct

forms of the final equation. It was a considerable time before

the explanation of this fact was discovered, but it was at length

seen to depend upon the presence or absence of a true medium

of comparison between the premises. The distinction which is

thought to be new is illustrated in the Chapter, On Syllogisms.
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The nonexclusive character of the disjunctive conclusion of a

hypothetical syllogism, is very clearly pointed out in the examples

of this species of argument. The class of logical problems
TYPO: Of the Solution

Given a collection of premises

Φ1(~X,W), . . . , Φk(~X,W) about

classes ~X, W, there is a method to

find the general solution for W in

terms of ~X. If k > 1 this involves a

reduction of the equational versions

εi(~x,w) of the premises to a single

equation ε(~x,w,~λ) by “Lagrange

multipliers” ~λ. A single equation is

solved for w by formal division and

formal expansion.

illustrated in the chapter, On the Solution of Elective

Equations, is conceived to be new: and it is believed that

the method of that chapter affords the means of a perfect

analysis of any conceivable system of propositions, an

end toward which the rules for the conversion of a single

categorical proposition are but the first step.

However, upon the originality of these or any of these views,

I am conscious that I possess too slight an acquaintance with the

literature of logical science, and especially with its older litera-

ture, to permit me to speak with confidence.

These objections concern the

Hamilton–De Morgan dispute that

motivated Boole to write MAL. This

discussion will continue through

p. 13.

It may not be inappropriate, before concluding these

observations, to offer a few remarks upon the general

question of the use of symbolical language in the math-

ematics. Objections have lately been very strongly urged

against this practice, on the ground, that by obviating the neces-

sity of thought, and substituting a reference to general formulæ

in the room of personal effort, it tends to weaken the reasoning

faculties.

Now the question of the use of symbols may be considered

in two distinct points of view. First, it may be considered with

reference to the progress of scientific discovery, and secondly, with

reference to its bearing upon the discipline of the intellect.

And with respect to the first view, it may be observed that as

it is one fruit of an accomplished labour, that it sets us at liberty

to engage in more arduous toils, so it is a necessary result of an

advanced state of science, that we are permitted, and even called

upon, to proceed to higher problems, than those which we before

contemplated. The practical inference is obvious. If through the

advancing power of scientific methods, we find that the pursuits

on which we were once engaged, afford no longer a sufficiently

ample field for intellectual effort, the remedy is, to proceed to

higher inquiries, and, in new tracks, to seek for difficulties yet

unsubdued. And such is, . . . . . . . . . . . . . . . . . . . . . . . (pagebreak in MAL)
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indeed, the actual law of scientific progress. We must be content,

either to abandon the hope of further conquest, or to employ

such aids of symbolical language, as are proper to the stage of

progress, at which we have arrived. Nor need we fear to commit

ourselves to such a course. We have not yet arrived so near to the

boundaries of possible knowledge, as to suggest the apprehension,

that scope will fail for the exercise of the inventive faculties.

In discussing the second, and scarcely less momentous ques-

tion of the influence of the use of symbols upon the discipline of

the intellect, an important distinction ought to be made. It is

of most material consequence, whether those symbols are used

with a full understanding of their meaning, with a perfect com-

prehension of that which renders their use lawful, and an ability

to expand the abbreviated forms of reasoning which they induce,

into their full syllogistic devolopment; or whether they are mere TYPO: development

unsuggestive characters, the use of which is suffered to rest upon

authority.

The answer which must be given to the question proposed,

will differ according as the one or the other of these suppositions

is admitted. In the former case an intellectual discipline of a high

order is provided, an exercise not only of reason, but of the faculty

of generalization. In the latter case there is no mental discipline

whatever. It were perhaps the best security against the danger

of an unreasoning reliance upon symbols, on the one hand, and

a neglect of their just claims on the other, that each subject

of applied mathematics should be treated in the spirit of the

methods which were known at the time when the application was

made, but in the best form which those methods have assumed.

The order of attainment in the individual mind would thus bear

some relation to the actual order of scientific discovery, and the

more abstract methods of the higher analysis would be offered to

such minds only, as were prepared to receive them.

The relation in which this Essay stands at once to Logic and
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to Mathematics, may further justify some notice of the question

which has lately been revived, as to the relative value of the two

studies in a liberal education. One of the chief objections which

have been urged against the study of Mathematics in general,

is but another form of that which has been already considered

with respect to the use of symbols in particular. And it need not

here be further dwelt upon, than to notice, that if it avails any-

thing, it applies with an equal force against the study of Logic.

The canonical forms of the Aristotelian syllogism are re-

ally symbolical; only the symbols are less perfect of their

kind than those of mathematics. If they are employed to test

the validity of an argument, they as truly supersede the exercise

of reason, as does a reference to a formula of analysis. Whether

men do, in the present day, make this use of the Aristotelian

canons, except as a special illustration of the rules of Logic, may

be doubted; yet it cannot be questioned that when the authority

of Aristotle was dominant in the schools of Europe, such appli-

cations were habitually made. And our argument only requires

the admission, that the case is possible.

Sir W. Hamilton’s views on Logic and

Mathematics.

But the question before us has been argued upon higher

grounds. Regarding Logic as a branch of Philosophy, and defining

Philosophy as the “science of a real existence,” and “the research

of causes,” and assigning as its main business the investigation of

the “why, (τὸ δίοτι),” while Mathematics display only the “that,

(τὸ ὁτὶ),” Sir W. Hamilton has contended, not simply,

that the superiority rests with the study of Logic, but

that the study of Mathematics is at once dangerous and

useless.∗ The pursuits of the mathematician “have not only not

trained him to that acute scent, to that delicate, almost instinc-

tive, tact which, in the twilight of probability, the search and

discrimination of its finer facts demand; they have gone to cloud

his vision, to indurate his touch, to all but the blazing light, the

iron chain of demonstration, and left him out of the narrow con-

fines of his science, to a passive credulity in any premises, or to

(pagebreak in MAL)

∗Edinburgh Review, vol. lxii. p. 409, and Letter to A. De Morgan, Esq.
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an absolute incredulity in all.” In support of these and of other

charges, both argument and copious authority are adduced.∗

I shall not attempt a complete discussion of the topics which

are suggested by these remarks. My object is not controversy,

and the observations which follow are offered not in the spirit of

antagonism, but in the hope of contributing to the formation of

just views upon an important subject. Of Sir W. Hamilton it

is impossible to speak otherwise than with that respect which is

due to genius and learning.

Philosophy is then described as the science of a real existence

and the research of causes. And that no doubt may rest upon

the meaning of the word cause, it is further said, that philosophy

“mainly investigates the why.” These definitions are common

among the ancient writers. Thus Seneca, one of Sir W. Hamil-

ton’s authorities, Epistle lxxxviii., “The philosopher seeks and

knows the causes of natural things, of which the mathematician

searches out and computes the numbers and the measures.” It

may be remarked, in passing, that in whatever degree the belief

has prevailed, that the business of philosophy is immediately with

causes; in the same degree has every science whose object is the

investigation of laws, been lightly esteemed. Thus the Epistle to

which we have referred, bestows, by contrast with Philosophy, a

separate condemnation on Music and Grammar, on Mathematics

and Astronomy, although it is that of Mathematics only that Sir

W. Hamilton has quoted.

Now we might take our stand upon the conviction of many

thoughtful and reflective minds, that in the extent of the mean-

ing above stated, Philosophy is impossible. The business of true

Science, they conclude, is with laws and phenomena. The na-

ture of Being, the mode of the operation of Cause, the why,

∗The arguments are in general better than the authorities. Many writers

quoted in condemnation of mathematics (Aristo, Seneca, Jerome, Augus-

tine, Cornelius Agrippa, &c.) have borne a no less explicit testimony against

other sciences, nor least of all, against that of logic. The treatise of the last

named writer De Vanitate Scientiarum, must surely have been referred to by

mistake.—Vide cap. cii.
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they hold to be beyond the reach of our intelligence. But we do

not require the vantage-ground of this position; nor is it doubted

that whether the aim of Philosophy is attainable or not, the

desire which impels us to the attempt is an instinct of our higher

nature. Let it be granted that the problem which has baffled

the efforts of ages, is not a hopeless one; that the “science of

a real existence,” and “the research of causes,” “that kernel”

for which “Philosophy is still militant,” do not transcend the

limits of the human intellect. I am then compelled to assert,
Boole said that Logic is related to

mathematics, not philosophy.
that according to this view of the nature of Philosophy,

Logic forms no part of it. On the principle of a true

classification, we ought no longer to associate Logic and

Metaphysics, but Logic and Mathematics.

Should any one after what has been said, entertain a doubt

upon this point, I must refer him to the evidence which will be

afforded in the following Essay. He will there see Logic rest-

ing like Geometry upon axiomatic truths, and its theorems con-

structed upon that general doctrine of symbols, which constitutes

the foundation of the recognised Analysis. In the Logic of Aristo-

tle he will be led to view a collection of the formulæ of the science,

expressed by another, but, (it is thought) less perfect scheme of

symbols. I feel bound to contend for the absolute exactness of

this parallel. It is no escape from the conclusion to which it points

to assert, that Logic not only constructs a science, but also in-

quires into the origin and the nature of its own principles,—a

distinction which is denied to Mathematics. “It is wholly beyond

the domain of mathematicians,” it is said, “to inquire into the

origin and nature of their principles.”—Review, page 415. But

upon what ground can such a distinction be maintained? What

definition of the term Science will be found sufficiently arbitrary

to allow such differences?

The application of this conclusion to the question before us

is clear and decisive. The mental discipline which is afforded by

the study of Logic, as an exact science, is, in species, the same

as that afforded by the study of Analysis.
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Is it then contended that either Logic or Mathematics can

supply a perfect discipline to the Intellect? The most care-

ful and unprejudiced examination of this question leads me to

doubt whether such a position can be maintained. The exclusive

claims of either must, I believe, be abandoned, nor can any oth-

ers, partaking of a like exclusive character, be admitted in their

room. It is an important observation, which has more

than once been made, that it is one thing to arrive at

correct premises, and another thing to deduce logical

conclusions, and that the business of life depends more

upon the former than upon the latter. The study of the

exact sciences may teach us the one, and it may give us some

general preparation of knowledge and of practice for the attain-

ment of the other, but it is to the union of thought with action,

in the field of Practical Logic, the arena of Human Life, that we

are to look for its fuller and more perfect accomplishment.

I desire here to express my conviction, that with the advance

of our knowledge of all true science, an ever-increasing harmony

will be found to prevail among its separate branches. The view

which leads to the rejection of one, ought, if consistent, to lead

to the rejection of others. And indeed many of the authorities

which have been quoted against the study of Mathematics, are

even more explicit in their condemnation of Logic. “Natural

science,” says the Chian Aristo, “is above us, Logical science

does not concern us.” When such conclusions are founded (as

they often are) upon a deep conviction of the preeminent value

and importance of the study of Morals, we admit the premises,

but must demur to the inference. For it has been well said by an

ancient writer, that it is the “characteristic of the liberal sciences,

not that they conduct us to Virtue, but that they prepare us for

Virtue;” and Melancthon’s sentiment, “abeunt studia in mores,”

has passed into a proverb. Moreover, there is a common ground

upon which all sincere votaries of truth may meet, exchanging

with each other the language of Flamsteed’s appeal to Newton,

“The works of the Eternal Providence will be better understood

through your labors and mine.”



FIRST PRINCIPLES.

In LT Boole used 1 to denote the uni-

verse of discourse—this could be ei-

ther the universe of MAL or a limited

universe (introduced by De Morgan

in 1847 in his book “Formal Logic”).

We would say ‘let X,Y,Z denote

classes’.

(In LT capital letters are used to de-

note terms.)

Let us employ the symbol 1, or unity, to represent

the Universe, and let us understand it as comprehend-

ing every conceivable class of objects whether actually

existing or not, it being premised that the same individual

may be found in more than one class, inasmuch as it may possess

more than one quality in common with other individuals. Let

us employ the letters X, Y, Z, to represent the individual

members of classes, X applying to every member of one class,

as members of that particular class, and Y to every member of

another class as members of such class, and so on, according to

the received language of treatises on Logic.

x, y, z denote elective operations.

Boole did not permit a class to have

just one element in MAL, but he did

in LT.

Further let us conceive a class of symbols x, y, z, possessed

of the following character.

The symbol x operating upon any subject comprehending in-

dividuals or classes, shall be supposed to select from that subject

all the Xs which it contains. In like manner the symbol y, op-

erating upon any subject, shall be supposed to select from it all

individuals of the class Y which are comprised in it, and so on.

Clearly X = x(1). Modern al-

gebraists are happy to deal with

algebras of operators without requir-

ing that a subject be present.

In MAL, did Boole regard a class as

merely a notion from common lan-

guage, and not to be considered as

a mathematical object?

When no subject is expressed, we shall suppose 1 (the Uni-

verse) to be the subject understood, so that we shall have

x = x (1),

the meaning of either term being the selection from the Universe

of all the Xs which it contains, and the result of the operation
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being in common language, the class X, i. e. the class of which

each member is an X.

This does not follow from ‘these

premises’. For a modern algebra

of elective operations the product xy

would be defined as the composition

(xy)(Z) = x(y(Z)) = X∩Y∩Z. Thus

the product xy of two elective opera-

tions x, y is again an elective opera-

tion, the one determined by the class

X ∩ Y. But Boole seems to say that

xy is X ∩Y.

From these premises it will follow, that the product xy

will represent, in succession, the selection of the class Y, and the

selection from the class Y of such individuals of the class X as are

contained in it, the result being the class whose members are both

Xs and Ys. And in like manner the product xyz will represent

a compound operation of which the successive elements are the

selection of the class Z, the selection from it of such individuals

of the class Y as are contained in it, and the selection from the

result thus obtained of all the individuals of the class X which it

contains, the final result being the class common to X, Y, and Z.

Boole’s definitions of elective sym-

bols, functions and equations.

From the nature of the operation which the symbols x, y, z,

are conceived to represent, we shall designate them as elective

symbols. An expression in which they are involved will be called

an elective function, and an equation of which the members

are elective functions, will be termed an elective equation.

It will not be necessary that we should here enter into the

analysis of that mental operation which we have represented by

the elective symbol. It is not an act of Abstraction according to

the common acceptation of that term, because we never lose sight

of the concrete, but it may probably be referred to an exercise of

the faculties of Comparison and Attention. Our present concern

is rather with the laws of combination and of succession, by which

its results are governed, and of these it will suffice to notice the

following.

The distributive law.1st. The result of an act of election is independent of

the grouping or classification of the subject.

Boole was verbally describing

x(U ∪V) = x(U) ∪ x(V)

where U ∩ V = Ø. He does not

comment on whether this law applies

when U ∩V 6= Ø.

Thus it is indifferent whether from a group of objects consid-

ered as a whole, we select the class X, or whether we divide the

group into two parts, select the Xs from them separately, and

then connect the results in one aggregate conception.

We may express this law mathematically by the equation

x(u+ v) = xu+ xv,
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u+ v representing the undivided subject, and u and v the com-

ponent parts of it.

The commutative law for multiplica-

tion.

2nd. It is indifferent in what order two successive

acts of election are performed.

Whether from the class of animals we select sheep, and from

the sheep those which are horned, or whether from the class of

animals we select the horned, and from these such as are sheep,

the result is unaffected. In either case we arrive at the class

horned sheep.

The symbolical expression of this law is

xy = yx.

x2 = x is, in modern terminology, the

idempotent law. Boole called xn = x

the index law on the next page. This

is really an infinite collection of laws,

namely x2 = x, x3 = x, etc.

The index law only applies to vari-

ables, but one can prove that there

are many other elective functions that

satisfy the index law, for example,

1− x and x+ y − xy.

3rd. The result of a given act of election performed

twice, or any number of times in succession, is the result

of the same act performed once.

If from a group of objects we select the Xs, we obtain a class

of which all the members are Xs. If we repeat the operation on

this class no further change will ensue: in selecting the Xs we

take the whole. Thus we have

xx = x,

or x2 = x;

and supposing the same operation to be n times performed, we

have
xn = x,

which is the mathematical expression of the law above stated.∗

The laws we have established under the symbolical forms x(u + v) is the first instance where

Boole has presented an elective func-

tion that is not totally defined (one

needs U ∩ V = Ø). The next occur-

rences of such elective functions are

in his Elimination Theorem on p. 32.

The justification of the use of par-

tially defined functions to obtain re-

sults about totally defined functions

is a major topic in LT; unfortunately

Boole’s justification is not correct.

An example where +n = + is due

to Gregory in “On the real nature of

symbolical algebra”, Transactions of

the Royal Society of Edinburgh, 14

(1840), 208-16 (p. 208).

x(u+ v) = xu+ xv (1)

xy = yx (2)

xn = x (3)

∗The office of the elective symbol x, is to select individuals comprehended

in the class X. Let the class X be supposed to embrace the universe; then,

whatever the class Y may be, we have

xy = y.

