Solutions to the Special K Problems, 2014

1: Three circles, of radii 1,2 and 3 , are tangent in pairs at the points A, B and C. Find the area of triangle $A B C$.
Solution: Let S, T and U be the circles of radii 1,2 and 3 respectively. Let P, Q and R be the centres of S, T and U. Let A be the point of intersection of T and U, let B be the point of intersection of U and S, and let C be the point of intersection of S and T. Since a radius of a circle interests with a tangent at right angles, we see that the points A, B and C lie on the edges of triangle $P Q R$. Since S, T and U have radii 1,2 and 3 , we see that the triangle $P Q$ has sides of the length $|P Q|=1+2=3,|Q R|=2+3=5$ and $|R P|=3+1=4$. Since $(3,4,5)$ is a Pythagorean triple, the triangle $P Q R$ is a right angled triangle with its right angle at P. The angles at Q and R are given by $\sin Q=\frac{4}{5}$ and $\sin R=\frac{3}{5}$. Using the one half base times height formula for areas of triangles, the area of triangle $A B C$ is

$$
\begin{aligned}
|A B C| & =|P Q R|-|P C B|-|Q A C|-|R B A| \\
& =\frac{1}{2} \cdot 3 \cdot 4-\frac{1}{2} \cdot 1 \cdot 1-\frac{1}{2} \cdot 2 \cdot 2 \sin Q-\frac{1}{2} \cdot 3 \cdot 3 \sin R \\
& =6-\frac{1}{2}-\frac{8}{5}-\frac{27}{10}=\frac{6}{5} .
\end{aligned}
$$

2: Find the number of ways to represent 10 ! as a sum of consecutive positive integers.
Solution: More generally, let $n \in \mathbf{Z}$ with $n \geq 2$. Suppose that $n=k+\left(k+1_{+}(k+2)+\cdots+l=\frac{(l-k+1)(k+l)}{2}\right.$ where $k, l \in \mathbf{Z}^{+}$with $k \leq l$. Let $u=l-k+1$ and $v=k+l$. Note that $u, v \in \mathbf{Z}^{+}$with $u<v$ and that u and v have opp[osite parity. Conversely, given $u, v \in \mathbf{Z}^{+}$of opposite parity with $1 \leq u<v$ and $u v=2 n$ we can let $k=\frac{v-u+1}{2}$ and $l=\frac{v+u-1}{2}$ to get $n=\frac{(l-k+1)(k+l)}{2}=k+(k+1)+\cdots+l$. Thus the number of ways to represent n as a sum of consecutive positive integers is equal to the number of pairs of positive integers (u, v) such that u and v have opposite parity, $u<v$ and $u v=2 n$. This, in turn is equal to the number of pairs of positive integers (a, b) such that a is even and b is odd and $a b=2 n$ (indeed given u and v we can take a to be the even element in $\{u, v\}$ and b to be the odd element in $\{u, v\}$, and conversely given a and v we can take $u=\min \{a, b\}$ and $v=\max \{a, b\}$). When $n=2^{m} p$ with $m \geq 0$ and p odd, the element a can be any number of the form $a=2^{m+1} d$ with $d \mid p$ and then b is given by $b=\frac{n}{a}=\frac{p}{d}$. Thus when $n=2^{m} p$, the number of ways tho represent n as a sum of consecutive positive integers is equal to $\tau(p)$, the number of divisors of p. In particular, when $n=10!=2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{1}$, the required number of ways is equal to $\tau\left(3^{4} \cdot 5^{2} \cdot 7^{1}\right)=(4+1)(2+1)(1+1)=30$.

3: Given $a \geq 1$, find the area of the square with one vertex at $(a, 0)$, one vertex above the curve $y=\sqrt{x}$, and the other two vertices on the curve $y=\sqrt{x}$.

Solution: Let $A=(a, 0)$. Let $B=(b, \sqrt{b})$ and $C=(c, \sqrt{c})$ be the two points of the square which lie on the curve $y=\sqrt{x}$ with $b<c$, and let D be the other vertex of the square. Note that $B C$ must be a diagonal of the square in order for D to lie above $y=\sqrt{x}$. Let $P=(b, 0)$ and $Q=(c, 0)$. Since $B A C D$ is a square, the line segments $A C$ and $A B$ have the same length and are perpendicular, and so the triangles $A Q C$ and $B P A$ are congruent. Thus we have $|A Q|=|B P|$ and $|Q C|=|P A|$, that is $c-a=\sqrt{b}$ (1) and $a-b=\sqrt{c}$ (2). Adding equations (1) and (2) gives $c+b=\sqrt{b}+\sqrt{c}$ and so we have $\sqrt{c}-\sqrt{b}=1$. Subtracting equation (1) from equation (2) gives $2 a-(b+c)=\sqrt{c}-\sqrt{b}=1$ and so we have $b+c=2 a-1$. Thus the area of the square is

