# SMALL MODELS OF THE HIGH SCHOOL IDENTITIES

STANLEY BURRIS AND SIMON LEE

ABSTRACT. First we look at some easy ways to construct small models of the High School Identities. And then we prove that any model which rejects the Wilkie identity must have at least seven elements; and we show that we have such a model with fifteen elements.

In the 1960's Tarski noted that there are only eleven basic identities of the positive integers N which one learns in high school, namely

$$HSI \qquad \begin{cases} (1) & x + y \approx y + x \\ (2) & x + (y + z) \approx (x + y) + z \\ (3) & x \cdot 1 \approx x \\ (4) & x \cdot y \approx y \cdot x \\ (5) & x \cdot (y \cdot z) \approx (x \cdot y) \cdot z \\ (6) & x \cdot (y + z) \approx (x \cdot y) + (x \cdot z) \end{cases} \\ (7) & 1^x \approx 1 \\ (8) & x^1 \approx x \\ (9) & x^{y+z} \approx x^y \cdot x^z \\ (10) & (x \cdot y)^z \approx x^z \cdot y^z \\ (11) & (x^y)^z \approx x^{y \cdot z}. \end{cases}$$

This collection of identities will be called HSI, as indicated above; the subset of HSI which involves only the operation symbols  $+, \times, 1$  is called HSI. Actually the identities of HSI were isolated in the famous 1888 work of Dedekind "Was sind und was sollen die Zahlen". He proved that they followed from the so-called Peano axioms. With such a long and famous history it is somewhat surprising that for most mathematicians the study of the fundamental identities of the natural numbers end with high school. So it might be somewhat surprising to learn that

- (1) there are lots of very small models of HSI, and
- (2) there are identities true of  $\mathbf{N}$  which cannot be derived from HSI.

Date: May 25, 2024 (but originally 1992).

First author supported by a grant from NSERC.

Second author supported by an NSERC Undergraduate Fellowship.

#### STANLEY BURRIS AND SIMON LEE

An attempt to classify just the finite quotients of  $\mathbf{N}$  will lead us to a fascinating problem in number theory. And, regarding (ii), Tarski asked if HSI is a basis for all the identities of  $\mathbf{N}$ . This question, know as Tarski's High School Problem, was answered in the negative in 1980 by Wilkie [15]. We will prove Wilkie's result by using a finite model of HSI, a method first discovered by Gurevič in 1985.

We would like to thank Walter Taylor for bringing Wilkie's identity to our attention as a candidate for computer algebra investigation; and Ken Davidson, Denis Higgs and Peter Hoffman for their interest and contributions to this project. A summary of the results in this paper can be found in the expository article [1].

## 1. Basics

**Definition 1.1.** Let  $\mathcal{L}$  be the language  $\{+, \times, \uparrow, 1\}$  consisting of three binary function symbols and one constant symbol. An  $\mathcal{L}$ -algebra **A** which satisfies (1) - (11) will be called an HSI-*algebra*.

When writing expressions such as  $x \times y$  and  $x \uparrow y$  we prefer to use the more compact notation  $x \cdot y$ , respectively  $x^y$ .

**Definition 1.2.** N is the HSI-algebra  $\langle N, +, \times, \uparrow, 1 \rangle$ , where N is the set of positive integers, and  $+, \times, \uparrow$  are the familiar operations of addition, multiplication and exponentiation.

**Definition 1.3.** Let  $\overline{\mathcal{L}}$  be the language  $\{+, \times, 1\}$  consisting of two binary function symbols and one constant symbol. An  $\overline{\mathcal{L}}$ -algebra **A** which satisfies  $\overline{\text{HSI}}$  will be called an  $\overline{\text{HSI}}$ -algebra.

**Definition 1.4.** If  $\mathbf{A} = \langle A, +, \times, \uparrow, 1 \rangle$  is an  $\mathcal{L}$ -algebra, then the *reduct* of  $\mathbf{A}$  to the language  $\overline{\mathcal{L}}$  is denoted by  $\overline{\mathbf{A}}$ , i.e.,  $\overline{\mathbf{A}} = \langle A, +, \times, 1 \rangle$ , where  $+, \times$ , and 1 are as in  $\mathbf{A}$ .

It is obvious that if  $\mathbf{A}$  is an HSI-algebra then  $\overline{\mathbf{A}}$  is an  $\overline{\text{HSI}}$ -algebra. Thus in particular  $\overline{\mathbf{N}}$  is the familiar  $\overline{\text{HSI}}$ -algebra  $\langle N, +, \times, 1 \rangle$ . However given an  $\overline{\text{HSI}}$ -algebra  $\mathbf{B}$  it may not be possible to expand it to an HSIalgebra, i.e., there may not be an HSI-algebra  $\mathbf{A}$  such that  $\overline{\mathbf{A}} = \mathbf{B}$ . Indeed we will see many examples of this soon.

**Definition 1.5.** Let  $\mathbf{A}$  be an  $\overline{\text{HSI}}$ - or HSI-algebra. Then the elements in the subuniverse generated by the constant 1 are called the *integers* of  $\mathbf{A}$ .

**Lemma 1.6.** If  $\mathbf{A}$  is an  $\overline{\text{HSI}}$ - or HSI-algebra then the set of integers of  $\mathbf{A}$  is

$$\{\underbrace{1+1+\dots+1}_{n} : n \in N\},\$$

 $\mathbf{2}$ 

#### the set of finite sums of 1's.

*Proof.* Clearly each of the finite sums of 1's must be in the integers of **A**. Using  $\overline{\text{HSI}}$ , respectively HSI, one sees that this collection of elements is closed under the operations of **A** and includes the element 1.

In an  $\overline{\text{HSI}}$ - or HSI-algebra **A** we simply write *n* for  $\underbrace{1+1+\dots+1}_{n}$ .

# 2. Remarks on the Equational Theories of $\overline{\mathbf{N}}$ and $\mathbf{N}$

When working with the equational theory of  $\overline{\mathbf{N}}$  we have the advantage that each  $\overline{\mathcal{L}}$ -term t has a simple normal form  $\nu(t)$ , called a polynomial. Actually, the normal forms for  $\overline{\mathcal{L}}$ -terms are a consequence of  $\overline{\mathrm{HSI}}$ .

# Theorem 2.1.

- (a) The equational theory  $Id(\overline{\mathbf{N}})$  of the natural numbers with addition and multiplication is decidable.
- (b) The equational theory of  $\overline{\mathbf{N}}$  is axiomatized by  $\overline{\mathrm{HSI}}$ .

*Proof.* An equation  $t_1 \approx t_2$  holds in  $\overline{\mathbf{N}}$  iff  $\nu(t_1) = \nu(t_2)$  holds. Since we can effectively compute the normal forms of  $\overline{\mathcal{L}}$ -terms it follows that we have a decision procedure.

For part (b) let  $\Sigma$  be the set of  $\overline{\mathcal{L}}$ -equations which can be derived from  $\overline{\text{HSI}}$ . Then, since  $\overline{\text{HSI}}$  holds in  $\overline{\mathbf{N}}$  it follows that  $\Sigma \subseteq \text{Id}(\overline{\mathbf{N}})$ . Now let  $t_1 \approx t_2$  hold in  $\overline{\mathbf{N}}$ . Using  $\overline{\text{HSI}}$  we can find the (same) normal forms of  $t_1, t_2$ . This gives a derivation of  $t_1 \approx t_2$  from  $\overline{\text{HSI}}$ .  $\Box$ 

We do not have nice normal forms for  $\overline{\mathcal{L}}$ -terms modulo Id(N). So more sophisticated techniques were introduced to analyze Id(N). Methods from analysis (going back to G.H. Hardy) were used by Richardson [11] to show the decidability of the one-variable equational theory of N; and independently such methods were used by Macintyre [8] to show Id(N) is decidable. Gurevič[4] gives a very simple proof of the decidability of the equational consequences of HSI; and an alternate proof of the decidability of Id(N) based on Hovanskii's work on Pfaffian chains. Henson and Rubel [7] used Nevanlinna theory to show an interesting portion of Id(N) can be derived from HSI.

Wilkie's proof [15] that HSI does not axiomatize  $Id(\mathbf{N})$  uses some rather detailed proof theory. He finds an identity W(x, y) which is true of  $\mathbf{N}$  and is such that if  $HSI \vdash W(x, y)$  then  $(1) - (10) \vdash W(x, y)$ . Eliminating the need for Axiom (11) is the difficult part of his proof. After this he defines an unusual exponentiation on  $\overline{\mathbf{N}}[x]$ , the polynomials with coefficients from N, to give a model of (1)—(10) which does not satisfy W(x, y). Later Gurevič [4] was able to find a 59 element model of HSI which does not satisfy W(x, y). This is, aside from the difficulty of verifying that one does indeed have a model of HSI, the simplest proof known of Wilkie's result. And recently Gurevič [6] expanded his work to show that HSI does not have a finite basis.

### 3. INTEGER ALGEBRAS AND PRIME NUMBERS

**Definition 3.1.** An HSI-algebra which is generated by the constant 1 is called an *integer*  $\overline{\text{HSI}}$ -algebra. Likewise, an HSI-algebra which is generated by the constant 1 is called an *integer* HSI-algebra.

**Lemma 3.2.** If A is an integer  $\overline{\text{HSI}}$ - or HSI-algebra then

$$A = \{\underbrace{1 + 1 + \dots + 1}_{n} : n \in N\}.$$

*Proof.* Immediate from 1.6.

**Lemma 3.3.** In an integer HSI- or HSI-algebra  $\mathbf{A}$  we can use induction proofs, i.e., if  $\Phi$  is a property such that  $\Phi(1)$  holds, and  $\Phi(x) \to \Phi(x+1)$  holds, then  $\forall x \Phi(x)$  holds.

Proof. Immediate from 3.2.

**Lemma 3.4.** The initial object (i.e., the free algebra freely generated by the empty set) in the class of  $\overline{\text{HSI}}$ -algebras is  $\overline{\mathbf{N}}$ ; and in the class of HSI-algebras it is  $\mathbf{N}$ . Consequently the integer  $\overline{\text{HSI}}$ -algebras are (up to isomorphism) precisely the quotients of  $\overline{\mathbf{N}}$ ; and the integer HSI-algebras are the quotients of  $\mathbf{N}$ .

*Proof.* This is evident from the fact that there is only one infinite HSI-algebra, respectively HSI-algebra, which is generated by the empty set.  $\hfill \Box$ 

**Definition 3.5.** Let  $\Delta_N$  be the identity relation on N, and for  $a, k \in N$  let

 $\theta_{a,k} = \{ \langle m, n \rangle \in N \times N : m = n; \text{ or } a \leq m, n \text{ and } m \equiv n \mod k \}.$ 

**Proposition 3.6.** The congruences of  $\overline{\mathbf{N}}$  are precisely the relations  $\Delta_N$  and the  $\theta_{a,k}$ , where  $a, k \in N$ .

*Proof.* Clearly  $\Delta_N$  and the  $\theta_{a,k}$  are congruences of  $\overline{\mathbf{N}}$ , so we only need to show that any congruence of  $\overline{\mathbf{N}}$  is of the desired form. Let  $\theta$  be a congruence of  $\overline{\mathbf{N}}$ . Choose the smallest element  $a \in N$  such that

4

 $a/\theta$ , the equivalence class of a modulo  $\theta$ , has more than one element in it; then choose the smallest  $k \in N$  such that  $a + k \in a/\theta$ . Then  $\theta = \theta_{a,k}.$ 

**Definition 3.7.** For  $a, k \in N$  let  $\overline{\mathbf{N}}_{a,k}$  be the quotient algebra  $\overline{\mathbf{N}}/\theta_{a,k}$ .

Now have a complete description (up to isomorphism) of the integer HSI-algebras, namely they are  $\overline{\mathbf{N}}$  and the  $\overline{\mathbf{N}}_{a,k}$  for  $a, k \in N$ . One can visualize the finite integer HSI-algebras, namely the  $N_{a,k}$ , as loops with a tail (see Figure 1):



FIGURE 1.  $\overline{\mathbf{N}}_{a,k}$ 

Now we turn to the integer HSI-algebras.

**Lemma 3.8.** Any congruence of  $\mathbf{N}$  which is not the identity relation must be one of the  $\theta_{a,k}$ .

*Proof.* Every congruence of  $\mathbf{N}$  is also a congruence of  $\overline{\mathbf{N}}$ .

**Definition 3.9.** If  $\theta_{a,k}$  is a congruence of **N** let  $\mathbf{N}_{a,k}$  denote  $\mathbf{N}/\theta_{a,k}$ .

Lemma 3.10.  $\theta_{a,k}$  is a congruence of N iff

$$x^a \equiv x^{a+k} \mod k$$

holds for all  $x \in N$ .

*Proof.*  $\theta_{a,k}$  is a congruence of **N** iff it is compatible with exponentiation, i.e., if  $\langle m, n \rangle \in \theta_{a,k}$  then for  $s \in N$  we want the following to hold:

(12) 
$$\langle m^s, n^s \rangle \in \theta_{a,k}$$

(13) 
$$\langle s^m, s^n \rangle \in \theta_{a,k}$$

Now (12) follows from the fact that  $\theta_{a,k}$  is compatible with multiplication. So we only have the condition (13) to deal with; and this reduces to the special case

(14) 
$$\langle s^a, s^{a+k} \rangle \in \theta_{a,k}$$

which can be formulated as the requirement that

(15) 
$$x^a \equiv x^{a+k} \mod k$$

holds for all  $x \in N$ .

The following result was communicated to us by Peter Hoffman.

Lemma 3.11. Given  $a, k \in N$ ,

(16) 
$$x^a \equiv x^{a+k} \mod k,$$

holds for all  $x \in N$  iff for all primes p we have

- (17)  $p^e|k \implies e \le a$ , and
- (18)  $p|k \implies (p-1)|k.$

*Proof.*  $(\Longrightarrow)$  Suppose p, a prime, and  $e \in N$  are such that  $p^e|k$ . Then

$$p^{a} \equiv p^{a+k} \mod k \implies k | p^{a+k} - p^{a}$$
$$\implies k | p^{a}(p^{k} - 1)$$
$$\implies p^{e} | p^{a}(p^{k} - 1)$$
$$\implies e \leq a.$$

This establishes (17).

Now suppose p is a prime such that p|k. Choose  $b \in N$  such that that the order of [b] in the group of units of  $\mathbf{Z}_p^{\star}$  is p-1 (such is possible since this group is cyclic). Since p|k, and from (16),  $k|b^a(b^k-1)$ , we know that  $p|b^a(b^k-1)$ ; and as  $p \nmid b$  it follows that  $p|b^k-1$ . Then  $[b]^k = 1$  in  $\mathbf{Z}_p^{\star}$ , so from elementary group theory (p-1)|k, which is (18).

( $\Leftarrow$ ) If k = 1 the implication is trivial. So let k > 1, say

$$k = p_1^{e_1} \cdots p_r^{e_r}$$

where the  $p_i$  are distinct primes, and the  $e_i$  are positive integers. Then from our assumptions we have, for  $1 \le i \le r$ ,

$$e_i \leq a$$
 and  $(p_i - 1)|k$ .

Now let us fix our attention on one of the  $p_i$ , and let  $b \in N$  be given.

**Case i:** Suppose  $p_i|b$ . Then use

$$\begin{array}{cccc} p_i|b & \implies & p_i^{e_i}|b^{e_i}|b^a \\ & \implies & p_i^{e_i}|b^a(b^k-1) \\ & \implies & b^a \equiv b^{a+k} \bmod p_i^{e_i}. \end{array}$$

**Case ii:** Suppose  $p_i \nmid b$ . First observe that  $\phi(p_i^{e_i}) \mid k$ , where  $\phi$  is the Euler phi function, since  $\phi(p_i^{e_i}) = p_i^{e_i-1}(p_i-1)$ , and since both  $p_i^{e_i-1} \mid k$  and  $(p_i-1) \mid k$ . Using this (for the second step below) we have

 $\begin{array}{ccc} p_i \nmid b & \Longrightarrow & b^{\phi(p_i^{e_i})} \equiv 1 \bmod p_i^{e_i} \\ & \Longrightarrow & b^k \equiv 1 \bmod p_i^{e_i} \\ & \Longrightarrow & b^{a+k} \equiv b^a \bmod p_i^{e_i}. \end{array}$ 

Thus, in either case, we have  $b^a \equiv b^{a+k} \mod p_i^{e_i}$ ; and since this holds for each  $p_i^{e_i}$  it follows that  $b^a \equiv b^{a+k} \mod k$ . This proves the lemma.  $\Box$ 

Combining these two lemmas we have our main characterization of the congruences of N.

**Theorem 3.12.** For  $a, k \in N$  the relation  $\theta_{a,k}$  is a congruence of N iff for all primes p we have

(19) 
$$p^e|k \Rightarrow e \le a$$

(20) 
$$p|k \Rightarrow (p-1)|k$$

From (20) we see that the only odd k which can appear in a finite integer HSI-algebra is k = 1. If k = 1 then for any  $a \in N$  we have the finite integer HSI-algebra  $\mathbf{N}_{a,1}$ , i.e., one simply collapses all integers greater or equal to a. Also it is easy to see that with k = 2 we have for any  $a \in N$  the finite integer HSI-algebra  $\mathbf{N}_{a,2}$ .

**Corollary 3.13.** Let  $\mathbf{N}_{a,k}$  be a finite integer HSI-algebra with k > 1, and let  $k = p_1^{e_1} \cdots p_r^{e_r}$  with  $p_1 < \cdots < p_r$ . Then

(21) 
$$e_i \le a \text{ for } 1 \le i \le r$$

(22) 
$$p_1 = 2$$

(23) 
$$(p_i - 1)|p_1^{e_1} \cdots p_{i-1}^{e_{i-1}}$$
 for  $2 \le i \le r$ .

*Proof.* (21) follows from (19); (22) and (23) follow from (20).