The office which x performs is now equivalent to the symbol +, in one at

least of its interpretations, and the index law (3) gives

+n = +,

which is the known property of that symbol.
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are sufficient for the basis of a Calculus. From the first of these,
it appears that elective symbols are distributive, from the sec-
ond that they are commutative; properties which they possess
in common with symbols of quantity, and in virtue of which, all

Boole incorrectly assumed that the

distributive law and the commutative

law, along with his single inference

rule (called an axiom), were all one

needed to justify using the algebra of

numbers. [Cont’d below at (**).]

the processes of Common Algebra are applicable to the

present system. The one and sufficient axiom involved in this

application is that equivalent operations performed upon

equivalent subjects produce equivalent results.∗

The third law (3) we shall denominate the index law. It
Better: “It only applies to elective

symbols, and will be found of great

importance in enabling us to reduce

our results to forms suitable for in-

terpretation”.

is peculiar to elective symbols, and will be found of great im-

portance in enabling us to reduce our results to forms meet for
interpretation.

It is safe to assume that the “pro-

cesses of algebra” include using

equations and equational arguments

that are valid in the algebra of

numbers.

(**) The valid equations and equa-

tional arguments of Boole’s Algebra

are precisely those that can be de-

rived from those that hold in the in-

tegers Z along with the index law

xn = x for variables.

From the circumstance that the processes of algebra may
be applied to the present system, it is not to be inferred that

the interpretation of an elective equation will be unaffected by
such processes. The expression of a truth cannot be negatived
by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pagebreak in MAL)

∗It is generally asserted by writers on Logic, that all reasoning ultimately

depends on an application of the dictum of Aristotle, de omni et nullo.

“Whatever is predicated universally of any class of things, may be predi-

cated in like manner of any thing comprehended in that class.” But it is

agreed that this dictum is not immediately applicable in all cases, and that

in a majority of instances, a certain previous process of reduction is neces-

sary. What are the elements involved in that process of reduction? Clearly

they are as much a part of general reasoning as the dictum itself.

Another mode of considering the subject resolves all reasoning into an

application of one or other of the following canons, viz.

1. If two terms agree with one and the same third, they agree with each

other.

2. If one term agrees, and another disagrees, with one and the same third,

these two disagree with each other.

But the application of these canons depends on mental acts equivalent to

those which are involved in the before-named process of reduction. We have

to select individuals from classes, to convert propositions, &c., before we can

avail ourselves of their guidance. Any account of the process of reasoning is

insufficient, which does not represent, as well the laws of the operation which

the mind performs in that process, as the primary truths which it recognises

and applies.

It is presumed that the laws in question are adequately repre-

sented by the fundamental equations of the present Calculus. The

proof of this will be found in its capability of expressing proposi-

tions, and of exhibiting in the results of its processes, every result

that may be arrived at by ordinary reasoning.
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a legitimate operation, but it may be limited. The equation

y = z implies that the classes Y and Z are equivalent, member

for member. Multiply it by a factor x, and we have

xy = xz,

which expresses that the individuals which are common to the

classes X and Y are also common to X and Z, and vice versâ. This

is a perfectly legitimate inference, but the fact which it declares

is a less general one than was asserted in the original proposition.



OF EXPRESSION AND INTERPRETATION.

A Proposition is a sentence which either affirms or denies, as, All

men are mortal, No creature is independent.

A Proposition has necessarily two terms, as men, mortal ; the former of

which, or the one spoken of, is called the subject; the latter, or that which

is affirmed or denied of the subject, the predicate. These are connected

together by the copula is, or is not, or by some other modification of the

substantive verb.

The substantive verb is the only verb recognised in Logic; all

others are resolvable by means of the verb to be and a participle or adjec-

tive, e. g. “The Romans conquered”; the word conquered is both copula and

predicate, being equivalent to “were (copula) victorious” (predicate).

A Proposition must either be affirmative or negative, and must be

also either universal or particular. Thus we reckon in all, four kinds of

pure categorical Propositions.
The four kinds of (pure) categorical

propositions in Aristotelian logic. In

LT the categorical propositions will

be replaced by primary propositions,

defined as propositions about classes.

1st. Universal-affirmative, usually represented by A,

Ex. All Xs are Ys.

2nd. Universal-negative, usually represented by E,

Ex. No Xs are Ys.

3rd. Particular-affirmative, usually represented by I,

Ex. Some Xs are Ys.

4th. Particular-negative, usually represented by O,∗

Ex. Some Xs are not Ys.

1. To express the class, not-X, that is, the class in-

cluding all individuals that are not Xs.

The minus sign (−) is introduced

here; Boole said not-X is expressed

by 1 − x. The claim of “therefore”

needs clarification. The general sub-

traction operation “−” does not ap-

pear until equation (15) on page 32,

and not again until page 43. It is not

defined, only used.

The class X and the class not-X together make the Universe.

But the Universe is 1, and the class X is determined by the

symbol x, therefore the class not-X will be determined by

the symbol 1− x.

∗The above is taken, with little variation, from the Treatises of Aldrich

and Whately.
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Hence the office of the symbol 1−x attached to a given subject

will be, to select from it all the not-Xs which it contains.

And in like manner, as the product xy expresses the entire

class whose members are both Xs and Ys, the symbol y(1 − x)

will represent the class whose members are Ys but not Xs, and

the symbol (1 − x)(1 − y) the entire class whose members are

neither Xs nor Ys.

2. To express the Proposition, All Xs are Ys.

All X’s are Y’s is expressed

by xy = x, or equivalently, by

x(1 − y) = 0. Boole changed this to

x = vy in LT, following a suggestion

of Graves. See pp. 45, 82.

Item (4) is the first time Boole used

“0”, and it is undefined. “= 0”

seems to function as a predicate, with

p(~x) = 0 meaning that p(~x) “does not

exist” if it is a term that denotes a

class.

As all the Xs which exist are found in the class Y, it is obvious

that to select out of the Universe all Ys, and from these to select

all Xs, is the same as to select at once from the Universe all Xs.

Hence

xy = x,

or

x(1− y) = 0. (4)

3. To express the Proposition, No Xs are Ys.
No X’s are Y’s is expressed by xy = 0.

Boole changed this to x = v(1− y) in

LT. The word “terms” as used here

means “elements”.

To assert that no Xs are Ys, is the same as to assert that

there are no terms common to the classes X and Y. Now all

individuals common to those classes are represented by xy. Hence

the Proposition that No Xs are Ys, is represented by the equation

xy = 0. (5)

4. To express the Proposition, Some Xs are Ys.
Some X’s are Y’s is expressed by v =

xy. (It is assumed that V denotes a

non-empty class.) Boole changed this

to vx = vy in LT.

If some Xs are Ys, there are some terms common to the classes

X and Y. Let those terms constitute a separate class V, to which

there shall correspond a separate elective symbol v, then

v = xy. (6)

And as v includes all terms common to the classes X and Y, we TYPO: The phrase “as v includes”

should be “as V includes”.can indifferently interpret it, as Some Xs, or Some Ys.
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5. To express the Proposition, Some Xs are not Ys.
Some X’s are not Y’s is expressed by

v = x(1 − y). Boole changed this to

vx = v(1− y) in LT.

In the last equation write 1− y for y, and we have

v = x(1− y), (7)

the interpretation of v being indifferently Some Xs or Some not-

Ys.

The above equations involve the complete theory of

categorical Propositions, and so far as respects the employ-

ment of analysis for the deduction of logical inferences, nothing

more can be desired. But it may be satisfactory to no-

tice some particular forms deducible from the third and

fourth equations, and susceptible of similar application.
Equation (3) is on p. 17, and (4) is on

p. 21. They are used to derive forms

of (6) and (7) which will be used in

analyzing syllogisms.

If we multiply the equation (6) by x, we have

vx = x2y = xy by (3).

Comparing with (6), we find

v = vx,

or
v(1− x) = 0. (8)

And multiplying (6) by y, and reducing in a similar manner,

we have

v = vy,

or

v(1− y) = 0. (9)

(10) is equivalent to the single equa-

tion v = vxy, which in turn is implied

by v = xy.

Comparing (8) and (9),

vx = vy = v. (10)

And further comparing (8) and (9) with (4), we have as the

equivalent of this system of equations the Propositions

All Vs are Xs

All Vs are Ys

}
.

v = vxy implies vx = vy. Thus

v = xy ⇒ v = vxy ⇒ vx = vy.

It now seems best to encode ‘Some X

is Y’ by v = vxy.

The system (10) might be used to replace (6), or the single

equation

vx = vy, (11)

might be used, assigning to vx the interpretation, Some Xs, and

to vy the interpretation, Some Ys. But it will be observed that
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this system does not express quite so much as the single equa-

tion (6), from which it is derived. Both, indeed, express the

Proposition, Some Xs are Ys, but the system (10) does not im-

ply that the class V includes all the terms that are common to

X and Y.

(12) is equivalent to the single equa-

tion v = vx(1 − y), which is implied

by v = x(1− y).

In like manner, from the equation (7) which expresses the

Proposition Some Xs are not Ys, we may deduce the system

vx = v(1− y) = v, (12)

in which the interpretation of v(1− y) is Some not-Ys. Since in

this case vy = 0, we must of course be careful not to interpret vy

as Some Ys.

v = vx(1 − y) implies vx = v(1 − y).

Thus

v = x(1− y) ⇒ v = vx(1− y)

⇒ vx = v(1− y).

It now seems best to encode “Some X

is not Y” by v = vx(1− y).

If we multiply the first equation of the system (12), viz.

vx = v(1− y),

by y, we have

vxy = vy(1− y);

∴ vxy = 0, (13)

which is a form that will occasionally present itself. It is not

necessary to revert to the primitive equation in order to interpret

this, for the condition that vx represents Some Xs, shews us by

virtue of (5), that its import will be

Some Xs are not Ys,

the subject comprising all the Xs that are found in the class V.

Universally in these cases, difference of form implies a differ-

ence of interpretation with respect to the auxiliary symbol v, and

each form is interpretable by itself.

Boole needed the alternate forms in

the Table on p. 25 to derive the valid

syllogisms.

Further, these differences do not introduce into the Calculus

a needless perplexity. It will hereafter be seen that they give

a precision and a definiteness to its conclusions, which

could not otherwise be secured.

This says that if Φ ∴ Φ′ is valid then

from any equation ε expressing Φ one

can deduce an equation ε′ whose in-

terpretation is Φ′.

Finally, we may remark that all the equations by which par-

ticular truths are expressed, are deducible from any one general

equation, expressing any one general Proposition, from which

those particular Propositions are necessary deductions.
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This has been partially shewn already, but it is much more fully

To illustrate the previous remark

Boole started with the proposition

that X and Y are equivalent, expressed

by x = y. Then he proceeded to show

that each of the consequences All X is

Y, All Y is X, Some X is Y and some

Some Y is X is the interpretation of

an equation derived from x = y.

exemplified in the following scheme.

The general equation

x = y,

implies that the classes X and Y are equivalent, member for

member; that every individual belonging to the one, belongs to

the other also. Multiply the equation by x, and we have

x2 = xy;

∴ x = xy,

which implies, by (4), that all Xs are Ys. Multiply the same

equation by y, and we have in like manner

y = xy;

the import of which is, that all Ys are Xs. Take either of these

equations, the latter for instance, and writing it under the form

(1− x)y = 0,

we may regard it as an equation in which y, an unknown quan-

tity, is sought to be expressed in terms of x. Now it will be

Checking that y = vx is a solution,

by substitution into (1 − x)y = 0,

does not guarantee that it is the

most general solution.

TYPO: Multiply by v (not by x)

This is Boole’s algebraic proof that

‘All Y is X’ implies ‘Some X is Y’,

known as Conversion by Limitation.

shewn when we come to treat of the Solution of Elective

Equations (and the result may here be verified by sub-

stitution) that the most general solution of this equation

is

y = vx,

which implies that All Ys are Xs, and that Some Xs

are Ys. Multiply by x, and we have

vy = vx,

which indifferently implies that some Ys are Xs and some Xs

are Ys, being the particular form at which we before ar-

rived.

For convenience of reference the above and some other re-

sults have been classified in the annexed Table, the first column

of which contains propositions, the second equations, and the

third the conditions of final interpretation. It is to be ob- The auxiliary equations play a signif-

icant role in Boole’s method of show-

ing that certain premises do not be-

long to a valid syllogism, by deducing

0=0.

served, that the auxiliary equations which are given in this

column are not independent: they are implied either in the equa-

tions of the second column, or in the condition for (pagebreak in MAL)



of expression and interpretation. 25

the interpretation of v. But it has been thought better to write

them separately, for greater ease and convenience. And it is

further to be borne in mind, that although three different forms

are given for the expression of each of the particular propositions,

everything is really included in the first form.

One cannot derive y = vx from

y = yx in equational logic. However

in first-order logic one can easily

derive (∃v)(y = vx) from y = yx.

Then a standard step would be to

say ‘choose a v such that y = vx’ to

get back into equational logic.

y = vx implies y = yx in Boole’s

Algebra—just multiply both sides of

y = vx by 1 − x. Thus from y = vx

one can conclude ‘All Y is X’.

To get v to behave like ‘some’ one

needs an additional assumption,

namely y 6= 0. As before derive

(∃v)(y = vx), and then choose a

suitable v so that y = vx. Then one

has y = vx = vy, all 6= 0, so one can

conclude that ‘Some X is Y’.

Boole wanted his algebra to apply to

the traditional Aristotelian logic. To

properly handle ‘some’ the simplest

solution is to require that all class

variables X, Y, etc., refer to non-

empty classes. This means adding

the assertions x 6= 0, y 6= 0, etc.,

to the assumptions about Boole’s

Algebra.

Assuming Boole wanted to treat

contraries not-X, not-Y, etc., on an

equal footing with simply named

classes, require also that no class

symbol refers to the universe 1, that

is, x 6= 1, etc.

These negated equations complicate

a rigorous version of Boole’s Algebra.

In modern logic they are dropped,

and one can no longer derive particu-

lar propositions from universal propo-

sitions. Thus, for example, Conver-

sion by Limitation is rejected in mod-

ern logic. Boole’s Algebra is more

elegant when the non-empty, non-

universe restrictions on class symbols

are dropped. But then it does not

faithfully reflect Aristotelian logic.

TABLE.

The class X x

The class not-X 1− x

All Xs are Ys

All Ys are Xs

}
x = y

All Xs are Ys x(1− y) = 0

No Xs are Ys xy = 0

All Ys are Xs

Some Xs are Ys

}
y = vx

vx = Some Xs

v(1− x) = 0.

No Ys are Xs

Some not-Xs are Ys

}
y = v(1− x)

v(1− x) = some not-Xs

vx = 0.

Some Xs are Ys


v = xy

or vx = vy

or vx(1− y) = 0

v = some Xs or some Ys

vx = some Xs, vy = some Ys

v(1− x) = 0, v(1− y) = 0.

Some Xs are not Ys


v = x(1− y)

or vx = v(1− y)

or vxy = 0

v = some Xs, or some not-Ys

vx = some Xs, v(1− y) = some not-Ys

v(1− x) = 0, vy = 0.



OF THE CONVERSION OF PROPOSITIONS.

The acceptance of conversion per ac-

cidens implies that a universal sub-

ject of a categorical proposition must

be non-empty. This kind of con-

version was rejected by C.S. Peirce

in 1880, making the algebra of logic

more elegant.

A Proposition is said to be converted when its terms are transposed;

when nothing more is done, this is called simple conversion; e. g.

No virtuous man is a tyrant, is converted into

No tyrant is a virtuous man.

Logicians also recognise conversion per accidens, or by limita-

tion, e. g.

All birds are animals, is converted into

Some animals are birds.

And conversion by contraposition or negation, as

Every poet is a man of genius, converted into

He who is not a man of genius is not a poet.

Converting a proposition Φ into Ψ

illatively means that (a) Ψ is a con-

verted form of Φ, and (b) Φ implies Ψ.

The four kinds of categorical propo-

sitions in Aristotelian logic were in-

troduced on p. 20 and their primary

equational forms were given in the

next two pages. Here Boole applies

the four kinds A,E,I,O to the equa-

tional expressions as well as to the

propositions.

In one of these three ways every Proposition may be illatively

converted, viz. E and I simply, A and O by negation, A and E by

limitation.

The primary canonical forms already determined for the ex-

pression of Propositions, are

All Xs are Ys, x(1− y) = 0, .... A.

No Xs are Ys, xy = 0, .... E.

Some Xs are Ys, v = xy, .... I.

Some Xs are not Ys, v = x(1− y) ....O.

On examining these, we perceive that E and I are symmetrical

with respect to x and y, so that x being changed into y, and

y into x, the equations remain unchanged. Hence E and I may

be interpreted into

No Ys are Xs,

Some Ys are Xs,

respectively. Thus we have the known rule of the Logicians,

that particular affirmative and universal negative Propo-

Some of the RULES that follow are

labelled so as to match Boole’s Laws

of Transformation on p. 30. The

other RULES can be derived from

these Laws.

RULE 3 (Simple Conversion).sitions admit of simple conversion.
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The equations A and O may be written in the forms

(1− y)
{

1− (1− x)
}

= 0,

v = (1− y)
{

1− (1− x)
}
.

Now these are precisely the forms which we should have ob-

tained if we had in those equations changed x into 1 − y, and

y into 1 − x, which would have represented the changing in the

original Propositions of the Xs into not-Ys, and the Ys into not-

Xs, the resulting Propositions being

All not-Ys are not-Xs,

Some not-Ys are not not-Xs. (a)

Or we may, by simply inverting the order of the factors in the

second member of O, and writing it in the form

v = (1− y)x,

interpret it by I into

Some not-Ys are Xs,

which is really another form of (a). Hence follows the rule,
RULE for Conversion by Contraposi-

tion.
that universal affirmative and particular negative Propo-

sitions admit of negative conversion, or, as it is also

termed, conversion by contraposition.