$$
|B A C D|=|A C|^{2}=|A Q|^{2}+|Q C|^{2}=|B P|^{2}+|Q C|^{2}=b+c=2 a-1
$$

4: Let n be an odd integer with $n>3$. Let k be the smallest positive integer such that $k n+1$ is a square, and let l be the smallest positive integer such that $l n$ is a square. Show that n is prime if and only if $n<\min \{4 k, 4 l\}$.
Solution: Suppose first that n is prime, say $n=p$ with $p>3$. It is clear that $l=p$. We claim that $k=p-2$. Let $t \in \mathbf{Z}^{+}$with $t p+1$ equal to a square, say $t p+1=x^{2}$. Then $t p=x^{2}-1=(x+1)(x-1)$. Since p is prime, either $p \mid x+1$ or $p \mid x-1$. If $p \mid x+1$ then $p \leq x+1$ and so $t=\frac{(x+1)(x-1)}{p} \geq x-1 \geq p-2$. If $p \mid x-1$ then $p \leq x-1$ and $t \geq x+1 \geq p+2$. In either case, we have $t \geq p-2$. If $t=p-2$ then $t p+1=(p-2) p+1=p^{2}-2 p+1=(p-1)^{2}$ which is a square. Thus $k=\min \left\{t \in \mathbf{Z}^{+} \mid t p+1\right.$ is a square $\}=p-2$ as claimed. Since $k=p-2$ and $l=p$ and $n=p>3$ we have $\min \{4 k, 4 l\}=4 k=4 p-8=p+(3 p-8)>p=n$.

Now suppose that n is composite. We claim that if n has a repeated prime factor then $n>4 l$ and if n has at least two distinct prime factors then $n>4 k$, so that in either case we have $n>\min \{4 k, 4 l\}$. Suppose first that n has a repeated prime factor, say $n=p^{2} s$, where p is prime and $s \in \mathbf{Z}^{+}$. Note that since n is odd, $p \neq 2$ so $p \geq 3$. Also note that $l \leq s$ since $s n=p^{2} s^{2}$ which is a square, Thus $n=p^{2} s \geq 9 l>4 l$, as claimed.

Finally, suppose that n has at least two distinct prime factors. Write n as $n=a b$ with a and b odd, $1<a<n$ and $1<b<n$ and $\operatorname{gcd}(a, b)=1$. We wish to find a small value of t so that $t n+1$ is a square. By the Chinese Remainder Theorem, there is a unique $x \in \mathbf{Z}$ with $1<x<n$ such that $x=1 \bmod a$ and $x=-1 \bmod b$ hence $x^{2}=1 \bmod n$. Note that for $y=n-x$ we have $y=-1 \bmod a$ and $y=1 \bmod b$ so $y^{2}=1 \bmod n$. For $z=\min \{x, y\}$, we have $1<z<\frac{n}{2}$ and $z^{2}=1 \bmod n$, say $z^{2}=1+t n$. Then $t n+1=z^{2}$, which is a square, and $t=\frac{z^{2}-1}{n}<\frac{(n / 2)^{2}}{n}=\frac{n}{4}$. Thus $k=\min \left\{t \in \mathbf{Z}^{+} \mid t n+1\right.$ is a square $\}<\frac{n}{4}$ and so $n>4 k$, as claimed.

5: A zigzag is a set of the form $Z=\{t a+(1-t) b \mid 0 \leq t \leq 1\} \cup\{a+t u \mid t \geq 0\} \cup\{b-t u \mid t \geq 0\}$ for some $a, b, u \in \mathbf{R}^{2}$ with $u \neq 0$ (Z is the union of the line segment between a and b with a ray at a in the direction of u and a ray at b in the direction $-u$. Given a positive integer n, find the maximum number of regions into which n zigzags divide the plane.
Solution: Let a_{n} be the maximum number of regions into which n zigzags divide the plane. Since 1 zigzag divides the plane into 2 regions, we have $a_{1}=2$. Suppose that we have chosen a configuration of n zigzags which divides the plane into a_{n} regions. Suppose that we add one more zigzag, say Z, to the configuration, and that Z intersects the existing zigzags in a total of p points. These p points divide Z into $p+1$ parts, and each of these parts divides one of the existing regions into two regions. Thus we increase the number of regions by $p+1$ obtaining a total of $a_{n}+p+1$ regions. When we add the zigzag Z, each of its 3 parts (namely its one line segment and its two rays) intersects each of the $3 n$ parts of the existing n zigzags at most once, so the maximum number of points of intersection is $p=3 \cdot 3 n=9 n$. Thus we have $a_{n+1} \leq a_{n}+9 n+1$.