From (23) we see that  $p_2$  is always of the form  $2^m + 1$ , and hence it is a Fermat prime. The next corollary gives a complete list of the five "circle" integer HSI-algebras, i.e., those with a = 1, and hence no "tail".

Corollary 3.14 (D. Higgs). We have a finite integer HSI-algebra  $\mathbf{N}_{1,k}$  iff  $k \in \{1, 2, 6, 42, 1806\}$ .

*Proof.* Suppose  $N_{1,k}$  is an integer HSI-algebra. Then by 3.13

- $k = p_1 \cdots p_r$  where  $p_1 < \cdots < p_r$
- $p_1 = 2$

•  $(p_i - 1)|p_1 \cdots p_{i-1}$  for  $2 \le i \le r$ .

Then we have each of  $p_2$  through  $p_4$  uniquely determined, namely

| $(p_2 - 1) 2$                 | $\implies$ | $p_2 = 3$   |
|-------------------------------|------------|-------------|
| $(p_3-1) 2\cdot 3$            | $\implies$ | $p_3 = 7$   |
| $(p_4 - 1) 2 \cdot 3 \cdot 7$ | $\implies$ | $p_4 = 43;$ |

and there is no prime  $p_5 > 43$  such that  $(p_5 - 1)|2 \cdot 3 \cdot 7 \cdot 43 = 1806$ .  $\Box$ 

Jeff Shallit [3] pointed out that the sequence 2, 3, 7, 43, 1807 occurs in a number of places in the literature, e.g., as solutions to Sylvester's recurrence equations.

**Definition 3.15.** Given  $a \in N$  define the sequence of primes  $\Sigma_a = (p_1, p_2, \cdots)$  by

- $p_1 = 2;$
- given  $p_1, \ldots, p_i$ , let  $p_{i+1}$  be the smallest prime p which is greater than  $p_i$  and such that  $(p-1)|(p_1\cdots p_i)^a$ , assuming such a pexists. If no such p exists then  $\Sigma_a$  terminates with  $p_i$ .

**Proposition 3.16.** Given a positive integer a, there are infinitely many integer HSI-algebras  $\mathbf{N}_{a,k}$  (i.e., with tail having length a - 1) iff the sequence of primes  $\Sigma_a$  is infinite.

*Proof.* Let  $\Sigma_a = (p_1, \cdots)$ , and define  $\Pi_a = (q_1, \cdots)$  to be the list of primes q, in increasing order, for which there exists a  $k \in N$  with q|k and  $\theta_{a,k}$  a congruence of **N**.

If  $\Pi_a$  is infinite then there must be arbitrarily large k such that  $\theta_{a,k}$  is a congruence of **N**, so there are arbitrarily large integer HSI-algebras  $\mathbf{N}_{a,k}$ .

On the other hand, for a given finite set S of primes one has, by 3.12, only finitely many k for which  $\theta_{a,k}$  is a congruence of  $\mathbf{N}$  and the primes dividing k are in S. Thus if we have infinitely many integer HSI-algebras  $\mathbf{N}_{a,k}$  the sequence  $\Pi_a$  must be infinite. Consequently there are infinitely many  $\mathbf{N}_{a,k}$  iff  $\Pi_a$  is infinite.

Now we want to show that  $\Sigma_a = \Pi_a$ . Let  $p \in \Sigma_a$ , say  $p = p_i$ . Then letting  $k = (p_1 \cdots p_i)^a$  we have  $\theta_{a,k}$  is a congruence of **N** by 3.12, so  $p_i$  appears in  $\Pi_a$ .

To show each prime of  $\Pi_a$  also appears in  $\Sigma_a$  we use a simple induction argument. First note that  $p_1 = q_1 = 2$ . Now suppose  $p_j = q_j$  for  $1 \leq i \leq j$ . If there is a  $q_{i+1}$  then choose  $k \in N$  such that  $q_{i+1}|k$  and  $\theta_{a,k}$  is a congruence of **N**. The primes dividing k which are smaller than  $q_{i+1}$  must be among  $q_1, \ldots, q_i$  (by the definition of  $\Pi_a$ ), and thus among  $p_1, \ldots, p_i$ . From 3.13 we see that  $(q_{i+1} - 1)|(p_1 \cdots p_i)^a)$ , so  $q_{i+1}$  appears in the list  $\Sigma_a$ .

Thus  $\Pi_a = \Sigma_a$ , and the proposition is proved.

As we have seen in Higgs result,  $\Sigma_1 = (2, 3, 7, 43)$ , a finite sequence.

**Problem 1.** Is  $\Sigma_a$  finite for a > 1? for some a > 1?

We have checked that about 20% of the primes below 1,000,000 are in  $\Sigma_2 = (2, 3, 5, 7, 11, 13, 19, 23, \ldots, 999667, 999727, \ldots)$ . Due to the slow tapering off of this sequence it appears that we will not be able to find  $\Sigma_2$  by computer, if it is finite.

## 4. The Five 2-Element HSI-Algebras

After determining the five 2-element HSI-algebras we use them to show how one can make a large number of finite HSI-algebras from well-known algebras (like distributive lattices).

**Theorem 4.1.** There are exactly five 2-element HSI-algebras, up to isomorphism, and they are:

|     | + | 1 | a |   | $\times$ | 1 | a | $\uparrow$ | 1 | a |
|-----|---|---|---|---|----------|---|---|------------|---|---|
| (1) | 1 | 1 | 1 |   | 1        | 1 | a | 1          | 1 | 1 |
|     | a | 1 | a |   | a        | a | a | a          | a | 1 |
|     | + | 1 | a |   | ×        | 1 | a | $\uparrow$ | 1 | a |
| (2) | 1 | 1 | 1 |   | 1        | 1 | a | 1          | 1 | 1 |
|     | a | 1 | a |   | a        | a | a | a          | a | a |
|     | + | 1 | a |   | Х        | 1 | a | $\uparrow$ | 1 | a |
| (3) | 1 | 1 | a | - | 1        | 1 | a | 1          | 1 | 1 |
|     | a | a | a |   | a        | a | a | a          | a | a |
|     | + | 1 | 2 |   | Х        | 1 | 2 | $\uparrow$ | 1 | 2 |
| (4) | 1 | 2 | 2 |   | 1        | 1 | 2 | 1          | 1 | 1 |
|     | 2 | 2 | 2 |   | 2        | 2 | 2 | 2          | 2 | 2 |
|     | + | 1 | 2 |   | X        | 1 | 2 | $\uparrow$ | 1 | 2 |
| (5) | 1 | 2 | 1 |   | 1        | 1 | 2 | 1          | 1 | 1 |
|     | 2 | 1 | 2 |   | 2        | 2 | 2 | 2          | 2 | 2 |

*Proof.* First we set out to find the possible distinct 2-element HSIalgebras. Such an algebra has either one or two integers in it, so the possible cases are:

**Case 1:** |2 = 1|: From (6) and (9) we have

$$x + x \approx x$$
  $x \cdot x \approx x$ .

Thus Cayley tables for such an HSI-algebra would look like

| + | 1 | a | $\times$ | 1 | a | $\uparrow$ | 1 | a |
|---|---|---|----------|---|---|------------|---|---|
| 1 | 1 | b | <br>1    | 1 | a | 1          | 1 | 1 |
| a | b | a | a        | a | a | a          | a | c |

This gives at most 4 possibilities, namely the algebras 1,2, 3 above, and

| + | 1 | a | $\times$ | 1 | a |   | $\uparrow$ | 1 | a |
|---|---|---|----------|---|---|---|------------|---|---|
| 1 | 1 | a | 1        | 1 | a | - | 1          | 1 | 1 |
| a | a | a | a        | a | a |   | a          | a | 1 |

However this last algebra fails to satisfy (9) as  $a^{1+a} = a^a = 1$ , but  $a^1 \cdot \underline{a^a} = a \cdot 1 = a$ .

**Case 2:**  $2 \neq 1$ : Then all elements of the algebra are integers, i.e., we are dealing with integer HSI-algebras. There are exactly two 2-element integer HSI-algebras, namely  $N_{2,1}$ , which is 4 above, and  $N_{1,2}$ , which is 5 above.

Now we have narrowed the list of possible 2-element HSI-algebras to the five above; and it is easy to check that each of these does indeed satisfy HSI, and that no two are isomorphic.  $\Box$ 

To give one indication of just how limited our knowledge is about the  $\mathcal{L}$ -identities of **N** we ask the following.

**Problem 2.** Does every 2-element HSI-algebra satisfy *all* the identities of **N**?

Of course the algebras  $\mathbf{N}_{2,1}$  and  $\mathbf{N}_{1,2}$  satisfy Id(**N**) since they are quotients of **N**. So the problem is concerned with the first three algebras in 4.1. From a universal algebra point of view the answer will be yes iff each of these three algebras is a homomorphic image of the subalgebra **F** of  $\mathbf{N}^N$  generated by the element  $\langle 1, 2, 3, \cdots \rangle$ . If there is some identity  $p \approx q$  true of **N** but not true of one of these 2-element algebras, then we have a very fast proof that  $p \approx q$  does not follow from HSI. (Regarding Wilkie's identity, we will see that the known countermodels are rather cumbersome for careful checking by hand.)

## 5. FIVE CLASSES OF HSI-ALGEBRAS

First some examples of HSI-algebras.

#### Lemma 5.1.

- (a) Let  $\mathbf{D} = \langle D, \vee, \wedge, 1 \rangle$  be a distributive lattice with largest element 1. Then  $\mathbf{D}$  is an HSI-algebra.
- (b) Let  $\mathbf{S} = \langle S, \wedge, 1 \rangle$  be a meet semilattice with largest element 1. Then  $\langle S, \wedge, \wedge, 1 \rangle$  is an HSI-algebra.

*Proof.* Immediate from the basic laws of distributive lattices and semilattices.  $\Box$ 

**Lemma 5.2.** Let  $\mathbf{A} = \langle A, +, \times, 1 \rangle$  be an HSI-algebra. Then the expansion  $\mathbf{A}_{\pi} = \langle A, +, \times, \pi, 1 \rangle$  of  $\mathbf{A}$  to an  $\mathcal{L}$ -algebra, where  $\pi$  is the first projection on  $A \times A$ , gives an HSI-algebra iff the operation of multiplication is idempotent, i.e.,  $x \cdot x \approx x$  holds in  $\mathbf{A}$ .

*Proof.* If we have an  $\mathcal{L}$ -algebra with the exponentiation given by  $a^b = a$  then it is trivial to verify that the identities (7), (8), (10), and (11) are true. And (9) holds iff the multiplication is idempotent.

We note that the HSI reducts of the algebras in 4.1 arise in this way, except for the first. Now we generalize each of the 2-element HSI-algebras.

**Proposition 5.3.** Let  $\mathbf{H} = \langle H, \vee, \wedge, \rightarrow, 0, 1 \rangle$  be a Heyting algebra. Then  $\mathbf{H}^* = \langle H, \vee, \wedge, \leftarrow, 1 \rangle$  is an HSI-algebra, where  $a \leftarrow b$  is defined to be  $b \rightarrow a$ .

*Proof.* Recall that the Heyting operation  $\rightarrow$  is defined by:  $a \rightarrow b = c$  iff c is the largest element such that  $c \wedge a \leq b$ . Since  $\langle H, \vee, \wedge, 1 \rangle$  is a distributive lattice with 1 it is an HSI-algebra by 5.1. Now the identities (6) – (11), written with the operations of  $\mathbf{H}^*$ , are

$$1 \leftarrow x \approx 1$$
  

$$x \leftarrow 1 \approx x$$
  

$$x \leftarrow (y \lor z) \approx (x \leftarrow y) \land (x \leftarrow z)$$
  

$$(x \land y) \leftarrow z \approx (x \leftarrow z) \land (y \leftarrow z)$$
  

$$x \leftarrow y) \leftarrow z \approx x \leftarrow (y \land z),$$

and these are well known properties of Heyting algebras.

(

**Proposition 5.4.** Let  $\mathbf{D} = \langle D, \vee, \wedge, 1 \rangle$  be a distributive lattice with 1. Then  $\mathbf{D}_{\pi} = \langle D, \vee, \wedge, \pi, 1 \rangle$  is an HSI-algebra.

*Proof.* Apply 5.1 and 5.2.  $\mathbf{D}_{\pi}$  is isomorphic to a subdirect power of the second algebra in 4.1.

 $\mathbf{D}_{\pi}$  is isomorphic to a subdirect power of the second algebra in 4.1.

**Proposition 5.5.** Let  $\mathbf{S} = \langle S, \wedge, 1 \rangle$  be a semilattice with 1. Then  $\langle S, \wedge, \wedge, \pi, 1 \rangle$  is an HSI-algebra.

*Proof.* Apply 5.1 and 5.2.  $\langle S, \wedge, \wedge, \pi, 1 \rangle$  is isomorphic to a subdirect power of the third algebra in 4.1.

 $\langle S, \wedge, \wedge, \pi, 1 \rangle$  is isomorphic to a subdirect power of the third algebra in 4.1.

**Proposition 5.6.** Let  $\mathbf{S} = \langle S, \wedge, 0, 1 \rangle$  be a semilattice with 0,1. Then  $\langle S, f, \wedge, \pi, 1 \rangle$  is an HSI-algebra, where f is the binary constant map whose value is always 0.

*Proof.* Apply 5.2.  $\langle S, f, \wedge, \pi, 1 \rangle$  is isomorphic to a subdirect power of the fourth algebra in 4.1.

 $\langle S, f, \wedge, \pi, 1 \rangle$  is isomorphic to a subdirect power of the fourth algebra in 4.1.

**Proposition 5.7.** Let  $\mathbf{R} = \langle R, +, \times, 0, 1 \rangle$  be a Boolean ring. Then  $\langle R, +, \times, \pi, 1 \rangle$  is an HSI-algebra.

*Proof.* Apply 5.2.  $\langle R, +, \times, \pi, 1 \rangle$  is isomorphic to a subdirect power of the fifth algebra in 4.1.

 $\langle R, +, \times, \pi, 1 \rangle$  is isomorphic to a subdirect power of the fifth algebra in 4.1.

#### 6. Remarks on Computational Accessibility

If A is a finite nonempty set of n elements then there are  $n^{n^2}$  possible binary functions on A; thus there are  $n \cdot n^{3(n^2)}$  possible  $\mathcal{L}$ -algebras on A, and  $n \cdot n^{2(n^2)}$  possible  $\overline{\mathcal{L}}$ -algebras on A. To find the 3-element HSI-algebras it seems wise (if not necessary) to turn to a computer after doing some preliminary reductions in the number of possibilities. First we apply the identities (1), (3), (4), (7) and (8) to restrict the 3-element HSI-algebras to the form

| + | 1 | a | b |   | $\times$ | 1 | a | b | $\uparrow$ | 1 | a | b |
|---|---|---|---|---|----------|---|---|---|------------|---|---|---|
| 1 | c | d | e | - | 1        | 1 | a | b | 1          | 1 | 1 | 1 |
| a | d | f | g |   | a        | a | i | j | a          | a | l | m |
| b | e | q | h |   | b        | b | j | k | b          | b | n | 0 |

The total number of algebras to test at this point would be  $3^{13}$ , about 1,600,000. This would take a lot of computer time. To speed things up we proceed as in §4 and divide the study into cases depending on what the integers of the HSI-algebra look like. So we consider each of the five possibilities for the integers, namely  $\mathbf{N}_{1,1}$ ,  $\mathbf{N}_{1,2}$ ,  $\mathbf{N}_{2,1}$ ,  $\mathbf{N}_{2,2}$   $\mathbf{N}_{3,1}$ .

**Case 1:**  $N_{1,1}$  In this case  $x + x \approx x$  and  $x \cdot x \approx x$  hold, and this reduces the possibilities for the Cayley tables to the following:

| + | 1 | a | b |   | $\times$ | 1 | a | b | $\uparrow$ | 1 | a | b |
|---|---|---|---|---|----------|---|---|---|------------|---|---|---|
| 1 | 1 | d | e | - | 1        | 1 | a | b | 1          | 1 | 1 | 1 |
| a | d | a | g |   | a        | a | a | j | a          | a | l | m |
| b | e | g | b |   | b        | b | j | b | b          | b | n | 0 |

The total number of cases to check is now  $3^8 = 6,581$ . By focusing on the first two Cayley tables there are  $3^4 = 81 \overline{\mathcal{L}}$ algebras to examine, and of these only 10 turn out to be  $\overline{\text{HSI}}$ algebras. Then for each of these 10  $\overline{\text{HSI}}$ -algebras we have 81 possible expansions to an  $\mathcal{L}$ -algebra based on the third Cayley table above, so in total there are 810  $\mathcal{L}$ -algebras to check in this case.

| Case 2:     | $\mathbf{N}_2$ | 2,1       | We  | ha ha | ave i             | n tł    | nis | cas  | e (a | and  | the        | re | ma                   | ining | g cases)  |
|-------------|----------------|-----------|-----|-------|-------------------|---------|-----|------|------|------|------------|----|----------------------|-------|-----------|
| $x + x \in$ | $\approx 2$    | $\cdot x$ | and | 1 x   | $\cdot x \approx$ | $z x^2$ | , w | hich | ı re | duce | es t       | he | $\operatorname{pos}$ | sibil | ities to: |
|             | +              | 1         | 2   | b     |                   | ×       | 1   | 2    | b    |      | $\uparrow$ | 1  | 2                    | b     |           |
|             | 1              | 1         | 2   | e     |                   | 1       | 1   | 2    | b    |      | 1          | 1  | 1                    | 1     |           |
|             | 2              | 2         | 2   | g     |                   | 2       | 2   | 2    | h    |      | 2          | 2  | 2                    | m     |           |
|             | b              | e         | g   | h     |                   | b       | b   | h    | k    |      | b          | b  | k                    | 0     |           |

The total number of  $\mathcal{L}$ -algebras to check in this case is  $3^6 = 729$ .

| Case 3: | $ \mathbf{N}_1 $ | .,2 | We | have | <u>!</u> |   |   |   |   |            |   |   |   |
|---------|------------------|-----|----|------|----------|---|---|---|---|------------|---|---|---|
|         | +                | 1   | 2  | b    |          | × | 1 | 2 | b | $\uparrow$ | 1 | 2 | b |
| -       | 1                | 2   | 1  | e    |          | 1 | 1 | 2 | b | 1          | 1 | 1 | 1 |
|         | 2                | 1   | 2  | g    |          | 2 | 2 | 2 | h | 2          | 2 | 2 | m |
|         | b                | e   | g  | h    |          | b | b | h | k | b          | b | k | 0 |

The total number of  $\mathcal{L}$ -algebras to check in this case is also  $3^6 = 729$ .