The equations A and E, written in the forms

(1− y)x = 0,

yx = 0,

give on solution the respective forms

x = vy,

x = v(1− y),

the correctness of which may be shewn by substituting these
Substitution can be used to verify

that one has a solution, but it does

not show that one has the most gen-

eral solution.

values of x in the equations to which they belong, and observ-

ing that those equations are satisfied quite independently of the

nature of the symbol v. The first solution may be interpreted

into

Some Ys are Xs,

and the second into

Some not-Ys are Xs.
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From which it appears that universal-affirmative, and universal-

negative Propositions are convertible by limitation, or,

as it has been termed, per accidens.

RULE for Conversion by Limitation.

In Formal Logic (1847) De Morgan ar-

gued strenuously for the right to in-

clude the contrary of terms, like “not-

X”, in logic. (De Morgan wrote x for

the contrary of X.)

The above are the laws of Conversion recognized by Abp.

Whately. Writers differ however as to the admissibility of

negative conversion. The question depends on whether

we will consent to use such terms as not-X, not-Y. Agree-

ing with those who think that such terms ought to be admitted,

even although they change the kind of the Proposition, I am con-

strained to observe that the present classification of them

is faulty and defective. Thus the conversion of No Xs are Ys,

into All Ys are not-Xs, though perfectly legitimate, is not recog-

nised in the above scheme. It may therefore be proper to examine

the subject somewhat more fully.

Boole’s transformation laws are on

p. 30.

Should we endeavour, from the system of equations we have

obtained, to deduce the laws not only of the conversion,

but also of the general transformation of propositions,

we should be led to recognise the following distinct elements,

each connected with a distinct mathematical process.
Three minimal ways to transform a

categorical proposition into another

categorical proposition. Every trans-

formation that Boole considered can

be expressed as a composition of these

three.

1st. The negation of a term, i. e. the changing of X into

not-X, or not-X into X.

2nd. The translation of a Proposition from one kind

to another, as if we should change

All Xs are Ys into Some Xs are Ys A into I,

which would be lawful; or

All Xs are Ys into No Xs are Y. A into E,

which would be unlawful.

3rd. The simple conversion of a Proposition.

The conditions in obedience to which these processes may

lawfully be performed, may be deduced from the equations by

which Propositions are expressed.

We have

All Xs are Ys . . . . . . . . . . . . . x(1− y) = 0. A,

No Xs are Ys . . . . . . . . . . . . . . . . . . . xy = 0. E.
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Write E in the form

x
{

1− (1− y)
}

= 0,

and it is interpretable by A into

All Xs are not-Ys,

so that we may change

No Xs are Ys into All Xs are not-Ys.

In like manner A interpreted by E gives

No Xs are not-Ys,

so that we may change

All Xs are Ys into No Xs are not-Ys.

The next three RULES are due to

Boole. They are not conversions,

as indicated by the examples he

provided, but lawful transformations,

defined on the next page. It would be

clearer if the phrase “is convertible

into” in these rules is replaced by

“can be lawfully transformed into”.

In the following, X̂ can be either X

or not-X, and Ŷ can be either Y or

not-Y.

RULE 1a:

All X̂ is Ŷ ⇒ No X̂ is not-Ŷ.

No X̂ is Ŷ ⇒ All X̂ is not-Ŷ.

From these cases we have the following Rule: A universal-

affirmative Proposition is convertible into a universal-

negative, and, vice versâ, by negation of the predicate.

Again, we have

Some Xs are Ys . . . . . . . . . . . . . . . . . . . . . . . . v = xy,

Some Xs are not Ys . . . . . . . . . . . . . . . . . . . . .v = x(1− y).

These equations only differ from those last considered by the

RULE: 1b

Some X̂ is Ŷ

⇒ Some X̂ is not not-Ŷ.

Some X̂ is not Ŷ

⇒ Some X̂ is not-Ŷ.

presence of the term v. The same reasoning therefore applies,

and we have the Rule—

A particular-affirmative proposition is convertible into

a particular-negative, and vice versâ, by negation of the

predicate.

Assuming the universal Propositions

All Xs are Ys . . . . . . . . . . . . . . . . . . . . .x(1− y) = 0,

No Xs are Ys . . . . . . . . . . . . . . . . . . . . . . . . . . .xy = 0.

Multiplying by v, we find

vx(1− y) = 0,

vxy = 0,

which are interpretable into

Some Xs are Ys . . . . . . . . . . . . . . . . . . . . . . . . . I,

Some Xs are not Ys . . . . . . . . . . . . . . . . . . . . O.
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RULE 2:

All X̂ is Ŷ ⇒ Some X̂ is Ŷ.

No X̂ is Ŷ ⇒ Some X̂ is not Ŷ.

Boole’s Laws of Transformation:

1st is RULE 1a and RULE 1b.

2nd is RULE 2.

3rd is RULE 3.

Negating a term does not affect the

kind of a proposition.

Hence a universal-affirmative is convertible into a par-

ticular-affirmative, and a universal-negative into a partic-

ular-negative without negation of subject or predicate.

Combining the above with the already proved rule of simple

conversion, we arrive at the following system of independent

laws of transformation.

1st. An affirmative Proposition may be changed into its cor-

responding negative (A into E, or I into O), and vice versa, by

negation of the predicate.

2nd. A universal Proposition may be changed into its corre-

sponding particular Proposition, (A into I, or E into O).

3rd. In a particular-affirmative, or universal-negative Propo-

sition, the terms may be mutually converted.

Wherein negation of a term is the changing of X into not-

X, and vice versâ, and is not to be understood as affecting the

kind of the Proposition.
Given Boole’s modified collection of

categorical propositions, where not-X

and X are treated equally:

THEOREM: A proposition Φ implies

a proposition Ψ iff one can obtain Ψ

by applying a suitable sequence of

these three laws of transformation to

Φ.

This is left to the reader to check.

Only the third law involves conver-

sion.

Boole omits the Laws of Transforma-

tion in LT, perhaps to avoid deriving

Some not-Y is not-X from All X is Y?

See lines 11, 12 on p. 28 where this

case is stated, not deduced.

Every lawful transformation is reducible to the above

rules. Thus we have

All Xs are Ys,

No Xs are not-Ys by 1st rule,

No not-Ys are Xs by 3rd rule,

All not-Ys are not-Xs by 1st rule,

which is an example of negative conversion. Again,

No Xs are Ys,

No Ys are Xs 3rd rule,

All Ys are not-Xs 1st rule,

which is the case already deduced.



OF SYLLOGISMS.

The abstract, which fills most of this

page, gives a summary of Aristotelian

syllogisms.

If the conclusion follows from the

premises, then one has a valid syllo-

gism. Otherwise the syllogism is in-

valid.

A Syllogism consists of three Propositions, the last of which, called the

conclusion, is a logical consequence of the two former, called the premises;

e. g.

Premises,

{
All Ys are Xs.

All Zs are Ys.

Conclusion, All Zs are Xs.

Every syllogism has three and only three terms, whereof that which is

the subject of the conclusion is called the minor term, the predicate of

the conclusion, the major term, and the remaining term common to both

premises, the middle term. Thus, in ths above formula, Z is the minor TYPO: in the above

term, X the major term, Y the middle term.

The figure of a syllogism consists in the situation of the middle

term with respect to the terms of the conclusion. The varieties of figure are

exhibited in the annexed scheme.

1st Fig. 2nd Fig. 3rd Fig. 4th Fig.

YX XY YX XY

ZY ZY YZ YZ

ZX ZX ZX ZX

When we designate the three propositions of a syllogism by their usual

symbols (A, E, I, O), and in their actual order, we are said to determine

the mood of the syllogism. Thus the syllogism given above, by way of

illustration, belongs to the mood AAA in the first figure.

Boole failed to capitalize two in-

stances of the relevant vowels in these

verses, namely in fEstInO and fE-

sApO. In 1847 De Morgan ([15],

p. 130) said of these mnemonic verses

for syllogisms: “the magic words by

which they have been denoted for

many centuries, words which I take

to be more full of meaning than any

that ever were made”.

The moods of all syllogisms commonly received as valid, are

represented by the vowels in the following mnemonic verses.

Fig. 1.—bArbArA, cElArEnt, dArII, fErIO que prioris.

Fig. 2.—cEsArE, cAmEstrEs, fEstIno, bArOkO, secundæ.

Fig. 3.—Tertia dArAptI, dIsAmIs, dAtIsI, fElAptOn,

bOkArdO, fErIsO, habet: quarta insuper addit.

Fig. 4.—brAmAntIp, cAmEnEs, dImArIs, fEsapO, frEsIsOn.

The equation by which we express any Proposition concern-

ing the classes X and Y, is an equation between the symbols

x and y, and the equation by which we express any (pagebreak in MAL)
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Proposition concerning the classes Y and Z, is an equation between

Boole’s Elimination Theorem uses

elective functions that are usually

only partially defined. He could have

avoided this by using the forms

ay = b, a′y = b′ ∴ ab′ = a′b.

the symbols y and z. If from two such equations we eliminate y,

the result, if it do not vanish, will be an equation between x and z,

and will be interpretable into a Proposition concerning the classes

X and Z. And it will then constitute the third member, or Con-

clusion, of a Syllogism, of which the two given Propositions are

the premises.

Boole borrowed this elimination

theorem from the algebra of num-

bers. The best possible elimination

theorem for his algebra of logic

appears in LT—using this, (15) is

replaced by (15′):

(b2 + b′2)
(
(a+ b)2 + (a′ + b′)2

)
= 0.

(15) is a consequence of (15′) in

Boole’s Algebra.

Below is a table of the equations (see

p. 26) of the different categorical

propositions Φ(X,Y), along with the

coefficients a, b when the equations

are written in the form ay + b = 0 :

Equation a b

A x(1− y) = 0 x −x
A y(1− x) = 0 1− x 0

E xy = 0 x 0

I v = xy x −v
O v = x(1− y) x v − x
O v = y(1− x) 1− x −v

The result of the elimination of y from the equations

ay + b = 0,

a′y + b′ = 0,
(14)

is the equation

ab′ − a′b = 0. (15)

Now the equations of Propositions being of the first order with

reference to each of the variables involved, all the cases of elim-

ination which we shall have to consider, will be reducible to the

above case, the constants a, b, a′, b′, being replaced by functions

of x, z, and the auxiliary symbol v.

As to the choice of equations for the expression of

our premises, the only restriction is, that the equations

must not both be of the form ay = 0, for in such cases

elimination would be impossible. When both equations

are of this form, it is necessary to solve one of them, and

it is indifferent which we choose for this purpose. If that

which we select is of the form xy = 0, its solution is

y = v(1− x), (16)

if of the form (1− x)y = 0, the solution will be

y = vx, (17)

and these are the only cases which can arise. The reason of this

exception will appear in the sequel. For the sake of uniformity

By “the reason of” Boole means “the

need for”. See his Class 2nd, pp. 35–

36.

In his analysis of syllogisms, Boole

used secondary forms for particular

propositions.

we shall, in the expression of particular propositions,

confine ourselves to the forms

vx = vy, Some Xs are Ys,

vx = v(1− y), Some Xs are not Ys,



of syllogisms. 33

These have a closer analogy with (16) and (17), than the other

forms which might be used.

Between the forms about to be developed, and the Aris-

totelian canons, some points of difference will occasionally be

observed, of which it may be proper to forewarn the reader.

To the right understanding of these it is proper to remark,

that the essential structure of a Syllogism is, in some

measure, arbitrary. Supposing the order of the premises to

be fixed, and the distinction of the major and the minor term to

be thereby determined, it is purely a matter of choice which of

the two shall have precedence in the Conclusion. Logicians have

settled this question in favour of the minor term, but it is clear,

that this is a convention. Had it been agreed that the major term

should have the first place in the conclusion, a logical scheme

might have been constructed, less convenient in some cases than

the existing one, but superior in others. What it lost in barbara, it

would gain in bramantip. Convenience is perhaps in favour

of the adopted arrangement,∗ but it is to be remembered

that it is merely an arrangement.

Now the method we shall exhibit, not having reference to

one scheme of arrangement more than to another, will always

give the more general conclusion, regard being paid only to its

abstract lawfulness, considered as a result of pure reasoning. And

therefore we shall sometimes have presented to us the spectacle

of conclusions, which a logician would pronounce informal, but

never of such as a reasoning being would account false.
Regarding the limited nature of the

terms in the conclusion, Boole is

mainly concerned that one cannot

have a contrary like ‘not-Z’ as the

subject.

The Aristotelian canons, however, beside restricting

the order of the terms of a conclusion, limit their na-

ture also;—and this limitation is of more consequence

than the former. We may, by a change of figure, replace the

particular conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . (pagebreak in MAL)

∗The contrary view was maintained by Hobbes. The question is very

fairly discussed in Hallam’s Introduction to the Literature of Europe, vol. iii.

p. 309. In the rhetorical use of Syllogism, the advantage appears to rest with

the rejected form.
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of bramantip by the general conclusion of barbara; but we cannot

thus reduce to rule such inferences, as

Some not-Xs are not Ys.

Yet there are cases in which such inferences may lawfully be

drawn, and in unrestricted argument they are of frequent occur-

rence. Now if an inference of this, or of any other kind, is

lawful in itself, it will be exhibited in the results of our

method.

We may by restricting the canon of interpretation confine

our expressed results within the limits of the scholastic logic; but

this would only be to restrict ourselves to the use of a part of the

conclusions to which our analysis entitles us.

The classification we shall adopt will be purely math-

ematical, and we shall afterwards consider the logical arrange-

ment to which it corresponds. It will be sufficient, for reference,

to name the premises and the Figure in which they are found.

Class 1st.—Forms in which v does not enter.

Those which admit of an inference are AA, EA, Fig. 1;

AE, EA, Fig. 2; AA, AE, Fig. 4.

Ex. AA, Fig. 1, and, by mutation of premises (change of

order), AA, Fig. 4.

All Ys are Xs, y(1− x) = 0, or (1− x)y = 0,

All Zs are Ys, z(1− y) = 0, or zy − z = 0.

Eliminating y by (13) we have

z(1− x) = 0,

∴ All Zs are Xs.

Boole said a convenient way to

eliminate y in the equations for

the premises Φ1(X,Y) and Φ2(Y,Z)

would be to write the equations in the

form
ay = b

d = cy
and then multiply

the corresponding sides, omitting y,

to obtain ad = bc.

A convenient mode of effecting the elimination, is to

write the equation of the premises, so that y shall appear only

as a factor of one member in the first equation, and only as a

factor of the opposite member in the second equation, and then

to multiply the equations, omitting the y. This method we shall

adopt.
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Ex. AE, Fig. 2, and, by mutation of premises, EA, Fig, 2.

All Xs are Ys, x(1− y) = 0,

No Zs are Ys, zy = 0,

or x=xy

zy= 0

zx= 0

∴ No Zs are Xs.

If one makes the plausible assumption

that one can replace given premises

by equivalent premises, and use con-

clusions to the latter as valid conclu-

sions to the original premises, then re-

placing the premises ‘All X is Y’, ‘All

Z is Y’ by their contrapositives ‘All

not-Y is not-X ’, ‘All not-Y is not-Z’

leads to the conclusion ‘Some not-X is

not-Z’. Why did Boole not allow this?

The only case in which there is no inference is AA,

Fig. 2,

All Xs are Ys, x(1− y) = 0,

All Zs are Ys, z(1− y) = 0,

x=xy

zy= z

xz=xz

∴ 0 = 0.

Class 2nd.—When v is introduced by the solution of

an equation.

The lawful cases directly or indirectly∗ determinable by

the Aristotelian Rules are AE, Fig. 1; AA, AE, EA, Fig. 3;

EA, Fig. 4.

The lawful cases not so determinable, are EE, Fig. 1;

EE, Fig. 2; EE, Fig. 3; EE, Fig. 4.

Ex. AE, Fig. 1, and, by mutation of premises, EA, Fig. 4.

All Ys are Xs, y(1− x) = 0,

No Zs are Ys, zy = 0,

y= vx (a)

0 = zy

0 = vzx

∴ Some Xs are not Zs.

The reason why we cannot interpret vzx = 0 into Some Zs

are not-Xs, is that by the very terms of the first equation (a)

the interpretation of vx is fixed, as Some Xs; v is regarded as

An important restriction as to when

v can be read as ‘some’.

the representative of Some, only with reference to the

class X.

∗We say directly or indirectly, mutation or conversion of premises being

in some instances required. Thus, AE (fig. 1) is resolvable by Fesapo (fig. 4),

or by Ferio (fig. 1). Aristotle and his followers rejected the fourth

figure as only a modification of the first, but this being a mere

question of form, either scheme may be termed Aristotelian.
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For the reason of our employing a solution of one of the prim-

itive equations, see the remarks on (16) and (17). Had we solved

the second equation instead of the first, we should have had

(1− x)y = 0,

v(1− z) = y, (a)

v(1− z)(1− x) = 0, (b)

∴ Some not-Zs are Xs.

