Solutions to the Special K Problems, 2014

: Three circles, of radii 1, 2 and 3, are tangent in pairs at the points A, B and C. Find the area of triangle
ABC.

Solution: Let S, T and U be the circles of radii 1, 2 and 3 respectively. Let P, (Q and R be the centres of

S, T and U. Let A be the point of intersection of T" and U, let B be the point of intersection of U and S,

and let C' be the point of intersection of S and T'. Since a radius of a circle interests with a tangent at right

angles, we see that the points A, B and C lie on the edges of triangle PQR. Since S, T and U have radii

1, 2 and 3, we see that the triangle PQ has sides of the length |PQ| =14+2 =3, |[QR| =2+ 3 =5 and

|RP| = 3+ 1 =4. Since (3,4,5) is a Pythagorean triple, the triangle PQR is a right angled triangle with
4

its right angle at P. The angles at Q and R are given by sin@Q = ¢ and sin R = g Using the one half base

times height formula for areas of triangles, the area of triangle ABC' is
|ABC| = |PQR| — |PCB| — |QAC| — |RBA|
=1.34-1.1-1-1.2.2sinQ - 3-3-3sinR
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: Find the number of ways to represent 10! as a sum of consecutive positive integers.

Solution: More generally, let n € Z with n > 2. Suppose that n = k+ (k+ 1 (k+2)+---+1= w
where k,l € ZT with k <. Let u=1—k +1 and v = k + [. Note that u,v € Z* with v < v and that u
and v have opplosite parity. Conversely, given u,v € ZT of opposite parity with 1 < u < v and uv = 2n we
can let k = 2=4tl and | = %=1 {0 get n = (Z_H'Qw =k+ (k+1)+---+1. Thus the number of ways
to represent n as a sum of consecutive positive integers is equal to the number of pairs of positive integers
(u,v) such that v and v have opposite parity , u < v and wv = 2n. This, in turn is equal to the number of
pairs of positive integers (a,b) such that a is even and b is odd and ab = 2n (indeed given u and v we can
take a to be the even element in {u,v} and b to be the odd element in {u, v}, and conversely given a and v
we can take u = min{a, b} and v = max{a,b}). When n = 2™p with m > 0 and p odd, the element a can
be any number of the form a = 2™*1d with d|p and then b is given by b = % = L. Thus when n = 2"p,
the number of ways tho represent n as a sum of consecutive positive integers is equal to 7(p), the number
of divisors of p. In particular, when n = 10! = 28 - 3* . 52 . 7!, the required number of ways is equal to

7(3% 527 = (4+1)(2+ 1)(1 4 1) = 30.



3: Given a > 1, find the area of the square with one vertex at (a,0), one vertex above the curve y = 1/, and
the other two vertices on the curve y = /.

Solution: Let A = (a,0). Let B = (b,v/b) and C = (¢, /c) be the two points of the square which lie on the
curve y = y/x with b < ¢, and let D be the other vertex of the square. Note that BC' must be a diagonal of
the square in order for D to lie above y = y/z. Let P = (b,0) and Q = (c¢,0). Since BACD is a square, the
line segments AC' and AB have the same length and are perpendicular, and so the triangles AQC and BPA
are congruent. Thus we have |AQ| = |BP| and |QC| = |PA|, that is ¢ —a = Vb (1) and a — b = /¢ (2).
Adding equations (1) and (2) gives ¢ +b = v/b+ y/c and so we have v/c — Vb = 1. Subtracting equation (1)
from equation (2) gives 2a — (b + ¢) = /¢ — vb = 1 and so we have b+ ¢ = 2a — 1. Thus the area of the
square is
|BACD| = |AC|? = |AQ|* + |QC|? = |BP|* + |QC]* = b+ c=2a — 1.

D

4: Let n be an odd integer with n > 3. Let k be the smallest positive integer such that kn + 1 is a square,
and let [ be the smallest positive integer such that In is a square. Show that n is prime if and only if
n < min{4k, 41}.

Solution: Suppose first that n is prime, say n = p with p > 3. It is clear that l = p. We claim that &k = p—2.
Let t € ZT with tp + 1 equal to a square, say tp + 1 = 2%, Then tp = 2> — 1 = (z + 1)(z — 1). Since
p is prime, either plx + 1 or plz — 1. If plz + 1 then p < z+ 1 and so t = w >x—1>p-—2.
Ifplx —1thenp <z —1landt>ax+12>p+2 In either case, we have ¢ >p72 If t = p— 2 then
tp+1 = (p—2)p+1 = p?>—2p+1 = (p—1)? which is a square. Thus k = min {t € Z+|tp+1 is a square} =p-2
as claimed. Since k = p—2 and | = pand n = p > 3 we have min{4k, 41} = 4k = 4p—8 = p+(3p—8) > p =n.