Case 4:  $N_{2,2}$  The only HSI-algebra is  $N_{2,2}$ .

Case 5:  $N_{3,1}$  The only HSI-algebra is  $N_{3,1}$ .

At this point it is quite easy to write a program that will find the 3element HSI-algebras. If we want to find them up to isomorphism then observe that all the algebras in Cases 2–5 are rigid, i.e., they admit only the trivial automorphism since the integers of these algebras will be fixed. Thus the HSI-algebras in Cases 2–5 appear, up to isomorphism, only once. And in Case 1 a given algebra can be isomorphic to at most one other, namely interchange the *a* and *b* elements. Thus one can rapidly determine that there are exactly 44 3-element HSI-algebras (which we give in an appendix). We can also list all 4- and 5-element HSI-algebras in a reasonable amount of time (we didn't try finding the isomorphism types). But for six elements it seems we need about six months of CPU time on our 12 MIPS machine to exhaust the possibilities. (We ran our program on six elements for a few days to get this estimate). And for seven elements an exhaustive computer listing seems hopeless.

7. The Wilkie Identity

**Definition 7.1.** Let

P(x) = 1 + x  $Q(x) = 1 + x + x^{2}$   $R(x) = 1 + x^{3}$  $S(x) = 1 + x^{2} + x^{4}.$ 

In 1980 Wilkie showed that the following identity, which we call W(x, y), is true of **N** but cannot be derived from HSI (where P = P(x), etc):

$$(P^{x} + Q^{x})^{y} \cdot (R^{y} + S^{y})^{x} \approx (P^{y} + Q^{y})^{x} \cdot (R^{x} + S^{x})^{y}.$$

**Proposition 7.2.** N satisfies W(x, y).

*Proof.* Let us define the operation  $\Box$  on N by

$$m\Box n = \begin{cases} m-n \text{ if } m > n\\ 1 \text{ otherwise,} \end{cases}$$

and let  $\mathbf{N}_{\Box}$  be the expansion  $\langle N, +, \times, \uparrow, \Box, 1 \rangle$  of  $\mathbf{N}$ . Then, with  $F(x) = (1 + x^2) \Box x$  we have the following holding in  $\mathbf{N}_{\Box}$ :

$$\begin{array}{rcl} R &\approx& P \cdot F \\ S &\approx& Q \cdot F \end{array}$$

Thus  $\mathbf{N}_{\Box}$  satisfies

$$(P^{x} + Q^{x})^{y} \cdot (R^{y} + S^{y})^{x} \approx F^{x \cdot y} (P^{x} + Q^{x})^{y} \cdot (P^{y} + Q^{y})^{x}$$
$$\approx (R^{x} + S^{x})^{y} \cdot (P^{y} + Q^{y})^{x}$$
$$\approx (P^{y} + Q^{y})^{x} \cdot (R^{x} + S^{x})^{y}.$$

As  $\mathbf{N}_{\Box}$  satisfies W(x, y), so does  $\mathbf{N}$ .

W(x, y) is the simplest identity known which holds on **N**, but cannot be derived from HSI. As we mentioned in the introduction, Wilkie used a syntactic proof; later, in 1985, Gurevič [4] published a new proof by constructing a 59-element algebra satisfying HSIbut not W(x, y).

**Definition 7.3.** A *Gurevič-algebra* (or *G-algebra*) is a model of HSI which does not satisfy Wilkie's identity W(x, y).

In Gurevič [6], p. 30, we have the remark:

C.W. Henson once asked if there are countermodels to Tarski's question (whether all valid identities in signature  $(+,\cdot,\uparrow)$  were derivable) of a very small size, say, 5. Currently I don't know; my own record was 33 elements and I heard a rumour that someone had pushed the record further to 28 elements.

We will show that the smallest G-algebra has at least 7 elements (see §8). A 28-element G-algebra was found by Burris in 1988, and then a 16-element example in 1990. Recently Simon Lee found the smallest such algebra known, with 15 elements, which is given in §9.

# 8. A LOWER BOUND

We will show that any HSI -algebra which does not satisfy W(x, y) has at least seven elements. To achieve this we list several properties of elements a, b in an HSI-algebra **A** which guarantee W(a, b) holds in **A**. Avoiding this list of properties will force the size of the algebra to be at least seven.

When we write P, Q, R, respectively S without an argument then we will mean P(x), Q(x), R(x), respectively S(x).

#### Lemma 8.1.

$$\mathrm{HSI} \vdash \forall x W(x, x).$$

*Proof.* This is obvious since both sides of W(x, x) are the same.  $\Box$ 

**Lemma 8.2.** For n an integer, i.e.,  $n = \underbrace{1 + \cdots + 1}_{n}$ , we have

$$\mathrm{HSI} \vdash \forall y W(n, y).$$

*Proof.* Let  $m = 1 - n + n^2$ , a positive integer. Then

$$\begin{array}{rcl} \mathrm{HSI} & \vdash & P(n) \cdot m \approx R(n) \\ \mathrm{HSI} & \vdash & Q(n) \cdot m \approx S(n). \end{array}$$

From HSI one can carry out the derivations

$$(P(n)^{n} + Q(n)^{n})^{y} \cdot (R(n)^{y} + S(n)^{y})^{n} \approx m^{n \cdot y} (P(n)^{n} + Q(n)^{n})^{y} \cdot (P(n)^{y} + Q(n)^{y})^{n} \\ \approx (R(n)^{n} + S(n)^{n})^{y} \cdot (P(n)^{y} + Q(n)^{y})^{n} \\ \approx (P(n)^{y} + Q(n)^{y})^{n} \cdot (R(n)^{n} + S(n)^{n})^{y} .$$

Consequently

HSI 
$$\vdash W(n, y)$$
.

Lemma 8.3.

$$\mathrm{HSI} \vdash P \cdot S \approx Q \cdot R.$$

*Proof.* This actually follows from  $\overline{\text{HSI}}$ ; both sides are equal to  $1 + x + x^2 + x^3 + x^4 + x^5$ .

**Lemma 8.4.** For n an integer we have

$$\mathrm{HSI} \vdash \forall x W(x, n).$$

*Proof.* Using HSI we can carry out the derivations:

$$(P^{x} + Q^{x})^{n} \cdot (R^{n} + S^{n})^{x} \approx \left(\sum_{i=0}^{n} \binom{n}{i} \cdot (P^{x})^{i} \cdot (Q^{x})^{n-i}\right) \cdot (R^{n} + S^{n})^{x}$$
$$\approx \sum_{i=0}^{n} \binom{n}{i} \cdot (P^{i} \cdot Q^{n-i} \cdot R^{n} + P^{i} \cdot Q^{n-i} \cdot S^{n})^{x}$$

and

$$(P^{n} + Q^{n})^{x} \cdot (R^{x} + S^{x})^{n} \approx (P^{n} + Q^{n})^{x} \cdot \left(\sum_{i=0}^{n} \binom{n}{i} \cdot (R^{x})^{i} \cdot (S^{x})^{n-i}\right)$$
$$\approx \sum_{i=0}^{n} \binom{n}{i} \cdot (P^{n} \cdot R^{i} \cdot S^{n-i} + Q^{n} \cdot R^{i} \cdot S^{n-i})^{x}$$

Now, using 8.3, we can derive from HSI, for  $0 \le i \le n$ ,

$$\begin{array}{lll} P^i \cdot Q^{n-i} \cdot R^n &\approx & P^n \cdot R^i \cdot S^{n-i}; \\ P^i \cdot Q^{n-i} \cdot S^n &\approx & Q^n \cdot R^i \cdot S^{n-i}. \end{array}$$

Thus we have a derivation from HSI of

$$(P^x + Q^x)^n \cdot (R^n + S^n)^x \approx (P^n + Q^n)^x \cdot (R^x + S^x)^n,$$
  
which is  $W(x, n)$ .

**Corollary 8.5.** If **A** is a *G*-algebra and  $a, b \in A$  are such that W(a, b) does not hold then a, b are distinct non-integers in A.

*Proof.* Combine 8.1, 8.2, and 8.4.

**Definition 8.6.** The notation u|v is short for  $\exists w (v \approx u \cdot w)$ .

In the following a claim HSI  $\vdash \Sigma \rightarrow W(x, y)$  means

$$\mathrm{HSI} \vdash \forall x \,\forall y \, [\Sigma \to W(x, y)].$$

Lemma 8.7 (Lee).

$$HSI \vdash x | y \to W(x, y).$$

*Proof.* The following is a derivation from HSI, where the fifth step follows from 8.3. Let  $y \approx u \cdot x$ . Then

$$\begin{aligned} (P^x + Q^x)^y \cdot (R^y + S^y)^x \\ &\approx (P^x + Q^x)^{u \cdot x} \cdot (R^{u \cdot x} + S^{u \cdot x})^x \\ &\approx [(P^x + Q^x)^u \cdot (R^{u \cdot x} + S^{u \cdot x})]^x \\ &\approx [((P \cdot R)^x + (Q \cdot R)^x)^u + ((P \cdot S)^x + (Q \cdot S)^x)^u]^x \\ &\approx [((P \cdot R)^x + (P \cdot S)^x)^u + ((Q \cdot R)^x + (Q \cdot S)^x)^u]^x \\ &\approx [P^{ux} (R^x + S^x)^u + Q^{ux} (R^x + S^x)^u]^x \\ &\approx [(P^{ux} + Q^{ux}) \cdot (R^x + S^x)^u]^x \\ &\approx (P^y + Q^y)^x \cdot (R^x + S^x)^{ux} \\ &\approx (P^y + Q^y)^x \cdot (R^x + S^x)^y . \end{aligned}$$

Now we are going to introduce one of our fundamental techniques for establishing conditions under which W(a, b) holds. But first some definitions.

## Definition 8.8. The Push-Pull Rules

Let  $\Sigma$  be a set of  $\mathcal{L}$ -identities. We formulate rewrite rules on 5-tuples of HSI-terms as follows (the first two are the *pull rules*, the second two the push rules),

(24) 
$$(t, \bar{t} \cdot p, \bar{t} \cdot q, r, s) \longrightarrow_{\Sigma} (t \cdot \bar{t}, p, q, r, s)$$

$$(25) (t, p, q, t \cdot r, t \cdot s) \longrightarrow_{\Sigma} (t \cdot t, p, q, r, s)$$

(26) 
$$(t \cdot \bar{t}, p, q, r, s) \longrightarrow_{\Sigma} (t, \bar{t} \cdot p, \bar{t} \cdot q, r, s)$$

(27) 
$$(t \cdot \bar{t}, p, q, r, s) \longrightarrow_{\Sigma} (t, p, q, \bar{t} \cdot r, \bar{t} \cdot s);$$

and if  $\Sigma \to t \approx t' \wedge p \approx p' \wedge \ldots \wedge s \approx s'$  is a consequence of  $\overline{\text{HSI}}$  then

(28) 
$$(t, p, q, r, s) \longrightarrow_{\Sigma} (t', p', q', r', s')$$

**Definition 8.9.** Let  $\longrightarrow_{\Sigma}^{\star}$  be the reflexive and transitive closure of  $\longrightarrow_{\Sigma}$ .

**Lemma 8.10.** Suppose 
$$(t, p, q, r, s) \longrightarrow_{\Sigma}^{\star} (t', p', q', r', s')$$
. Then

(29) 
$$(t, q, p, r, s) \longrightarrow_{\Sigma}^{\star} (t', q', p', r', s')$$

- (30)
- $(t, r, s, p, q) \longrightarrow_{\Sigma}^{\star} (t', r', s', p', q').$ (31)

*Proof.* These are an easy consequence of 8.8.

Now let us look at the reasons for introducing the push-pull rules.

| L |   |   | L |  |
|---|---|---|---|--|
| L |   |   | L |  |
| L |   |   | L |  |
| - | _ | _ |   |  |
|   |   |   |   |  |

# Lemma 8.11. If

$$(1, P, Q, R, S) \longrightarrow_{\Sigma}^{\star} (t, p, q, r, s)$$

then

(32) 
$$\operatorname{HSI} \vdash \Sigma \to t \cdot p \cdot s \approx t \cdot q \cdot r;$$

and

(33) 
$$\operatorname{HSI} \vdash \Sigma \to (P^x + Q^x)^y \cdot (R^y + S^y)^x \approx t^{x \cdot y} \left(p^x + q^x\right)^y \cdot (r^y + s^y)^x.$$

*Proof.* These are straight forward induction arguments on the length of the  $\longrightarrow_{\Sigma}^{\star}$  derivation of (t, p, q, r, s); the first uses 8.3 for the ground step.

# Lemma 8.12. If

$$(1, P, Q, R, S) \longrightarrow_{\Sigma}^{\star} (t, p, q, r, s)$$

and one of the following hold:

(34) 
$$\{p,q\} = \{r,s\}$$

$$(35) p = q$$

(36) r = s

then

$$\mathrm{HSI} \vdash \Sigma \to W(x, y).$$

*Proof.* Case 1: 
$$[\{p,q\} = \{r,s\}]$$
: Then by (31) we have  
(1, R, S, P, Q)  $\longrightarrow^{\star}_{\Sigma} (t, r, s, p, q);$ 

and then from (33) we have

HSI 
$$\vdash \Sigma \to W(x, y)$$

since  $\{p,q\} = \{r,s\}$  guarantees

HSI 
$$\vdash t^{x \cdot y} (p^x + q^x)^y \cdot (r^y + s^y)^x \approx t^{x \cdot y} (p^y + q^y)^x \cdot (r^x + s^x)^y.$$

**Case 2:**  $p \approx q$ : In this case we use the push-pull rules and 8.3 to obtain:

$$(t, p, q, r, s) \longrightarrow_{\Sigma}^{\star} (t, p, p, r, s)$$
  

$$\longrightarrow_{\Sigma}^{\star} (t \cdot p, 1, 1, r, s)$$
  

$$\longrightarrow_{\Sigma}^{\star} (1, 1, 1, t \cdot p \cdot r, t \cdot p \cdot s)$$
  

$$\longrightarrow_{\Sigma}^{\star} (1, 1, 1, t \cdot q \cdot r, t \cdot p \cdot s)$$
  

$$\longrightarrow_{\Sigma}^{\star} (1, 1, 1, 1, t \cdot q \cdot r, t \cdot q \cdot r)$$
  

$$\longrightarrow_{\Sigma}^{\star} (t \cdot q \cdot r, 1, 1, 1, 1).$$

But now we have

 $(1, P, Q, R, S) \longrightarrow_{\Sigma}^{\star} (t \cdot q \cdot r, 1, 1, 1, 1),$ 

so we can apply the results of Case 1.

**Case 3:**  $r \approx s$ : This is handled like Case 2. This finishes the proof.

**Lemma 8.13** (Lee). If  $\Sigma$  is one of the following conditions

| (37) | P Q                                             |
|------|-------------------------------------------------|
| (38) | Q P                                             |
| (39) | R S                                             |
| (40) | S R                                             |
| (41) | $u \cdot P \approx R$ and $u \cdot Q \approx S$ |
| (42) | $P \approx u \cdot R$ and $Q \approx u \cdot S$ |

then one has

 $\mathrm{HSI} \vdash \Sigma \to W(x, y).$ 

*Proof.* Suppose (37) holds. Let  $\Sigma$  be  $u \cdot P \approx Q$ . Then from the pushpull rules and 8.3

$$(1, P, Q, R, S) \longrightarrow_{\Sigma}^{\star} (1, P, u \cdot P, R, S)$$
$$\longrightarrow_{\Sigma}^{\star} (P, 1, u, R, S)$$
$$\longrightarrow_{\Sigma}^{\star} (1, 1, u, P \cdot R, P \cdot S)$$
$$\longrightarrow_{\Sigma}^{\star} (1, 1, u, P \cdot R, Q \cdot R)$$
$$\longrightarrow_{\Sigma}^{\star} (R, 1, u, P, Q)$$
$$\longrightarrow_{\Sigma}^{\star} (R, 1, u, P, u \cdot P)$$
$$\longrightarrow_{\Sigma}^{\star} (R \cdot P, 1, u, 1, u),$$

so, by (34) of 8.12, W(x, y) is a consequence of  $\Sigma$ , given HSI. The proofs of the next three cases are similar.

For the fifth case let  $\Sigma$  be  $\{u \cdot P \approx R, u \cdot Q \approx S\}$ . Then

$$(1, P, Q, R, S) \longrightarrow_{\Sigma}^{\star} (1, P, Q, u \cdot P, u \cdot Q)$$
$$\longrightarrow_{\Sigma}^{\star} (u, P, Q, P, Q),$$

so, again by (34) of 8.12, W(x, y) is a consequence of  $\Sigma$ , given HSI.

The sixth case is similar to the fifth case.

Now we are ready to start establishing some lower bounds on the size of a G-algebra.

**Proposition 8.14.** Let  $\mathbf{A}$  be an HSI-algebra. If there is only one integer (i.e.,  $2 \approx 1$  holds in  $\mathbf{A}$ ) then  $\mathbf{A}$  satisfies W(x, y).

