Solutions to the Special K Problems, 2008

1: Find the value of $\min _{|y| \leq 1} \max _{|x| \leq 1}\left(x^{2}+x y\right)$ and the value of $\max _{|x| \leq 1} \min _{|y| \leq 1}\left(x^{2}+x y\right)$.
Solution: For fixed y, let $f(x)=x^{2}+x y=\left(x+\frac{y}{2}\right)^{2}-\frac{y^{2}}{4}$. The graph of $f(x)$ is a parabola which is concave up. For $-1 \leq x \leq 1$, the maximum value of $f(x)$ occurs at one of the endpoints. Since $f(-1)=1-y$ and $f(1)=1+y$, we have

$$
\max _{|x| \leq 1}\left(x^{2}+x y\right)=\left\{\begin{array}{l}
1+y, \text { if } y \geq 0 \\
1-y, \text { if } y \leq 0,
\end{array} \quad \text { and so } \min _{|y| \leq 1} \max _{|x| \leq 1}\left(x^{2}+x y\right)=1\right.
$$

For fixed x, let $g(y)=x^{2}+x y$. The graph of $g(y)$ is a line (it has positive slope when $x>0$, zero slope when $x=0$, and negative slope when $x<0$). For $-1 \leq y \leq 1$, the minimum value of $g(y)$ occurs at the left endpoint when $x \geq 0$ and the right endpoint when $x<0$. Since $g(-1)=x^{2}-x$ and $g(1)=x^{2}+x$,

$$
\min _{|y| \leq 1}\left(x^{2}+x y\right)=\left\{\begin{array}{l}
x^{2}-x, \text { if } x \geq 0 \\
x^{2}+x, \text { if } x \leq 0,
\end{array} \quad \text { and so } \max _{|x| \leq 1} \min _{|y| \leq 1}\left(x^{2}+x y\right)=0\right.
$$

2: Let $f(x)=x^{3}-5 x+1$ and let $g(x)=\frac{x-1}{x^{2}}$. Find the number of x-intercepts on the graph of $y=f(g(x))$. Solution: Note that $f(-3)=-27+18+1<0, f(0)=1>0, f\left(\frac{1}{4}\right)=\frac{1}{64}-\frac{5}{4}+1=\frac{1-80+64}{64}<0$ and $f(3)=27-18+1>0$. By the intermediate Value Theorem, $f(x)$ has a root $\alpha \in(-3,0)$, a root $\beta \in\left(0, \frac{1}{4}\right)$ and a root $\gamma \in\left(\frac{1}{4}, 3\right)$. Since $f(x)$ is a cubic, these are the only three roots. The x-intercepts of $y=f(g(x))$ occur at each point $(x, 0)$ such that $f(g(x))=0$, that is such that $g(x)=\alpha, \beta$ or γ. Note that for $x \neq 0$, $a \neq 0$ we have $g(x)=a \Longleftrightarrow \frac{x-1}{x^{2}}=a \Longleftrightarrow x-1=a x^{2} \Longleftrightarrow a x^{2}-x=0$. The discriminate is $1-4 a$, so the equation $g(x)=a$ has two solutions when $0 \neq a<\frac{1}{4}$ and no solutions when $a>\frac{1}{4}$. Since $0 \neq \alpha, \beta<\frac{1}{4}$ and $\gamma>\frac{1}{4}$, there are two values of x such that $g(x)=\alpha$ and two values such that $g(x)=\beta$ and no values such that $g(x)=\gamma$. Thus the graph of $y=f(g(x))$ has exactly $4 x$-intercepts.

3: Determine the number of triangles which have the form shown below, where n is a positive integer and x is a real number with $0 \leq x \leq 1$.

