SPECIAL K Saturday 27 October 2007 9 a.m. to 12 noon

- 1. The notation <u>a89b</u> means the four-digit (base 10) integer whose thousands digit is a, whose hundreds digit is 8, whose tens digit is 9, and whose units digit is b. Determine all pairs of non-zero digits a and b such that a89b - 5904 = b98a.
- 2. Lino bought a new eraser for this year's Putnam Contest. (Unfortunately, Lino's Putnam eligibility expired several years ago.) His new eraser is in the shape of a rectangular prism. He calculated the lengths of the diagonals of the faces to be $3\sqrt{5}$, $\sqrt{58}$ and $\sqrt{85}$. What is the volume of Lino's eraser?
- 3. Determine, with justification, all primes p for which the system of equations

$$3x^2 - 4x^3 \equiv 0 \pmod{p}$$
$$2y + 4y^3 \equiv 0 \pmod{p}$$
$$x^4 - x^3 + y^4 - y^2 \equiv 0 \pmod{p}$$

has more than one solution (x, y) in $\mathbb{Z}_p \times \mathbb{Z}_p$ (that is, more than one solution (x, y) where each of x and y are considered modulo p).

- 4. Suppose that n is a positive integer. Let S(n) be the sum of the base 10 digits of n. Define $S^1(n) = S(n)$ and $S^{j+1}(n) = S(S^j(n))$ for every positive integer j. Define $k(n) = \min\{k \in \mathbb{Z}^+ \mid S^k(n) < 10\}$. Define $l(n) = \max\{k(m) \mid m \in \mathbb{Z}^+, m \le n\}$. Determine, with justification, $l(10^{10^{100}})$.
- 5. Suppose N is a positive integer. Define $P_N(x) = \sum_{n=0}^N \frac{x^n}{n!}$.
 - (a) Prove that $P_N(x)$ has no repeated roots (real or complex).
 - (b) Prove that if N is odd, then $P_N(x)$ has exactly one real root and if N is even, $P_N(x)$ has no real roots.
- 6. Determine, with justification, all (a, b) with $a, b \in \mathbb{Z}$, $a, b \ge 0$ such that $T = 1 + 4^a + 4^b$ is a perfect square.

BIG E Saturday 27 October 2007 9 a.m. to 12 noon

- 1. Lino bought a new eraser for this year's Putnam Contest. (Unfortunately, Lino's Putnam eligibility expired several years ago.) His new eraser is in the shape of a rectangular prism. He calculated the lengths of the diagonals of the faces to be $3\sqrt{5}$, $\sqrt{58}$ and $\sqrt{85}$. What is the volume of Lino's eraser?
- 2. Let $V = M_{2007 \times 2007}(\mathbb{R})$ be the vector space of all 2007×2007 matrices with real entries. Let $S = \{A \in V \mid AB = BA\}$, where B is the 2007×2007 matrix

	0	1	0	0	•••	0	0)
	0	0	1	0	• • •	0	0
	0	0	0	1	•••	0	0
B =		÷		÷	· · · · · · · · · · · ·	÷	
	0	0	0	0	•••	1	0
	0	0	0	0	•••	0	1
	$\left(0 \right)$	0	0	0	• • •	0	0/

that is, with $b_{i,i+1} = 1$ for i = 1, 2, ..., 2006 and $b_{i,j} = 0$ otherwise. Prove that S is a subspace of V and determine its dimension.

- 3. Point A on the x-axis with $-2 \le x \le 2$ is chosen at random. Point B in the cylinder $-1 \le x \le 1$, $y^2 + z^2 \le 1$ is also chosen at random. Determine the probability that $AB \le 1$.
- 4. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a continuous function. Prove that f is a bijection if and only if the following conditions are equivalent for any sequence $\{x_n\}$ of real numbers:
 - (i) $\{x_n\}$ converges
 - (ii) $\{f(x_n)\}$ converges
- 5. Suppose that n is a positive integer. Prove that if $4 \not\mid n+2$ and $3 \not\mid n+2$ (that is, neither 3 nor 4 divides n+2), then (n+1)(n+2) divides $\binom{2n}{n}$.
- 6. Define P(1) = P(2) = 1 and P(n) = P(P(n-1)) + P(n P(n-1)) for $n \ge 3$. Prove that $P(2n) \le 2P(n)$ for all positive integers n.