*Proof.* Let  $\Sigma$  be the condition  $1 \approx 2$ . Then assuming HSI and  $\Sigma$  one has  $Q(x) \approx 1 + x + x^2 \approx 1 + x + x \approx 1 + 2x \approx 1 + x \approx P(x)$ , so by (37) of 8.13 we see that HSI  $\vdash \Sigma \to W(x, y)$ . Thus **A** satisfies W(x, y).  $\Box$ 

**Proposition 8.15** (Davidson). Let  $\mathbf{A}$  be an HSI-algebra. If there are exactly two integers in  $\mathbf{A}$  then  $\mathbf{A}$  satisfies W(x, y).

*Proof.* We break this up into the cases where  $\Sigma$  is  $3 \approx 1$ ; and  $3 \approx 2$ .

- **Case 1:**  $3 \approx 1$  Then we can derive  $1 + x \approx (1 + x)^3 \approx 1 + 3x + 3x^2 + x^3 \approx 1 + 2x + x^2$ , and from this we have  $P(x) \cdot Q(x) \approx (1+x)(1+x+x^2) \approx 1+2x+2x^2+x^3 \approx 1+3x+2x^2 \approx (1+2x+x^2)+(x+x^2) \approx (1+x)+(x+x^2) \approx 1+2x+x^2 \approx 1+x \approx P(x)$ . By (38) of 8.13 we have **A** satisfies W(x, y).
- **Case 2:**  $3 \approx 2$  We can proceed as follows:  $R(x)^2 \approx (1+x^3)^2 \approx (1+x^2)^2 \approx 1+2x^2+x^4 \approx 1+2x^2+x^2 \approx 1+2x^2 \approx 1+x^2+x^2 \approx 1+x^2+x^4 \approx S(x)$ . By (39) of 8.13 we have **A** satisfies W(x, y).

**Corollary 8.16.** If **A** is a G-algebra and a, b are such that W(a, b) does not hold then the elements 1, 2, 3, a, b are distinct.

*Proof.* From the last two results we see that there must be at least 3 integers of  $\mathbf{A}$ , and we proved in 8.5 that a, b must be two non-integers.

Now we look at some conditions  $\Sigma$  which do not restrict the integers of the models, and lead to HSI  $\vdash \Sigma \rightarrow W(x, y)$ . These conditions will not be enough to force the size of the G-algebras above 5, so later we will turn to conditions which make assumptions about the integers.

### Lemma 8.17.

- (43) HSI  $\vdash x \approx k + x \rightarrow W(x, y)$  for  $k \ge 1$ ;
- (44)  $\operatorname{HSI} \vdash 1 \approx k + x \rightarrow W(x, y) \quad for \ k \ge 0.$

Proof. For (43) first note that we have, for  $n \in N$ ,  $x^n \approx (k+x)x^{n-1} \approx kx^{n-1} + x^n$ ; and then  $kx^n \approx x^n + (k-1)x^n \approx (kx^{n-1} + x^n) + (k-1)x^n \approx kx^{n-1} + kx^n$ . Thus  $R(x) \approx 1 + x^3 \approx 1 + (kx^2 + x^3) \approx 1 + (kx + kx^2) + x^3 \approx (1+x)(1+(k-1)x+x^2) \approx P(x) \cdot (1+(k-1)x+x^2);$   $S(x) \approx 1 + x^2 + x^4 \approx 1 + (kx + x^2) + (kx^3 + x^4) \approx 1 + kx + x^2 + (kx^2 + kx^3) + x^4 \approx 1 + kx + (1+k)x^2 + kx^3 + x^4 \approx (1+x+x^2)(1+(k-1)x+x^2) \approx Q(x) \cdot (1+(k-1)x+x^2).$ W(x, y) follows by (41) of 8.13.

Next for (44) we use  $R(x) \approx 1 + x^3 \approx (k+x) + x^3 \approx k + (k+x)x + x^3 \approx k + kx + x^2 + x^3 \approx (1+x)(k+x^2) \approx P(x) \cdot (k+x^2);$ 

$$\begin{split} S(x) &\approx 1 + x^2 + x^4 \approx (k+x) + (k+x)x^2 + x^4 \approx k + x + kx^2 + x^3 + x^4 \approx k + (k+x)x + kx^2 + x^3 + x^4 \approx k + kx + (k+1)x^2 + x^3 + x^4 \approx (1+x+x^2)(k+x^2) \approx Q(x) \cdot (k+x^2). \\ \text{Again } W(x,y) \text{ follows by (41) of 8.13.} \end{split}$$

#### Lemma 8.18.

- (45)  $\text{HSI} \vdash x^2 \approx k + x \rightarrow W(x, y) \quad for \ k \ge 0;$

 $\begin{array}{l} Proof. \ {\rm For} \ (45) \ Q(x) \approx 1+x+x^2 \approx (1+k)+2x; \\ R(x) \approx 1+x^3 \approx 1+x \cdot (k+x) \approx 1+kx+x^2 \approx 1+kx+(k+x) \approx \\ (1+k)+(1+k)x \approx (1+k) \cdot (1+x) \approx (1+k) \cdot P(x); \\ S(x) \approx 1+x^2+x^4 \approx 1+x^2+x^2 \cdot (k+x) \approx 1+(1+k) \cdot x^2+x^3 \approx \\ 1+(1+k) \cdot x^2+x \cdot (k+x) \approx 1+kx+(2+k)x^2 \approx 1+kx+(2+k) \cdot (k+x) \approx \\ (1+2k+k^2)+(2+2k)x \approx (1+k) \cdot [(1+k)+2x] \approx (1+k) \cdot Q(x). \\ W(x,y) \ {\rm follows} \ {\rm by} \ (41) \ {\rm of} \ 8.13. \end{array}$ 

Next for (46) we have the case k = 0 covered by (45). So assume  $k \ge 1$ .

$$\begin{split} R(x) &\approx 1 + x^3 \approx 1 + x^2 \cdot (k + x^2) \approx 1 + kx^2 + x^4 \approx 1 + x^2 + (k - 1) \cdot x^2 + x^4 \approx 1 \\ 1 + (k + x^2)x + (k - 1) \cdot x^2 + x^4 \approx 1 + kx + (k - 1) \cdot x^2 + x^3 + x^4 \approx (1 + (k - 1)x + x^3) \cdot (1 + x) \approx (1 + (k - 1)x + x^3) \cdot P(x); \\ S(x) &\approx 1 + x^2 + x^4 \approx 1 + x \cdot (k + x^2) + x^4 \approx 1 + kx + x^3 + x^4 \approx 1 \\ 1 + kx + x^2(k + x^2) + x^4 \approx 1 + kx + kx^2 + 2x^4 \approx 1 + kx + kx^2 + x^4 + x^4 \approx 1 \\ 1 + kx + kx^2 + x^3(k + x^2) + x^4 \approx 1 + kx + kx^2 + kx^3 + x^4 + x^5 \approx (1 + (k - 1)x + x^3) \cdot (1 + x + x^2) \approx (1 + (k - 1)x + x^3) \cdot Q(x). \\ W(x, y) \text{ follows by (41) of 8.13.} \\ \Box$$

#### Lemma 8.19.

 $\begin{array}{l} Proof. \ R(x) \approx 1 + x^3 \approx 1 + kx^2 \approx 1 + kx + (k-1)x^2 \approx (1 + (k-1)x) \cdot \\ (1+x) \approx (1 + (k-1)x) \cdot P(x); \\ S(x) \approx 1 + x^2 + x^4 \approx 1 + kx + kx^3 \approx 1 + kx + kx^2 + (k-1)x^3 \approx \\ (1 + (k-1)x) \cdot (1 + x + x^2) \approx (1 + (k-1)x) \cdot Q(x). \\ W(x,y) \text{ follows by (41) of 8.13.} \end{array}$ 

**Lemma 8.20.** If  $\Sigma$  is any of the conditions  $p \approx q$ , where p marks a row, q marks a column, in the following array, and there is a  $\bullet$  with coordinates (p,q), then HSI  $\vdash \Sigma \rightarrow W(x,y)$ . If there is a  $\Box$  with coordinates (p,q) then we know HSI  $\not\vdash \Sigma \rightarrow W(x,y)$ . A? means we draw no conclusion.

|           | 1 | 2 | 3 | x | 1+x | 2+x | 2x | $x^2$ | $1 + x^2$ | $x^3$ |
|-----------|---|---|---|---|-----|-----|----|-------|-----------|-------|
| 1         |   | • | • | • | ٠   | ٠   | •  | •     | ٠         | •     |
| 2         | • |   | • | ٠ |     | ?   | ?  | ?     | ?         | ?     |
| 3         | • | ٠ |   | • | ?   | ?   | ?  | ?     | ?         | ?     |
| x         | • | ٠ | ٠ |   | •   | •   | •  | •     | •         | ?     |
| 1+x       | • |   | ? | • |     | •   | ?  | •     | ?         | •     |
| 2+x       | • | ? | ? | • | •   |     | ?  | ?     | ?         | ?     |
| 2x        | • | ? | ? | • | ?   | ?   |    | •     | ?         | ?     |
| $x^2$     | • | ? | ? | • | •   | ?   | •  |       | •         |       |
| $1 + x^2$ | • | ? | ? | • | ?   | ?   | ?  | •     |           | ?     |
| $x^3$     | • | ? | ? | ? | •   | ?   | ?  |       | ?         |       |

*Proof.* The results relating 1, 2, 3, and x we know from 8.16. For the remaining cases we show how to derive W(x, y).

Case  $1 \approx 1 + x$ : W(x, y) follows by (44) of 8.17. **Case**  $1 \approx 2 + x$ : W(x, y) follows by (44) of 8.17. **Case**  $1 \approx 2x$ : Then x|1. W(x, y) follows by 8.7. **Case**  $1 \approx x^2$ : Then x|1. W(x, y) follows by 8.7. Case  $1 \approx 1 + x^2$ :  $P(x) \approx 1 + x \approx 1 + x^2 + x \approx Q(x)$ . W(x, y)follows by (37) of 8.13. **Case**  $1 \approx x^3$ : Then x|1. W(x, y) follows by 8.7. **Case**  $x \approx 1 + x$ : W(x, y) follows by (43) of 8.17. **Case**  $x \approx 2 + x$ : W(x, y) follows by (43) of 8.17. Case  $x \approx 2x$ :  $Q(x) \approx 1 + x + x^2 Q(x) \approx 1 + 2x + x^2 \approx (1+x)^2 \approx$  $P(x)^{2}$ . W(x, y) follows by (37) of 8.13. **Case**  $x \approx x^2$ : W(x, y) follows by 8.18. **Case**  $x \approx 1 + x^2$ : W(x, y) follows by (46) of 8.18. Case  $1 + x \approx 2 + x$ :  $Q(x) \approx 1 + x + x^2 \approx 1 + x(1 + x) \approx 1 + x(1 + x)$  $x(2+x) \approx 1+2x+x^2 \approx (1+x)^2 \approx P(x)^2$ . W(x,y) follows by (37) of 8.13.

Case 
$$1 + x \approx x^2$$
:  $W(x, y)$  follows by (45) of 8.18.  
Case  $1 + x \approx x^3$ :  $Q(x) \approx 1 + x + x^2 \approx x^3 + x^2 \approx x^2 \cdot (1 + x) \approx x^2 \cdot P(x)$ .  $W(x, y)$  follows by (37) of 8.13.  
Case  $2x \approx x^2$ :  $W(x, y)$  follows by (47) of 8.19.  
Case  $x^2 \approx 1 + x^2$ :  $Q(x) \approx 1 + x + x^2 \approx x + x^2 \approx x(1 + x) \approx x \cdot P(x)$ .  $W(x, y)$  follows by (37) of 8.13.

To establish 7 as a lower bound for the size of G-algebras *it suffices* to consider algebras with 3 or 4 integers (since fewer integers guarantee W(x, y) holds; and since any G-algebra has at least two elements which are not integers). First we turn to the case that we have exactly 3 integers, in which case we have 4 = 3 or 4 = 2.

8.1. Three Integers, with 4 = 3. First let it be mentioned that G-algebras do exist in this case — the smallest such example we have found has 17 elements.

Throughout this subsection we assume **A** is a G-algebra with exactly 3 integers, 4 = 3, and **A**  $\not\models W(a, b)$ ,

**Lemma 8.21.** The elements  $1, 2, 3, a, 1 + a, a^2$  are distinct. Thus A has size at least 6.

*Proof.* We claim that if you identify any two of the above six elements then W(a, b) holds, a contradiction. Four cases are presented below — all others are covered by 8.20.

Case 1 + a = 2:  $Q(a) = 1 + a + a^2 = 1 + a(1 + a) = 1 + a \cdot 2 = 1 + a + a = 2 + a = 1 + 1 + a = 1 + 2 = 3 = 4 = 2 \cdot 2 = 2 \cdot (1 + a) = 2 \cdot P(a)$ . W(a, b) follows by (37) of 8.13. Case 1 + a = 3:  $Q(a) = 1 + a + a^2 = 1 + a(1 + a) = 1 + a \cdot 3 = 1 + a + a + a = 3 + a + a = 2 + 1 + a + a = 2 + 3 + a = 4 + a = 3 + 1 + a = 3 + 3 = 4 = 3 = 1 + a = P(a)$ . W(a, b) follows by (37) of 8.13. Case  $a^2 = 2$ :  $S(a) = 1 + a^2 + a^4 = 1 + 2 + 4 = 1 + 4 = 1 + a^4 = 1 + a^3 = R(a)$ . W(a, b) follows by (39) of 8.13. Case  $a^2 = 3$ :  $S(a) = 1 + a^2 + a^4 = 1 + 3 + 9 = 1 + 9 = 1 + a^4 = 1 + a^3 = R(a)$ . W(a, b) follows by (39) of 8.13.

**Lemma 8.22.** The set  $U = \{1, 2, 3, a, 1 + a, a^2\}$  is not a subuniverse of  $\overline{\mathbf{A}}$ . Thus A has at least seven elements in it.

*Proof.* Consider the element  $a^3$ . We know  $a^3$  is not 1 or 1 + a by 8.20. The following arguments show that U is not closed under  $+, \times$ .

**Case**  $a^3 = 2$  :  $2 = a^3 = a^6 = (a^3)^2 = 2^2 = 4 = 3$ . This contradicts our assumption that we have three integers. **Case**  $a^3 = 3$ :  $S(a) = 1 + a^2 + a^4 = 1 + a^2 + a^3 = 4 + a^2 = 4$  $7 + a^2 = 1 + a^2 + 2a^3 = 1 + a^2 + a^3 + a^3 = 1 + a^2 + a^3 + a^5 = 1 + a^2 + a^5 + a^5$  $(1+a^3)(1+a^2) = R(a) \cdot (1+a^2)$ . W(a,b) follows by (39) of 8.13. **Case**  $a^3 = a$ :  $P(a) = 1 + a = 1 + a^3 = R(a); Q(a) = 1 + a + a^2 = 1 + a^2 + a^3 = 1 + a^2 + a^4 = S(a). W(a, b)$  follows by (41) of 8.13. Thus if  $a^3$  is in U then it must be the element  $a^2$ . **Case**  $a^3 = a^2$ : We will now show that this implies  $1 + a^2$  is not in U. First we see that  $1 + a^2$  is distinct from  $1, a, a^2$  by 8.20. Subcase  $1 + a^2 = 2$   $R(a) = 1 + a^3 = 1 + a^2 = 2$ ;  $S(a) = 1 + a^2 + a^4 = 1 + a^2 + a^3 = 1 + 2a^2 = 1 + a^2 + a^2 = 2 + a^2 = 1$  $1 + (1 + a^2) = 3 = 4 = 2^2 = R(a)^2$ . W(a, b) follows by (39) of 8.13. Subcase  $1 + a^2 = 3$   $R(a) = 1 + a^3 = 1 + a^2 = 3$ ;  $S(a) = 1 + a^2 + a^4 = 1 + a^2 + a^3 = 1 + 2a^2 = 1 + a^2 + a^2 = 3 + a^2 = 1$ 5 = 3 = R(a). W(a, b) follows by (39) of 8.13. Subcase  $1 + a^2 = 1 + a$   $P(a) = 1 + a = 1 + a^2 = 1 + a^3 =$  $R(a); Q(a) = 1 + a + a^2 = 1 + a^2 + a^2 = 1 + a^2 + a^3 = 1 + a^2 + a^4 = 1 + a^4 + a^4 + a^4 = 1 + a^4 + a$ S(a). W(a, b) follows by (41) of 8.13.

8.2. Three Integers, with 4 = 2. In this case we do not know if there is an a G-algebra.

Throughout this subsection we assume **A** is a G-algebra with exactly 3 integers, 4 = 2, and **A**  $\not\models W(a, b)$ .

# **Lemma 8.23.** The elements 1, 2, 3, a, 1 + a are distinct.

*Proof.* In view of 8.20 we only need to check that 1 + a is distinct from 2 and 3.

- Case 2 = 1 + a:  $Q(a) = 1 + a + a^2 = 1 + a \cdot (1 + a) = 1 + 2 \cdot a = 1 + a + a = 2 + a = 3; P(a) = 1 + a = 2 = 2 \cdot 3 = 2 \cdot Q(a).$  W(a, b) follows by (38) of 8.13. Case  $2 = 1 + a + a^2 + a^2 + 1 + a(1 + a) = 1 + 2 \cdot a$
- **Case** 3 = 1 + a:  $Q(a) = 1 + a + a^2 = 1 + a(1 + a) = 1 + 3 \cdot a = 3 + 2 \cdot a = 7 = 3; P(a) = 1 + a = 3 = Q(a).$  W(a, b) follows by (37) of 8.13.

**Lemma 8.24.**  $a^2 \neq 2+a$ , and either  $a^2$  or 2+a is not in  $\{1, 2, 3, a, 1+a\}$ .

*Proof.*  $a^2 \neq 2 + a$  by 8.20. If  $\{a^2, 2 + a\} \subseteq \{1, 2, 3, a, 1 + a\}$  then from 8.20  $a^2$  is either 2 or 3; and likewise 2 + a is either 2 or 3. But then we can use (45) of Proposition 8.18 to show W(a, b) holds.