Solution: Suppose a triangle has the given form, and let a and b be as shown above. Since $a+b=n+2 x$ we have

$$
\begin{equation*}
a^{2}+2 a b+b^{2}=n^{2}+4 n x+4 x^{2} \tag{1}
\end{equation*}
$$

Also, by Pythagoras' Theorem, we have

$$
\begin{gather*}
a^{2}+n^{2}=(n+3 x)^{2}=n^{2}+6 n x+9 x^{2} \quad \text { so } a^{2}=6 n x+9 x^{2} \tag{2}\\
b^{2}+n^{2}=(n+x)^{2}=n^{2}+2 n x+x^{2} \quad \text { so } b^{2}=2 n x+x^{2} \tag{3}
\end{gather*}
$$

Subtracting equations (2) and (3) from (1) gives

$$
2 a b=n^{2}-4 n x-6 x^{2} .
$$

Square both sides and use equations (2) and (3) to get

$$
\begin{gathered}
4\left(6 n x+9 x^{2}\right)\left(2 n x+x^{2}\right)=\left(n^{2}-4 n x-6 x^{2}\right)^{2} \\
4\left(12 n^{2} x^{2}+24 n x^{3}+9 x^{3}\right)=\left(n^{4}-8 n^{3} x+4 n^{2} x^{2}+48 n x^{3}+36 x^{4}\right) \\
48 n x^{3}+44 n^{2} x^{2}+8 n^{3} x-n^{4}=0 \\
n(2 x+n)^{2}(12 x-n)=0
\end{gathered}
$$

Since $x \geq 0$ and $n>0$, we must have $12 x=n$. Since $0 \leq x$ so that $0 \leq 12 x=n \leq 12$ and n is a positive integer, this gives 12 possibilities, namely $n=1,2, \cdots, 12$ with $x=\frac{n}{12}$. Finally note that each of these 12 possibilities yields a triangle which is similar to the one shown below, scaled by the factor x.

There is a shorter solution which uses Heron's formula. The area of the triangle is given by $A=\frac{1}{2}(n+2 x)(n)$. By Heron's Formula, the area is also given by $A=\sqrt{\left(\frac{3}{2} n+3 x\right)\left(\frac{1}{2} n+2 x\right)\left(\frac{1}{2} x+x\right)\left(\frac{1}{2} n\right)}$. Equate these expressions for A and square both sides to get $\frac{1}{4}(n+2 x)^{2} n^{2}=\frac{3}{16}(n+2 x)(n+4 x)(n+2 x) n$, that is $4 n=3(n+4 x)$, so we must have $n=12 x$, as above.

4: A bathroom floor is tiled by regular hexagons of the same size. Points A, B and C are vertices of hexagons in the tiling. Prove that $\angle A B C \neq 45^{\circ}$.
Solution: Each hexagonal tile can be cut into 6 equilateral triangles, so we generalize slightly and allow A, B and C to be vertices of these triangles. Choose coordinates so that B is at $(0,0)$ and so that an edge of a triangle has one end at B and the other at $(2,0)$. Then all vertices of all triangles are at points of the form $(a, b \sqrt{3})$ with $a, b \in \mathbf{Z}$. Say $A=(a, b \sqrt{3})$ and $C=(c, d \sqrt{3})$ with $a, b, c, d \in \mathbf{Z}$. Let $\theta=\angle A B C$. Then we have $\sin \theta=\frac{|(a, b \sqrt{3}, 0) \times(c, d \sqrt{3}, 0)|}{|(a, b \sqrt{3}, 0)||(c, d \sqrt{3}, 0)|}$ and $\cos \theta=\frac{(a, b \sqrt{3}) \cdot(c, d \sqrt{3})}{|(a, b \sqrt{3})||(c, d \sqrt{3})|}$ so

$$
\tan \theta=\frac{|(a, b \sqrt{3}, 0) \times(c, d \sqrt{3}, 0)|}{(a, b \sqrt{3}) \cdot(c, d \sqrt{3})}=\frac{(a d-b c) \sqrt{3}}{a c+3 b d} .
$$

Since $\tan \theta$ is a rational multiple of $\sqrt{3}$, it cannot be equal to 1 , and so $\theta \neq \frac{\pi}{4}$.