Now suppose that n is composite. We claim that if n has a repeated prime factor then n > 4l and if n
has at least two distinct prime factors then n > 4k, so that in either case we have n > min{4k, 4l}. Suppose
first that n has a repeated prime factor, say n = p®s, where p is prime and s € ZT. Note that since n is odd,
p # 2 s0p> 3. Also note that [ < s since sn = p?s? which is a square, Thus n = p?s > 91 > 4l, as claimed.

Finally, suppose that n has at least two distinct prime factors. Write n as n = ab with a and b odd,
l<a<nandl<b<nand ged(a,b) = 1. We wish to find a small value of ¢ so that tn + 1 is a square.
By the Chinese Remainder Theorem, there is a unique z € Z with 1 < x < n such that x = 1 mod a and
2 = —1 mod b hence 22 = 1 mod n. Note that for y = n — 2 we have y = —1 mod ¢ and y = 1 mod b so
y? = 1 mod n. For z = min{x, y}, we have 1 < z < 5 and 22 =1 mod n, say 22 = 1 +tn. Then tn+1 = 22,

which is a square, and t = % < % = 4. Thus k = min {t € Z"“tn—i—l is a square} < % and son > 4k,
as claimed.



5: A zigzag is a set of the form Z = {ta+(1—t)b|0 < ¢ < 1}U{a+tu|t > 0}U{b—tu|t > 0} for some a,b,u € R?
with u # 0 (Z is the union of the line segment between a and b with a ray at a in the direction of u and a ray at
b in the direction —u). Given a positive integer n,
find the maximum number of regions into which n zigzags divide the plane.

Solution: Let a,, be the maximum number of regions into which n zigzags divide the plane. Since 1 zigzag
divides the plane into 2 regions, we have a; = 2. Suppose that we have chosen a configuration of n zigzags
which divides the plane into a,, regions. Suppose that we add one more zigzag, say Z, to the configuration,
and that Z intersects the existing zigzags in a total of p points. These p points divide Z into p + 1 parts,
and each of these parts divides one of the existing regions into two regions. Thus we increase the number of
regions by p+1 obtaining a total of a,, +p+1 regions. When we add the zigzag Z, each of its 3 parts (namely
its one line segment and its two rays) intersects each of the 3n parts of the existing n zigzags at most once,
so the maximum number of points of intersection is p = 3 - 3n = 9n. Thus we have a,+1 < a, +9n + 1.

We claim that is possible to choose a configuration of n + 1 zigzags so that the maximum possible
number of points of intersection is attained. To do this, first choose a configuration of n lines Ly, L1, -, L,
so that each pair of lines intersect and no three lines intersect (for example, we could choose Ly, to be the line
y = kx —k?). Choose ¢ > 0 to be smaller than half the distance from any line Lj, to any point of intersection
of two other lines. For each k, let L} be a line parallel to Ly separated from Ly, by a distance of e. Then each
of L, and L% will intersect all of the other 2n lines. For each k, choose a rectangle arbycidy with ag, by € Ly,
and ¢y, di, € Lj, which is sufficiently large that for every j # k the lines L; and L} both intersect L; between
ar, and b; and both intersect L% between ¢ and dj, and consequently both intersect the diagonal apcy of
the rectangle. We then let Z; be the zigzag formed by the ray from aj through by, the ray from c¢; through
dy, and the diagonal agcg. In this way we obtain a configuration of zigzags Zy, Z1, - - -, Z, with the proper
that each of the three parts of Zj intersects each of the three parts of Z; whenever k # [.

We have shown that sequence a,, is given recursively by a; = 2 and ap4+1 = a, +9n + 1. Thus

an=2+0O0-1+)+O-2+1)+O-3+1)+---+9-(n—-1)+1)
=24+91+24+3+---+(n—1))+(n—1)
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6: Let {a,} be a sequence of real numbers with the property that for every » € R with r > 1, we have
lim a = 0. Show that lim a, = 0.

koo LTF] n— oo
Solution: Suppose, for a contradiction, that lim a, # 0. Choose € > 0 so that for every [ € Z™ there exists
n—oo

n > 1 such that |a,| > e. We shall construct a sequence of indices n; < ng < ng--- with each |anj\ > € and
a sequence of closed bounded intervals Iy O I, O I3 D --- and a sequence of exponents ky; > ko > kg > - --
such that for every r € I; we have erij = nj, and then we shall use the existence of these sequences to
obtain a contradiction.