Thus we need only show that adding  $a^2$  or 2 + a to  $\{1, 2, 3, a, 1 + a\}$  does not give a subuniverse of  $\overline{\mathbf{A}}$  to conclude that A has at least seven elements.

**Lemma 8.25.** The set  $U = \{1, 2, 3, a, 1+a, 2+a\}$  is not a subuniverse of  $\overline{\mathbf{A}}$ .

*Proof.* Suppose U is a subuniverse of **A**. As we observed above,  $a^2$  could only be 2 or 3. Under either of these assumptions we will show that  $3 + a \notin U$ . First observe that  $3 + a \notin \{1, a\}$  by 8.17. Also  $3 + a \notin \{2, 3\}$  by (45) of 8.18 (since  $a^2 \in \{2, 3\}$ ). So it only remains to show that  $3 + a \notin \{1 + a, 2 + a\}$ .

 $\begin{array}{l} \textbf{Case} \ \boxed{2=a^2} \textbf{:} \\ & \text{Subcase} \ \boxed{3+a=1+a} \ Q(a) = 1+a+a^2 = 1+a+2 = \\ & 3+a=1+a=P(a). \ W(a,b) \ \text{follows by } (37) \ \text{of } 8.13. \\ & \text{Subcase} \ \boxed{3+a=2+a} \ Q(a) = 1+a+a^2 = 1+a+2 = \\ & 3+a=2+a=a^2+a=a(1+a) = a \cdot P(a). \ W(a,b) \ \text{follows } \\ & \text{by } (37) \ \text{of } 8.13. \\ \textbf{Case} \ \boxed{3=a^2} \textbf{:} \\ & \text{Subcase} \ \boxed{3+a=1+a} \ Q(a) = 1+a+a^2 = 4+a = \\ & 2+a; P(a) = 1+a=3+a = 7+a = 4+a+a^2 = 4+a(1+a) = \\ & 4+a(3+a) = 4+3a+a^2 = 2+3a+a^2 = (2+a) \cdot (1+a) = \\ & 4+a(3+a) = 4+3a+a^2 = 2+3a+a^2 = (2+a) \cdot (1+a) = \\ & Q(a) \cdot (1+a). \ W(a,b) \ \text{follows by } (38) \ \text{of } 8.13. \\ & \text{Subcase} \ \boxed{3+a=2+a} \ Q(a) = 1+a+a^2 = 1+a+3 = \\ & 4+a=2+a=3+a=a^2+a=a(1+a) = a \cdot P(a). \ W(a,b) \ \text{follows by } (37) \ \text{of } 8.13. \end{array}$ 

Thus the assumption that U is a subuniverse of  $\mathbf{A}$  leads, through several cases, to a contradiction.

**Lemma 8.26.** The set  $U = \{1, 2, 3, a, 1 + a, a^2\}$  is not a subuniverse of  $\overline{\mathbf{A}}$ .

*Proof.* Assume that U is a subuniverse of **A**. We will proceed to show W(a, b) holds, which gives a contradiction.

First consider the element 2a. From 8.20 we know that  $2a \notin \{1, a, a^2\}$ . In the next two cases we show that  $2a \in \{3, 1+a\}$  leads to W(a, b). **Case** 2a = 3:  $3 = 2a = 4a = 2 \cdot 2a = 2 \cdot 3 = 2$ . This contradicts our assumption that we have three integers.

Case 
$$[2a = 1 + a]$$
:  $P(a) = 1 + a = 2a$ ;  
 $Q(a) = 1 + a + a^2 = 2a + a^2 = a + a(1 + a) = a + a(2a) = a(1 + a) + a^2 = a(2a) + a^2 = 3a^2$ ;  
 $S(a) = 1 + a^2 + a^4 = 1 + a^2 + a^2 = 1 + a \cdot 2a = 1 + a \cdot (1 + a) = 1 + a + a^2 = 2a + a^2 = a + a(1 + a) = a + a(2a) = a(1 + a) + a^2 = a(2a) + a^2 = 3a^2$ .

With this information about P(a), Q(a) and S(a) we can carry out a push-pull argument to show W(a, b) holds:

$$\begin{array}{rcl} (1,P(a),Q(a),R(a),S(a)) &\to& (1,2a,3a^2,1+a^3,3a^2) \\ &\to& (a,2,3a,1+a^3,3a^2) \\ &\to& (1,2,3a,a+a^4,3a^3) \\ &\to& (1,2,3a,a+a^2,3a^3) \\ &\to& (1,2,3a,2a^2,3a^3) \\ &\to& (a,2,3a,2a,3a^2) \\ &\to& (1,2a,3a^2,2a,3a^2). \end{array}$$

W(a, b) follows by (34) of 8.12.

Thus U is a subuniverse of  $\overline{\mathbf{A}}$  implies |2a = 2.

Next we determine the possible values of 2 + a. We see from 8.17 that  $2 + a \notin \{1, a, 1 + a\}$ , and  $2 + a \neq a^2$  by 8.18. The next case shows that  $2 + a \neq 2$ .

Case 2+a=2:  $S(a) = 1 + a^2 + a^4 = 1 + a^2 + a^2 = 1 + 2a^2 = 1 + (2+a)a^2 = 1 + 2a^2 + a^3 = 1 + (2+a)a^2 + a^3 = 1 + 2a^2 + 2a^3 = 1 + (2+a)a^2 + 2a^3 = 1 + 2a^2 + 2a^3 = 1 + (2+a)a^2 + 2a^3 = 1 + 2a^2 + 3a^3 = (1+a^2+a^3) \cdot (1+a^3) = (1+a^2+a^3) \cdot R(a)$ . W(a,b) follows by (39) of 8.13.

Consequently our assumption that U is a subuniverse of  $\overline{\mathbf{A}}$  forces 2 + a = 3.

Finally we look at the possible values of  $1 + a^2$  and  $a^3$  in U. From 8.20 we see that  $1 + a^2 \notin \{1, a, a^2\}$ .

**Case**  $1 + a^2 = 3$ :  $2 = 4 = 1 + (1 + a^2) = 2 + a^2 = 2a + a^2 = a(2 + a) = a \cdot 3 = 2a + a = 2 + a = 3$ . This contradicts our assumption that we have three integers.

Thus  $1 + a^2 \in \{2, 1 + a\}$ .

We also have from 8.20 that  $a^3 \notin \{1, 1 + a\}$ . The next two cases show  $a^3 \notin \{2, 3\}$ .

Case 
$$a^3 = 2$$
:  $S(a) = 1 + a^2 + a^4 = 1 + a^2 + a^2 = 1 + 2a^2 = 1 + a^3 \cdot a^2 = 1 + a^5 = 1 + a^3 = R(a)$ .  $W(a, b)$  follows by (39) of 8.13.  
Case  $a^3 = 3$ :  $S(a) = 1 + a^2 + a^4 = 1 + a^2 + a^2 = 1 + 2a^2 = 1 + 6a^2 = 1 + 6a^6 = 1 + 2 \cdot 3a^3 \cdot a^3 = 1 + 2 \cdot 3 \cdot 3 \cdot 3 = 1 + 2 = 3$ ;  $R(a) = 1 + a^3 = 1 + 3 = 2 = 2 \cdot 3 = 2 \cdot S(a)$ .  $W(a, b)$  follows by (40) of 8.13.

Consequently our assumption that U is a subuniverse of  $\overline{\mathbf{A}}$  forces  $\overline{a^3 \in \{a, a^2\}}$ .

Combining the possibilities for  $1 + a^2$  and  $a^3$  we have four cases to analyze.

Case 
$$1 + a^2 = 2$$
 and  $a^3 = a$ ]:  $R(a) = 1 + a^3 = 1 + a = P(a)$ ;  $S(a) = 1 + a^2 + a^4 = 1 + 2a^2 = 2 + a^2 = 3 = 2 + a = 1 + a^2 + a = Q(a)$ .  
 $W(a, b)$  follows by (41) of 8.13.  
Case  $1 + a^2 = 2$  and  $a^3 = a^2$ ]:  $S(a) = 1 + a^2 + a^4 = 2 + a^2 = 3$ ;  $R(a) = 1 + a^3 = 1 + a^2 = 2 = 2 \cdot 3 = 2 \cdot S(a)$ .  $W(a, b)$  follows by (40) of 8.13.  
Case  $1 + a^2 = 1 + a$  and  $a^3 = a$ ]:  $R(a) = 1 + a^3 = 1 + a = P(a)$ ;  $S(a) = 1 + a^2 + a^4 = 1 + 2a^2 = 1 + a + a^2 = Q(a)$ .  
 $W(a, b)$  follows by (41) of 8.13.  
Case  $1 + a^2 = 1 + a$  and  $a^3 = a^2$ ]:  $R(a) = 1 + a^3 = 1 + a^2 = 1 + a = P(a)$ ;  $S(a) = 1 + a^2 + a^4 = 1 + 2a^2 = 1 + a + a^2 = Q(a)$ .  
 $W(a, b)$  follows by (41) of 8.13.  
Case  $1 + a^2 = 1 + a$  and  $a^3 = a^2$ ]:  $R(a) = 1 + a^3 = 1 + a^2 = 1 + a = P(a)$ ;  $S(a) = 1 + a^2 + a^4 = 1 + 2a^2 = 1 + a + a^2 = Q(a)$ .  
 $W(a, b)$  follows by (41) of 8.13.

So the assumption that U is a subuniverse of  $\overline{\mathbf{A}}$  leads, through several cases, to a contradiction.

**Proposition 8.27.** The size of a G-algebra  $\mathbf{A}$  is at least seven if  $\mathbf{A}$  has exactly three integers.

8.3. Four Integers. Throughout this subsection we assume **A** is a G-algebra with exactly 4 integers, and **A**  $\not\models W(a, b)$ . There are two possibilities: either 3 = 5 or 4 = 5.

We give a 15-element example of such an algebra in the last section, with 4 = 5. (No example is known for 3 = 5.)

**Lemma 8.28.** The five elements 1, 2, 3, 4, a are distinct, and they do not form a subuniverse of  $\overline{\mathbf{A}}$ .

*Proof.* These elements are distinct by 8.2. If they form a subuniverse of  $\overline{\mathbf{A}}$  then consider first what value 1 + a has. From 8.20  $1 + a \notin \{1, x\}$ .

**Case** 1 + a = 3: P(a) = 1 + a = 3;  $Q(a) = 1 + a + a^2 = 1 + a(1 + a) = 1 + 3a = 7$ . W(a, b) follows by (37) of 8.13 (since 3|7).

**Case** 1 + a = 4: P(a) = 1 + a = 4;  $Q(a) = 1 + a + a^2 = 1 + a(1 + a) = 1 + 4a = 13 = 3$ . Again W(a, b) follows by (38) of 8.13.

Thus the only possibility is 1 + a = 2. Next consider the possibilities for the value of  $a^2$ . From 8.20 we have  $a^2 \notin \{1, a\}$ . Thus  $a^2 \in \{2, 3, 4\}$ . But then there is a  $k \ge 1$  such that  $k + a = a^2$ . Now apply (45) of 8.18 to see that W(a, b) holds, which is a contradiction.

# **Definition 8.29.** Let $U_a$ be the subuniverse of $\overline{\mathbf{A}}$ generated by a.

**Lemma 8.30.**  $U_a$  has six elements implies **A** has at least seven elements.

*Proof.* Assume  $U_a$  has exactly six elements. Since  $U = \{1, 2, 3, 4, a\}$  is not a subuniverse of  $\overline{\mathbf{A}}$  it follows that at least one of  $1 + a, 2a, a^2$  is not in U; and hence provides the sixth element of  $U_a$ . If the sixth element is 2a or  $a^2$  then b could not be in  $U_a$  as b cannot be an integer or be divisible by a by 8.5 and Lemma 8.7.

Finally suppose  $U_a = \{1, 2, 3, 4, a, 1 + a\}$ . From 8.20 we know  $a^2 \notin \{1, a, 1 + a\}$ , and thus  $a^2 \in \{2, 3, 4\}$ . Also from 8.17  $2 + a \notin \{a, 1 + a\}$ , so  $2 + a \in \{1, 2, 3, 4\}$ . Also  $a^2 \neq k + a$  for any non-negative k by (45) of 8.18, so  $2 + a \in \{3, 4\}$  and  $a^2 \in \{2, 3\}$ . Now we split into the two possible cases for four integers.

- **Case** 5=3: Then  $a^2 = 2$  and  $2 + a \in \{3,4\}$  by (45) of 8.18. Consequently  $S(a) = 1 + a^2 + a^4 = 1 + 2 + 4 = 3$ ;  $R(a) = 1 + a^3 = 1 + 2a$ . Now if 2a is an integer then S(a)|R(a), so apply (40) of 8.13 to get W(a,b). Thus 2a is not an integer, so by 8.20 2a = 1 + a. Then  $R(a) = 1 + a^3 = 1 + 2a = 2 + a \in \{3,4\}$ . So again S(a)|R(a), yielding W(a,b) by (40) of 8.13.
- **Case** 5=4: Let  $a^2 = m \in \{2,3,4\}$ . Then  $R(a) = 1 + a^3 = 1 + ma; S(a) = 1 + a^2 + a^4 = 4 = 4 + 4 = 4a^4 + 4ma^5 = 4a^4(1+ma) = 4a^4 \cdot R(a)$ . Apply (39) of 8.13 to obtain W(a,b).

**Proposition 8.31.** If there are exactly four integers in a G-algebra  $\mathbf{A}$  then the size of  $\mathbf{A}$  is at least seven.

*Proof.* We know there are at least six elements in  $U_a$  by 8.28; and if there are exactly six elements in  $U_a$  then **A** has at least seven elements by 8.30.

**Theorem 8.32.** A G-algebra must have at least seven elements.

*Proof.* Just combine 8.5 and 8.16 with 8.27 and 8.31.

**Problem 3.** Is there a finite G-algebra **A** with the integers of **A** isomorphic to  $\mathbf{N}_{a,k}$  for some k > 1?

# 9. Simon Lee's Fifteen Element Example

From simon@shire.math.columbia.edu
To: snburris@turing.math.uic.edu
Subject: The 15 element model

Here is the 15 element model:

Let  $\mathbf{C}$  be the following algebra.

