Solutions to the Special K Problems, 2008

1: Find the value of $\min_{|y| \le 1} \max_{|x| \le 1} (x^2 + xy)$ and the value of $\max_{|x| \le 1} \min_{|y| \le 1} (x^2 + xy)$.

Solution: For fixed y, let $f(x) = x^2 + xy = (x + \frac{y}{2})^2 - \frac{y^2}{4}$. The graph of f(x) is a parabola which is concave up. For $-1 \le x \le 1$, the maximum value of f(x) occurs at one of the endpoints. Since f(-1) = 1 - y and f(1) = 1 + y, we have

$$\max_{|x| \le 1} (x^2 + xy) = \begin{cases} 1+y , \text{ if } y \ge 0\\ 1-y , \text{ if } y \le 0, \end{cases} \quad \text{and so } \min_{|y| \le 1} \max_{|x| \le 1} (x^2 + xy) = 1.$$

For fixed x, let $g(y) = x^2 + xy$. The graph of g(y) is a line (it has positive slope when x > 0, zero slope when x = 0, and negative slope when x < 0). For $-1 \le y \le 1$, the minimum value of g(y) occurs at the left endpoint when $x \ge 0$ and the right endpoint when x < 0. Since $g(-1) = x^2 - x$ and $g(1) = x^2 + x$,

$$\min_{|y| \le 1} (x^2 + xy) = \begin{cases} x^2 - x , \text{ if } x \ge 0\\ x^2 + x , \text{ if } x \le 0, \end{cases} \quad \text{and so } \max_{|x| \le 1} \min_{|y| \le 1} (x^2 + xy) = 0.$$

2: Let $f(x) = x^3 - 5x + 1$ and let $g(x) = \frac{x-1}{x^2}$. Find the number of x-intercepts on the graph of y = f(g(x)).

Solution: Note that f(-3) = -27 + 18 + 1 < 0, f(0) = 1 > 0, $f\left(\frac{1}{4}\right) = \frac{1}{64} - \frac{5}{4} + 1 = \frac{1-80+64}{64} < 0$ and f(3) = 27 - 18 + 1 > 0. By the intermediate Value Theorem, f(x) has a root $\alpha \in (-3, 0)$, a root $\beta \in (0, \frac{1}{4})$ and a root $\gamma \in (\frac{1}{4}, 3)$. Since f(x) is a cubic, these are the only three roots. The *x*-intercepts of y = f(g(x)) occur at each point (x, 0) such that f(g(x)) = 0, that is such that $g(x) = \alpha$, β or γ . Note that for $x \neq 0$, $a \neq 0$ we have $g(x) = a \iff \frac{x-1}{x^2} = a \iff x-1 = ax^2 \iff ax^2 - x = 0$. The discriminate is 1 - 4a, so the equation g(x) = a has two solutions when $0 \neq a < \frac{1}{4}$ and no solutions when $a > \frac{1}{4}$. Since $0 \neq \alpha, \beta < \frac{1}{4}$ and $\gamma > \frac{1}{4}$, there are two values of x such that $g(x) = \alpha$ and two values such that $g(x) = \beta$ and no values such that $g(x) = \gamma$. Thus the graph of y = f(g(x)) has exactly 4 *x*-intercepts.

3: Determine the number of triangles which have the form shown below, where n is a positive integer and x is a real number with $0 \le x \le 1$.

Solution: Suppose a triangle has the given form, and let a and b be as shown above. Since a + b = n + 2x we have

$$a^2 + 2ab + b^2 = n^2 + 4nx + 4x^2 \quad (1)$$

Also, by Pythagoras' Theorem, we have

$$a^{2} + n^{2} = (n+3x)^{2} = n^{2} + 6nx + 9x^{2}$$
 so $a^{2} = 6nx + 9x^{2}$ (2)
 $b^{2} + n^{2} = (n+x)^{2} = n^{2} + 2nx + x^{2}$ so $b^{2} = 2nx + x^{2}$ (3)

Subtracting equations (2) and (3) from (1) gives

$$2ab = n^2 - 4nx - 6x^2.$$

Square both sides and use equations (2) and (3) to get

$$4(6nx + 9x^{2})(2nx + x^{2}) = (n^{2} - 4nx - 6x^{2})^{2}$$

$$4(12n^{2}x^{2} + 24nx^{3} + 9x^{3}) = (n^{4} - 8n^{3}x + 4n^{2}x^{2} + 48nx^{3} + 36x^{4})$$

$$48nx^{3} + 44n^{2}x^{2} + 8n^{3}x - n^{4} = 0$$

$$n(2x + n)^{2}(12x - n) = 0.$$

Since $x \ge 0$ and n > 0, we must have 12x = n. Since $0 \le x$ so that $0 \le 12x = n \le 12$ and n is a positive integer, this gives 12 possibilities, namely $n = 1, 2, \dots, 12$ with $x = \frac{n}{12}$. Finally note that each of these 12 possibilities yields a triangle which is similar to the one shown below, scaled by the factor x.

