Solutions to the Special K Problems, 2008

: Find the value of min max(2® 4+ zy) and the value of max min (z? + xy).
ly|<1 |z|<1 |z|<1 |y|<1

Solution: For fixed v, let f(z) = 2% + zy = (a: + %)2 — %2. The graph of f(z) is a parabola which is concave
up. For —1 <z <1, the maximum value of f(x) occurs at one of the endpoints. Since f(—1) =1 —y and
f(1) =1+ y, we have

max(z? + zy) =

lz]<1

14y, ify>0
Y . Y and so min max(m2 +ay)=1.
1—y,ify<o0, ly|<1 [z|<1

For fixed z, let g(y) = x? + xy. The graph of g(y) is a line (it has positive slope when z > 0, zero slope
when z = 0, and negative slope when z < 0). For —1 <y < 1, the minimum value of ¢g(y) occurs at the left
endpoint when z > 0 and the right endpoint when 2 < 0. Since g(—1) = 22 — x and g(1) = 2? + x,

22—z, ifzx>0 9
and so max min(z” 4+ zy) = 0.

. 2
min(z“ 4+ xy) =
( 2 2?4z, ifz<0, lz[<1 |y|<1

ly|<1

-1
: Let f(z) =23 — 52 + 1 and let g(x) = L 5— Find the number of z-intercepts on the graph of y = f(g()).
x
Solution: Note that f(—3) = =27+ 18+1 <0, f(0) =1>0, f(3) =g — 2+ 1 = =840 <0 and

f(3) =27 — 18 + 1 > 0. By the intermediate Value Theorem, f(x) has a root e € (—3,0), a root 3 € (0,1)
and a root v € (§,3). Since f(x) is a cubic, these are the only three roots. The z-intercepts of y = f(g(z))
occur at each point (x,0) such that f(g(x)) = 0, that is such that g(x) = «, 8 or 7. Note that for x # 0,
a#0wehave g(z) =a <= !l =a <= 2 —1=a2? <= az? — z = 0. The discriminate is 1 — 4a, so
the equation g(x) = a has two solutions when 0 # a < % and no solutions when a > %. Since 0 # «, 8 < i
and v > 1, there are two values of = such that g(z) = a and two values such that g(z) = 8 and no values

such that g(x) = +. Thus the graph of y = f(g(x)) has exactly 4 z-intercepts.



3: Determine the number of triangles which have the form shown below, where n is a positive integer and z is
a real number with 0 < z < 1.

n+ 3x n n+x
a b
!
n+ 2z

Solution: Suppose a triangle has the given form, and let a and b be as shown above. Since a +b =n + 2z
we have

a® 4 2ab+b* = n? + dnzx + 42 (1)

Also, by Pythagoras’ Theorem, we have

a®> 4+ n% = (n+32)? =n®+6nx +92%  soa® = 6nx + 927 (2)

V4+n?=n+2)?=n*+2nz+2*> sob®=2nr+a> (3)
Subtracting equations (2) and (3) from (1) gives
2ab = n? — 4nx — 627 .
Square both sides and use equations (2) and (3) to get
4(6nx + 922)(2nz + %) = (n? — 4na — 62%)?
4(12n22? + 24na® + 92%) = (n* — 8nx + 4n?2? + 48na® + 3627)
48na® 4 44n?2? 4+ 8n*x —n* =0
n(2z +n)%(122 —n) =0.

Since z > 0 and n > 0, we must have 12z = n. Since 0 < x so that 0 < 12z = n < 12 and n is a positive
integer, this gives 12 possibilities, namely n = 1,2,.--,12 with z = 75. Finally note that each of these 12
possibilities yields a triangle which is similar to the one shown below, scaled by the factor x.
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There is a shorter solution which uses Heron’s formula. The area of the triangle is given by A = 1(n+2z)(n).

By Heron’s Formula, the area is also given by A = \/(%n + Sx) (%n + 2x) (%x + x) (%n) Equate these

expressions for A and square both sides to get 1(n + 22)?n? = &(n + 22)(n + 4x)(n + 2z)n, that is
4n = 3(n + 4x), so we must have n = 12z, as above.



4: A bathroom floor is tiled by regular hexagons of the same size. Points A, B and C are vertices of hexagons
in the tiling. Prove that ZABC # 45°.

Solution: Each hexagonal tile can be cut into 6 equilateral triangles, so we generalize slightly and allow A,

B and C to be vertices of these triangles. Choose coordinates so that B is at (0,0) and so that an edge of a

triangle has one end at B and the other at (2,0). Then all vertices of all triangles are at points of the form

(a,b/3) with a,b € Z. Say A = (a,bv/3) and C = (c,dv/3) with a,b,c,d € Z. Let § = /ABC. Then we
|(a,bv/3,0) x (c,dv/3,0)| (a,bv/3) « (c, d\f)

have sin§ = and cosf =

|(a,bv/3,0)[[(c,dv/3,0)] [(@.bV3)[(c.dv3)|

tanf = [(a,5V/3,0) x (¢, dv/3,0)] _ (adfbc)\/g'

(a,bv/3) « (c,dV/3) ac + 3bd

Since tan @ is a rational multiple of v/3, it cannot be equal to 1, and so 6 # T

n—1
ka
5: Show that the product P(n) = H .y is an integer whenever n is prime.
k=1
Solution: Note that P(2) = 1 which is an integer. Suppose that n is an odd prime, and write n = 21 + 1.
Then