| +                                                                  | 1                                                                                    | <b>2</b>                                                                                                                                                                           | 3                                                                                                                                                                                             | 4                                                                        | a                                                                                      | с                                                                                      | d                                                                                      | е                                                                                      | f                                                                                 | g                                                                                 | h                                                                                      | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k                                                                                 | b                                                                                                |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1                                                                  | 2                                                                                    | 3                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 2                                                                                      | 3                                                                                      | е                                                                                      | 3                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| 2                                                                  | 3                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 3                                                                                      | 4                                                                                      | 3                                                                                      | 4                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| 3                                                                  | 4                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| 4                                                                  | 4                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| a                                                                  | 2                                                                                    | 3                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | с                                                                                      | 3                                                                                      | с                                                                                      | 3                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| с                                                                  | 3                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 3                                                                                      | 4                                                                                      | 3                                                                                      | 4                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| d                                                                  | e                                                                                    | 3                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | с                                                                                      | 3                                                                                      | с                                                                                      | 3                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| e                                                                  | 3                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 3                                                                                      | 4                                                                                      | 3                                                                                      | 4                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| f                                                                  | 4                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                 | h                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| g                                                                  | 4                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                      | h                                                                                 | 4                                                                                 | 4                                                                                      | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| h                                                                  | 4                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| i                                                                  | 4                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                 | j                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| j                                                                  | 4                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| k                                                                  | 4                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
| b                                                                  | 4                                                                                    | 4                                                                                                                                                                                  | 4                                                                                                                                                                                             | 4                                                                        | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                      | 4                                                                                 | 4                                                                                 | 4                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | 4                                                                                                |
|                                                                    |                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                               |                                                                          |                                                                                        |                                                                                        |                                                                                        |                                                                                        |                                                                                   |                                                                                   |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                   |                                                                                                  |
|                                                                    |                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                               |                                                                          |                                                                                        |                                                                                        |                                                                                        |                                                                                        |                                                                                   |                                                                                   |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                   |                                                                                                  |
|                                                                    | 1                                                                                    | 2                                                                                                                                                                                  | 3                                                                                                                                                                                             | 4                                                                        | a                                                                                      | с                                                                                      | d                                                                                      | е                                                                                      | f                                                                                 | g                                                                                 | h                                                                                      | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k                                                                                 | b                                                                                                |
|                                                                    | 1                                                                                    | $\frac{2}{2}$                                                                                                                                                                      | 3                                                                                                                                                                                             | 4                                                                        | a<br>a                                                                                 | c<br>c                                                                                 | d<br>d                                                                                 | e<br>e                                                                                 | f<br>f                                                                            | g<br>g                                                                            | h<br>h                                                                                 | i<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | j<br>j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k<br>k                                                                            | b<br>b                                                                                           |
| 1<br>2                                                             | $\frac{1}{2}$                                                                        | $\frac{2}{2}$                                                                                                                                                                      | 3<br>3<br>4                                                                                                                                                                                   | 4<br>4<br>4                                                              | a<br>a<br>c                                                                            | с<br>с<br>4                                                                            | d<br>d<br>c                                                                            | e<br>e<br>4                                                                            | f<br>f<br>4                                                                       | g<br>g<br>4                                                                       | h<br>h<br>4                                                                            | i<br>i<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | j<br>j<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | k<br>k<br>4                                                                       | b<br>b<br>4                                                                                      |
| $\begin{array}{c} \cdot \\ 1 \\ 2 \\ 3 \end{array}$                | $\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \end{array}$                                      | 2<br>2<br>4<br>4                                                                                                                                                                   | 3<br>3<br>4<br>4                                                                                                                                                                              | $\begin{array}{c} 4\\ 4\\ 4\\ 4\\ 4\end{array}$                          | a<br>a<br>c<br>3                                                                       | c<br>c<br>4<br>4                                                                       | d<br>d<br>c<br>3                                                                       | е<br>е<br>4<br>4                                                                       | f<br>f<br>4<br>4                                                                  | g<br>g<br>4<br>4                                                                  | h<br>h<br>4<br>4                                                                       | i<br>i<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | j<br>j<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | k<br>k<br>4<br>4                                                                  | b<br>b<br>4<br>4                                                                                 |
| $\begin{array}{c} \cdot \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$           | $\begin{array}{c}1\\1\\2\\3\\4\end{array}$                                           | 2 $2$ $4$ $4$ $4$                                                                                                                                                                  | 3 $3$ $4$ $4$ $4$                                                                                                                                                                             | $\begin{array}{c} 4\\ 4\\ 4\\ 4\\ 4\\ 4\end{array}$                      | a<br>c<br>3<br>4                                                                       | c<br>4<br>4<br>4                                                                       | d<br>d<br>c<br>3<br>4                                                                  | e<br>4<br>4<br>4                                                                       | f<br>f<br>4<br>4<br>4                                                             | g<br>g<br>4<br>4<br>4                                                             | h<br>h<br>4<br>4<br>4                                                                  | i<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | j<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | k<br>4<br>4<br>4                                                                  | b<br>b<br>4<br>4<br>4                                                                            |
| 1<br>2<br>3<br>4<br>a                                              | 1<br>1<br>2<br>3<br>4<br>a                                                           | 2<br>2<br>4<br>4<br>4<br>4<br>c                                                                                                                                                    | $3 \\ 4 \\ 4 \\ 4 \\ 3$                                                                                                                                                                       | $\begin{array}{c} 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\end{array}$              | a<br>c<br>3<br>4<br>d                                                                  | c<br>4<br>4<br>4<br>c                                                                  | d<br>d<br>3<br>4<br>d                                                                  | e<br>4<br>4<br>4<br>c                                                                  | f<br>4<br>4<br>4<br>4                                                             | g<br>4<br>4<br>4<br>g                                                             | h<br>4<br>4<br>4<br>4                                                                  | i<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | j<br>j<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | k<br>4<br>4<br>4<br>4                                                             | b<br>b<br>4<br>4<br>4<br>4                                                                       |
| 1<br>2<br>3<br>4<br>a<br>c                                         | 1<br>1<br>2<br>3<br>4<br>a<br>c                                                      | $2 \\ 4 \\ 4 \\ 4 \\ c \\ 4 \\ 4$                                                                                                                                                  | $\begin{array}{c} 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 3 \\ 4 \end{array}$                                                                                                                                | $\begin{array}{c} 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\end{array}$          | a<br>c<br>3<br>4<br>d<br>c                                                             | c<br>4<br>4<br>4<br>4<br>c<br>4                                                        | d<br>d<br>3<br>4<br>d<br>c                                                             | e<br>4<br>4<br>4<br>c<br>4                                                             | f<br>4<br>4<br>4<br>4<br>4<br>4                                                   | g<br>4<br>4<br>4<br>g<br>4                                                        | h<br>4<br>4<br>4<br>4<br>4<br>4                                                        | i<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | j<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k<br>4<br>4<br>4<br>4<br>4<br>4                                                   | b<br>4<br>4<br>4<br>4<br>4<br>4                                                                  |
| 1<br>2<br>3<br>4<br>a<br>c<br>d                                    | 1<br>2<br>3<br>4<br>a<br>c<br>d                                                      | 2<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c                                                                                                                                          | $\begin{array}{c} 3 \\ 3 \\ 4 \\ 4 \\ 3 \\ 4 \\ 3 \\ 3 \end{array}$                                                                                                                           |                                                                          | a<br>c<br>3<br>4<br>d<br>c<br>d                                                        | c<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c                                              | d<br>c<br>3<br>4<br>d<br>c<br>d                                                        | e<br>4<br>4<br>4<br>c<br>4<br>c                                                        | f<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                         | g<br>g<br>4<br>4<br>g<br>4<br>g                                                   | h<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                   | i<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | j<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                         | b<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                             |
| 1<br>2<br>3<br>4<br>a<br>c<br>d<br>e                               | 1<br>1<br>2<br>3<br>4<br>a<br>c<br>d<br>e                                            | 2<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>c<br>4                                                                                                                           | $\begin{array}{c} 3 \\ 3 \\ 4 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \end{array}$                                                                                                                           |                                                                          | a<br>c<br>3<br>4<br>d<br>c<br>d<br>c                                                   | c<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>c<br>4                               | d<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>d<br>c                                         | e<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>c                                    | f<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                               | g<br>4<br>4<br>4<br>g<br>4<br>g<br>4<br>g<br>4<br>g<br>4                          | h<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                         | i<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | j<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                    | b<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                   |
| 1<br>2<br>3<br>4<br>a<br>c<br>d<br>e<br>f                          | 1<br>2<br>3<br>4<br>a<br>c<br>d<br>e<br>f                                            | 2<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4                                                                                                                           | $\begin{array}{c} 3 \\ 3 \\ 4 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \end{array}$                                                                                                                 |                                                                          | a<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>4<br>4<br>2<br>4                               | c<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4                          | d<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>4<br>2<br>4                                    | e<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4                               | f<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                          | g<br>4<br>4<br>4<br>g<br>4<br>g<br>4<br>g<br>4<br>4<br>4                          | h<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                    | i<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | j<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                               | b<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                         |
| 1<br>2<br>3<br>4<br>a<br>c<br>d<br>e<br>f<br>g                     | 1<br>2<br>3<br>4<br>a<br>c<br>d<br>e<br>f<br>g                                       | 2 2 4 4 4 c 4 c 4 c 4 4 4 4 4 4                                                                                                                                                    | $\begin{array}{c} 3 \\ 4 \\ 4 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \\$                                                                                                                          | $\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 $       | a<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>4<br>g                                         | c<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4<br>4                     | d<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>4<br>g                                         | e<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4                          | f<br>f<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                | g<br>4<br>4<br>4<br>5<br>4<br>8<br>4<br>4<br>4<br>4                               | h<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                          | i<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>k<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | j<br>j<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                     | b<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                    |
| 1<br>2<br>3<br>4<br>a<br>c<br>d<br>e<br>f<br>g<br>h                | 1<br>1<br>2<br>3<br>4<br>a<br>c<br>d<br>e<br>f<br>g<br>h                             | 2<br>2<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4<br>4                                                                                                            | $\begin{array}{c} 3\\ 3\\ 4\\ 4\\ 3\\ 4\\ 3\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\end{array}$                                                                                                               | $\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 $       | a<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>4<br>g<br>4                                    | c<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4<br>4                     | d<br>d<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>4<br>g<br>4                               | e<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4<br>4                     | f<br>f<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4      | g<br>g<br>4<br>4<br>4<br>4<br>g<br>4<br>g<br>4<br>4<br>4<br>4<br>4<br>4           | h<br>h<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                | i<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>8<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | j<br>j<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k<br>k<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4           | b<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                               |
| 1<br>2<br>3<br>4<br>a<br>c<br>d<br>e<br>f<br>g<br>h<br>i           | 1<br>2<br>3<br>4<br>a<br>c<br>d<br>e<br>f<br>g<br>h<br>i                             | $     \begin{array}{c}       2 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4   \end{array} $                       | $\begin{array}{c} 3\\ 3\\ 4\\ 4\\ 3\\ 4\\ 3\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\end{array}$                                                                                                           | $ \begin{array}{c} 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ $ | a<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>4<br>g<br>4<br>4                               | c<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4<br>4<br>4<br>4           | d<br>d<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>d<br>c<br>4<br>g<br>4<br>4                | e<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4<br>4<br>4                | f<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>k                     | g<br>g<br>4<br>4<br>4<br>g<br>4<br>g<br>4<br>4<br>4<br>4<br>4<br>4<br>4           | h<br>h<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4           | i<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | j<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4           | $\begin{array}{c} \mathbf{b} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ $                   |
| 1<br>2<br>3<br>4<br>a<br>c<br>d<br>e<br>f<br>g<br>h<br>i<br>j      | $\begin{array}{c} 1\\ 1\\ 2\\ 3\\ 4\\ a\\ c\\ d\\ e\\ f\\ g\\ h\\ i\\ j \end{array}$ | $     \begin{array}{c}       2 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4   \end{array} $            | $\begin{array}{c} 3\\ 3\\ 4\\ 4\\ 3\\ 4\\ 3\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\end{array}$                                                                                                   | $\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 $       | a<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>4<br>g<br>4<br>4<br>4<br>4                     | c<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4      | d<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>4<br>g<br>4<br>4<br>4<br>4                     | e<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4      | f<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>k<br>4           | g<br>g<br>4<br>4<br>g<br>4<br>g<br>4<br>g<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | h<br>h<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | i<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | j<br>j<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k<br>k<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | $\begin{array}{c} \mathbf{b} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ $                   |
| 1<br>2<br>3<br>4<br>a<br>c<br>d<br>e<br>f<br>g<br>h<br>i<br>j<br>k | 1<br>1<br>2<br>3<br>4<br>a<br>c<br>d<br>e<br>f<br>g<br>h<br>i<br>j<br>k              | $     \begin{array}{c}       2 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4   \end{array} $ | $     \begin{array}{r}       3 \\       3 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4   \end{array} $ | $\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 $       | a<br>a<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>d<br>c<br>4<br>g<br>4<br>4<br>4<br>4<br>4 | c<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | d<br>d<br>c<br>3<br>4<br>d<br>c<br>d<br>c<br>d<br>c<br>4<br>g<br>4<br>4<br>4<br>4<br>4 | e<br>4<br>4<br>4<br>c<br>4<br>c<br>4<br>c<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | f<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>k<br>4<br>4<br>4<br>4 | g<br>g<br>4<br>4<br>4<br>g<br>4<br>g<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | h<br>h<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | $\begin{array}{c} {\rm i} \\ {\rm 4} \\$ | $\begin{array}{c} \mathbf{j} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ $ | k<br>k<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | b<br>b<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |

| $\uparrow$   | 1 | 2 | 3 | 4 | $\mathbf{a}$ | с | d | е | f | g | h | i            | j | k | b            |
|--------------|---|---|---|---|--------------|---|---|---|---|---|---|--------------|---|---|--------------|
| 1            | 1 | 1 | 1 | 1 | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1            | 1 | 1 | 1            |
| 2            | 2 | 4 | 4 | 4 | f            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | 4            |
| 3            | 3 | 4 | 4 | 4 | g            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | g            |
| 4            | 4 | 4 | 4 | 4 | 4            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | 4            |
| а            | a | d | d | d | d            | d | d | d | d | d | d | $\mathbf{d}$ | d | d | $\mathbf{d}$ |
| с            | с | 4 | 4 | 4 | 4            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | 4            |
| d            | d | d | d | d | d            | d | d | d | d | d | d | d            | d | d | d            |
| е            | е | 4 | 4 | 4 | 4            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | i            |
| f            | f | 4 | 4 | 4 | 4            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | 4            |
| g            | g | 4 | 4 | 4 | 4            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | 4            |
| h            | h | 4 | 4 | 4 | 4            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | i            |
| i            | i | 4 | 4 | 4 | 4            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | 4            |
| j            | j | 4 | 4 | 4 | f            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | 4            |
| k            | k | 4 | 4 | 4 | 4            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | 4            |
| $\mathbf{b}$ | b | 4 | 4 | 4 | 4            | 4 | 4 | 4 | 4 | 4 | 4 | 4            | 4 | 4 | 4            |

It will be shown that **C** is a G-algebra, yielding a proof of Wilkie's theorem. This is the smallest G-algebra known; furthermore it is such that W(x, y) fails only for the pair (x, y) = (a, b).

Define  $S_1 = \{1, a, d\}, S_2 = \{2, c, e\}, S = \{2, 3, 4, c, e, h, j\}, R = C \setminus S_1.$ 

**Lemma 9.1.** Let  $\alpha, \beta \in \mathbf{C}$ . Then

α + β ∈ S<sub>2</sub> iff α, β ∈ S<sub>1</sub>.
 α + β = 3 iff one is in S<sub>1</sub> and the other is in S<sub>2</sub>.
 αβ = 3 iff one is equal to 3 and the other is in S<sub>1</sub>.
 αβ = g iff one is g and the other is in S<sub>1</sub>.
 RS = {4}, R ↑ S = {4}, RC = R, R + R = {4, h, j}.
 C + C = S

*Proof.* These statements are obvious from the tables.

Define  $T_1 = \{a, d\}$  and  $M = \{3, 4, c, d, g, k\}$ .

**Lemma 9.2.** Let  $\alpha, \beta \in \mathbb{C} \setminus \{1\}$  and  $\gamma \in T_1$ . Then

(1)  $\alpha + \beta = c$  iff  $\alpha, \beta \in T_1$ . (2)  $\alpha\beta = c$  iff one is in  $T_1$  and the other is in  $S_2$ . (3)  $\alpha\beta = d$  iff both are in  $T_1$ . (4)  $\alpha\beta \in T_1$  iff both are in  $T_1$ . (5)  $(C \setminus \{1\}) \cdot (C \setminus \{1\}) = M$ . (6)  $\delta \in S_1$  iff  $\gamma\delta \in T_1 \subset S_1$ . (7)  $\delta \in S_2$  iff  $\gamma\delta \in S_2$ .

*Proof.* Again, these statements are obvious from the tables.

#### Theorem 9.3. C is a HSI-algebra.

*Proof.* HSI identities (1), (3), (4), (7), and (8) are clearly true in **C**. The other identities are also true:

(2): From the first lemma,  $y+z \in S$ . By considering the addition table, we see that  $x + (y + z) \in \{3, 4\}$  (In fact, the sum of any three elements must be either 3 or 4). Because the sum of two element can never be in  $S_1$ , we have the following.

$$x + (y + z) = 3 \quad \text{iff } x \in S_1 \text{ and } y + z \in S_2$$
  
$$\text{iff } x, y, z \in S_1$$
  
$$\text{iff } x + y \in S_2 \text{ and } z \in S_1$$
  
$$\text{iff } (x + y) + z = 3.$$

(5): Note that if  $1 \in \{x, y, z\}$  then we are done. So assume that  $x, y, z \neq 1$ . The product of any two elements  $(\neq 1)$  must be in M so the product of three elements  $(\neq 1)$  is in  $\{3, 4, c, d, g\}$ .

$$x(yz) = 3$$
 iff  $x \in T_1$ ,  $yz = 3$  or  $x = 3$ ,  $yz \in T_1$   
iff exactly one variable = 3, others in  $T_1$   
iff  $(xy)z = 3$  (by symmetry).

$$\begin{aligned} x(yz) &= c \quad \text{iff } x \in T_1, \, yz \in S_2 \text{ or } x \in S_2, \, yz \in T_1 \\ & \text{iff exactly one variable} \in S_2, \, \text{others in } T_1 \\ & \text{iff } (xy)z = c \text{ (by symmetry).} \end{aligned}$$

$$\begin{aligned} x(yz) &= d & \text{iff } x, yz \in T_1 \\ & \text{iff } x, y, z \in T_1 \\ & \text{iff } (xy)z = d \text{ (by symmetry)} \end{aligned}$$

$$x(yz) = g$$
 iff  $x \in T_1$ ,  $yz = g$  or  $x = g$ ,  $yz \in T_1$   
iff exactly one variable  $= g$ , others in  $T_1$   
iff  $(xy)z = g$  (by symmetry).

(6): If x = 1, we are done. Now suppose  $x \neq 1$ . If  $x \in R$ then  $x(y+z) \in RS = \{4\}$ . Now  $(xy) + (xz) \in RC + RC =$  $R + R = \{4, h, j\}$ . However, only f + g = g + f = h and g + i = i + g = j and  $\nexists x$  such that  $\{f, g\} \subseteq xC$  or  $\{i, g\} \subseteq xC$ so (xy) + (xz) = 4 = x(y + z).

Now suppose  $x \in T_1$ . Then  $x(y+z) \in T_1S = \{3,4,c\}$  and  $(xy) + (xz) \in T_1C + T_1C$ . As  $T_1C = \{a,3,4,c,d,g\}, T_1C + T_1C = \{3,4,c\}.$ 

$$\begin{aligned} x(y+z) &= 3 & \text{iff } y+z = 3 \\ & \text{iff exactly one of } y, z \in S_1 \text{ and the other is in } S_2 \\ & \text{iff exactly one of } xy, xz \in S_1 \text{ and the other is in } S_2 \\ & \text{iff } (xy) + (xz) = 3. \end{aligned}$$

$$\begin{aligned} x(y+z) &= c & \text{iff } y+z \in S_2 \\ & \text{iff } y,z \in S_1 \\ & \text{iff } xy, xz \in T_1 \\ & \text{iff } (xy) + (xz) = c. \end{aligned}$$

- (9): If x = 1, we are done. Note that for  $x \in R$ ,  $x \uparrow S = \{4\}$  so  $x^{y+z} = 4$ . Since  $\forall \alpha, 4\alpha = 4$  and  $\alpha \alpha = 4$ , we need only check products of powers of x for which  $x^w \neq 4$  for at least two distinct  $w \in C$ . But  $2 \cdot 9 = 3 \cdot 10 = 8 \cdot 12 = 11 \cdot 12 = 13 \cdot 9 = 4$ . Hence,  $(x^y)(x^z) = 4 = x^{y+z}$ . Now for  $x \in T_1, x^{y+z} \in x \uparrow S = \{d\}$ . Also  $x^y, x^z \in x \uparrow C = T_1$  so  $(x^y)(x^z) \in T_1T_1 = \{d\}$  so this identity holds.
- (10): If  $1 \in \{x, y, z\}$ , we are done so suppose none of them are 1. Then  $(xy)^z \in \{4, d, g\}$  since 2, *j*, *e*, *h* are never nontrivial products so  $(xy)^z$  cannot be *f* or *i*.  $(x^z)(y^z) \in \{4, d, f, g, i\}\{4, d, f, g, i\} = \{4, d, g, k\}$ ; however, *k* is not attainable since  $\exists z$  such that  $\{x^z, y^z\} = \{f, i\}$ .

$$(xy)^{z} = d \quad \text{iff } xy \in T_{1}$$
  
iff  $x, y \in T_{1}$   
iff  $x^{z}, y^{z} = d$   
iff  $(x^{z})(y^{z}) = d.$ 

$$(xy)^z = g$$
 iff  $xy = 3$  and  $z \in a, b$   
iff one of  $x, y = 3$ , other in  $T_1$  and  $z \in a, b$   
iff one of  $x^z, y^z = d$ , other  $= g$   
iff  $(x^z)(y^z) = g$ .

