SPECIAL K

Saturday 27 October 2007
 9 a.m. to 12 noon

1. The notation $\underline{a} 89 \underline{b}$ means the four-digit (base 10) integer whose thousands digit is a, whose hundreds digit is 8 , whose tens digit is 9 , and whose units digit is b.
Determine all pairs of non-zero digits a and b such that $\underline{a} 89 \underline{b}-5904=\underline{b} 98 \underline{a}$.
2. Lino bought a new eraser for this year's Putnam Contest. (Unfortunately, Lino's Putnam eligibility expired several years ago.) His new eraser is in the shape of a rectangular prism. He calculated the lengths of the diagonals of the faces to be $3 \sqrt{5}, \sqrt{58}$ and $\sqrt{85}$. What is the volume of Lino's eraser?
3. Determine, with justification, all primes p for which the system of equations

$$
\begin{aligned}
3 x^{2}-4 x^{3} & \equiv 0 \quad(\bmod p) \\
2 y+4 y^{3} & \equiv 0 \quad(\bmod p) \\
x^{4}-x^{3}+y^{4}-y^{2} & \equiv 0 \quad(\bmod p)
\end{aligned}
$$

has more than one solution (x, y) in $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ (that is, more than one solution (x, y) where each of x and y are considered modulo p).
4. Suppose that n is a positive integer.

Let $S(n)$ be the sum of the base 10 digits of n.
Define $S^{1}(n)=S(n)$ and $S^{j+1}(n)=S\left(S^{j}(n)\right)$ for every positive integer j.
Define $k(n)=\min \left\{k \in \mathbb{Z}^{+} \mid S^{k}(n)<10\right\}$.
Define $l(n)=\max \left\{k(m) \mid m \in \mathbb{Z}^{+}, m \leq n\right\}$.
Determine, with justification, $l\left(10^{10^{100}}\right)$.
5. Suppose N is a positive integer. Define $P_{N}(x)=\sum_{n=0}^{N} \frac{x^{n}}{n!}$.
(a) Prove that $P_{N}(x)$ has no repeated roots (real or complex).
(b) Prove that if N is odd, then $P_{N}(x)$ has exactly one real root and if N is even, $P_{N}(x)$ has no real roots.
6. Determine, with justification, all (a, b) with $a, b \in \mathbb{Z}, a, b \geq 0$ such that $T=1+4^{a}+4^{b}$ is a perfect square.

BIG E

Saturday 27 October 2007
 9 a.m. to 12 noon

1. Lino bought a new eraser for this year's Putnam Contest. (Unfortunately, Lino's Putnam eligibility expired several years ago.) His new eraser is in the shape of a rectangular prism. He calculated the lengths of the diagonals of the faces to be $3 \sqrt{5}, \sqrt{58}$ and $\sqrt{85}$. What is the volume of Lino's eraser?
2. Let $V=M_{2007 \times 2007}(\mathbb{R})$ be the vector space of all 2007×2007 matrices with real entries.

Let $S=\{A \in V \mid A B=B A\}$, where B is the 2007×2007 matrix

$$
B=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 \\
& \vdots & & \vdots & & \vdots & \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

that is, with $b_{i, i+1}=1$ for $i=1,2, \ldots, 2006$ and $b_{i, j}=0$ otherwise.
Prove that S is a subspace of V and determine its dimension.
3. Point A on the x-axis with $-2 \leq x \leq 2$ is chosen at random. Point B in the cylinder $-1 \leq x \leq 1$, $y^{2}+z^{2} \leq 1$ is also chosen at random. Determine the probability that $A B \leq 1$.
4. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. Prove that f is a bijection if and only if the following conditions are equivalent for any sequence $\left\{x_{n}\right\}$ of real numbers:
(i) $\left\{x_{n}\right\}$ converges
(ii) $\left\{f\left(x_{n}\right)\right\}$ converges
5. Suppose that n is a positive integer. Prove that if $4 \not \backslash n+2$ and $3 \not \backslash n+2$ (that is, neither 3 nor 4 divides $n+2)$, then $(n+1)(n+2)$ divides $\binom{2 n}{n}$.
6. Define $P(1)=P(2)=1$ and $P(n)=P(P(n-1))+P(n-P(n-1))$ for $n \geq 3$. Prove that $P(2 n) \leq 2 P(n)$ for all positive integers n.