There is a shorter solution which uses Heron's formula. The area of the triangle is given by $A = \frac{1}{2}(n+2x)(n)$. By Heron's Formula, the area is also given by $A = \sqrt{\left(\frac{3}{2}n+3x\right)\left(\frac{1}{2}n+2x\right)\left(\frac{1}{2}x+x\right)\left(\frac{1}{2}n\right)}$. Equate these expressions for A and square both sides to get $\frac{1}{4}(n+2x)^2n^2 = \frac{3}{16}(n+2x)(n+4x)(n+2x)n$, that is 4n = 3(n+4x), so we must have n = 12x, as above. 4: A bathroom floor is tiled by regular hexagons of the same size. Points A, B and C are vertices of hexagons in the tiling. Prove that $\angle ABC \neq 45^{\circ}$.

Solution: Each hexagonal tile can be cut into 6 equilateral triangles, so we generalize slightly and allow A, B and C to be vertices of these triangles. Choose coordinates so that B is at (0,0) and so that an edge of a triangle has one end at B and the other at (2,0). Then all vertices of all triangles are at points of the form $(a, b\sqrt{3})$ with $a, b \in \mathbb{Z}$. Say $A = (a, b\sqrt{3})$ and $C = (c, d\sqrt{3})$ with $a, b, c, d \in \mathbb{Z}$. Let $\theta = \angle ABC$. Then we have $\sin \theta = \frac{|(a, b\sqrt{3}, 0) \times (c, d\sqrt{3}, 0)|}{|(a, b\sqrt{3}, 0)||(c, d\sqrt{3}, 0)|}$ and $\cos \theta = \frac{(a, b\sqrt{3}) \cdot (c, d\sqrt{3})}{|(a, b\sqrt{3})||(c, d\sqrt{3})|}$ so $\tan \theta = \frac{|(a, b\sqrt{3}, 0) \times (c, d\sqrt{3}, 0)|}{(a, b\sqrt{3}) \cdot (c, d\sqrt{3})} = \frac{(ad - bc)\sqrt{3}}{ac + 3bd}$.

Since $\tan \theta$ is a rational multiple of $\sqrt{3}$, it cannot be equal to 1, and so $\theta \neq \frac{\pi}{4}$.

5: Show that the product $P(n) = \prod_{k=1}^{n-1} \frac{k^{2k}}{k^{n+1}}$ is an integer whenever *n* is prime.

Solution: Note that P(2) = 1 which is an integer. Suppose that n is an odd prime, and write n = 2l + 1. Then

$$\begin{split} P(n) &= P(2l+1) = \prod_{k=1}^{2l} \frac{k^{2k}}{k^{2n+2}} = \frac{1^2}{1^{2l+2}} \cdot \frac{2^4}{2^{2l+2}} \cdot \frac{3^6}{3^{2l+2}} \cdots \frac{(2l)^{4l}}{(2l)^{2l+2}} \\ &= \left(\frac{1}{1^{l+1}} \cdot \frac{2^2}{2^{l+1}} \cdot \frac{3^3}{3^{l+1}} \cdots \frac{l^l}{l^{l+1}} \cdot \frac{(l+1)^{l+1}}{(l+1)^{l+1}} \cdot \frac{(l+2)^{l+2}}{(l+2)^{l+1}} \cdots \frac{(2l)^{2l}}{(2l)^{l+1}}\right)^2 \\ &= \left(\frac{(l+2)(l+3)^2(l+4)^3 \cdots (2l)^{l-1}}{1^{l} \cdot 2^{l-1} \cdot 3^{l-2} \cdots l^1}\right)^2 \\ &= \left(\frac{(l+2)(l+3)(l+4) \cdots (2l)}{1 \cdot 2 \cdot 3 \cdot 4 \cdots l} \cdot \frac{(l+3)(l+4) \cdots (2l)}{1 \cdot 2 \cdot 3 \cdots (l-1)} \cdot \frac{(l+4) \cdots (2l)}{1 \cdot 2 \cdots (l-2)} \cdots \frac{(2l)}{1 \cdot 2}\right)^2 \\ &= \left(\frac{1}{2l+1} \binom{2l+1}{l} \cdot \frac{1}{2l+1} \binom{2l+1}{l-1} \cdot \frac{1}{2l+1} \binom{2l+1}{l-1} \cdot \frac{1}{2l+1} \binom{2l+1}{l-2} \cdots \frac{1}{2l+1} \binom{2l+1}{2}\right)^2 \end{split}$$

which is an integer, since when n is a prime and $1 \le k < n, n$ divides $\binom{n}{k}$.