Choose an index n; > 1 such that |a,,| > €. Let I = [nl,nl + %} and k1 = 1 and note that for all

r € I we have V’“J = |r] = ny. Suppose that we have constructed indices n; < ng < -+- < n;j_1 with
|an,| > € and closed bounded intervals I; D Iy D --- D I;_; and exponents k; < ko < --- < k;j_1 such that

for all r € I; we have erlJ =n,. Say I;_1 = [a,b] where 1 <nq <a<b<ng+ % Since 1 < a < b we have
(Q)k — o0 as k — oo. Choose m large enough that for all £ > m we have (S)k >q+ % Then for k > m

a
we have b* > aF1 4 Za¥ > a*T1 + L so that the intervals [a*,b" — 3] and [a*T!,b¥+! — 2] overlap, and we

o0
have |J [a*,b" — 3] = [a™, 00). Choose n; so that n; > n;_1, n; > a™ and |a,,| > e. Choose k; so that
k=m
n; € [akf,bki — %] and note that [nj,nj + %] C [akf,bkj]. Let I; = [njl/’“j, (n; + %)1/’”} and note that for
all r € I; we have rki e [nj,nj + %] so that erij =n;.
We can now obtain the desired contradiction as follows. Since the nested intervals [y D I D I3 D ---

o0
are nonempty, closed and bounded, their intersection is nonempty. Choose r € () I;. For each index j,
j=1

= 0 hence lim a,; = 0.

since r € I; we have Lr}“iJ = n;. Since lim a %
k—o0 [ ] j—o0

.1 = 0 it follows that lim a
[r*] j—oo

But this is impossible since |a,,| > € for all j.



Solutions to the Big E Problems, 2014

: Given a > 1, find the area of the square with one vertex at (a,0), one vertex above the curve y = y/x, and
the other two vertices on the curve y = \/z.

Solution: Let A = (a,0). Let B = (b,v/d) and C = (c,+/c) be the two points of the square which lie on the
curve y = y/x with b < ¢, and let D be the other vertex of the square. Note that BC' must be a diagonal of
the square in order for D to lie above y = y/z. Let P = (b,0) and @ = (¢,0). Since BACD is a square, the
line segments AC' and AB have the same length and are perpendicular, and so the triangles AQC and BPA
are congruent. Thus we have |AQ| = |BP| and |QC| = |PA|, that is ¢ —a = Vb (1) and a — b = /¢ (2).
Adding equations (1) and (2) gives ¢ +b = v/b+ y/c and so we have v/c — Vb = 1. Subtracting equation (1)
from equation (2) gives 2a — (b+ ¢) = /¢ — vb = 1 and so we have b+ ¢ = 2a — 1. Thus the area of the
square is
|BACD| = |AC|? = |AQ|*> + |QC|? = |BP]?* + |QC|* = b+ c=2a — 1.

D

: There are n closed (non-degenerate) line segments in R3. The sum of the lengths of the line segments is
equal to 2014. Show that there is a plane in R?, which is disjoint from all of the line segments, such that
the distance from the plane to the origin is less that 600.

Solution: Let the i*" line segment be L; = {p; + tu;|0 < ¢t < 1} where p; = (a;,b;,¢;) € R® and 0 # u; =
n

(i, vi, 2:) € R3. The length of L; is equal to |u;| = /7;2 + 1;2 + 22 and we have Y |u;| = 2014. Suppose,
i=1

for a contradiction, that every plane in R? whose distance from the origin is less than 600 intersects with

one of the line segments L;. Then in particular, for ¢ € (—600,600), each of the planes z = ¢, y = ¢ and

z = c¢ intersects one of the segments L;.
Let A; = {a; + tz;]0 <t < 1} be the orthogonal projection of L; onto the z-axis. The length of A; is

equal to |z;|. Note that the interval (—600,600) must be contained in the union U A; because if ¢ ¢ A; for
z 1

any ¢ then the plane x = ¢ would not intersect any L;. It follows that 1200 < Z |z;|. Similarly, we must
i=1

n
have 1200 < Y |y;| and 1200 < 3 |2|. By the Cauchy Schwarz Inequality, for z,y, 2z € R we have
i=1

2l + Jyl + 121 = |(L,1,1) « (lal. Iyl D] < (4 LD |l ol |2D)] = VBV + 37 + 22
and so

3600 < Y- (Jzil + [yl + |z]) < V3 Va2 +u + 2% = V3 Y Jui|* = 2014V/3.
i=1 i=1 i=1

But 2014v/3 < 2014 - £ = 10977 — 7049 7050 — 3525 < 3600.