(11): If  $1 \in \{x, y, z\}$ , we are done so suppose none of them are 1.  $(x^y)^z \in \{4, d\}$  since 2, 3, e, h, j are not nontrivial powers which means that f,g,i cannot be attained. Similarly,  $x^{(yz)} \in \{4, d\}$  since a, b are not nontrivial products.

$$(x^y)^z = d \quad \text{iff } xy = d \\ \text{iff } x \in T_1 \\ \text{iff } x^{(yz)} = d$$

| - 1 |   |   |   |  |
|-----|---|---|---|--|
| - 1 |   |   |   |  |
| - 1 | - | - | - |  |

### Theorem 9.4. C is a G-algebra.

*Proof.* Consider W(a, b). P(a) = 1 + a = 2,  $Q(a) = 1 + a + a^2 = 3$ ,  $R(a) = 1 + a^3 = e$ , and  $S(a) = 1 + a^2 + a^4 = 3$ . The LHS of W(a, b) then is:

LHS = 
$$(2^a + 3^a)^b \cdot (e^b + 3^b)^a$$
  
=  $(f + g)^b \cdot (i + g)^a$   
=  $h^b \cdot j^a$   
=  $i \cdot f$   
=  $k$ .

But the RHS is:

RHS = 
$$(2^b + 3^b)^a \cdot (e^a + 3^a)^b$$
  
=  $(4 + g)^a \cdot (4 + g)^b$   
=  $4^a \cdot 4^b$   
=  $4 \cdot 4$   
=  $4$ .

Since W(x,y) does not hold on the HSI-algebra C, C is a G-algebra.  $\hfill \Box$ 

To find such small models of HSI which reject W(x, y) we used the computer to help search for *cores*. Let us briefly describe this procedure. First settle on the integers you wish to work with, in this case  $\mathbf{N}_{4,1}$  (boxed off in the above tables). Let  $\overline{\mathbf{N}}_{4,1}[x]$  be the algebra which consists of all polynomials  $a_0 + a_1x + \cdots + a_sx^s$  with coefficients from  $\overline{\mathbf{N}}_{4,1}$ . Addition and multiplication in  $\overline{\mathbf{N}}_{4,1}[x]$  are defined in the obvious manner:

$$(a_0 + a_1 x + \dots) + (b_0 + b_1 x + \dots +) = (a_0 + b_0) + (a_1 + b_1) x + \dots$$
  
$$(a_0 + a_1 x + \dots) \cdot (b_0 + b_1 x + \dots +) = (a_0 \cdot b_0) + (a_0 \cdot b_1 + a_1 \cdot b_0) x + \dots ,$$

where the coefficients on the right hand sides are calculated in  $\overline{\mathbf{N}}_{4,1}$ . It is easy to see that  $\overline{\mathbf{N}}_{4,1}[x]$  is a model of  $\overline{\mathrm{HSI}}$  — indeed it is the free algebra on one generator in the variety defined by  $\overline{\mathrm{HSI}} \cup \{4 \approx 5\}$ . Now let  $\overline{\mathbf{Q}}_{4,1}$  be  $\overline{\mathbf{N}}_{4,1}[x]/\Theta(x^4, x^5)$ , also a model of  $\overline{\mathrm{HSI}}$ . The elements of  $\overline{\mathbf{Q}}_{4,1}$  can be thought of as polynomials of the form

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4,$$

with coefficients in  $\overline{\mathbf{N}}_{4,1}$  — however the multiplication is not the same as in  $\overline{\mathbf{N}}_{4,1}[x]$ . For our example we have  $5^5 - 1 = 3,124$  polynomials (in  $\overline{\mathbf{Q}}_{4,1}$ ).

The key idea is to look for quotients (called *cores*)  $\overline{\mathbf{Q}}_{4,1}[x]/\theta$  which can be a subreduct (subalgebra of a  $\overline{\mathcal{L}}$ -reduct) of a G-algebra **A** with the property that the element  $x/\theta$  and some other element b will fail the Wilkie identity. For this purpose we wrote three routines for interactive computing:

• find  $\Theta(p,q)$  for and p,q in  $\overline{\mathbf{Q}}_{4,1}$ 

- check if  $\forall y W(x/\theta, y)$  follows from  $\mathbf{Q}_{4,1}/\theta$  using push-pull derivations, etc., for  $\theta$  a congruence of  $\overline{\mathbf{Q}}_{4,1}$
- calculate  $\theta_1 \vee \theta_2$  for any two congruences of  $\overline{\mathbf{Q}}_{4,1}$

The computer was used (in an interactive mode) first to find small quotients of  $\overline{\mathbf{N}}_{4,1}[x]/\theta$ , starting with the  $\theta$  being principal congruences, and then forming joins of such to get successively smaller quotients; and the computer was used to make sure they did not satisfy any of our conditions which would guarantee that

any HSI-algebra **A** for which they were a subreduct would satisfy  $W(x/\theta, y)$ , for every y.

In particular push-pull derivations were analyzed (in  $\overline{\mathbf{N}}_{4,1}/\theta$ ), starting from

$$(1, P(x|\theta), Q(x|\theta), R(x|\theta), S(x|\theta)),$$

by computer. Using this technique we were able to find the 8-element core indicated in the first two of the above tables (consisting of the elements 1,2,3,4,a,c,d,e); and we knew that this was a minimal candidate in the sense that any quotient of this core could not be a subreduct of a G-algebra which rejects Wilkie at  $\langle x/\theta, y \rangle$ , for some y.

Having found the 8-element quotient which "passed" all the pushpull tests, etc., there still remained the question of whether it could be extended, and then expanded, to an HSI-algebra, especially to one which rejects Wilkie. For this we have no algorithm which can be implemented on a computer. The remaining 8 elements, and the filling out of the tables, were done by hand, by trial and error. The only strategy was to try to keep the new elements as "free" as possible; and after having obtained an algebra slightly larger than 15 elements further collapsing led to this model. This part of our search looks too ad hoc to program.

In summary we have proved that the smallest G-algebra has between 7 and 15 elements. We are reasonably confident that with substantially more effort we could raise the 7 to 8. However finding G-algebras with less than 15 elements seems to be a matter of sheer good fortune at this point.

**Problem 4.** Find a smallest HSI-algebra which does not satisfy Wilkie's identity. (Is it unique?)

**Problem 5.** If **A** is an HSI-algebra with an element *a* such that *a* generates  $\overline{\mathbf{A}}$  (i.e., every element of *A* is a polynomial in *a*), does it follow that  $\mathbf{A} \models \forall y W(a, y)$ ?

Proposition 8.7 is a step toward answering this problem. An affirmative answer to this last question would help in pushing up the lower

bound on the size of G-algebras, namely it would guarantee that a core  $\mathbf{N}_{a,k}[x]/\theta$  would have to be augmented by at least one element to get a G-algebra for which  $W(x/\theta, y)$  fails for some y.

|              | +       | 1        | a             | b              |   | $\times$           | 1                                      | a             | b             | $\uparrow$       | 1 | a             | b             |
|--------------|---------|----------|---------------|----------------|---|--------------------|----------------------------------------|---------------|---------------|------------------|---|---------------|---------------|
| (1)          | 1       | 1        | 1             | 1              | - | 1                  | 1                                      | a             | b             | 1                | 1 | 1             | 1             |
| (1)          | a       | 1        | a             | a              |   | a                  | a                                      | a             | b             | a                | a | 1             | 1             |
|              | b       | 1        | a             | b              |   | b                  | b                                      | b             | b             | b                | b | 1             | 1             |
|              | +       | 1        | a             | b              |   | $\times$           | 1                                      | a             | b             | $\uparrow$       | 1 | a             | b             |
| (2)          | 1       | 1        | 1             | 1              |   | 1                  | 1                                      | a             | b             | 1                | 1 | 1             | 1             |
| (-)          | a       | 1        | a             | a              |   | a                  | a                                      | a             | b             | a                | a | 1             | 1             |
|              | b       | 1        | a             | b              |   | b                  | 6                                      | b             | b             | b                | b | b             | 1             |
|              | +       | 1        | a             | b              |   | $\times$           | 1                                      | a             | b             | $\uparrow$       | 1 | a             | b             |
| (3)          | 1       | 1        | 1             | 1              |   | 1                  | 1                                      | a             | <i>b</i>      | 1                | 1 | 1             | 1             |
| (-)          |         | 1        | a             |                |   |                    |                                        |               | b             |                  |   | 1             | 1             |
|              | b       |          | a             | <i>b</i>       |   | b                  |                                        | b             | <i>b</i>      | b                | b | b             | b<br>,        |
|              | +       | 1        | a             | <i>b</i>       |   | ×                  | 1                                      | a             | <i>b</i>      | 1                | 1 | a             | <u>b</u>      |
| (4)          | T       |          | 1             | 1              |   | I                  |                                        | a             | <i>b</i>      | T                | T | T             | 1             |
|              |         |          | a             | a<br>h         |   | a<br>h             |                                        | a<br>h        | 0<br>1        | $a_{\mathbf{k}}$ |   | a<br>~        | 1             |
|              | 0       |          | a             | 0              |   | 0                  |                                        | 0             | 0             | 0                | 0 | a             | 1             |
|              | +       |          | <u>a</u>      | <i>b</i>       |   | $\frac{\times}{1}$ |                                        | a             | <i>b</i>      | 1                | 1 | <u>a</u>      | $\frac{b}{1}$ |
| (5)          | 1       |          | 1             | 1              |   | 1                  |                                        | a             | 0<br>1        | 1                | 1 | 1             | 1             |
|              | $a_{h}$ |          | a<br>a        | $a_{h}$        |   | a<br>b             | $\begin{bmatrix} a \\ b \end{bmatrix}$ | $a_{h}$       | 0<br>h        | $a_{h}$          | a | $a_{h}$       | 1             |
|              | 0       | 1<br>  1 | a             | 0<br>1         |   | 0                  |                                        | 0             | 0<br>1        | *                | 1 | 0<br>a        | 1             |
|              | +       | 1        | $\frac{a}{1}$ | 1              |   | ×<br>1             | 1                                      | $\frac{a}{a}$ | $\frac{b}{b}$ |                  | 1 | $\frac{a}{1}$ | $\frac{0}{1}$ |
| (6)          | 1       |          | 1             | 1              |   | 1                  |                                        | u<br>a        | b             | 1                | 1 | 1             | 1             |
|              | h       | 1        | a             | h              |   | h                  | $\begin{bmatrix} a \\ b \end{bmatrix}$ | h             | b             | $\frac{u}{h}$    | h | h             | h             |
|              | +       | 1        | a             | b              |   | ×                  | 1                                      | a             | b             | ^                | 1 | a             | b             |
|              | 1       | 1        | 1             | 1              |   | $\frac{1}{1}$      | 1                                      | $\frac{a}{a}$ | $\frac{b}{b}$ | 1                | 1 | 1             | $\frac{0}{1}$ |
| (7)          | a       | 1        | a             | a              |   | a                  |                                        | a             | b             | a                | a | a             | a             |
|              | b       | 1        | a             | $\overline{b}$ |   | b                  | b                                      | b             | b             | b                | b | a             | a             |
|              | +       | 1        | a             | b              |   | ×                  | 1                                      | a             | b             | $\uparrow$       | 1 | a             | b             |
|              | 1       | 1        | 1             | 1              |   | 1                  | 1                                      | a             | b             | 1                | 1 | 1             | 1             |
| (8)          | a       | 1        | a             | a              |   | a                  | a                                      | a             | b             | a                | a | a             | a             |
|              | b       | 1        | a             | b              |   | b                  | b                                      | b             | b             | b                | b | b             | a             |
|              | +       | 1        | a             | b              |   | ×                  | 1                                      | a             | b             | $\uparrow$       | 1 | a             | b             |
| ( <b>0</b> ) | 1       | 1        | 1             | 1              |   | 1                  | 1                                      | a             | b             | 1                | 1 | 1             | 1             |
| (9)          | a       | 1        | a             | a              |   | a                  | a                                      | a             | b             | a                | a | a             | a             |
|              | b       | 1        | a             | b              |   | b                  | b                                      | b             | b             | b                | b | b             | b             |
|              | +       | 1        | a             | b              |   | $\times$           | 1                                      | a             | b             | $\uparrow$       | 1 | a             | b             |
| (10)         | 1       | 1        | 1             | b              |   | 1                  | 1                                      | a             | b             | 1                | 1 | 1             | 1             |
| (-0)         | a       | 1        | a             | b              |   | a                  | a                                      | a             | a             | a                | a | 1             | a             |
|              | b       | b        | b             | b              |   | b                  | b                                      | a             | b             | b                | b | 1             | a             |
|              | +       | 1        | a             | b              |   | $\times$           | 1                                      | a             | b             | $\uparrow$       | 1 | a             | b             |
| (11)         | 1       | 1        | 1             | b              |   | 1                  | 1                                      | a             | b             | 1                | 1 | 1             | 1             |
| ()           | a       | 1        | a             | b              |   | a                  | a                                      | a             | a             | a                | a | 1             | a             |
|              | b       | b        | b             | b              |   | 6                  | b                                      | a             | b             | b                | b | 1             | b             |

Appendix A. The 44 Three-Element HSI-Algebras

|      | + | 1 | a | b |   | $\times$ | 1 | a | b |   | 1          | 1 | a | b |
|------|---|---|---|---|---|----------|---|---|---|---|------------|---|---|---|
| (12) | 1 | 1 | 1 | b |   | 1        | 1 | a | b |   | 1          | 1 | 1 | 1 |
| (12) | a | 1 | a | b |   | a        | a | a | a |   | a          | a | a | a |
|      | b | b | b | b |   | b        | b | a | b |   | b          | b | 1 | b |
|      | + | 1 | a | b |   | $\times$ | 1 | a | b |   | $\uparrow$ | 1 | a | b |
| (13) | 1 | 1 | 1 | b |   | 1        | 1 | a | b |   | 1          | 1 | 1 | 1 |
| (13) | a | 1 | a | b |   | a        | a | a | a |   | a          | a | a | a |
|      | b | b | b | b |   | b        | b | a | b |   | b          | b | b | b |
|      | + | 1 | a | b |   | $\times$ | 1 | a | b |   | $\uparrow$ | 1 | a | b |
| (14) | 1 | 1 | 1 | b |   | 1        | 1 | a | b |   | 1          | 1 | 1 | 1 |
| (14) | a | 1 | a | b |   | a        | a | a | a |   | a          | a | b | a |
|      | b | b | b | b |   | b        | b | a | b |   | b          | b | b | b |
|      | + | 1 | a | b |   | $\times$ | 1 | a | b |   | ↑          | 1 | a | b |
| (15) | 1 | 1 | 1 | b |   | 1        | 1 | a | b |   | 1          | 1 | 1 | 1 |
| (10) | a | 1 | a | b |   | a        | a | a | b |   | a          | a | a | a |
|      | b | 1 | b | b |   | b        | b | b | b |   | b          | b | b | b |
|      | + | 1 | a | b |   | $\times$ | 1 | a | b |   | ↑          | 1 | a | b |
| (16) | 1 | 1 | 1 | b |   | 1        | 1 | a | b |   | 1          | 1 | 1 | 1 |
| (10) | a | 1 | a | b |   | a        | a | a | b |   | a          | a | a | b |
|      | b | 1 | a | b |   | b        | b | b | b |   | $b \mid$   | b | b | b |
| (17) | + | 1 | a | b |   | $\times$ | 1 | a | b |   | ↑          | 1 | a | b |
|      | 1 | 1 | a | a | - | 1        | 1 | a | b |   | 1          | 1 | 1 | 1 |
| (11) | a | a | a | a |   | a        | a | a | b |   | a          | a | a | 1 |
|      | b | a | a | b |   | b        | b | b | b |   | b          | b | b | 1 |
|      | + | 1 | a | b |   | $\times$ | 1 | a | b |   | $\uparrow$ | 1 | a | b |
| (18) | 1 | 1 | a | a | - | 1        | 1 | a | b |   | 1          | 1 | 1 | 1 |
| (10) | a | a | a | a |   | a        | a | a | b |   | a          | a | a | 1 |
|      | b | a | a | b |   | b        | b | b | b |   | b          | b | b | b |
|      | + | 1 | a | b |   | $\times$ | 1 | a | b |   | $\uparrow$ | 1 | a | b |
| (10) | 1 | 1 | a | a | - | 1        | 1 | a | b |   | 1          | 1 | 1 | 1 |
| (19) | a | a | a | a |   | a        | a | a | b |   | a          | a | a | a |
|      | b | a | a | b |   | b        | b | b | b |   | b          | b | b | a |
|      | + | 1 | a | b |   | $\times$ | 1 | a | b |   | $\uparrow$ | 1 | a | b |
| (20) | 1 | 1 | a | a | - | 1        | 1 | a | b |   | 1          | 1 | 1 | 1 |
| (20) | a | a | a | a |   | a        | a | a | b |   | a          | a | a | a |
|      | b | a | a | b |   | b        | b | b | b |   | b          | b | b | b |
|      | + | 1 | a | b |   | ×        | 1 | a | b |   | 1          | 1 | a | b |
| (91) | 1 | 1 | a | a | - | 1        | 1 | a | b |   | 1          | 1 | 1 | 1 |
| (21) | a | a | a | a |   | a        | a | a | b |   | a          | a | b | b |
|      | b | a | a | b |   | b        | b | b | b |   | b          | b | b | b |
|      | + | 1 | a | b |   | $\times$ | 1 | a | b |   | $\uparrow$ | 1 | a | b |
| (22) | 1 | 1 | a | b | - | 1        | 1 | a | b | - | 1          | 1 | 1 | 1 |
| (22) | a | a | a | a |   | a        | a | a | a |   | a          | a | a | a |
|      | b | b | a | b |   | b        | b | a | b |   | b          | b | a | a |
|      |   |   |   |   |   |          |   |   |   |   |            |   |   |   |