Here it is to be observed, that the second equation (a) fixes

the meaning of v(1−z), as Some not-Zs. The full meaning of the

result (b) is, that all the not-Zs which are found in the class Y

are found in the class X, and it is evident that this could not

have been expressed in any other way.

Ex. 2. AA, Fig. 3.

All Ys are Xs, y(1− x) = 0,

All Ys are Zs, y(1− z) = 0,

y= vx

0 = y(1− z)
0 = vx(1− z)

∴ Some Xs are Zs.

Had we solved the second equation, we should have had as

our result, Some Zs are Xs. The form of the final equation par-

ticularizes what Xs or what Zs are referred to, and this remark

is general.

No valid EE cases can be handled by

the Aristotelian Rules.

The following, EE, Fig. 1, and, by mutation, EE, Fig. 4, is

an example of a lawful case not determinable by the Aristotelian

Rules.

No Ys are Xs, xy = 0,

No Zs are Ys, zy = 0,

0 =xy

y= v(1− z)
0 = v(1− z)x

∴ Some not-Zs are not Xs.

Class 3rd.—When v is met with in one of the equa-

tions, but not introduced by solution.
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The two cases EO and OE Fig. 3

actually belong in the ‘not so deter-

minable’ list.

EI Fig. 4 belongs in the ‘directly de-

terminable’ list.

The lawful cases determinable directly or indirectly

by the Aristotelian Rules, are AI, EI, Fig. 1; AO, EI, OA,

IE, Fig. 2; AI, AO, EI, EO, IA, IE, OA, OE, Fig. 3; IA, IE,

Fig. 4.

Those not so determinable are OE, Fig. 1; EO, Fig. 4.

The cases in which no inference is possible, are AO,

EO, IA, IE, OA, Fig. 1; AI, EO, IA, OE, Fig. 2; OA, OE, AI,

EI, AO, Fig. 4.

Ex. 1. AI, Fig. 1, and, by mutation, IA, Fig. 4.

All Ys are Xs,

Some Zs are Ys,

y(1− x) = 0

vz= vy

vz(1− x) = 0

∴ Some Zs are Xs.

Ex. 2. AO, Fig. 2, and, by mutation, OA, Fig. 2.

All Xs are Ys, x(1− y) = 0,

Some Zs are not Ys, vz = v(1− y),

x=xy

vy= v(1− z)
vx= vx(1− z)
vxz= 0

∴ Some Zs are not Xs.

The interpretation of vz as Some Zs, is implied, it will be

observed, in the equation vz = v(1−y) considered as representing

the proposition Some Zs are not Ys.

The cases not determinable by the Aristotelian Rules are OE,

Fig. 1, and, by mutation, EO, Fig. 4.

Some Ys are not Xs,

No Zs are Ys,

vy= v(1− x)

0 = zy

0 = v(1− x)z

∴ Some not-Xs are not Zs.

The equation of the first premiss here permits us to interpret

v(1− x), but it does not enable us to interpret vz.
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Of cases in which no inference is possible, we take as examples—

AO, Fig. 1, and, by mutation, OA, Fig. 4,

All Ys are Xs, y(1− x) = 0,

Some Zs are not Ys, vz = v(1− y) (a)

y(1− x) = 0

v(1− z) = vy

v(1− z)(1− x) = 0 (b)

0 = 0

since the auxiliary equation in this case is v(1− z) = 0.

Practically it is not necessary to perform this reduction, but

it is satisfactory to do so. The equation (a), it is seen, defines vz

as Some Zs, but it does not define v(1 − z), so that we might

stop at the result of elimination (b), and content ourselves with

saying, that it is not interpretable into a relation between the

classes X and Z.

Take as a second example AI, Fig. 2, and, by mutation, IA,

Fig. 2,

All Xs are Ys, x(1− y) = 0,

Some Zs are Ys, vz = vy,

x=xy

vy= vz

vx= vxz

v(1− z)x= 0

0 = 0,

the auxiliary equation in this case being v(1− z) = 0.

Indeed in every case in this class, in which no infer-

ence is possible, the result of elimination is reducible to

the form 0 = 0. Examples therefore need not be multiplied.

Class 4th.—When v enters into both equations.

No inference is possible in any case, but there exists a

distinction among the unlawful cases which is peculiar to this

class. The two divisions are,

1st. When the result of elimination is reducible by the auxil-

iary equations to the form 0 = 0. The cases are II, OI, (pagebreak in MAL)
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Fig. 1; II, OO, Fig. 2; II, IO, OI, OO, Fig. 3; II, IO, Fig. 4.

2nd. When the result of elimination is not reducible by the

auxiliary equations to the form 0 = 0.

The cases are IO, OO, Fig. 1; IO, OI, Fig. 2; OI, OO, Fig. 4.

Let us take as an example of the former case, II, Fig. 3.

Boole was careful to use distinct v for

distinct premises in MAL. In LT this

only happened in Chap. XV.

Some Xs are Ys, vx = vy,

Some Zs are Ys, v′z = v′y,

vx= vy

v′y= v′z

vv′x= vv′z

Now the auxiliary equations v(1− x) = 0, v′(1− z) = 0, give

vx = v, v′z = v′.

Substituting we have

vv′ = vv′,

∴ 0 = 0.

As an example of the latter case, let us take IO, Fig. 1,

Some Ys are Xs, vy = vx,

Some Zs are not Ys, v′z = v′(1− y),

vy= vx

v′(1− z) = v′y

vv′(1− z) = vv′x

Now the auxiliary equations being v(1−x) = 0, v′(1−z) = 0,

the above reduces to vv′ = 0. It is to this form that all similar

cases are reducible. Its interpretation is, that the classes v and v′

have no common member, as is indeed evident.

The above classification is purely founded on math-

ematical distinctions. We shall now inquire what is the

logical division to which it corresponds.

The lawful cases of the first class comprehend all those

in which, from two universal premises, a universal conclusion may

be drawn. We see that they include the premises of barbara and

celarent in the first figure, of cesare and camestres in the second,

and of bramantip and camenes in the fourth. . . (pagebreak in MAL)
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The premises of bramantip are included, because they admit of

an universal conclusion, although not in the same figure.

The lawful cases of the second class are those in which a

particular conclusion only is deducible from two universal premises.

The lawful cases of the third class are those in which a

conclusion is deducible from two premises, one of which is uni-

versal and the other particular.

The fourth class has no lawful cases.

Among the cases in which no inference of any kind is possible,

we find six in the fourth class distinguishable from the others by

the circumstance, that the result of elimination does not assume
the form 0 = 0. The cases are{
Some Ys are Xs,

Some Zs are not Ys,

} {
Some Ys are not Xs,

Some Zs are not Ys,

} {
Some Xs are Ys,

Some Zs are not Ys,

}

and the three others which are obtained by mutation of premises.

It might be presumed that some logical peculiarity would be

found to answer to the mathematical peculiarity which we have

noticed, and in fact there exists a very remarkable one. If we

examine each pair of premises in the above scheme, we shall find

that there is virtually no middle term, i. e. no medium of compar-

ison, in any of them. Thus, in the first example, the individuals

spoken of in the first premiss are asserted to belong to the class Y,

but those spoken of in the second premiss are virtually asserted

to belong to the class not-Y: nor can we by any lawful transfor-

mation or conversion alter this state of things. The comparison

will still be made with the class Y in one premiss, and with the

class not-Y in the other.

Now in every case beside the above six, there will be found

a middle term, either expressed or implied. I select two of the

most difficult cases.
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In AO, Fig. 1, viz.

All Ys are Xs,

Some Zs are not Ys,

we have, by negative conversion of the first premiss,

All not-Xs are not-Ys,

Some Zs are not Ys,

and the middle term is now seen to be not-Y.

Again, in EO, Fig. 1,

No Ys are Xs,

Some Zs are not Ys,

a proved conversion of the first premiss (see Conversion of Propo-

sitions), gives

All Xs are not-Ys,

Some Zs are not-Ys,

and the middle term, the true medium of comparison, is plainly

not-Y, although as the not-Ys in the one premiss may be different

from those in the other, no conclusion can be drawn.

The mathematical condition in question, therefore,—the ir-

reducibility of the final equation to the form 0 = 0,—adequately

represents the logical condition of there being no middle term, or

common medium of comparison, in the given premises.

See the Postscript, page 82, where he

makes a correction, attributing this

observation to De Morgan.

I am not aware that the distinction occasioned by the

presence or absence of a middle term, in the strict sense

here understood, has been noticed by logicians before.

The distinction, though real and deserving attention, is indeed

by no means an obvious one, and it would have been unnoticed in

the present instance but for the peculiarity of its mathematical

expression.

What appears to be novel in the above case is the proof of the

existence of combinations of premises in which there (pagebreak in MAL)
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is absolutely no medium of comparison. When such a medium of

comparison, or true middle term, does exist, the condition that

its quantification in both premises together shall exceed its quan-

tification as a single whole, has been ably and clearly shewn by

Professor De Morgan to be necessary to lawful inference (Cam-

bridge Memoirs, Vol. viii. Part 3). And this is undoubtedly the

true principle of the Syllogism, viewed from the standing-point

of Arithmetic.

I have said that it would be possible to impose conditions of

interpretation which should restrict the results of this cal-

culus to the Aristotelian forms. Those conditions would be,

1st. That we should agree not to interpret the forms v(1−x),

v(1− z).
2ndly. That we should agree to reject every interpretation

in which the order of the terms should violate the Aristotelian

rule.

Or, instead of the second condition, it might be agreed that,

the conclusion being determined, the order of the premises should,

if necessary, be changed, so as to make the syllogism formal.

From the general character of the system it is indeed plain,

that it may be made to represent any conceivable scheme of logic,

by imposing the conditions proper to the case contemplated.

Noting that in a few cases of alge-

braically demonstrating a syllogism

he needed to replace an equation by

its solution, Boole claimed that one

could always use the solution form

of the equations to express universal

propositions.

We have found it, in a certain class of cases, to be necessary

to replace the two equations expressive of universal Propositions,

by their solutions; and it may be proper to remark, that it would

have been allowable in all instances to have done this,∗so that

(This footnote continues till p. 45.)

every case of the Syllogism, without ex- . . (pagebreak in MAL)

∗It may be satisfactory to illustrate this statement by an example. In

Barbara, we should have

All Ys are Xs,

All Zs are Ys,

y= vx

z= v′y

z= vv′x

∴ All Zs are Xs.
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ception, might have been treated by equations comprised

in the general forms

In the Postscript, p. 82, he said

that these equations for A, E, I, O

are preferable to his original choices

in the chapter Of Expression and

Interpretation. The first column

gives the equations used in LT.

(footnote from p. 42 continues)

y = vx, or y − vx = 0 A,

y = v(1− x), or y + vx− v = 0 E,

vy = vx, vy − vx = 0 I,

vy = v(1− x), vy + vx− v = 0 O.

Or, we may multiply the resulting equation by 1− x, which gives

z(1− x) = 0,

whence the same conclusion, All Zs are Xs.

Some additional examples of the application of the system of equa-

tions in the text to the demonstration of general theorems, may not be

inappropriate.

Let y be the term to be eliminated, and let x stand indifferently for

either of the other symbols, then each of the equations of the premises

of any given syllogism may be put in the form

ay + bx = 0, (α)

if the premiss is affirmative, and in the form

ay + b(1− x) = 0, (β)

if it is negative, a and b being either constant, or of the form ±v. To

prove this in detail, let us examine each kind of proposition, making y successively

subject and predicate.

A, All Ys are Xs, y − vx = 0, (γ)

All Xs are Ys, x− vy = 0, (δ)

E, No Ys are Xs, xy = 0,

No Xs are Ys, y − v(1− x) = 0, (ε)

I, Some Xs are Ys,

Some Ys are Xs, vx− vy = 0, (ζ)

O, Some Ys are not Xs, vy − v(1− x) = 0, (η)

Some Xs are not Ys, vx = v(1− y),

∴ vy − v(1− x) = 0. (θ)

The affirmative equations (γ), (δ) and (ζ), belong to (α), and the negative

equations (ε), (η) and (θ), to (β). It is seen that the two last negative equations

are alike, but there is a difference of interpretation. In the former

v(1− x) = Some not-Xs,

in the latter,

v(1− x) = 0.

The utility of the two general forms of reference, (α) and (β), will appear from

the following application.

1st. A conclusion drawn from two affirmative propositions is itself af-

firmative.

By (α) we have for the given propositions,

ay + bx = 0,

a′y + b′z = 0,
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Perhaps the system we have actually employed is better, as dis-

tinguishing the cases in which v only may be employed,

(footnote from pp. 42,43 continues)and eliminating

ab′z − a′bx = 0,

which is of the form (α). Hence, if there is a conclusion, it is affirmative.

2nd. A conclusion drawn from an affirmative and a negative proposition

is negative.

By (α) and (β), we have for the given propositions

ay + bx = 0,

a′y + b′(1− z) = 0,

∴ a′bx− ab′(1− z) = 0,

which is of the form (β). Hence the conclusion, if there is one, is negative.

3rd. A conclusion drawn from two negative premises will involve a nega-

tion, (not-X, not-Z) in both subject and predicate, and will therefore be in-

admissible in the Aristotelian system, though just in itself.

For the premises being

ay + b(1− x) = 0,

a′y + b′(1− z) = 0,

the conclusion will be

ab′(1− z)− a′b(1− x) = 0,

which is only interpretable into a proposition that has a negation in each term.

4th. Taking into account those syllogisms only, in which the conclu-

sion is the most general, that can be deduced from the premises,—if, in an

Aristotelian syllogism, the minor premises be changed in quality (from affir-

mative to negative or from negative to affirmative), whether it be changed in

quantity or not, no conclusion will be deducible in the same figure.

An Aristotelian proposition does not admit a term of the form not-Z

in the subject, —Now on changing the quantity of the minor proposition of a TYPO: changing the quality
syllogism, we transfer it from the general form

ay + bz = 0,

to the general form

a′y + b′(1− z) = 0,

see (α) and (β), or vice versâ. And therefore, in the equation of the conclusion,

there will be a change from z to 1 − z, or vice versâ. But this is equivalent to the

change of Z into not-Z, or not-Z into Z. Now the subject of the original conclusion

must have involved a Z and not a not-Z, therefore the subject of the new conclusion

will involve a not-Z, and the conclusion will not be admissible in the Aristotelian

forms, except by conversion, which would render necessary a change of Figure.

Now the conclusions of this calculus are always the most general that An unsubstantiated claim

can be drawn, and therefore the above demonstration must not be supposed to

extend to a syllogism, in which a particular conclusion is deduced, when a universal

one is possible. This is the case with bramantip only, among the Aristotelian forms,

and therefore the transformation of bramantip into camenes, and vice versâ, is the

case of restriction contemplated in the preliminary statement of the theorem.
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from those in which it must. But for the demonstration of certain

general properties of the Syllogism, the above system is, from

its simplicity, and from the mutual analogy of its forms, very

convenient. We shall apply it to the following theorem.∗

Graves Theorem for AC-syllogisms,

followed by its “proof”, based on the

assumption that a weak form of the

elimination theorem gives the most

general conclusion.

Given the three propositions of a Syllogism, prove that

there is but one order in which they can be legitimately

arranged, and determine that order.

All the forms above given for the expression of propositions,

are particular cases of the general form,

a+ bx+ cy = 0.

(footnote that started on p. 42 fin-

ishes)

I am not aware of any surviving docu-

ments detailing Graves’ comments on

Boole’s work.

5th. If for the minor premiss of an Aristotelian syllogism, we substitute its

contradictory, no conclusion is deducible in the same figure.

It is here only necessary to examine the case of bramantip, all the others being

determined by the last proposition.

On changing the minor of bramantip to its contradictory, we have AO, Fig. 4,

and this admits of no legitimate inference.

Hence the theorem is true without exception. Many other general theorems

may in like manner be proved.

∗This elegant theorem was communicated by the Rev. Charles Graves,

Fellow and Professor of Mathematics in Trinity College, Dublin, to whom

the Author desires further to record his grateful acknowledgments

for a very judicious examination of the former portion of this work, and for

some new applications of the method. The following example of Reduction

ad impossibile is among the number:

Reducend Mood, All Xs are Ys, 1− y= v′(1− x)

Baroko Some Zs are not Ys vz= v(1− y)

Some Zs are not Xs vz= vv′(1− x)

Reduct Mood, All Xs are Ys 1− y= v′(1− x)

Barbara All Zs are Xs z(1− x) = 0

All Zs are Ys z(1− y) = 0.

The conclusion of the reduct mood is seen to be the contradictory of the

suppressed minor premiss. Whence, &c. It may just be remarked that the

mathematical test of contradictory propositions is, that on elimi-

nating one elective symbol between their equations, the other elec-

tive symbol vanishes. The ostensive reduction of Baroko and Bokardo

involves no difficulty.

Professor Graves suggests the employment of the equation x = vy

for the primary expression of the Proposition All Xs are Ys, and

remarks, that on multiplying both members by 1−y, we obtain x(1−y) = 0,

the equation from which we set out in the text, and of which the previous

one is a solution.
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Assume then for the premises of the given syllogism, the equa-

tions

a+ bx + cy = 0, (18)

a′ + b′z + c′y = 0, (19)

then, eliminating y, we shall have for the conclusion

ac′ − a′c+ bc′x− b′cz = 0. (20)

If one multiplies (18) by c′, and then

subtracts (20) from it, one has the

elimination result c(a′+b′z+c′y) = 0

which is more general than (21).