We claim that is possible to choose a configuration of $n+1$ zigzags so that the maximum possible number of points of intersection is attained. To do this, first choose a configuration of n lines $L_{0}, L_{1}, \cdots, L_{n}$ so that each pair of lines intersect and no three lines intersect (for example, we could choose L_{k} to be the line $y=k x-k^{2}$). Choose $\epsilon>0$ to be smaller than half the distance from any line L_{k} to any point of intersection of two other lines. For each k, let L_{k}^{\prime} be a line parallel to L_{k} separated from L_{k} by a distance of ϵ. Then each of L_{k} and L_{k}^{\prime} will intersect all of the other $2 n$ lines. For each k, choose a rectangle $a_{k} b_{k} c_{k} d_{k}$ with $a_{k}, b_{k} \in L_{k}$ and $c_{k}, d_{k} \in L_{k}^{\prime}$ which is sufficiently large that for every $j \neq k$ the lines L_{j} and L_{j}^{\prime} both intersect L_{k} between a_{k} and b_{k} and both intersect L_{k}^{\prime} between c_{k} and d_{k}, and consequently both intersect the diagonal $a_{k} c_{k}$ of the rectangle. We then let Z_{k} be the zigzag formed by the ray from a_{k} through b_{k}, the ray from c_{k} through d_{k} and the diagonal $a_{k} c_{k}$. In this way we obtain a configuration of zigzags $Z_{0}, Z_{1}, \cdots, Z_{n}$ with the proper that each of the three parts of Z_{k} intersects each of the three parts of Z_{l} whenever $k \neq l$.

We have shown that sequence a_{n} is given recursively by $a_{1}=2$ and $a_{n+1}=a_{n}+9 n+1$. Thus

$$
\begin{aligned}
a_{n} & =2+(9 \cdot 1+1)+(9 \cdot 2+1)+(9 \cdot 3+1)+\cdots+(9 \cdot(n-1)+1) \\
& =2+9(1+2+3+\cdots+(n-1))+(n-1) \\
& =9 \cdot \frac{n(n-1)}{2}+n+1 \\
& =\frac{9 n^{2}-7 n+2}{2}
\end{aligned}
$$

6: Let $\left\{a_{n}\right\}$ be a sequence of real numbers with the property that for every $r \in \mathbf{R}$ with $r>1$, we have $\lim _{k \rightarrow \infty} a_{\left\lfloor r^{k}\right\rfloor}=0$. Show that $\lim _{n \rightarrow \infty} a_{n}=0$.
Solution: Suppose, for a contradiction, that $\lim _{n \rightarrow \infty} a_{n} \neq 0$. Choose $\epsilon>0$ so that for every $l \in \mathbf{Z}^{+}$there exists $n \geq l$ such that $\left|a_{n}\right|>\epsilon$. We shall construct a sequence of indices $n_{1}<n_{2}<n_{3} \cdots$ with each $\left|a_{n_{j}}\right|>\epsilon$ and a sequence of closed bounded intervals $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots$ and a sequence of exponents $k_{1}>k_{2}>k_{3}>\cdots$ such that for every $r \in I_{j}$ we have $\left\lfloor r^{k_{j}}\right\rfloor=n_{j}$, and then we shall use the existence of these sequences to obtain a contradiction.