6: Determine whether the sequence $\left\{\frac{1}{n \sin n}\right\}$ converges.

Solution: For each positive integer k we can find an integer $n_k \in \left[2\pi k + \frac{2\pi}{3}, \pi k + \frac{2\pi}{3}\right]$ (since this interval is of size $\frac{\pi}{3} > 1$). Then $n_k > 2\pi k$ and $\sin n_k \ge \frac{\sqrt{3}}{2}$, and so $n_k \sin n_k \ge \sqrt{3}\pi k$, hence $\frac{1}{n_k \sin n_k} \le \frac{1}{\sqrt{3}\pi k} \to 0$ as $k \to \infty$. This shows that if the sequence $\left\{\frac{1}{n \sin n}\right\}$ does converge, then its limit must be zero.

For an integer k, let \overline{k} denote the real number with $\overline{k} \in [0, \pi)$ such that $\overline{k} = k + \pi l$ for some integer l. Note that for any positive integer m, we can find n with $1 \le n \le m$ such that $\overline{n} \in [0, \frac{\pi}{m}) \cup [\pi - \frac{\pi}{m}, \pi)$; indeed if none of the m numbers $\overline{1}, \overline{2}, \overline{3}, \dots, \overline{m}$ were in the interval $[0\frac{\pi}{m})$, then one of the m-1 intervals $[\frac{\pi}{m}, \frac{2\pi}{m}), [\frac{2\pi}{m}, \frac{3\pi}{m}), [\frac{3\pi}{m}, \frac{4\pi}{m}), \dots [\frac{(n-1)\pi}{m}, \frac{\pi}{m})$ would contain two of the numbers $\overline{1}, \overline{2}, \overline{3}, \dots, \overline{m}$, and if say $\overline{n_1}$ and $\overline{n_2}$ were in the same interval with $n_1 < n_2$, then we could take $n = n_2 - n_1$ and then $\overline{n} \in [0, \frac{\pi}{m}) \cup [\pi - \frac{\pi}{m}, \pi)$.

 $\frac{\operatorname{Im} m}{n_2} \operatorname{were in the same interval with } n_1 < n_2, \text{ then we could take } n = n_2 - n_1 \text{ and then } \overline{n} \in [0, \frac{\pi}{m}) \cup [\pi - \frac{\pi}{m}, \pi).$ Choose $m_1 = 1$ and $n_1 = 1$. Having chosen m_k and n_k with $1 \le n_k \le m_k$ and $\overline{n_k} \in [0, \frac{\pi}{m_k}) \cup [\pi - \frac{\pi}{m_k}, \pi),$ choose m_{k+1} large enough so that $\frac{\pi}{m_{k+1}} < \min\{\overline{1}, \pi - \overline{1}, \overline{2}, \pi - \overline{2}, \overline{3}, \pi - \overline{3}, \cdots, \overline{m_k}, \pi - \overline{m_k}\},$ then choose n_{k+1} with $1 \le n_{k+1} \le m_{k=1}$ so that $\overline{n_{k+1}} \in [0, \frac{\pi}{m_{k+1}}].$ Our choice of m_{k+1} ensures that $\overline{n_{k+1}} \notin \{\overline{1}, \overline{2}, \overline{3}, \cdots, \overline{n_k}\}$ so that $n_{k+1} > n_k$. Also, we have $n_k \le m_k$ and $|\sin n_k| = \sin \overline{n_k} \le \sin \frac{\pi}{m_k} \le \frac{\pi}{m_k},$ and so $\left|\frac{1}{n_k \sin n_k}\right| \ge \frac{1}{\pi}.$ This implies that the limit of the sequence $\left\{\frac{1}{n \sin n}\right\}$ cannot be 0, so it diverges.

Solutions to the Big E Problems, 2008

1: Let A be a 10×10 matrix with integer entries. Suppose that 92 of those entries yield a remainder of 1 after division by 3. Show that det(A) is a multiple of 3.