2L 2k 12 94 36 (20

P(n)=PQ2l+1) = k2n+2 ~ q20+2 9242 " g2it2 (21)21+2

33 Lo+t @2 @)\’

1z+1'21+1'3z+1 ' ll+1'(l+1z+1 (I+2)F1 (20)+1

(1+2) z+3 )2(1 + 2zl 2
- i1 31 2
(2 +3)( z+4) (21) (+3)(I+4)---2) (+4)--@) @)
N 1-2-3-4---1 1-2-3- (1—1) 12 (1—2) 1-2
B 2l+1 1 [(2+1 20+1 1 (20+1))
T \20+1 1—1 [ -2 20+ 1 2
((n 1)/2 2

n
which is an integer, since when n is a prime and 1 < k < n, n divides (k:)



1

nsinn

6: Determine whether the sequence { } converges.
Solution: For each positive integer k£ we can find an integer nj € [27rk + %’T, wk + %’r] (since this interval is

o : 3 : 1 1
of size T > 1). Then ng > 27k and sinny 21 5, and so nysinnyg > \/gﬂk', hence . < Tk

k — oo. This shows that if the sequence {nsinn} does converge, then its limit must be zero.

For an integer k, let k denote the real number with k € [0,7) such that k = k + wl for some integer
l. Note that for any positive integer m, we can find n with 1 < n < m such that © € [0, %) U [W - 77);
indeed if none of the m numbers 1,2,3,---m were in the interval [O%), then one of the m — 1 intervals
[Z,20) [2r 3m) [3m dm) ... [%, Z) would contain two of the numbers 1,2,3, - - -, m, and if say 7y and
7z were in the same interval with ny < na, then we could take n = ny —ny and thenm € [0, Z)U [ — Z, 7).

Choose m; = 1 and ny = 1. Having chosen my, and ny, with 1 < ny, < my and 7y, € [0, mik)u [w—ﬁ,r),

— 0 as

choose my.1 large enough so that —#— < min{I,7 —1,2,7 —2,3,7 —3,---, g, ™ — Mg}, then choose nj 1
with 1 < ngy1 < my—1 so that 57 € [0, #ﬂ] Our choice of myy1 ensures that np1 € {1,2,3, -, g}
so that ngy1 > ng. Also, we have ng < my and |sinng| = sinfy, < sin - < -, and so |nksi1nnk’ > %

1

nsinn

This implies that the limit of the sequence { } cannot be 0, so it diverges.



Solutions to the Big E Problems, 2008

: Let A be a 10 x 10 matrix with integer entries. Suppose that 92 of those entries yield a remainder of 1 after
division by 3. Show that det(A) is a multiple of 3.

Solution: Treat the entries of A as elements of Z3 (integers modulo 3). Then 92 of the entries are equal to
1. Since at most 8 entries are not equal to 1, there are at most 8 rows whose entries are not all equal to
1, and so there are at least two rows whose entries are all equal to 1. Since A has two equal rows, we have
det A =0 in Z3. When the entries of A are treated as integers, we have det A = 0 modulo 3.

: Let f(x) =23 — 5z + 1 and let g(z) = = f(g(x)).

Solution: This is problem 2 from the Special K contest.

: Find all twice differentiable functions f(z) defined on (0, 00) such that f'(z) >0 and f(f'(z)) = —f(z) for
all z > 0.

Solution: Since f’(z) > 0, we can substitute f(z) for x in the equality f(f'(z)) = —f(z) (1) to obtain
FU(F (@) ==Ff(f(z) (2. Slnce f'(x) > 0 for all z we know that f(z) is increasing and hence 1:1, and

o equation (2) glves f'(f'(z)) ==z (3). On the other hand, taking the derivative on both sides of (1) gives
f! (f’(x))f//(x) =—f'(z) (4). Equatlons (3) and (4) give 2" (z) — —f'(z) (5). Thus we have
J;/(;)) _11;:/J:c//((:;)dw:/_idwﬁln(fl(l‘))=—lnx—|—a

b
= f(x) = = f(z)=blnz +c
where a € R, b =¢®* > 0, and ¢ € R. Also, we have
f(f'(2)) =—f(z) = f(b/z) = —bInz —c=>bln (b/z) + c = —blnz — ¢
:>b1nb—blnx—|—c=—blnx—c:>c:—%blnb.

Thus f(z) = blnz — £blnb = bln (x/\/g) Conversely, given any b > 0, the function f(z) = bln (z/Vb)
satisfies the requirements that f'(x) >0 and f'(f(z)) = —f(z) for all z > 0.

n—1
k2k
: Show that the product P(n) = H il is an integer whenever n is prime.
k=1
Solution: This is problem 5 from the Special K contest.

1
nsinn

: Determine whether the sequence { } converges.

Solution: This is problem 6 from the Special K contest.



6: Let m > a1 > as > a3 > --- with each a,, > 0. Form a polygonal path which winds clockwise starting with
a line segment AgA; of length 1, and adding edges A, A, 41 all of length 1, with angle A,,_1A4,A,+1 equal
to ;. Prove that there is a point contained in the interiors of all of these angles. (The interior of the angle
Ap—1A, A, is the intersection of the open half-plane bounded by the line A,,_1A,, containing the point
Apt1, with the open half-plane bounded by the line A,, 4,41 containing the point A,,_1).

Solution: Let C,, be the open disk inside the angle A, _1A4,A,+1 which is tangent to the two edges at
the midpoints. Notice that C, 1 is contained in C,, and they have one common boundary point at the
midpoint of A, A1, and that similarly C),2 is contained in C),; sharing one common boundary point at
the midpoint of A, 114,12, and so C,, 42 is contained in C,, and shares no common boundary points. Thus
the closure of C,, 42 is contained in C,,. The limit point of the centers of the discs is contained in the closure
of every disc and hence (since the closure of C,, 15 is contained in C,,) also in the interior of every disc.

We remark that the conclusion is false if we only assume that © > a; > as > ag > - -- with each o > 0.