5: Show that the product $P(n)=\prod_{k=1}^{n-1} \frac{k^{2 k}}{k^{n+1}}$ is an integer whenever n is prime.
Solution: Note that $P(2)=1$ which is an integer. Suppose that n is an odd prime, and write $n=2 l+1$. Then

$$
\begin{aligned}
P(n) & =P(2 l+1)=\prod_{k=1}^{2 l} \frac{k^{2 k}}{k^{2 n+2}}=\frac{1^{2}}{1^{2 l+2}} \cdot \frac{2^{4}}{2^{2 l+2}} \cdot \frac{3^{6}}{3^{2 l+2}} \cdots \frac{(2 l)^{4 l}}{(2 l)^{2 l+2}} \\
& =\left(\frac{1}{1^{l+1}} \cdot \frac{2^{2}}{2^{l+1}} \cdot \frac{3^{3}}{3^{l+1}} \cdots \frac{l^{l}}{l^{l+1}} \cdot \frac{(l+1)^{l+1}}{(l+1)^{l+1}} \cdot \frac{(l+2)^{l+2}}{(l+2)^{l+1}} \cdots \frac{(2 l)^{2 l}}{(2 l)^{l+1}}\right)^{2} \\
& =\left(\frac{(l+2)(l+3)^{2}(l+4)^{3} \cdots(2 l)^{l-1}}{1^{l} \cdot 2^{l-1} \cdot 3^{l-2} \cdots l^{1}}\right)^{2} \\
& =\left(\frac{(l+2)(l+3)(l+4) \cdots(2 l)}{1 \cdot 2 \cdot 3 \cdot 4 \cdots l} \cdot \frac{(l+3)(l+4) \cdots(2 l)}{1 \cdot 2 \cdot 3 \cdots(l-1)} \cdot \frac{(l+4) \cdots(2 l)}{1 \cdot 2 \cdots(l-2)} \cdots \frac{(2 l)}{1 \cdot 2}\right)^{2} \\
& =\left(\frac{1}{2 l+1}\binom{2 l+1}{l} \cdot \frac{1}{2 l+1}\binom{2 l+1}{l-1} \cdot \frac{1}{2 l+1}\binom{2 l+1}{l-2} \cdots \frac{1}{2 l+1}\binom{2 l+1}{2}\right)^{2} \\
& \left.=\left(\begin{array}{l}
(n-1) / 2 \\
\prod_{k=2}
\end{array} \frac{1}{n} \begin{array}{c}
n \\
k
\end{array}\right)\right)^{2},
\end{aligned}
$$

which is an integer, since when n is a prime and $1 \leq k<n, n$ divides $\binom{n}{k}$.

6: Determine whether the sequence $\left\{\frac{1}{n \sin n}\right\}$ converges.
Solution: For each positive integer k we can find an integer $n_{k} \in\left[2 \pi k+\frac{2 \pi}{3}, \pi k+\frac{2 \pi}{3}\right]$ (since this interval is of size $\frac{\pi}{3}>1$). Then $n_{k}>2 \pi k$ and $\sin n_{k} \geq \frac{\sqrt{3}}{2}$, and so $n_{k} \sin n_{k} \geq \sqrt{3} \pi k$, hence $\frac{1}{n_{k} \sin n_{k}} \leq \frac{1}{\sqrt{3} \pi k} \rightarrow 0$ as $k \rightarrow \infty$. This shows that if the sequence $\left\{\frac{1}{n \sin n}\right\}$ does converge, then its limit must be zero.