Solution: Treat the entries of A as elements of \mathbb{Z}_3 (integers modulo 3). Then 92 of the entries are equal to 1. Since at most 8 entries are not equal to 1, there are at most 8 rows whose entries are not all equal to 1, and so there are at least two rows whose entries are all equal to 1. Since A has two equal rows, we have det A = 0 in \mathbb{Z}_3 . When the entries of A are treated as integers, we have det $A \equiv 0$ modulo 3.

- **2:** Let $f(x) = x^3 5x + 1$ and let $g(x) = \frac{x-1}{x^2}$. Find the number of x-intercepts on the graph of y = f(g(x)). Solution: This is problem 2 from the Special K contest.
- **3:** Find all twice differentiable functions f(x) defined on $(0, \infty)$ such that f'(x) > 0 and f(f'(x)) = -f(x) for all x > 0.

Solution: Since f'(x) > 0, we can substitute f(x) for x in the equality f(f'(x)) = -f(x) (1) to obtain f(f'(x))) = -f(f'(x)) (2). Since f'(x) > 0 for all x we know that f(x) is increasing and hence 1:1, and so equation (2) gives f'(f'(x)) = x (3). On the other hand, taking the derivative on both sides of (1) gives f'(f'(x))f''(x) = -f'(x) (4). Equations (3) and (4) give xf''(x) = -f'(x) (5). Thus we have

$$\frac{f''(x)}{f(x)} = -\frac{1}{x} \Longrightarrow \int \frac{f''(x)}{f(x)} dx = \int -\frac{1}{x} dx \Longrightarrow \ln(f'(x)) = -\ln x + a$$
$$\Longrightarrow f'(x) = \frac{b}{x} \Longrightarrow f(x) = b\ln x + c$$

where $a \in \mathbf{R}$, $b = e^a > 0$, and $c \in \mathbf{R}$. Also, we have

$$f(f'(x)) = -f(x) \Longrightarrow f(b/x) = -b\ln x - c \Longrightarrow b\ln(b/x) + c = -b\ln x - c$$
$$\Longrightarrow b\ln b - b\ln x + c = -b\ln x - c \Longrightarrow c = -\frac{1}{2}b\ln b.$$

Thus $f(x) = b \ln x - \frac{1}{2} b \ln b = b \ln (x/\sqrt{b})$. Conversely, given any b > 0, the function $f(x) = b \ln (x/\sqrt{b})$ satisfies the requirements that f'(x) > 0 and f'(f(x)) = -f(x) for all x > 0.

4: Show that the product $P(n) = \prod_{k=1}^{n-1} \frac{k^{2k}}{k^{n+1}}$ is an integer whenever n is prime.

Solution: This is problem 5 from the Special K contest.

5: Determine whether the sequence $\left\{\frac{1}{n \sin n}\right\}$ converges.

Solution: This is problem 6 from the Special K contest.

6: Let $\pi > \alpha_1 > \alpha_2 > \alpha_3 > \cdots$ with each $\alpha_n > 0$. Form a polygonal path which winds clockwise starting with a line segment A_0A_1 of length 1, and adding edges A_nA_{n+1} all of length 1, with angle $A_{n-1}A_nA_{n+1}$ equal to α_n . Prove that there is a point contained in the interiors of all of these angles. (The *interior* of the angle $A_{n-1}A_nA_{n+1}$ is the intersection of the open half-plane bounded by the line $A_{n-1}A_n$ containing the point A_{n+1} , with the open half-plane bounded by the line $A_{n-1}A_n$ containing the point A_{n+1} , with the open half-plane bounded by the line $A_{n-1}A_n$ containing the point A_{n-1}).

Solution: Let C_n be the open disk inside the angle $A_{n-1}A_nA_{n+1}$ which is tangent to the two edges at the midpoints. Notice that C_{n+1} is contained in C_n , and they have one common boundary point at the midpoint of A_nA_{n+1} , and that similarly C_{n+2} is contained in C_{n+1} sharing one common boundary point at the midpoint of $A_{n+1}A_{n+2}$, and so C_{n+2} is contained in C_n and shares no common boundary points. Thus the closure of C_{n+2} is contained in C_n . The limit point of the centers of the discs is contained in the closure of every disc and hence (since the closure of C_{n+2} is contained in C_n) also in the interior of every disc.

We remark that the conclusion is false if we only assume that $\pi \ge \alpha_1 \ge \alpha_2 \ge \alpha_3 \ge \cdots$ with each $\alpha > 0$.