3: Let n be an odd integer with n > 3. Let k be the smallest positive integer such that kn 4+ 1 is a square,
and let [ be the smallest positive integer such that In is a square. Show that n is prime if and only if
n < min{4k, 41}.

Solution: Suppose first that n is prime, say n = p with p > 3. It is clear that [ = p. We claim that k = p—2.
Let t € ZT with tp + 1 equal to a square, say tp + 1 = 2. Then tp = 22 — 1 = (z + 1)(z — 1). Since
p is prime, either plx + 1 or plz — 1. If plz + 1 then p <z + 1 and so ¢t = W >rx—1>p-—2.
Ifplx —1thenp <xz—1landt>ax+12>p+ 2. In either case, we have t > p — 2. If t = p — 2 then
tp+1 = (p—2)p+1 = p?>—2p+1 = (p—1)? which is a square. Thus k = min {t € Z+|tp+1 is a square} =p-2
as claimed. Since k = p—2and! = p and n = p > 3 we have min{4k, 41} = 4k = 4p—8 = p+(3p—8) > p = n.

Now suppose that n is composite. We claim that if n has a repeated prime factor then n > 4l and if n
has at least two distinct prime factors then n > 4k, so that in either case we have n > min{4k, 41}. Suppose
first that n has a repeated prime factor, say n = p?s, where p is prime and s € ZT. Note that since n is odd,
p # 2 s0 p> 3. Also note that [ < s since sn = p?s? which is a square, Thus n = p?s > 91 > 4l, as claimed.

Finally, suppose that n has at least two distinct prime factors. Write n as n = ab with a and b odd,
l<a<nandl<b<nand ged(a,b) = 1. We wish to find a small value of ¢ so that tn + 1 is a square.
By the Chinese Remainder Theorem, there is a unique z € Z with 1 < x < n such that x = 1 mod a and
z = —1 mod b hence 22 = 1 mod n. Note that for y = n — 2 we have y = —1 mod a and y = 1 mod b so
y?> = 1 mod n. For z = min{x, y}, we have 1 < z < 5 and 22 =1 mod n, say 22 = 1 +tn. Then tn+1 = 22,

which is a square, and t = % < ("f) = 2. Thus k =min {t € Z+|tn+1 is a square} < 2 and so n > 4k,
as claimed.

4: Let f:]0,1] — R. Suppose f is continuous on [0,1] with f(0) = f(1) = 0 and f(z) > 0 for all z € (0,1),
and f” exists and is continuous in (0, 1). Show that

/1 /()

f(x)

Solution: Since f is continuous on [0, 1], by the Extreme Value Theorem we can choose u € [0,1] so that
f(u) > f(x) for all z € [0,1]. Since f(z) > 0 for all x € (0,1) we must have f(u) > 0 hence u # 0 and u # 1
and so u € (0,1). Since f is differentiable in (0, v) and continuous on [0, u], by the Mean Value Theorem we

can choose a € (0,u) such that f'(a) = f(u) f(o) = ( It Since f is differentiable in (u,1) and continuous
on [u, 1], by the Mean Value Theorem we can choose b € (u,1) such that f'(b) = f(l) f(") = 5= ( ). Then

dr > 4.

I e d@/ o= i , e g s
// _ / — ()| = 1 _f(u)_f(u)
> ‘ Tl e -] = | e - L
= _|_7_ = ! > L =4

l—u u u(l—u) i—(U—%)2_1/4

To complete the proof, we shall show that the first inequality in the above calculation is strict, that is

1 ¢en 1 en
[y, [,

o [f(@) o flw
Since both integrands are continuous in (0, 1) with ‘ff(f))l > ‘ff((;)l for all z € (0,1), it suffices to show
that there exists at least one point z € (0,1) at which If f(gf))‘ > U f((c))‘. Equivalently, it suffices to show
that there is a point = € (0,1) such that f”(z) # 0 and f(z) < f(c). Let v = inf {& € [0,1]| f(z) < f(c)}.
Note that 0 < v < u and we have f(z) < f(c) for all z € [0,v), and also f(v) = f(c) since f is continuous.
Suppose, for a contradiction, that f”(z) = 0 for all € (0,v). Since f”(z) = 0 for all € (0,v) and f is
continuous at 0 and v with f(0) = 0 and f(v) = f(c), we must have f(z) = f( ) 2 for all z € [0,v]. But then

flw) = @ > 0 which contradicts the fact that f(v) = f(c) so that f has a maximum value at v.