Now taking this as one of our premises, and either of the orig-

inal equations, suppose (18), as the other, if by elimination of a

common term x, between them, we can obtain a result equiva-

lent to the remaining premiss (19), it will appear that there are

more than one order in which the Propositions may be lawfully

written; but if otherwise, one arrangement only is lawful.

Effecting then the elimination, we have

bc(a′ + b′z + c′y) = 0, (21)

which is equivalent to (19) multiplied by a factor bc. Now on

examining the value of this factor in the equations A, E, I, O,

we find it in each case to be v or −v. But it is evident, that if The first appearance of “−” as a

unary operation.an equation expressing a given Proposition be multiplied by an

extraneous factor, derived from another equation, its interpreta-

tion will either be limited or rendered impossible. Thus there

will either be no result at all, or the result will be a limitation of

the remaining Proposition.

If, however, one of the original equations were

x = y, or x− y = 0,

the factor bc would be −1, and would not limit the interpretation The second appearance of “−” as a

unary operation.of the other premiss. Hence if the first member of a syllogism

should be understood to represent the double proposition All Xs

are Ys, and All Ys are Xs, it would be indifferent in what order

the remaining Propositions were written.
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A more general form of the above investigation would be, to

express the premises by the equations

a+ bx + cy + dxy = 0, (22)

a′ + b′z + c′y + d′zy = 0. (23)

After the double elimination of y and x we should find

(bc− ad)(a′ + b′z + c′y + d′zy) = 0;

and it would be seen that the factor bc − ad must in every case

either vanish or express a limitation of meaning.

The determination of the order of the Propositions is suffi-

ciently obvious.



OF HYPOTHETICALS.

The first paragraph is essentially the

same as one finds in Whately’s Ele-

ments of Logic. It is easy, as Boole

noted (on p. 57), to make additions

to the standard hypothetical syllo-

gisms (which are stated on pp. 56–

57). Hypothetical propositions will

be replaced in LT by secondary propo-

sitions, defined simply as propositions

about propositions.

A hypothetical Proposition is defined to be two or more categoricals

united by a copula (or conjunction), and the different kinds of hypo-

thetical Propositions are named from their respective conjunctions, viz.

conditional (if), disjunctive (either, or), &c.

In conditionals, that categorical Proposition from which the other results

is called the antecedent, that which results from it the consequent.

Of the conditional syllogism there are two, and only two formulæ.

1st. The constructive,

If A is B, then C is D,

But A is B, therefore C is D.

2nd. The Destructive,

If A is B, then C is D,

But C is not D, therefore A is not B.

A dilemma is a complex conditional syllogism, with several antecedents

in the major, and a disjunctive minor.

If we examine either of the forms of conditional syllogism

above given, we shall see that the validity of the argument does

not depend upon any considerations which have reference to the

terms A, B, C, D, considered as the representatives of individ-

uals or of classes. We may, in fact, represent the Propositions

A is B, C is D, by the arbitrary symbols X and Y respectively,

and express our syllogisms in such forms as the following:

If X is true, then Y is true,

But X is true, therefore Y is true.

Thus, what we have to consider is not objects and classes

of objects, but the truths of Propositions, namely, of those
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elementary Propositions which are embodied in the terms of our

hypothetical premises.

A clearer formulation is, given

a collection X of propositional

variables, to define a case to be a

mapping µ : X → {T, F}, that is,

an assignment of truth-values to the

propositional variables. Then the

hypothetical universe is {T, F}X,

and for X ∈ X, the elective operation

x selects the cases µ for which

µ(X) = T , and 1− x selects the cases

µ for which µ(X) = F .

Boole does not make a clear connec-

tion between the Universe of a Propo-

sition and the Hypothetical Uni-

verse.

To the symbols X, Y, Z, representative of Propositions, we

may appropriate the elective symbols x, y, z, in the following

sense.

The hypothetical Universe, 1, shall comprehend all con-

ceivable cases and conjunctures of circumstances.

The elective symbol x attached to any subject expressive

of such cases shall select those cases in which the Propo-

sition X is true, and similarly for Y and Z.

If we confine ourselves to the contemplation of a given propo-

sition X, and hold in abeyance every other consideration, then

two cases only are conceivable, viz. first that the given

Proposition is true, and secondly that it is false.∗ As these

cases together make up the Universe of the Proposition, and

as the former is determined by the elective symbol x, the latter

is determined by the symbol 1− x.

But if other considerations are admitted, each of these cases By “other considerations” he meant

other propositional variables, like Y,

Z, etc.

will be resolvable into others, individually less extensive, the

∗It was upon the obvious principle that a Proposition is either true or

false, that the Stoics, applying it to assertions respecting future events, en-

deavoured to establish the doctrine of Fate. It has been replied to their

argument, that it involves “an abuse of the word true, the precise meaning

of which is id quod res est. An assertion respecting the future is neither

true nor false.”—Copleston on Necessity and Predestination, p. 36. Were the

Stoic axiom, however, presented under the form, It is either certain that a

given event will take place, or certain that it will not; the above reply would

fail to meet the difficulty. The proper answer would be, that no merely verbal

definition can settle the question, what is the actual course and constitution

of Nature. When we affirm that it is either certain that an event will take

place, or certain that it will not take place, we tacitly assume that the order

of events is necessary, that the Future is but an evolution of the Present;

so that the state of things which is, completely determines that which shall

be. But this (at least as respects the conduct of moral agents) is the very

question at issue. Exhibited under its proper form, the Stoic reasoning does

not involve an abuse of terms, but a petitio principii.

It should be added, that enlightened advocates of the doctrine of Neces-

sity in the present day, viewing the end as appointed only in and through

the means, justly repudiate those practical ill consequences which are the

reproach of Fatalism.
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number of which will depend upon the number of foreign con-

siderations admitted. Thus if we associate the Propositions X

and Y, the total number of conceivable cases will be found as

exhibited in the following scheme.

The proposition “X and Y” is ex-

pressed by xy, the proposition “X and

not-Y” by x(1− y), etc.

Given n propositional variables

X1, . . . ,Xn there are 2n ‘constituent’

propositions X̂1 and . . . and X̂n,

where each X̂i is either Xi or

not-Xi. Their expressions give the

constituents of x1, . . . , xn.

Cases. Elective expressions.

1st X true, Y true xy

2nd X true, Y false x(1− y)

3rd X false, Y true (1− x)y

4th X false, Y false (1− x)(1− y) (24)

If we add the elective expressions for the two first of the above

cases the sum is x, which is the elective symbol appropriate to

the more general case of X being true independently of any con-

sideration of Y; and if we add the elective expressions in the

two last cases together, the result is 1 − x, which is the elective

expression appropriate to the more general case of X being false.

Thus the extent of the hypothetical Universe does not at all

depend upon the number of circumstances which are taken into

account. And it is to be noted that however few or many those

circumstances may be, the sum of the elective expressions repre-

senting every conceivable case will be unity. Thus let us consider

the three Propositions, X, It rains, Y, It hails, Z, It freezes. The

possible cases are the following:

Cases. Elective expressions.

1st It rains, hails, and freezes, xyz

2nd It rains and hails, but does not freeze xy(1− z)
3rd It rains and freezes, but does not hail xz(1− y)

4th It freezes and hails, but does not rain yz(1− x)

5th It rains, but neither hails nor freezes x(1− y)(1− z)
6th It hails, but neither rains nor freezes y(1− x)(1− z)
7th It freezes, but neither hails nor rains z(1− x)(1− y)

8th It neither rains, hails, nor freezes (1− x)(1− y)(1− z)
1 = sum
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Expression of Hypothetical Propositions.

Translating modern propositional

logic into Boole’s system. First

translate modern propositional

formulas Φ(~X) into terms pΦ(~x)

as follows: pX := x for a vari-

able X, and given pΦ and pΨ let

p¬Φ := 1− pΦ

pΦ∧Ψ := pΦ · pΨ

pΦ∨Ψ := pΦ + pΨ − pΦ · pΨ

pΦ4Ψ := pΦ + pΨ − 2pΦ · pΨ

pΦ→Ψ := 1− pΦ + pΦ · pΨ

pΦ↔Ψ := 1− pΦ − pΨ + 2pΦ · pΨ

Then a propositional formula Φ(~X)

is a tautology iff pΦ(~x) = 1 is a

law of Boole’s Algebra, and it is

a contradiction iff pΦ(~x) = 0 is

a law of Boole’s Algebra. Fur-

thermore a propositional formula

argument Φ1, . . . ,Φk ∴ Φ is

valid iff the equational argument

pΦ1 = 1, . . . , pΦk = 1 ∴ pΦ = 1 is

valid in Boole’s Algebra.

To express that a given Proposition X is true.

The symbol 1 − x selects those cases in which the Proposi-

tion X is false. But if the Proposition is true, there are no such

cases in its hypothetical Universe, therefore

1− x = 0,

or x = 1. (25)

To express that a given Proposition X is false.

The elective symbol x selects all those cases in which the

Proposition is true, and therefore if the Proposition is false,

x = 0. (26)

And in every case, having determined the elective expression

appropriate to a given Proposition, we assert the truth of that

Proposition by equating the elective expression to unity, and its

falsehood by equating the same expression to 0.

To express that two Propositions, X and Y, are simul-

taneously true.

The elective symbol appropriate to this case is xy, therefore

the equation sought is
xy = 1. (27)

To express that two Propositions, X and Y, are simul-

taneously false.

The condition will obviously be

(1− x)(1− y) = 1,

or x+ y − xy = 0. (28)

To express that either the Proposition X is true, or

the Proposition Y is true.

To assert that either one or the other of two Propositions is

true, is to assert that it is not true, that they are both false.

Now the elective expression appropriate to their both being false

is (1− x)(1− y), therefore the equation required is

(1− x)(1− y) = 0,

or x+ y − xy = 1. (29)
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And, by indirect considerations of this kind, may every dis-

junctive Proposition, however numerous its members, be expressed.

But the following general Rule will usually be preferable.
Boole does not speak of a proposi-

tional formula being true or false

except when it is a propositional

variable. Evidently he views a

propositional formula Φ(X1, . . . ,Xm)

as asserting a disjunction of implied

truth assignments of the variables.

Then the equational expression for

Φ(X1, . . . ,Xm) is obtained by equat-

ing to 1 the sum of the expressions

associated with the implied truth-

value assignments to the variables.

It seems Boole was only considering

simple propositions, like those one

finds in a traditional book on logic.

He does not describe a method to

find the implied truth-value assign-

ments; in particular, he does not have

the truth-table method of determin-

ing which assignments make a propo-

sition true.

Rule. Consider what are those distinct and mutually

exclusive cases of which it is implied in the statement

of the given Proposition, that some one of them is true,

and equate the sum of their elective expressions to unity.

This will give the equation of the given Proposition.

For the sum of the elective expressions for all distinct con-

ceivable cases will be unity. Now all these cases being mutually

exclusive, and it being asserted in the given Proposition that

some one case out of a given set of them is true, it follows that

all which are not included in that set are false, and that their

elective expressions are severally equal to 0. Hence the sum of

the elective expressions for the remaining cases, viz. those in-

cluded in the given set, will be unity. Some one of those cases

will therefore be true, and as they are mutually exclusive, it is

impossible that more than one should be true. Whence the Rule

in question.

And in the application of this Rule it is to be observed, that

if the cases contemplated in the given disjunctive Proposition are

not mutually exclusive, they must be resolved into an equivalent

series of cases which are mutually exclusive.

Thus, if we take the Proposition of the preceding example,

viz. Either X is true, or Y is true, and assume that the two mem-

bers of this Proposition are not exclusive, insomuch that in the

enumeration of possible cases, we must reckon that of the Propo-

sitions X and Y being both true, then the mutually exclusive

cases which fill up the Universe of the Proposition, with

their elective expressions, are

1st, X true and Y false, x(1− y),

2nd, Y true and X false, y(1− x),

3rd, X true and Y true, xy,
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and the sum of these elective expressions equated to unity gives

x+ y − xy = 1. (30)

as before. But if we suppose the members of the disjunctive

Proposition to be exclusive, then the only cases to be considered

are
1st, X true, Y false, x(1− y),

2nd, Y true, X false, y(1− x),

and the sum of these elective expressions equated to 0, gives TYPO: equated to 1.

(31) is the first time terms with

explicit numerical coefficients other

than 0,±1 appear in MAL.

x− 2xy + y = 1. (31)

The subjoined examples will further illustrate this method.

To express the Proposition, Either X is not true, or

Y is not true, the members being exclusive.

The mutually exclusive cases are

1st, X not true, Y true, y(1− x),

2nd, Y not true, X true, x(1− y),

and the sum of these equated to unity gives

x− 2xy + y = 1, (32)

which is the same as (31), and in fact the Propositions which

they represent are equivalent.

To express the Proposition, Either X is not true, or

Y is not true, the members not being exclusive.

To the cases contemplated in the last Example, we must add

the following, viz.

X not true, Y not true, (1− x)(1− y).

The sum of the elective expressions gives

x(1− y) + y(1− x) + (1− x)(1− y) = 1,

or

xy = 0. (33)

To express the disjunctive Proposition, Either X is

true, or Y is true, or Z is true, the members being ex-

clusive.
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Here the mutually exclusive cases are

1st, X true, Y false, Z false, x(1− y)(1− z),
2nd, Y true, Z false, X false, y(1− z)(1− x),

3rd, Z true, X false, Y false, z(1− x)(1− y),

and the sum of the elective expressions equated to 1, gives, upon

reduction,

x+ y + z − 2(xy + yz + zx) + 3xyz = 1. (34)

The expression of the same Proposition, when the

members are in no sense exclusive, will be

(1− x)(1− y)(1− z) = 0. (35)

And it is easy to see that our method will apply to the ex-

pression of any similar Proposition, whose members are subject

to any specified amount and character of exclusion.

To express the conditional Proposition, If X is true,

Y is true.

Here it is implied that all the cases of X being true, are cases of

Y being true. The former cases being determined by the elective

symbol x, and the latter by y, we have, in virtue of (4), Item (4) is on p. 21.

x(1− y) = 0. (36)

To express the conditional Proposition, If X be true,

Y is not true.

The equation is obviously

xy = 0; (37)

this is equivalent to (33), and in fact the disjunctive Proposi-

tion, Either X is not true, or Y is not true, and the conditional

Proposition, If X is true, Y is not true, are equivalent.

To express that If X is not true, Y is not true.

In (36) write 1− x for x, and 1− y for y, we have

(1− x)y = 0.
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The results which we have obtained admit of verifi-

cation in many different ways. Let it suffice to take for more

particular examination the equation

x− 2xy + y = 1, (38)

which expresses the conditional Proposition, Either X is true, or

Y is true, the members being in this case exclusive.

First, let the Proposition X be true, then x = 1, and substi-

tuting, we have

1− 2y + y = 1, ∴ −y = 0, or y = 0,

which implies that Y is not true.

The third appearance of “−” as a

unary operation.

Secondly, let X be not true, then x = 0, and the equation

gives

y = 1, (39)

which implies that Y is true. In like manner we may proceed

with the assumptions that Y is true, or that Y is false.

Again, in virtue of the property x2 = x, y2 = y, we may write

the equation in the form

x2 − 2xy + y2 = 1,

and extracting the square root, we have

This does not qualify as an equational

deduction since it has the form

ε ∴ ε1 or ε2,

the conclusion being a disjunction of

two equations.

x− y = ±1, (40)

and this represents the actual case; for, as when X is true or false,

Y is respectively false or true, we have

x = 1 or 0,

y = 0 or 1,

∴ x− y = 1 or − 1.

There will be no difficulty in the analysis of other cases.

Examples of Hypothetical Syllogism.

Better: “eliminating some of the sym-

bols which are found . . . ”. In the 4th

hypothetical syllogism, p. 56, each of

the three symbols appears in two of

the premises.

The treatment of every form of hypothetical Syllogism will

consist in forming the equations of the premises, and elim-

inating the symbol or symbols which are found in more

than one of them. The result will express the conclusion.
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1st. Disjunctive Syllogism.

Either X is true, or Y is true (exclusive), x+ y − 2xy = 1

But X is true, x = 1

Therefore Y is not true, ∴ y = 0

Either X is true, or Y is true (not exclusive), x+ y − xy = 1

But X is not true, x = 0

Therefore Y is true, ∴ y = 1

2nd. Constructive Conditional Syllogism.

If X is true, Y is true, x(1− y) = 0

But X is true, x = 1

Therefore Y is true, ∴ 1− y = 0 or y = 1.

3rd. Destructive Conditional Syllogism.

If X is true, Y is true, x(1− y) = 0

But Y is not true, y = 0

Therefore X is not true, ∴ x = 0

4th. Simple Constructive Dilemma, the minor pre-

miss exclusive.

If X is true, Y is true, x(1− y) = 0, (41)

If Z is true, Y is true, z(1− y) = 0, (42)

But Either X is true, or Z is true, x+ z − 2xz = 1. (43)

In MAL it seems that one needs 2

equations to eliminate 1 variable, 3

equations to eliminate 2 variables,

and perhaps n+ 1 equations to elim-

inate n variables. The improved re-

duction and elimination theorems in

LT allow one to eliminate any num-

ber of variables from any number of

equations.