For an integer k, let \bar{k} denote the real number with $\bar{k} \in[0, \pi)$ such that $\bar{k}=k+\pi l$ for some integer l. Note that for any positive integer m, we can find n with $1 \leq n \leq m$ such that $\bar{n} \in\left[0, \frac{\pi}{m}\right) \cup\left[\pi-\frac{\pi}{m}, \pi\right)$; indeed if none of the m numbers $\overline{1}, \overline{2}, \overline{3}, \cdots \bar{m}$ were in the interval $\left[0 \frac{\pi}{m}\right)$, then one of the $m-1$ intervals $\left[\frac{\pi}{m}, \frac{2 \pi}{m}\right),\left[\frac{2 \pi}{m}, \frac{3 \pi}{m}\right),\left[\frac{3 \pi}{m}, \frac{4 \pi}{m}\right), \cdots\left[\frac{(n-1) \pi}{m}, \frac{\pi}{m}\right)$ would contain two of the numbers $\overline{1}, \overline{2}, \overline{3}, \cdots, \bar{m}$, and if say $\overline{n_{1}}$ and $\overline{n_{2}}$ were in the same interval with $n_{1}<n_{2}$, then we could take $n=n_{2}-n_{1}$ and then $\bar{n} \in\left[0, \frac{\pi}{m}\right) \cup\left[\pi-\frac{\pi}{m}, \pi\right)$.

Choose $m_{1}=1$ and $n_{1}=1$. Having chosen m_{k} and n_{k} with $1 \leq n_{k} \leq m_{k}$ and $\overline{n_{k}} \in\left[0, \frac{\pi}{m_{k}}\right) \cup\left[\pi-\frac{\pi}{m_{k}}, \pi\right)$, choose m_{k+1} large enough so that $\frac{\pi}{m_{k+1}}<\min \left\{\overline{1}, \pi-\overline{1}, \overline{2}, \pi-\overline{2}, \overline{3}, \pi-\overline{3}, \cdots, \overline{m_{k}}, \pi-\overline{m_{k}}\right\}$, then choose n_{k+1} with $1 \leq n_{k+1} \leq m_{k=1}$ so that $\overline{n_{k+1}} \in\left[0, \frac{\pi}{m_{k+1}}\right]$. Our choice of m_{k+1} ensures that $\overline{n_{k+1}} \notin\left\{\overline{1}, \overline{2}, \overline{3}, \cdots, \overline{n_{k}}\right\}$ so that $n_{k+1}>n_{k}$. Also, we have $n_{k} \leq m_{k}$ and $\left|\sin n_{k}\right|=\sin \overline{n_{k}} \leq \sin \frac{\pi}{m_{k}} \leq \frac{\pi}{m_{k}}$, and so $\left|\frac{1}{n_{k} \sin n_{k}}\right| \geq \frac{1}{\pi}$. This implies that the limit of the sequence $\left\{\frac{1}{n \sin n}\right\}$ cannot be 0 , so it diverges.

Solutions to the Big E Problems, 2008

1: Let A be a 10×10 matrix with integer entries. Suppose that 92 of those entries yield a remainder of 1 after division by 3 . Show that $\operatorname{det}(A)$ is a multiple of 3 .
Solution: Treat the entries of A as elements of \mathbf{Z}_{3} (integers modulo 3). Then 92 of the entries are equal to 1. Since at most 8 entries are not equal to 1 , there are at most 8 rows whose entries are not all equal to 1 , and so there are at least two rows whose entries are all equal to 1 . Since A has two equal rows, we have $\operatorname{det} A=0$ in \mathbf{Z}_{3}. When the entries of A are treated as integers, we have $\operatorname{det} A \equiv 0$ modulo 3 .

2: Let $f(x)=x^{3}-5 x+1$ and let $g(x)=\frac{x-1}{x^{2}}$. Find the number of x-intercepts on the graph of $y=f(g(x))$. Solution: This is problem 2 from the Special K contest.

3: Find all twice differentiable functions $f(x)$ defined on $(0, \infty)$ such that $f^{\prime}(x)>0$ and $f\left(f^{\prime}(x)\right)=-f(x)$ for all $x>0$.