# STANLEY BURRIS AND SIMON LEE

|               | +             | 1        | a             | b             |   | ×             | 1             | a             | b             |   | $\uparrow$      | 1                                      | a             | b             |
|---------------|---------------|----------|---------------|---------------|---|---------------|---------------|---------------|---------------|---|-----------------|----------------------------------------|---------------|---------------|
| ( <b>93</b> ) | 1             | 1        | a             | b             | - | 1             | 1             | a             | b             |   | 1               | 1                                      | 1             | 1             |
| (20)          | a             | a        | a             | a             |   | a             | a             | a             | a             |   | a               | a                                      | a             | a             |
|               | b             | b        | a             | b             |   | b             | b             | a             | b             |   | b               | b                                      | a             | b             |
|               | +             | 1        | a             | b             | _ | ×             | 1             | a             | b             | _ | $\uparrow$      | 1                                      | a             | b             |
| (24)          | 1             | 1        | a             | b             |   | 1             | 1             | a             | b             |   | 1               | 1                                      | 1             | 1             |
| (21)          | a             | a        | a             | a             |   | a             | a             | a             | a             |   | a               | a                                      | a             | a             |
|               | b             | b        | a             | b             |   | b             | b             | a             | b             |   | b               | b                                      | b             | b             |
|               | +             | 1        | 2             | b             | _ | ×             | 1             | 2             | b             |   | $\uparrow$      | 1                                      | 2             | b             |
| (25)          | 1             | 2        | 1             | 1             |   | 1             | 1             | 2             | b             |   | 1               | 1                                      | 1             | 1             |
| ()            | 2             | 1        | 2             | 2             |   | 2             | 2             | 2             | b             |   | 2               | 2                                      | 2             | 1             |
|               | b             | 1        | 2             | b             |   | b             | 6             | b             | b             |   | b               | b                                      | b             | 1             |
|               | +             | 1        | 2             | b             | - | $\times$      | 1             | 2             | b             |   | $\uparrow$      | 1                                      | 2             | b             |
| (26)          | 1             | 2        | 1             | 1             |   | 1             | 1             | 2             | b             |   | 1               | 1                                      | 1             | 1             |
| ()            | 2             | 1        | 2             | 2             |   | 2             | 2             | 2             | <i>b</i>      |   | 2               | 2                                      | 2             | 1             |
|               | b             | 1        | 2             | b             |   | b             | 6             | b             | b             |   | b               | b                                      | b             | b             |
|               | +             | 1        | 2             | b             | - | $\times$      | 1             | 2             | <i>b</i>      |   | $\uparrow$      | 1                                      | 2             | b             |
| (27)          | 1             | 2        | 1             | 1             |   | 1             | 1             | 2             | b             |   | 1               | 1                                      | 1             | 1             |
| (21)          | 2             | 1        | 2             | 2             |   | 2             | 2             | 2             | b             |   | 2               | 2                                      | 2             | 2             |
|               | b             | 1        | 2             | b             |   | b             | 6             | b             | b             |   | b               | b                                      | b             | 2             |
|               | +             | 1        | 2             | b             | - | $\times$      | 1             | 2             | <u>b</u>      |   | $\uparrow$      | 1                                      | 2             | <u>b</u>      |
| (28)          | 1             | 2        | 1             | 1             |   | 1             | 1             | 2             | b             |   | 1               | 1                                      | 1             | 1             |
| ()            | 2             | 1        | 2             | 2             |   | 2             | 2             | 2             | b             |   | 2               | 2                                      | 2             | 2             |
|               | b             | 1        | 2             | b             |   | <i>b</i>      | b             | b             | b             |   | b               | b                                      | b             | b             |
|               | +             | 1        | 2             | <u>b</u>      |   | ×             | 1             | 2             | <u>b</u>      |   | 1               | 1                                      | 2             | <u>b</u>      |
| (29)          | 1             | 2        | 1             | <i>b</i>      |   | 1             | 1             | 2             | b             |   | 1               | 1                                      | 1             | 1             |
| ()            | 2             | 1        | 2             | <i>b</i>      |   | 2             | 2             | 2             | b             |   | 2               | 2                                      | 2             | 2             |
|               | b             | 6        | b             | <i>b</i>      |   | <i>b</i>      | b             | b             | <i>b</i>      |   | 6               | b                                      | b             | <i>b</i>      |
|               | +             | 1        | 2             | <u>b</u>      |   | ×             | 1             | 2             | <u>b</u>      |   | 1               | 1                                      | 2             | <u>b</u>      |
| (30)          | 1             | 2        | 1             | b             |   |               | 1             | 2             | b             |   | 1               | 1                                      | 1             | 1             |
| · /           | 2             |          | 2             | b             |   | 2             | 2             | 2             | b             |   | $\frac{2}{1}$   | 2                                      | 2             | b             |
|               | b             |          | <i>b</i>      | 0<br>1        |   | <i>b</i>      | 0<br>  1      | <i>b</i>      | <i>b</i><br>ь |   | <i>b</i>  <br>★ | 0<br>  1                               | b<br>0        | b<br>1        |
|               | +             | 1        | $\frac{2}{2}$ | 1             |   | ×<br>1        | 1             | 2             | $\frac{0}{h}$ |   | 1               | 1                                      | 2<br>1        | 1             |
| (31)          | 1             |          | 2             | 1<br>9        |   | 1<br>9        | 1             | 2             | 0<br>h        |   | 1<br>9          | 1                                      | 1<br>9        | 1             |
|               | $\frac{2}{h}$ |          | $\frac{2}{2}$ | $\frac{2}{h}$ |   | $\frac{2}{h}$ | $\frac{2}{h}$ | $\frac{2}{h}$ | b             |   | $\frac{2}{h}$   | $\frac{2}{b}$                          | $\frac{2}{h}$ | 1             |
|               | 0             | 1<br>  1 | 2             | 0<br>1        |   | 0             |               | 0             | 0<br>1        |   | *               |                                        | 0<br>0        | 1<br>1        |
|               | +             | 1        | 2             | 0             | - | ×<br>1        | 1             | 2             | $\frac{0}{h}$ |   | 1               | 1                                      | 2             | 1             |
| (32)          | 」<br>う        | 2        | ム<br>つ        | 1<br>O        |   | 1<br>9        | 1<br>0        | 2<br>2        | U<br>h        |   | 1               | 1                                      | 1<br>2        | 1<br>1        |
|               | ∠<br>h        |          | ⊿<br>?        | ∠<br>h        |   | ∠<br>h        | $\frac{2}{h}$ | ∠<br>h        | U<br>h        |   | $\frac{2}{h}$   | $\begin{vmatrix} 2 \\ b \end{vmatrix}$ | ∠<br>h        | 1<br>h        |
|               | 1             | 1<br>  1 | ∠<br>າ        | b<br>k        |   | U<br>V        |               | 0<br>0        | U<br>k        |   | <i>U</i><br>∧   |                                        | 0<br>9        | о<br>Ь        |
|               | +             | 1        | 2             | 0             | - | ×<br>1        | 1             | 2             | $\frac{0}{k}$ |   | 1               |                                        | 2<br>1        | <u>0</u><br>1 |
| (33)          | 1<br>จ        | 2        | 2             | า<br>ว        |   | 1<br>0        | 1<br>0        | 2             | 0<br>1        |   | 1               | 1                                      | 1<br>9        | 1<br>9        |
|               | $\frac{2}{h}$ |          | 2<br>2        | $\frac{2}{h}$ |   | 2<br>h        | $\frac{2}{h}$ | $\frac{2}{h}$ | U<br>h        |   | $\frac{2}{h}$   | $\begin{bmatrix} 2\\ b \end{bmatrix}$  | 2<br>h        | ∠<br>2        |
|               | 0             | 1        | 4             | 0             |   | 0             | 0             | 0             | 0             |   | 0               | 0                                      | 0             | 2             |

|      | +             | 1             | 2             | b             | _ | $\times$           | 1             | 2             | b             |   |               | 1             | 2             | <u>b</u>      |
|------|---------------|---------------|---------------|---------------|---|--------------------|---------------|---------------|---------------|---|---------------|---------------|---------------|---------------|
| (34) | 1             | 2             | 2             | 1             |   | 1                  | 1             | 2             | b             |   | 1             | 1             | 1             | 1             |
| (94) | 2             | 2             | 2             | 2             |   | 2                  | 2             | 2             | b             |   | 2             | 2             | 2             | 2             |
|      | b             | 1             | 2             | b             |   | b                  | b             | b             | b             |   | b             | b             | b             | b             |
|      | +             | 1             | 2             | b             | _ | ×                  | 1             | 2             | b             | _ | $\uparrow$    | 1             | 2             | b             |
| (35) | 1             | 2             | 2             | 2             |   | 1                  | 1             | 2             | b             |   | 1             | 1             | 1             | 1             |
| (55) | 2             | 2             | 2             | 2             |   | 2                  | 2             | 2             | 2             |   | 2             | 2             | 2             | 2             |
|      | b             | 2             | 2             | 2             |   | b                  | b             | 2             | 2             |   | b             | b             | 2             | 2             |
|      | +             | 1             | 2             | b             | - | ×                  | 1             | 2             | b             | _ |               | 1             | 2             | b             |
| (36) | 1             | 2             | 2             | 2             |   | 1                  | 1             | 2             | b             |   | 1             | 1             | 1             | 1             |
| (00) | 2             | 2             | 2             | 2             |   | 2                  | 2             | 2             | 2             |   | 2             | $ ^2$         | 2             | 2             |
|      | b             | 2             | 2             | 2             |   | b                  | b             | 2             | b             |   | b             | b             | b             | b             |
|      | +             | 1             | 2             | b             | - | ×                  | 1             | 2             | <i>b</i>      |   | 1             | 1             | 2             | <i>b</i>      |
| (37) | 1             | 2             | 2             | 2             |   | 1                  | 1             | 2             | b             |   | 1             | 1             | 1             | 1             |
| (01) | 2             | 2             | 2             | 2             |   | 2                  | 2             | 2             | b             |   | 2             | 2             | 2             | 1             |
|      | b             | 2             | 2             | <i>b</i>      |   | b                  | b             | b             | <i>b</i>      |   | b             | 6             | b             | 1             |
|      | +             | 1             | 2             | b             | - | ×                  | 1             | 2             | <i>b</i>      |   | 1             | 1             | 2             | <i>b</i>      |
| (38) | 1             | 2             | 2             | 2             |   | 1                  | 1             | 2             | <i>b</i>      |   | 1             | 1             | 1             | 1             |
| (00) | 2             | 2             | 2             | 2             |   | 2                  | 2             | 2             | <i>b</i>      |   | 2             | $ ^2$         | 2             | 1             |
|      | b             | 2             | 2             | <i>b</i>      |   | b                  | 6             | b             | <i>b</i>      |   | b             | 6             | b             | b             |
|      | +             | 1             | 2             | <u>b</u>      | - | ×                  | 1             | 2             | <u>b</u>      |   | 1             | 1             | 2             | <u>b</u>      |
| (39) | 1             | 2             | 2             | 2             |   | 1                  | 1             | 2             | <i>b</i>      |   | 1             |               | 1             | 1             |
|      | 2             | 2             | 2             | 2             |   | 2                  | 2             | 2             | <i>b</i>      |   | 2             | 2             | 2             | 2             |
|      | D .           | 2             | 2             | D<br>1        |   | D                  |               | D<br>D        | 0             |   | D<br>         |               | 0             | 2             |
|      | +             | 1             | 2             | $\frac{b}{2}$ | - | ×<br>1             |               | 2             | 0             |   | 1             |               | 2             | $\frac{0}{1}$ |
| (40) | 1             |               | 2             | 2             |   | 1                  | 1             | 2             | 0             |   | 1             | 1             | 1             | 1             |
|      | 2<br>1        |               | 2             | 2<br>1        |   | 2<br>1             | 2             | 2             | 0             |   | 2<br>1        |               | 2<br>1        | 2<br>1        |
|      | 0             |               | 2             | 0             |   | 0                  | 0             | 0             | 0             |   | 0<br>*        |               | 0             | 0             |
|      | $\frac{+}{1}$ | $\frac{1}{2}$ | $\frac{2}{2}$ | $\frac{b}{b}$ |   | $\frac{\times}{1}$ | 1             | $\frac{2}{2}$ | $\frac{b}{b}$ |   | 1             | 1             | 2<br>1        | $\frac{0}{1}$ |
| (41) | 2             | $\frac{2}{2}$ | $\frac{2}{2}$ | b             |   | 2                  | 2             | 2             | b             |   | 2             | 2             | 2             | 2             |
|      | $\frac{2}{h}$ | $\frac{2}{h}$ | $\frac{2}{h}$ | b             |   | $\frac{2}{h}$      | $\frac{2}{h}$ | $\frac{2}{h}$ | b             |   | $\frac{2}{h}$ | $\frac{2}{h}$ | $\frac{2}{h}$ | $\frac{2}{h}$ |
|      | +             | 1             | 2             | b             |   | ×                  |               | 2             | b             |   | ↑             | 1             | 2             | b             |
| ( )  | 1             | 2             | 2             | $\frac{b}{b}$ |   | 1                  | 1             | 2             | $\frac{b}{b}$ |   | 1             | 1             | -             | 1             |
| (42) | 2             | $\frac{1}{2}$ | 2             | $\tilde{b}$   |   | 2                  | 2             | 2             | b             |   | 2             | 2             | 2             | $\bar{b}$     |
|      | b             | b             | b             | b             |   | b                  | b             | b             | b             |   | b             | b             | b             | b             |
|      | +             | 1             | 2             | 3             |   | ×                  | 1             | 2             | 3             |   | 1             | 1             | 2             | 3             |
| (49) | 1             | 2             | 3             | 2             | - | 1                  | 1             | 2             | 3             | - | 1             | 1             | 1             | 1             |
| (43) | 2             | 3             | 2             | 3             |   | 2                  | 2             | 2             | 2             |   | 2             | 2             | 2             | 2             |
|      | 3             | 2             | 3             | 2             |   | 3                  | 3             | 2             | 3             |   | 3             | 3             | 3             | 3             |
|      | +             | 1             | 2             | 3             |   | ×                  | 1             | 2             | 3             |   | $\uparrow$    | 1             | 2             | 3             |
| (44) | 1             | 2             | 3             | 3             | - | 1                  | 1             | 2             | 3             | - | 1             | 1             | 1             | 1             |
| (44) | 2             | 3             | 3             | 3             |   | 2                  | 2             | 3             | 3             |   | 2             | 2             | 3             | 3             |
|      | 3             | 3             | 3             | 3             |   | 3                  | 3             | 3             | 3             |   | 3             | 3             | 3             | 3             |
|      |               |               |               |               |   |                    |               |               |               |   |               |               |               |               |

#### References

- [1] S. Burris and S. Lee, Tarski's High School Identities. To appear in the Amer. Math. Monthly.
- [2] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra. Grad. Texts in Math. 78, Springer-Verlag, 1981. Springer
- [3] J.L. Davison and J.O. Shallit, Continued Fractions for Some Alternating Series. Monatshefte Math. 111 (1991), 119-126.
- [4] R. Gurevič, Equational theory of positive numbers with exponentiation. Proc. Amer. Math. Soc. 94 (1985), 135–141.
- [5] R. Gurevič, Transcendental numbers and eventual dominance of exponential functions. Bull. London Math. Soc. 18 (1986), 560–570.
- [6] R. Gurevič, Equational theories of positive numbers with exponentiation is not finitely axiomatizable. Annal of Pure and Applied Logic 49 (1990), 1–30.
- [7] C.W. Henson and L.A. Rubel, Some applications of Nevanlinna theory to mathematical logic: identities of exponential functions. Trans. Amer. Math. Soc. 282 (1984), 1–32.
- [8] A. Macintyre, The laws of exponentiation. Springer LNM **890** (1981), 185–197.
- [9] C. Martin, Equational theories of natural numbers and transfinite ordinals, Ph.D. Thesis, U. Cal. Berkeley, 1973.
- [10] G. McNulty, An equational logic sampler. in *Rewriting Techniques and Appli*cations, *RTA-89 Proceedings*, ed. N. Dershowitz, Springer Lecture Notes in Computer Science **335** (1989), 234–262.
- [11] D. Richardson, Solution of the identity problem for integral exponential function. Zeitschr. f. math. Logik u. Grund. d. Math. 15 (1969), 333–340.
- [12] D. Richardson, The simple exponential constant problem. Zeitschr. f. math. Logik u. Grund. d. Math. 17 (1971), 133–136.
- [13] J.J. Sylvester, On a point in the theory of vulgar fractions. Amer. J. Math. 3 (1880), 332–335.
- [14] J.J. Sylvester, Postscript to a note on a point in vulgar fractions. Amer. J. Math. 3 (1880), 388–389.
- [15] A.J. Wilkie, On exponentiation a solution to Tarski's high school algebra problem. Preprint, Oxford University 1980.

Department of Pure Mathematics University of Waterloo Waterloo, Ontario Canada, N2L 3G1

> Department of Mathematics Columbia University New York, NY 10027