From the equations (41), (42), (43), we have to eliminate

x and z. In whatever way we effect this, the result is

y = 1;

whence it appears that the Proposition Y is true.

5th. Complex Constructive Dilemma, the minor pre-

miss not exclusive.

If X is true, Y is true, x(1− y) = 0,

If W is true, Z is true, w(1− z) = 0,

Either X is true, or W is true, x+ w − xw = 1.

From these equations, eliminating x, we have

y + z − yz = 1,
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which expresses the Conclusion, Either Y is true, or Z is true,

the members being non-exclusive.

6th. Complex Destructive Dilemma, the minor pre-

miss exclusive.

If X is true, Y is true, x(1− y) = 0

If W is true, Z is true, w(1− z) = 0

Either Y is not true, or Z is not true, y + z − 2yz = 1.

TYPO:

change “or Y” to “or W”.

From these equations we must eliminate y and z. The result

is

xw = 0,

which expresses the Conclusion, Either X is not true, or Y is not

true, the members not being exclusive.

7th. Complex Destructive Dilemma, the minor pre-

miss not exclusive.

If X is true, Y is true, x(1− y) = 0

If W is true, Z is true, w(1− z) = 0

Either Y is not true, or Z is not true, yz = 0.

On elimination of y and z, we have

xw = 0,

which indicates the same Conclusion as the previous example.

It appears from these and similar cases, that whether the

members of the minor premiss of a Dilemma are exclusive or not,

the members of the (disjunctive) Conclusion are never exclusive.

This fact has perhaps escaped the notice of logicians.

Boole regarded the study of hy-

pothetical syllogisms as incomplete.

However, without the general notion

of a propositional formula, he does

not realize the full extent to which the

accepted study is incomplete.

The above are the principal forms of hypothetical Syllogism

which logicians have recognised. It would be easy, however,

to extend the list, especially by the blending of the disjunctive

and the conditional character in the same Proposition, of which

the following is an example.

If X is true, then either Y is true, or Z is true,

x(1− y − z + yz) = 0

But Y is not true, y = 0

Therefore If X is true, Z is true, ∴ x(1− z) = 0.
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That which logicians term a Causal Proposition is properly a

conditional Syllogism, the major premiss of which is suppressed.

The assertion that the Proposition X is true, because the

Proposition Y is true, is equivalent to the assertion,

The Proposition Y is true,

Therefore the Proposition X is true;

and these are the minor premiss and conclusion of the conditional

Syllogism,

If Y is true, X is true,

But Y is true,

Therefore X is true.

And thus causal Propositions are seen to be included in the ap-

plications of our general method.

Note, that there is a family of disjunctive and conditional

Propositions, which do not, of right, belong to the class consid-

ered in this Chapter. Such are those in which the force of the

disjunctive or conditional particle is expended upon the predicate

of the Proposition, as if, speaking of the inhabitants of a partic-

ular island, we should say, that they are all either Europeans or

Asiatics; meaning, that it is true of each individual, that he is

either a European or an Asiatic. If we appropriate the elective

symbol x to the inhabitants, y to Europeans, and z to Asiatics,

then the equation of the above Proposition is

x = xy + xz, or x(1− y − z) = 0; (a)

to which we might add the condition yz = 0, since no Europeans

are Asiatics. The nature of the symbols x, y, z, indicates that

the Proposition belongs to those which we have before designated

as Categorical. Very different from the above is the Proposition,

Either all the inhabitants are Europeans, or they are all Asiatics.

Here the disjunctive particle separates Propositions. The case

Item (31) is on p. 53.is that contemplated in (31) of the present Chapter; and the

symbols by which it is expressed, . . . . . . . . . . . . . . . (pagebreak in MAL)
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although subject to the same laws as those of (a), have a totally

different interpretation.∗

Boole had a much narrower view of

what qualified as a proposition than

logicians today. Furthermore, justi-

fication for his algebra of logic was

sorely lacking.

The distinction is real and important. Every Proposition

which language can express may be represented by elec-

tive symbols, and the laws of combination of those sym-

bols are in all cases the same; but in one class of instances

the symbols have reference to collections of objects, in the other,

to the truths of constituent Propositions.

∗Some writers, among whom is Dr. Latham (First Outlines), regard it

as the exclusive office of a conjunction to connect Propositions, not words.

In this view I am not able to agree. The Proposition, Every animal is either

rational or irrational, cannot be resolved into, Either every animal is rational,

or every animal is irrational. The former belongs to pure categoricals, the

latter to hypotheticals. In singular Propositions, such conversions would

seem to be allowable. This animal is either rational or irrational, is equivalent

to, Either this animal is rational, or it is irrational. This peculiarity of

singular Propositions would almost justify our ranking them, though truly

universals, in a separate class, as Ramus and his followers did.



PROPERTIES OF ELECTIVE FUNCTIONS.

In Boole’s time the algebra of

numbers included parts of what are

now considered analysis, such as

working with power series. From the

modern point of view, Boole formally

applied a power series expansion to

a logical function φ(x) and derived

the expansion theorem. In LT this

approach is relegated to a footnote,

as an alternate approach.

This proof of (46) and (47) is correct

for φ(x) a (finite) term. For a

term φ(x) one has φ(x) = ax + b.

Then φ(1) = a + b, φ(0) = b, so

φ(x) =
(
φ(1)− φ(0)

)
x+ φ(0).

Boole may have been uncertain

about how much of the algebra of

numbers would be needed/useful in

the algebra of logic, and thus opted

to include the most general form of

functions for which he thought he

could prove the expansion theorem.

In the footnote on this page he ac-

knowledged that not all functions in

algebra are capable of a power series

expansion, yet he still claimed that

all satisfy the expansion theorem in

his algebra of logic.

In Prop. 5 on p. 67 he claimed any

valid equational inference

f = 0 ∴ g = 0

in his algebra is expressible by a func-

tion ψ in the sense that ψ(f) = ψ(0)

is a consequence of f = 0 and is

equivalent to g = 0. Evidently he was

not sure that ψ could be chosen to be

a term.

Since elective symbols combine according to the laws of quan-

tity, we may, by Maclaurin’s theorem, expand a given func-

tion φ(x), in ascending powers of x, known cases of failure ex-

cepted. Thus we have

φ(x) = φ(0) + φ′(0)x+
φ′′(0)

1 · 2
x2 + &c. (44)

Now x2 = x, x3 = x, &c., whence

φ(x) = φ(0) + x
{
φ′(0) +

φ′′(0)

1 · 2
+ &c.

}
. (45)

Now if in (44) we make x = 1, we have

φ(1) = φ(0) + φ′(0) +
φ′′(0)

1 · 2
+ &c.,

whence

φ′(0) +
φ′′(0)

1 · 2
+

φ′′′(0)

1 · 2 · 3
+ &c. = φ(1)− φ(0).

Substitute this value for the coefficient of x in the second

member of (45), and we have∗

φ(x) = φ(0) +
{
φ(1)− φ(0)

}
x, (46)

∗Although this and the following theorems have only been proved for

those forms of functions which are expansible by Maclaurin’s theorem, they

may be regarded as true for all forms whatever; this will appear from the

applications. The reason seems to be that, as it is only through the one

form of expansion that elective functions become interpretable, no

conflicting interpretation is possible.

The development of φ(x) may also be determined thus. By the known

formula for expansion in factorials,

φ(x) = φ(0) + ∆φ(0)x+
∆2φ(0)

1 · 2 x(x− 1) + &c.
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which we shall also employ under the form
This is the standard form of the ex-

pansion theorem in LT.
φ(x) = φ(1)x+ φ(0)(1− x). (47)

Every function of x, in which integer powers of that symbol

are alone involved, is by this theorem reducible to the first or-

der. The quantities φ(0), φ(1), we shall call the moduli of the The moduli of φ(x). The word ‘mod-

uli’ does not appear in LT; instead

φ(0), φ(1) are simply coefficients.

function φ(x). They are of great importance in the theory of

elective functions, as will appear from the succeeding Proposi-

tions.

Prop. 1, and its converse below, say

that φ(x) = ψ(x) is a law of Boole’s

algebra iff the corresponding mod-

uli are equal, that is φ(0) = ψ(0)

and φ(1) = ψ(1). This can be ex-

panded to several variables, as stated

on the next page, giving R01 for equa-

tions, namely φ(~x) = ψ(~x) is a law

of Boole’s algebra iff Z |=01 φ(~x) =

ψ(~x).

Prop. 1. Any two functions φ(x), ψ(x), are equivalent,

whose corresponding moduli are equal.

This is a plain consequence of the last Proposition. For since

φ(x) = φ(0) +
{
φ(1)− φ(0)

}
x,

ψ(x) = ψ(0) +
{
ψ(1)− ψ(0)

}
x,

it is evident that if φ(0) = ψ(0), φ(1) = ψ(1), the two expan-

sions will be equivalent, and therefore the functions which they

represent will be equivalent also.

The converse of this Proposition is equally true, viz.

If two functions are equivalent, their corresponding

moduli are equal.

Among the most important applications of the above theo-

rem, we may notice the following.

Suppose it required to determine for what forms of the func-

tion φ(x), the following equation is satisfied, viz.{
φ(x)

}n
= φ(x).

Now x being an elective symbol, x(x−1) = 0, so that all the terms after the second,

vanish. Also ∆φ(0) = φ(1)− φ(0), whence
Correction: whence

φ(x) = φ(0) +
{
φ(1)− φ(0)

}
xφ

{
x = φ(0)

}
+
{
φ(1)− φ(0)

}
x.

The mathematician may be interested in the remark, that this is not the only

case in which an expansion stops at the second term. The expansions of the com-

pound operative functions φ

(
d

dx
+ x−1

)
and φ

{
x+

(
d

dx

)−1
}

are, respectively,

φ

(
d

dx

)
+ φ′

(
d

dx

)
x−1,

and
φ(x) + φ′(x)

(
d

dx

)−1

.

See Cambridge Mathematical Journal, Vol. iv. p. 219.
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Here we at once obtain for the expression of the conditions in

question, {
φ(0)

}n
= φ(0).

{
φ(1)

}n
= φ(1). (48)

Again, suppose it required to determine the conditions under

which the following equation is satisfied, viz.

φ(x)ψ(x) = χ(x),

The general theorem at once gives

φ(0)ψ(0) = χ(0). φ(1)ψ(1) = χ(1). (49)

This result may also be proved by substituting for φ(x), ψ(x),

χ(x), their expanded forms, and equating the coefficients of the

resulting equation properly reduced.

All the above theorems may be extended to functions

of more than one symbol. For, as different elective symbols

combine with each other according to the same laws as symbols

of quantity, we can first expand a given function with reference

to any particular symbol which it contains, and then expand the

result with reference to any other symbol, and so on in succession,

the order of the expansions being quite indifferent.

Thus the given function being φ(xy) we have

φ(xy) = φ(x0) +
{
φ(x1)− φ(x0)

}
y,

and expanding the coefficients with reference to x, and reducing

Expansion of φ(x, y) as a polynomialφ(xy) = φ(00) +
{
φ(10)− φ(00)

}
x+

{
φ(01)− φ(00)

}
y

+
{
φ(11)− φ(10)− φ(01) + φ(00)

}
xy, (50)

to which we may give the elegant symmetrical form

Expansion of φ(x, y) in form

used in LT

φ(xy) = φ(00)(1− x)(1− y) + φ(01)y(1− x)

+ φ(10)x(1− y) + φ(11)xy, (51)

wherein we shall, in accordance with the language already em-

ployed, designate φ(00), φ(01), φ(10), φ(11), as the moduli of

the function φ(xy).

By inspection of the above general form, it will appear that

any functions of two variables are equivalent, whose correspond-

ing moduli are all equal.
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Thus the conditions upon which depends the satisfaction of

the equation, {
φ(xy)

}n
= φ(xy)

are seen to be{
φ(00)

}n
= φ(00),

{
φ(01)

}n
= φ(01),{

φ(10)
}n

= φ(10),
{
φ(11)

}n
= φ(11).

(52)

And the conditions upon which depends the satisfaction of

the equation φ(xy)ψ(xy) = χ(xy),
are

φ(00)ψ(00) = χ(00), φ(01)ψ(01) = χ(01),

φ(10)ψ(10) = χ(10), φ(11)ψ(11) = χ(11).
(53)

In general, φ(~x) =
∑
σ φ(σ)Cσ(~x),

where σ runs over all lists of 0s and

1s of length m, where ~x is x1, . . . , xm,

and the constituent Cσ(~x) is∏
i Cσi(xi) where C1(xi) = xi and

C0(xi) = 1− xi.

The constituents Cσ(~x) depend only

on σ and ~x, and not on φ(~x). If all the

variables occurring in φ(~x) appear in

the list ~x, then the φ(σ) are integers.

Some Facts: In Boole’s Algebra

Cσ(~x)2 = Cσ(~x),

Cσ(~x) · Cτ (~x) = 0 if σ 6= τ ,

1 =
∑
σ Cσ(~x) are valid, and

Cσ(τ) = 1 if σ = τ ; = 0 otherwise.

φ(~x) = ψ(~x) is valid iff φ(σ) = ψ(σ)

for all σ.

φ(~x)n = φ(~x) is valid iff

φ(σ)n = φ(σ) for all σ.

φ(~x) · ψ(~x) = χ(~x) is valid iff

φ(σ) · ψ(σ) = χ(σ) for all σ.

It is very easy to assign by induction from (47) and

(51), the general form of an expanded elective function.

It is evident that if the number of elective symbols is m, the

number of the moduli will be 2m, and that their separate values

will be obtained by interchanging in every possible way the values

1 and 0 in the places of the elective symbols of the given function.

The several terms of the expansion of which the moduli serve as

coefficients, will then be formed by writing for each 1 that recurs

under the functional sign, the elective symbol x, &c., which it

represents, and for each 0 the corresponding 1 − x, &c., and

regarding these as factors, the product of which, multiplied by

the modulus from which they are obtained, constitutes a term of

the expansion.

Thus, if we represent the moduli of any elective function

φ(xy . . . ) by a1, a2, . . . , ar, the function itself, when expanded

and arranged with reference to the moduli, will assume the form

Change φ(xy) to φ(xy . . .) in (54).

The ti are called the constituent

functions of φ on the next page. It

would be better to call them the

constituent functions of xy . . ..

The second t1t2 in (56) should prob-

ably be t1tr. (56) is clearer if written

titj = 0 for 1 ≤ i < j ≤ r.

φ(xy) = a1t1 + a2t2 · · ·+ artr, (54)

in which t1t2 . . . tr are functions of x, y, . . . , resolved into factors

of the forms x, y, . . . 1 − x, 1 − y, . . . &c. These functions

satisfy individually the index relations

tn1 = t1, tn2 = t2, &c. (55)

and the further relations,

t1t2 = 0 . . . t1t2 = 0, &c. (56)
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the product of any two of them vanishing. This will at once

be inferred from inspection of the particular forms (47) and (51).

Thus in the latter we have for the values of t1, t2, &c., the forms

xy, x(1− y), (1− x)y, (1− x)(1− y);

and it is evident that these satisfy the index relation, and that

their products all vanish. We shall designate t1t2 . . . as the con-

stituent functions of φ(xy), and we shall define the peculiarity

of the vanishing of the binary products, by saying that those

functions are exclusive. And indeed the classes which they

represent are mutually exclusive.

The sum of all the constituents of an expanded func-

tion is unity. An elegant proof of this Proposition will be ob-

tained by expanding 1 as a function of any proposed elective sym-

bols. Thus if in (51) we assume φ(xy) = 1, we have φ(11) = 1,

φ(10) = 1, φ(01) = 1, φ(00) = 1, and (51) gives

1 = xy + x(1− y) + (1− x)y + (1− x)(1− y). (57)

It is obvious indeed, that however numerous the symbols in-

volved, all the moduli of unity are unity, whence the sum of the

constituents is unity.

We are now prepared to enter upon the question of the gen-

eral interpretation of elective equations. For this purpose

we shall find the following Propositions of the greatest service. The first member of an equation is the

left-side of the equation.

φ(xy . . .) = 0 is equivalent to the col-

lection of ti = 0 whose modulus ai

is not 0. (It is also equivalent to∑
{ti : ai 6= 0} = 0.)

Prop. 2. If the first member of the general equation φ(xy . . . ) =

0, be expanded in a series of terms, each of which is of the form at,

a being a modulus of the given function, then for every numer-

ical modulus a which does not vanish, we shall have the

equation

Change at = 0 to t = 0.

Note that each t = 0 is interpretable.

at = 0,

and the combined interpretations of these several equa-

tions will express the full significance of the original

equation.

For, representing the equation under the form

a1t1 + a2t2 · · ·+ artr = 0. (58)

Multiplying by t1, we have, by (56),

a1t1 = 0, (59)
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whence if a1 is a numerical constant which does not vanish,
It is not clear if Boole obtained t1 = 0

from (59) by simply using a rule of

inference, or by first multiplying both

sides of (59) by 1/a1.

t1 = 0,

and similarly for all the moduli which do not vanish. And inas-

much as from these constituent equations we can form the

given equation, their interpretations will together express its en-

tire significance.