Solution: Since $f^{\prime}(x)>0$, we can substitute $f(x)$ for x in the equality $f\left(f^{\prime}(x)\right)=-f(x)$ (1) to obtain $f\left(f^{\prime}\left(f^{\prime}(x)\right)\right)=-f\left(f^{\prime}(x)\right)$ (2). Since $f^{\prime}(x)>0$ for all x we know that $f(x)$ is increasing and hence 1:1, and so equation (2) gives $f^{\prime}\left(f^{\prime}(x)\right)=x$ (3). On the other hand, taking the derivative on both sides of (1) gives $f^{\prime}\left(f^{\prime}(x)\right) f^{\prime \prime}(x)=-f^{\prime}(x)$ (4). Equations (3) and (4) give $x f^{\prime \prime}(x)=-f^{\prime}(x)$ (5). Thus we have

$$
\begin{aligned}
\frac{f^{\prime \prime}(x)}{f(x)}=-\frac{1}{x} & \Longrightarrow \int \frac{f^{\prime \prime}(x)}{f(x)} d x=\int-\frac{1}{x} d x \Longrightarrow \ln \left(f^{\prime}(x)\right)=-\ln x+a \\
& \Longrightarrow f^{\prime}(x)=\frac{b}{x} \Longrightarrow f(x)=b \ln x+c
\end{aligned}
$$

where $a \in \mathbf{R}, b=e^{a}>0$, and $c \in \mathbf{R}$. Also, we have

$$
\begin{aligned}
f\left(f^{\prime}(x)\right)=-f(x) & \Longrightarrow f(b / x)=-b \ln x-c \Longrightarrow b \ln (b / x)+c=-b \ln x-c \\
& \Longrightarrow b \ln b-b \ln x+c=-b \ln x-c \Longrightarrow c=-\frac{1}{2} b \ln b
\end{aligned}
$$

Thus $f(x)=b \ln x-\frac{1}{2} b \ln b=b \ln (x / \sqrt{b})$. Conversely, given any $b>0$, the function $f(x)=b \ln (x / \sqrt{b})$ satisfies the requirements that $f^{\prime}(x)>0$ and $f^{\prime}(f(x))=-f(x)$ for all $x>0$.

4: Show that the product $P(n)=\prod_{k=1}^{n-1} \frac{k^{2 k}}{k^{n+1}}$ is an integer whenever n is prime.
Solution: This is problem 5 from the Special K contest.

5: Determine whether the sequence $\left\{\frac{1}{n \sin n}\right\}$ converges.
Solution: This is problem 6 from the Special K contest.

6: Let $\pi>\alpha_{1}>\alpha_{2}>\alpha_{3}>\cdots$ with each $\alpha_{n}>0$. Form a polygonal path which winds clockwise starting with a line segment $A_{0} A_{1}$ of length 1 , and adding edges $A_{n} A_{n+1}$ all of length 1 , with angle $A_{n-1} A_{n} A_{n+1}$ equal to α_{n}. Prove that there is a point contained in the interiors of all of these angles. (The interior of the angle $A_{n-1} A_{n} A_{n+1}$ is the intersection of the open half-plane bounded by the line $A_{n-1} A_{n}$ containing the point A_{n+1}, with the open half-plane bounded by the line $A_{n} A_{n+1}$ containing the point A_{n-1}).
Solution: Let C_{n} be the open disk inside the angle $A_{n-1} A_{n} A_{n+1}$ which is tangent to the two edges at the midpoints. Notice that C_{n+1} is contained in C_{n}, and they have one common boundary point at the midpoint of $A_{n} A_{n+1}$, and that similarly C_{n+2} is contained in C_{n+1} sharing one common boundary point at the midpoint of $A_{n+1} A_{n+2}$, and so C_{n+2} is contained in C_{n} and shares no common boundary points. Thus the closure of C_{n+2} is contained in C_{n}. The limit point of the centers of the discs is contained in the closure of every disc and hence (since the closure of C_{n+2} is contained in C_{n}) also in the interior of every disc.

We remark that the conclusion is false if we only assume that $\pi \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \cdots$ with each $\alpha>0$.