5: Let {a,} be a sequence of real numbers with the property that for every r € R with » > 1, we have
lim a, , =0. Show that lim a, =0.
k—oo L] n—oo
Solution: Suppose, for a contradiction, that lim a, # 0. Choose € > 0 so that for every | € Z™ there exists
n—roo

n > [ such that |a,| > e. We shall construct a sequence of indices n; < ng < ng--- with each |anj\ > ¢ and
a sequence of closed bounded intervals Iy O I D I3 O --- and a sequence of exponents ky > ko > k3 > ---
such that for every r € I; we have |r*/| = n;, and then we shall use the existence of these sequences to
obtain a contradiction.

Choose an index n; > 1 such that |a,,| > €. Let I; = [nl,nl + %} and k; = 1 and note that for all
r € I we have V’“J = |r| = ny. Suppose that we have constructed indices ny < no < --- < n;_; with
|an,| > € and closed bounded intervals Iy 2 Iy D --- D I;_; and exponents ki < ko < --- < k;j_1 such that
for all » € I; we have Lr’”J =n;. Say I;_1 = [a,b] where 1 <n; <a<b<n;+ % Since 1 < a < b we have
(Q)k — o0 as k — oo. Choose m large enough that for all £ > m we have (g)k >q+ % Then for k > m

a
we have bF > gFt1 + %ak > ghtl 4 % so that the intervals [ak, bk — %} and [a’”l, phtl — %] overlap, and we

o0
have kU [a¥,b% — 1] = [a™, 00). Choose n; so that n; > nj_1, n; > a™ and |a,,| > €. Choose k; so that
=m

n; € [;kf,bkf — 1] and note that [nj,n; + 1] C [a*,b%]. Let I; = [n;Y/%, (n; + 3)'/*i] and note that for
all r € I; we have rki € [nj,nj + %] so that erij =n;.

We can now obtain the desired contradiction as follows. Since the nested intervals Iy D I D I3 D - --
oo

are nonempty, closed and bounded, their intersection is nonempty. Choose r € I;. For each index j,
j=1

since r € I; we have erfJ = n;. Since lim a = 0 it follows that lim a = 0 hence lim a, = 0.
k— o0 j—o0 j—oo

Lr*] L7 )

But this is impossible since |a,,;| > € for all j.

6: Let f : R™ — R" be bijective. Suppose that f maps connected sets to connected sets and that f maps
disconnected sets to disconnected sets. Prove that f and f~! are both continuous.

Solution: Let ¢ = f~' : R® — R". Note that g sends connected sets to connected sets because for
a connected set B C R", if g(B) was disconnected then f(g(B)) would be disconnected (since f sends
disconnected sets to disconnected sets) but f(g(B)) = B, which is connected. Similarly, g sends disconnected
sets to disconnected sets. Since f and g satisfy the same hypotheses, it suffices to show that f is continuous.

To show that f is continuous, we shall show that f~1(B) is open for every open ball B in R". Let B
be an open ball in R". Let A = f~}(B) = g(B). We need to show that A is open, or equivalently, that
R™ \ A is closed. Suppose, for a contradiction, that R™ \ A is not closed. Then R™ \ A is not equal to
its closure R?\ A. Choose a € R™\ A with a ¢ R™ \ A, that is a € A. Let b = f(a) € B. Note that
{b} UR™ \ B is disconnected since B is an open ball in R™ and b € B. Since g sends disconnected sets to
disconnected sets, the set {a} UR™\ A = g({b} UR™\ B) is disconnected. On the other hand, since R"\ B
is connected (because B is a ball in R™) and g sends connected sets to connected sets, it follows that the
set R™\ A = g(R" \ B) is connected, and since a € R™ \ A it follows that {a} UR™ \ A is connected (here
we used the fact that for any set C C R™, if C' is connected and ¢ € C then {c} U C is connected). We have
shown that the set {a} UR™\ A is both connected and disconnected, which is impossible.