Thus if the given equation were

x− y = 0, Xs and Ys are identical, (60)

we should have φ(11) = 0, φ(10) = 1, φ(01) = −1, φ(00) = 0, so

that the expansion (51) would assume the form

x(1− y)− y(1− x) = 0,

whence, by the above theorem,

x(1− y) = 0, All Xs are Ys,

y(1− x) = 0, All Ys are Xs,

results which are together equivalent to (60).
Boole did not treat 0 as an elective

operation defined by a class. He said

that if one derives x = 0, then the

class X does not exist; and if one de-

rives 1 = 0 then the universe does

not exist. Boole said such derivations

need contradictory propositions. In

LT Boole would let 0 denote the class

with no members.

It may happen that the simultaneous satisfaction of equa-

tions thus deduced, may require that one or more of the elective

symbols should vanish. This would only imply the nonexis-

tence of a class: it may even happen that it may lead to

a final result of the form

1 = 0,

which would indicate the nonexistence of the logical Uni-

verse. Such cases will only arise when we attempt to unite

contradictory Propositions in a single equation. The manner in

which the difficulty seems to be evaded in the result is character-

istic.

Boole said that among the equivalent

forms of an elective equation φ = 0,

the preferred choice is∑
{ti : ai 6= 0} = 0,

where the complete expansion of φ is∑
aiti.

It appears from this Proposition, that the differences in

the interpretation of elective functions depend solely

upon the number and position of the vanishing mod-

uli. No change in the value of a modulus, but one which causes

it to vanish, produces any change in the interpretation of the

equation in which it is found. If among the infinite number of

different values which we are thus permitted to give to the mod-

uli which do not vanish in a proposed equation, any one value

should be . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pagebreak in MAL)
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preferred, it is unity, for when the moduli of a function are all

either 0 or 1, the function itself satisfies the condition{
φ(xy . . . )

}n
= φ(xy . . . ),

and this at once introduces symmetry into our Calculus, and

provides us with fixed standards for reference.
Prop. 3 says that any equation w =

φ(xy . . . ) is equivalent to w =
∑
{ti :

ai = 1} along with ti = 0 for ai /∈
{0, 1}, where

∑
aiti is the complete

expansion of φ(xy . . . ).

This is the only time Boole refers to

a complete expansion. The hallmark

of a complete expansion is that all the

coefficients of the constituents are nu-

merical, and called modulii.

Prop. 3. If w = φ(xy . . . ), w, x, y, . . . being elective

symbols, and if the second member be completely ex-

panded and arranged in a series of terms of the form at,

we shall be permitted to equate separately to 0 every

term in which the modulus a does not satisfy the condi-

tion
an = a,

and to leave for the value of w the sum of the remaining

terms.
The general proof is quite simple.

From w =
∑
aiti follows w =

∑
a2
i ti.

Subtracting gives
∑

(a2
i − ai)ti = 0.

If aj is not idempotent, that is aj /∈

{0, 1}, then multiply the last sum by

tj to obtain (a2
j − aj)tj = 0. As the

numerical coefficient a2
j 6= aj , it fol-

lows that tj = 0.

As the nature of the demonstration of this Proposition is quite

unaffected by the number of the terms in the second member, we

will for simplicity confine ourselves to the supposition of there

being four, and suppose that the moduli of the two first only,

satisfy the index law.

We have then

w = a1t1 + a2t2 + a3t3 + a4t4, (61)

with the relations

an1 = a1, an2 = a2,

in addition to the two sets of relations connecting t1, t2, t3, t4,

in accordance with (55) and (56).

Squaring (61), we have

w = a1t1 + a2t2 + a2
3t3 + a2

4t4,

and subtracting (61) from this,

(a2
3 − a3)t3 + (a2

4 − a4)t4 = 0;

and it being an hypothesis, that the coefficients of these terms

do not vanish, we have, by Prop. 2,

t3 = 0, t4 = 0, (62)

whence (61) becomes

w = a1t1 + a2t2.

The utility of this Proposition will hereafter appear.
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Prop. 4. The functions t1t2 . . . tr being mutually ex-

clusive, we shall always have

The proof assumes that t1, . . . , tr is a

list of all the constituents for some list

of variables ~x. Let ψ(w) = p · w + q

where p and q are terms not involving

w. Then for any terms ai one has

ψ(
∑
i aiti) = p ·

(∑
i aiti)

)
+ q

=
∑
i(p ·ai+ q)ti =

∑
i ψ(ai)ti.

ψ(a1t1 + a2t2 · · ·+ artr) = ψ(a1)t1 +ψ(a2)t2 · · ·+ψ(ar)tr, (63)

whatever may be the values of a1a2 . . . ar or the form of ψ.

Let the function a1t1+a2t2 · · ·+artr be represented by φ(xy . . . ),

then the moduli a1a2 . . . ar will be given by the expressions

φ(11 . . . ), φ(10 . . . ), (. . . ) φ(00 . . . ).

Also

ψ(a1t1 + a2t2 · · ·+ artr) = ψ
{
φ(xy . . . )

}
= ψ

{
φ(11 . . . )

}
xy · · ·+ ψ

{
φ(10 . . . )

}
x(1− y) . . .

+ ψ
{
φ(00 . . . )

}
(1− x)(1− y) . . .

= ψ(a1)xy · · ·+ ψ(a2)x(1− y) · · ·+ ψ(ar)(1− x)(1− y) . . .

= ψ(a1)t1 + ψ(a2)t2 · · ·+ ψ(ar)tr. (64)

It would not be difficult to extend the list of interesting prop-

erties, of which the above are examples. But those which we have

noticed are sufficient for our present requirements. The following

Proposition may serve as an illustration of their utility.
Boole’s proof of Prop. 5 shows, in par-

ticular, that if q(~x) = 0 is a conse-

quence of p(~x) = 0 then p(σ) = 0 im-

plies q(σ) = 0, for all σ. Thus the col-

lection of constituents with non-zero

coefficient in the expansion of q = 0 is

a subset of those in the expansion of

p = 0; hence q = 0 is either equivalent

to p = 0 or a limitation of it. This can

readily be generalized to show that{
pi(~x) = 0

}
∴ p(~x) = 0 is valid

iff
{
pi(σ) = 0

}
∴ p(σ) = 0 holds for

all σ, a result which is the foundation

principle in LT, and has been called

the Rule of 0 and 1.

Prop. 5. Whatever process of reasoning we apply to

a single given Proposition, the result will either be the

same Proposition or a limitation of it.

Let us represent the equation of the given Proposition under

its most general form,

a1t1 + a2t2 · · ·+ artr = 0, (65)

resolvable into as many equations of the form t = 0 as there are

moduli which do not vanish.

Now the most general transformation of this equation is

ψ(a1t1 + a2t2 · · ·+ artr) = ψ(0), (66)

provided that we attribute to ψ a perfectly arbitrary character,

allowing it even to involve new elective symbols, having any pro-

posed relation to the original ones.
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The development of (66) gives, by the last Proposition,

ψ(a1)t1 + ψ(a2)t2 · · ·+ ψ(ar)tr = ψ(0).

To reduce this to the general form of reference, it is only necessary

to observe that since

t1 + t2 · · ·+ tr = 1,

we may write for ψ(0),

ψ(0)(t1 + t2 · · ·+ tr),

whence, on substitution and transposition,{
ψ(a1)−ψ(0)

}
t1 +

{
ψ(a2)−ψ(0)

}
t2 · · ·+

{
ψ(ar)−ψ(0)

}
tr = 0.

From which it appears, that if a be any modulus of the orig-

inal equation, the corresponding modulus of the transformed

equation will be

ψ(a)− ψ(0).

If a = 0, then ψ(a) − ψ(0) = ψ(0) − ψ(0) = 0, whence there

are no new terms in the transformed equation, and therefore

there are no new Propositions given by equating its constituent

members to 0.

Again, since ψ(a) − ψ(0) may vanish without a vanishing,

terms may be wanting in the transformed equation which ex-

isted in the primitive. Thus some of the constituent truths of

the original Proposition may entirely disappear from the inter-

pretation of the final result.

Lastly, if ψ(a) − ψ(0) do not vanish, it must either be a nu-

merical constant, or it must involve new elective symbols. In the

former case, the term in which it is found will give

t = 0,

which is one of the constituents of the original equation: in the

latter case we shall have

TYPO: ψ(a)− ψ(0)
{
ψ(a− ψ(0)

}
t = 0,

in which t has a limiting factor. The interpretation of this equa-

tion, therefore, is a limitation of the interpretation of (65).
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The purport of the last investigation will be more apparent

to the mathematician than to the logician. As from any mathe-

matical equation an infinite number of others may be deduced, it

seemed to be necessary to shew that when the original equation

expresses a logical Proposition, every member of the derived se-

ries, even when obtained by expansion under a functional sign,

admits of exact and consistent interpretation.



OF THE SOLUTION OF ELECTIVE EQUATIONS.

Boole’s first method of solving an

equation φ(~x,w) = 0 for w in terms

of ~x is to assume the solution is

a linear combination
∑
viti of the

constituents ti of the variables ~x.

This value of w is substituted into

φ(~x,w) = 0, perhaps with the left

side expanded, to determine which vi

must be 0.

Example: Solve (1− x)y = 0 for y.

In whatever way an elective symbol, considered as unknown,

may be involved in a proposed equation, it is possible to assign

its complete value in terms of the remaining elective symbols

considered as known. It is to be observed of such equations, that

from the very nature of elective symbols, they are necessarily

linear, and that their solutions have a very close analogy

with those of linear differential equations, arbitrary elective

symbols in the one, occupying the place of arbitrary constants

in the other. The method of solution we shall in the first place

illustrate by particular examples, and, afterwards, apply to the

investigation of general theorems.

Given (1− x)y = 0, (All Ys are Xs), to determine y in

terms of x.

As y is a function of x, we may assume y = vx+v′(1−x),

(such being the expression of an arbitrary function of x), the

moduli v and v′ remaining to be determined. We have then

(1− x)
{
vx+ v′(1− x)

}
= 0,

or, on actual multiplication,

v′(1− x) = 0 :

that this may be generally true, without imposing any restriction

upon x, we must assume v′ = 0, and there being no condition to

limit v, we have

y = vx. (67)

This is the complete solution of the equation. The condition

that y is an elective symbol requires that v should be an elective
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symbol also (since it must satisfy the index law), its interpreta-

tion in other respects being arbitrary.

Similarly the solution of the equation, xy = 0, is

y = v(1− x). (68)

Example: Solve (1− x)zy = 0 for y.Given (1 − x)zy = 0, (All Ys which are Zs are Xs), to

determine y.

As y is a function of x and z, we may assume

y = v(1− x)(1− z) + v′(1− x)z + v′′x(1− z) + v′′′zx.

And substituting, we get

v′(1− x)z = 0,

whence v′ = 0. The complete solution is therefore

y = v(1− x)(1− z) + v′′x(1− z) + v′′′xz, (69)

v′, v′′, v′′′, being arbitrary elective symbols, and the rigorous

interpretation of this result is, that Every Y is either a not-X

and not-Z, or an X and not-Z, or an X and Z.

It is deserving of note that the above equation may, in conse-

quence of its linear form, be solved by adding the two particular

solutions with reference to x and z; and replacing the arbitrary

constants which each involves by an arbitrary function of the

other symbol, the result is

y = xφ(z) + (1− z)ψ(x). (70)

To shew that this solution is equivalent to the other, it is only

necessary to substitute for the arbitrary functions φ(z), ψ(x),

their equivalents

wz + w′(1− z) and w′′x+ w′′′(1− x),

we get

y = wxz + (w′ + w′′)x(1− z) + w′′′(1− x)(1− z).

In consequence of the perfectly arbitrary character of w′ and w′′,

we may replace their sum by a single symbol w′, whence

y = wxz + w′x(1− z) + w′′′(1− x)(1− z),

which agrees with (69).
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The solution of the equation wx(1 − y)z = 0, expressed by

arbitrary functions, is

z = (1− w)φ(xy) + (1− x)ψ(wy) + yχ(wx). (71)

These instances may serve to shew the analogy which

exists between the solutions of elective equations and

those of the corresponding order of linear differential

equations. Thus the expression of the integral of a partial dif-

ferential equation, either by arbitrary functions or by a series with

arbitrary coefficients, is in strict analogy with the case presented

in the two last examples. To pursue this comparison further

would minister to curiosity rather than to utility. We shall prefer

to contemplate the problem of the solution of elective equations

under its most general aspect, which is the object of the succeed-

ing investigations.
The above examples did not illustrate

that, when solving an equation for

one variable, constraints on the other

variables may be required. For exam-

ple, to have a solution to xy = z for

y one needs (1− x)z = 0.

To solve the general equation φ(xy) = 0, with refer-

ence to y.

If we expand the given equation with reference to x and y,

we have

φ(00)(1−x)(1−y)+φ(01)(1−x)y+φ(10)x(1−y)+φ(11)xy = 0,

(72)

the coefficients φ(00) &c. being numerical constants.

Now the general expression of y, as a function of x, is

y = vx+ v′(1− x),

v and v′ being unknown symbols to be determined. Substituting

this value in (72), we obtain a result which may be written in the

following form,
TYPO: Change

φ(00)− φ(00) to φ(01)− φ(00).[
φ(10)+

{
φ(11)−φ(10)

}
v
]
x+
[
φ(00)+

{
φ(00)−φ(00)

}
v′
]
(1−x) = 0;

and in order that this equation may be satisfied without any way

restricting the generality of x, we must have

φ(10) +
{
φ(11)− φ(10)

}
v = 0,

φ(00) +
{
φ(01)− φ(00)

}
v′ = 0,
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from which we deduce
TYPO: Change

φ(01)− φ(00) to φ(00)− φ(01).

On the next page Boole shows how

to interpret these fractions when they

are not 0 or 1.

v =
φ(10)

φ(10)− φ(11)
, v′ =

φ(00)

φ(01)− φ(00)
,

wherefore

y =
φ(10)

φ(10)− φ(11)
x+

φ(00)

φ(00)− φ(01)
(1− x). (73)

Had we expanded the original equation with respect to y only,

we should have had

φ(x0) +
{
φ(x1)− φ(x0)

}
y = 0;

but it might have startled those who are unaccustomed
Boole tried to work with rational ex-

pressions p(~x)/q(~x) just as in numer-

ical algebra, but he had only lim-

ited success, namely when solving

an equation of the form q(~x)w =

p(~x). His method of solution, start-

ing with w = p(~x)/q(~x), formally

expanding the right side and inter-

preting it, does not work to solve

q(~x)(w1 + w2) = p(~x) for w1 + w2.

It seems best to view Boole’s use of

expansions of rational expressions as

a clever mnemonic device for solving

q(~x)w = p(~x) for w, or more gener-

ally, for solving q(~x)f(~w) = p(~x) for

f(~w) provided f(~w) is idempotent.

to the processes of Symbolical Algebra, had we from this

equation deduced

y =
φ(x0)

φ(x0)− φ(x1)
,

because of the apparently meaningless character of the

second member. Such a result would however have been per-

fectly lawful, and the expansion of the second member would have

given us the solution above obtained. I shall in the following ex-

ample employ this method, and shall only remark that those to

whom it may appear doubtful, may verify its conclusions by the

previous method.

To solve the general equation φ(xyz) = 0, or in other words

to determine the value of z as a function of x and y.

Expanding the given equation with reference to z, we have

φ(xy0) +
{
φ(xy1)− φ(xy0)

}
· z = 0;

∴ z =
φ(xy0)

φ(xy0)− φ(xy1)
, (74)

and expanding the second member as a function of x and y by

aid of the general theorem, we have

z =
φ(110)

φ(110)− φ(111)
xy +

φ(100)

φ(100)− φ(101)
x(1− y)

+
φ(010)

φ(010)− φ(011)
(1− x)y +

φ(000)

φ(000)− φ(001)
(1− x)(1− y),

(75)



of the solution of elective equations. 74

and this is the complete solution required. By the same method

we may resolve an equation involving any proposed number of

elective symbols.

In the interpretation of any general solution of this nature,

the following cases may present themselves.

Regarding the fractional moduli, in

the cases where the coefficients of the

solution are not 0 or 1 they can be

any of m/n where m,n are integers

satisfying 0 6= m 6= n or m = n = 0.

If φ is idempotent, then the only

possible coefficients besides 0 and 1

are 0/0 and 1/0.

The arbitrary v is not necessarily the

v used for “some”.

The values of the moduli φ(00), φ(01), &c. being constant,

one or more of the coefficients of the solution may assume the

form 0
0 or 1

0 . In the former case, the indefinite symbol 0
0

must be replaced by an arbitrary elective symbol v.

In the latter case, the term, which is multiplied by a

factor 1
0 (or by any numerical constant except 1), must be

Correction: any numerical constant

except 0 or 1. This includes the “nu-

merical” constants m/0, m 6= 0.separately equated to 0, and will indicate the existence

of a subsidiary Proposition. This is evident from (62).

Ex. Given x(1− y) = 0, All Xs are Ys, to determine y as a

function of x.

Let φ(xy) = x(1− y), then φ(10) = 1, φ(11) = 0, φ(01) = 0,

φ(00) = 0; whence, by (73),

y =
1

1− 0
x+

0

0− 0
(1− x)

= x+ 0
0(1− x)

= x+ v(1− x), (76)

v being an arbitrary elective symbol. The interpretation of this

result is that the class Y consists of the entire class X with an

indefinite remainder of not-Xs. This remainder is indefinite This does not imply that v is permit-

ted to take on the value 0.in the highest sense, i. e. it may vary from 0 up to the entire

class of not-Xs.

Ex. Given x(1−z)+z = y, (the class Y consists of the entire

class Z, with such not-Zs as are Xs), to find Z.

Here φ(xyz) = x(1−z)−y+z, whence we have the following

set of values for the moduli,

φ(110) = 0, φ(111) = 0, φ(100) = 1, φ(101) = 1,

φ(010) = −1, φ(011) = 0, φ(000) = 0, φ(001) = 1,

and substituting these in the general formula (75), we have

z = 0
0xy + 1

0x(1− y) + (1− x)y, (77)
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the infinite coefficient of the second term indicates the equation

x(1− y) = 0, All Xs are Ys;

and the indeterminate coefficient of the first term being replaced

by v, an arbitrary elective symbol, we have

z = (1− x)y + vxy,

the interpretation of which is, that the class Z consists of all

the Ys which are not Xs, and an indefinite remainder of Ys which

are Xs. Of course this indefinite remainder may vanish.

The two results we have obtained are logical inferences (not very

obvious ones) from the original Propositions, and they give us all

the information which it contains respecting the class Z, and its

constituent elements.

Ex. Given x = y(1− z) + z(1− y). The class X consists of

all Ys which are not-Zs, and all Zs which are not-Ys: required

the class Z.

We have

φ(xyz) = x− y(1− z)− z(1− y),

φ(110) = 0, φ(111) = 1, φ(100) = 1, φ(101) = 0,

φ(010) = −1, φ(011) = 0, φ(000) = 0, φ(001) = −1;

whence, by substituting in (75),

z = x(1− y) + y(1− x), (78)

the interpretation of which is, the class Z consists of all Xs which

are not Ys, and of all Ys which are not Xs; an inference strictly

logical.

Ex. Given y
{

1− z(1− x)
}

= 0, All Ys are Zs and not-Xs.

Proceeding as before to form the moduli, we have, on substi-

tution in the general formulæ,

z = 1
0xy + 0

0x(1− y) + y(1− x) + 0
0(1− x)(1− y),

or

Also: z = (1− x)y + v′′(1− y).
z = y(1− x) + vx(1− y) + v′(1− x)(1− y)

= y(1− x) + (1− y)φ(x), (79)

with the relation

xy = 0 :

from these it appears that No Ys are Xs, and that the class Z
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consists of all Ys which are not Xs, and of an indefinite remainder

of not-Ys.
Boole first gave a simple example of

the use of indeterminate multipliers

to solve a system of two logical equa-

tions in three variables for one of its

variables in terms of the other two

variables. Essentially he was using

the fact that φ(~x) = ψ(~x) = 0 is

equivalent to (∀λ)
(
φ(~x) + λψ(~x) =

0
)

, where λ ranges over {0, 1}. Then

he looked at the general theory of

three equations in three variables on

p. 78, saying that this exhibits all

the ingredients needed to solve any

number of equations in any number

of variables. However his constraint

equations are not strong enough to

guarantee that a solution exists—see

the margin comments on p. 80.

This method, in combination with Lagrange’s method of

indeterminate multipliers, may be very elegantly applied to

the treatment of simultaneous equations. Our limits only permit

us to offer a single example, but the subject is well deserving of

further investigation.

Given the equations x(1−z) = 0, z(1−y) = 0, All Xs are Zs,

All Zs are Ys, to determine the complete value of z with any

subsidiary relations connecting x and y.

Adding the second equation multiplied by an indeterminate

constant λ, to the first, we have

x(1− z) + λz(1− y) = 0,

whence determining the moduli, and substituting in (75),

z = xy +
1

1− λ
x(1− y) + 0

0(1− x)y, (80)

from which we derive

z = xy + v(1− x)y,

with the subsidiary relation

x(1− y) = 0 :

the former of these expresses that the class Z consists of all Xs

that are Ys, with an indefinite remainder of not-Xs that are Ys;

the latter, that All Xs are Ys, being in fact the conclusion of the

syllogism of which the two given Propositions are the premises.

By assigning an appropriate meaning to our symbols, all the

equations we have discussed would admit of interpretation in

hypotheticals, but it may suffice to have considered them as ex-

amples of categoricals.

“That peculiarity” is the index law.That peculiarity of elective symbols, in virtue of which every

elective equation is reducible to a system of equations t1 = 0, t2 =

0, &c., so constituted, that all the binary products t1t2, t1t3, &c.,

vanish, represents a general doctrine in Logic with reference to

the ultimate analysis of Propositions, of which it may be desirable

to offer some illustration.
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Any of these constituents t1, t2, &c. consists only of factors

of the forms x, y, . . . 1−w, 1−z, &c. In categoricals it therefore

represents a compound class, i. e. a class defined by the presence

of certain qualities, and by the absence of certain other qualities.

Each constituent equation t1 = 0, &c. expresses a denial of

the existence of some class so defined, and the different classes

are mutually exclusive.

This was already covered in Prop. 2

on p. 64.

Thus all categorical Propositions are resolvable into

a denial of the existence of certain compound classes, no

member of one such class being a member of another.

The Proposition, All Xs are Ys, expressed by the equation

x(1− y) = 0, is resolved into a denial of the existence of a class

whose members are Xs and not-Ys.

The Proposition Some Xs are Ys, expressed by v = xy, is

resolvable as follows. On expansion,

v − xy = vx(1− y) + vy(1− x) + v(1− x)(1− y)− xy(1− v);

∴ vx(1− y) = 0, vy(1− x) = 0, v(1− x)(1− y) = 0, (1− v)xy = 0.

The three first imply that there is no class whose members

belong to a certain unknown Some, and are 1st, Xs and not Ys;

2nd, Ys and not Xs; 3rd, not-Xs and not-Ys. The fourth implies

that there is no class whose members are Xs and Ys without

belonging to this unknown Some.

From the same analysis it appears that all hypothetical

Propositions may be resolved into denials of the coex-

istence of the truth or falsity of certain assertions.

Thus the Proposition, If X is true, Y is true, is resolvable by

its equation x(1 − y) = 0, into a denial that the truth of X and

the falsity of Y coexist.

And the Proposition Either X is true, or Y is true, members

exclusive, is resolvable into a denial, first, that X and Y are both

true; secondly, that X and Y are both false.

But it may be asked, is not something more than a sys-

tem of negations necessary to the constitution of an affirmative

Proposition? is not a positive element required? Undoubtedly
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there is need of one; and this positive element is supplied in cat-

egoricals by the assumption (which may be regarded as a prereq-

uisite of reasoning in such cases) that there is a Universe of
This means 1 6= 0.

conceptions, and that each individual it contains either belongs

to a proposed class or does not belong to it; in hypotheticals, by

the assumption (equally prerequisite) that there is a Universe

of conceivable cases, and that any given Proposition is either

true or false. Indeed the question of the existence of concep-

tions (εἰ ἔστι) is preliminary to any statement of their qualities

or relations (τί ἔστι).—Aristotle, Anal. Post. lib. ii. cap. 2.

It would appear from the above, that Propositions may be

regarded as resting at once upon a positive and upon a negative

foundation. Nor is such a view either foreign to the spirit of

Deductive Reasoning or inappropriate to its Method; the latter

ever proceeding by limitations, while the former contemplates

the particular as derived from the general.

Demonstration of the Method of Indeterminate Multipliers,

as applied to Simultaneous Elective Equations.

To avoid needless complexity, it will be sufficient to con-

sider the case of three equations involving three elective

symbols, those equations being the most general of the kind. It

will be seen that the case is marked by every feature affecting

the character of the demonstration, which would present itself in

the discussion of the more general problem in which the number

of equations and the number of variables are both unlimited.

Let the given equations be

φ(xyz) = 0, ψ(xyz) = 0, χ(xyz) = 0. (1)

Boole used indeterminate multipliers

to reduce several equations to a single

equation. Clearly

φ = ψ = χ = 0

is equivalent to

(∀h)(∀k)(φ+ hψ + kχ = 0).

Indeed it suffices to let h, k range over

{0, 1}.

In LT this method will be mentioned,

but the preferred method will use

sums of squares; e.g., in this case the

reduction would be

φ2 + ψ2 + χ2 = 0.

Multiplying the second and third of these by the arbitrary

constants h and k, and adding to the first, we have

φ(xyz) + hψ(xyz) + kχ(xyz) = 0; (2)
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and we are to shew, that in solving this equation with reference

to any variable z by the general theorem (75), we shall obtain

not only the general value of z independent of h and k, but

also any subsidiary relations which may exist between x and y

independently of z.

If we represent the general equation (2) under the form F (xyz) =

0, its solution may by (75) be written in the form
This is rather dubious since, for ex-

ample, F (110) might be 0.
z =

xy

1− F (111)

F (110)

+
x(1− y)

1− F (101)

F (100)

+
y(1− x)

1− F (011)

F (010)

+
(1− x)(1− y)

1− F (001)

F (000)

;

and we have seen, that any one of these four terms is to be

equated to 0, whose modulus, which we may represent by M ,

does not satisfy the condition Mn = M , or, which is here the

same thing, whose modulus has any other value than 0 or 1.

Correction: . . . any other value than

0 or 1 or 0/0.

Consider the modulus (suppose M1) of the first term, viz.
1

1− F (111)

F (110)

, and giving to the symbol F its full meaning, we

have

M1 =
1

1− φ(111) + hψ(111) + kχ(111)

φ(110) + hψ(110) + kχ(110)

.

This argument is dubious, but the

equations in (3) at the top of the

next page are correct constraints (the

ψ in the third equation should be

φ); however they can be significantly

strengthened as stated there in the

margin.

The requirement that Mn
1 = M1 for

all h, k is equivalent to requiring that

the three quotients at the bottom of

the page do not have both
6= 0

0
and

0

6= 0
occurring. But one could have

both
0

0
and

6= 0

0
occuring, or one

could have both
0

0
and

0

6= 0
occuring.

It is evident that the condition Mn
1 = M1 cannot be satisfied

unless the right-hand member be independent of h and k; and in

order that this may be the case, we must have the function
φ(111) + hψ(111) + kχ(111)

φ(110) + hψ(110) + kχ(110)
independent of h and k.

Assume then

φ(111) + hψ(111) + kχ(111)

φ(110) + hψ(110) + kχ(110)
= c,

c being independent of h and k; we have, on clearing of fractions

and equating coefficients,

φ(111) = cφ(110), ψ(111) = cψ(110), χ(111) = cχ(110);

whence, eliminating c,

φ(111)

φ(110)
=
ψ(111)

ψ(110)
=
χ(111)

χ(110)
,
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being equivalent to the triple system

One can improve (3) as follows:

φ(1, 1, 0)ψ(1, 1, 1) = φ(1, 1, 1)ψ(1, 1, 0) = 0

ψ(1, 1, 0)χ(1, 1, 1) = ψ(1, 1, 1)χ(1, 1, 0) = 0

χ(1, 1, 0)φ(1, 1, 1) = χ(1, 1, 1)φ(1, 1, 0) = 0,

and add

φ(1, 1, 0)φ(1, 1, 1) = ψ(1, 1, 0)ψ(1, 1, 1)

= χ(1, 1, 0)χ(1, 1, 1) = 0.

Using the reduction and elimination

theorems of LT, a system of equations

p1(~x, z) = · · · = pk(~x, z) = 0

can be solved for z iff for every i, j:

pi(~x, 0)pj(~x, 1) = 0.

φ(111)ψ(110) − φ(110)ψ(111) = 0

ψ(111)χ(110)− ψ(110)χ(111) = 0

χ(111)φ(110) − χ(110)ψ(111) = 0

 (3)

and it appears that if any one of these equations is not satisfied,

the modulus M1 will not satisfy the condition Mn
1 = M1, whence

the first term of the value of z must be equated to 0, and we shall

have
xy = 0,

a relation between x and y independent of z.
Correction: “. . . each of the primi-

tive. . . ”Now if we expand in terms of z each pair of the primitive

equations (1), we shall have

φ(xy0) +
{
φ(xy1)− φ(xy0)

}
z = 0,

ψ(xy0) +
{
ψ(xy1)− ψ(xy0)

}
z = 0,

χ(xy0) +
{
χ(xy1)− χ(xy0)

}
z = 0,

and successively eliminating z between each pair of these equa-

tions, we have

This does not express all the relations

between x and y after eliminating z.

See the above discussion of systems of

equations.

φ(xy1)ψ(xy0) − φ(xy0)ψ(xy1) = 0,

ψ(xy1)χ(xy0)− ψ(xy0)χ(xy1) = 0,

χ(xy1)φ(xy0) − χ(xy0)φ(xy1) = 0,

which express all the relations between x and y that are formed

by the elimination of z. Expanding these, and writing in full the

first term, we have{
φ(111)ψ(110) − φ(110)ψ(111)

}
xy + &c. = 0,{

ψ(111)χ(110)− ψ(110)χ(111)
}
xy + &c. = 0,{

χ(111)φ(110) − χ(110)φ(111)
}
xy + &c. = 0 :

and it appears from Prop. 2. that if the coefficient of xy in any

of these equations does not vanish, we shall have the equation

xy = 0;

but the coefficients in question are the same as the first members

of the system (3), and the two sets of conditions exactly agree.

Thus, as respects the first term of the expansion, the method

of indeterminate coefficients leads to the same result as ordinary

elimination; and it is obvious that from their similarity of form,

the same reasoning will apply to all the other terms.
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Suppose, in the second place, that the conditions (3) are sat-

isfied so that M1 is independent of h and k. It will then indiffer-

ently assume the equivalent forms
These forms need not be equivalent

for M1 to be idempotent. M1 is idem-

potent iff one of (a), (b) and (c) holds:

(a) all three are 0/0, or

(b) some are 1 and all others are

0/0, or

(c) some are 0 and all others are

0/0.

Then

M1 = 0/0 in case (a);

M1 = 1 in case (b);

M1 = 0 in case (c).

M1 =
1

1− φ(111)

φ(110)

=
1

1− ψ(111)

ψ(110)

=
1

1− χ(111)

χ(110)

These are the exact forms of the first modulus in the expanded

values of z, deduced from the solution of the three primitive equa-

tions singly. If this common value of M1 is 1 or 0
0 = v, the term

will be retained in z; if any other constant value (except 0), we

have a relation xy = 0, not given by elimination, but deducible

from the primitive equations singly, and similarly for all the other

terms. Thus in every case the expression of the subsidiary rela-

tions is a necessary accompaniment of the process of solution.

It is evident, upon consideration, that a similar proof will

apply to the discussion of a system indefinite as to the

number both of its symbols and of its equations.

POSTSCRIPT.

Some additional explanations and references which have oc-

curred to me during the printing of this work are subjoined.

The remarks on the connexion between Logic and Language,

p. 5, are scarcely sufficiently explicit. Both the one and the other

I hold to depend very materially upon our ability to form general

notions by the faculty of abstraction. Language is an instru-

ment of Logic, but not an indispensable instrument.

To the remarks on Cause, p. 12, I desire to add the follow-

ing: Considering Cause as an invariable antecedent in Nature,

(which is Brown’s view), whether associated or not with the idea

of Power, as suggested by Sir John Herschel, the knowledge of

its existence is a knowledge which is properly expressed by the

word that (τὸ ὁτὶ), not by why (τὸ διὁτὶ). It is very remarkable

that the two greatest authorities in Logic, modern and ancient,

agreeing in the latter interpretation, differ most widely in its

application to Mathematics. Sir W. Hamilton says that Mathe-

matics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pagebreak in MAL)



exhibit only the that (τὸ ὁτὶ): Aristotle says, The why belongs

to mathematicians, for they have the demonstrations of Causes.

Anal. Post. lib. i., cap. xiv. It must be added that Aristotle’s

view is consistent with the sense (albeit an erroneous one) which

in various parts of his writings he virtually assigns to the word

Cause, viz. an antecedent in Logic, a sense according to which

the premises might be said to be the cause of the conclusion.

This view appears to me to give even to his physical inquiries

much of their peculiar character.

Upon reconsideration, I think that the view on p. 41, as to

the presence or absence of a medium of comparison, would read-

ily follow from Professor De Morgan’s doctrine, and I therefore

relinquish all claim to a discovery. The mode in which it appears

in this treatise is, however, remarkable.
Boole has decided that the secondary

translations of propositions, which in-

volve a parameter v, is always prefer-

able to the primary translations. This

will carry over to LT.

I have seen reason to change the opinion expressed in

pp. 42, 43. The system of equations there given for the

expression of Propositions in Syllogism is always prefer-

able to the one before employed—first, in generality—

secondly, in facility of interpretation.

In virtue of the principle, that a Proposition is either true or

false, every elective symbol employed in the expression of hypo-

theticals admits only of the values 0 and 1, which are the only

quantitative forms of an elective symbol. It is in fact possible,

setting out from the theory of Probabilities (which is purely quan-

titative), to arrive at a system of methods and processes for the

treatment of hypotheticals exactly similar to those which have

been given. The two systems of elective symbols and of quantity

osculate, if I may use the expression, in the points 0 and 1. It

seems to me to be implied by this, that unconditional truth (cat-

egoricals) and probable truth meet together in the constitution

of contingent truth; (hypotheticals). The general doctrine

of elective symbols and all the more characteristic appli-

cations are quite independent of any quantitative origin.

THE END.
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