Choose an index $n_{1}>1$ such that $\left|a_{n_{1}}\right|>\epsilon$. Let $I_{1}=\left[n_{1}, n_{1}+\frac{1}{2}\right]$ and $k_{1}=1$ and note that for all $r \in I_{1}$ we have $\left\lfloor r^{k_{1}}\right\rfloor=\lfloor r\rfloor=n_{1}$. Suppose that we have constructed indices $n_{1}<n_{2}<\cdots<n_{j-1}$ with $\left|a_{n_{i}}\right|>\epsilon$ and closed bounded intervals $I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{j-1}$ and exponents $k_{1}<k_{2}<\cdots<k_{j-1}$ such that for all $r \in I_{i}$ we have $\left\lfloor r^{k_{i}}\right\rfloor=n_{i}$. Say $I_{j-1}=[a, b]$ where $1<n_{1} \leq a<b \leq n_{1}+\frac{1}{2}$. Since $1<a<b$ we have $\left(\frac{b}{a}\right)^{k} \rightarrow \infty$ as $k \rightarrow \infty$. Choose m large enough that for all $k \geq m$ we have $\left(\frac{b}{a}\right)^{k} \geq a+\frac{1}{2}$. Then for $k \geq m$ we have $b^{k} \geq a^{k+1}+\frac{1}{2} a^{k} \geq a^{k+1}+\frac{1}{2}$ so that the intervals $\left[a^{k}, b^{k}-\frac{1}{2}\right]$ and $\left[a^{k+1}, b^{k+1}-\frac{1}{2}\right]$ overlap, and we have $\bigcup_{k=m}^{\infty}\left[a^{k}, b^{k}-\frac{1}{2}\right]=\left[a^{m}, \infty\right)$. Choose n_{j} so that $n_{j}>n_{j-1}, n_{j} \geq a^{m}$ and $\left|a_{n_{j}}\right|>\epsilon$. Choose k_{j} so that $n_{j} \in\left[a^{k_{j}}, b^{k_{j}}-\frac{1}{2}\right]$ and note that $\left[n_{j}, n_{j}+\frac{1}{2}\right] \subseteq\left[a^{k_{j}}, b^{k_{j}}\right]$. Let $I_{j}=\left[n_{j}^{1 / k_{j}},\left(n_{j}+\frac{1}{2}\right)^{1 / k_{j}}\right]$ and note that for all $r \in I_{j}$ we have $r^{k_{j}} \in\left[n_{j}, n_{j}+\frac{1}{2}\right]$ so that $\left\lfloor r^{k_{j}}\right\rfloor=n_{j}$.

We can now obtain the desired contradiction as follows. Since the nested intervals $I_{1} \supset I_{2} \supset I_{3} \supset \ldots$ are nonempty, closed and bounded, their intersection is nonempty. Choose $r \in \bigcap_{j=1}^{\infty} I_{j}$. For each index j, since $r \in I_{j}$ we have $\left\lfloor r^{k_{j}}\right\rfloor=n_{j}$. Since $\lim _{k \rightarrow \infty} a_{\left\lfloor r^{k}\right\rfloor}=0$ it follows that $\lim _{j \rightarrow \infty} a_{\left\lfloor r^{k_{j}}\right\rfloor}=0$ hence $\lim _{j \rightarrow \infty} a_{n_{j}}=0$. But this is impossible since $\left|a_{n_{j}}\right|>\epsilon$ for all j.

Solutions to the Big E Problems, 2014

1: Given $a \geq 1$, find the area of the square with one vertex at $(a, 0)$, one vertex above the curve $y=\sqrt{x}$, and the other two vertices on the curve $y=\sqrt{x}$.
Solution: Let $A=(a, 0)$. Let $B=(b, \sqrt{b})$ and $C=(c, \sqrt{c})$ be the two points of the square which lie on the curve $y=\sqrt{x}$ with $b<c$, and let D be the other vertex of the square. Note that $B C$ must be a diagonal of the square in order for D to lie above $y=\sqrt{x}$. Let $P=(b, 0)$ and $Q=(c, 0)$. Since $B A C D$ is a square, the line segments $A C$ and $A B$ have the same length and are perpendicular, and so the triangles $A Q C$ and $B P A$ are congruent. Thus we have $|A Q|=|B P|$ and $|Q C|=|P A|$, that is $c-a=\sqrt{b}$ (1) and $a-b=\sqrt{c}$ (2). Adding equations (1) and (2) gives $c+b=\sqrt{b}+\sqrt{c}$ and so we have $\sqrt{c}-\sqrt{b}=1$. Subtracting equation (1) from equation (2) gives $2 a-(b+c)=\sqrt{c}-\sqrt{b}=1$ and so we have $b+c=2 a-1$. Thus the area of the square is

$$
|B A C D|=|A C|^{2}=|A Q|^{2}+|Q C|^{2}=|B P|^{2}+|Q C|^{2}=b+c=2 a-1 .
$$

2: There are n closed (non-degenerate) line segments in \mathbf{R}^{3}. The sum of the lengths of the line segments is equal to 2014. Show that there is a plane in \mathbf{R}^{3}, which is disjoint from all of the line segments, such that the distance from the plane to the origin is less that 600.
Solution: Let the $i^{\text {th }}$ line segment be $L_{i}=\left\{p_{i}+t u_{i} \mid 0 \leq t \leq 1\right\}$ where $p_{i}=\left(a_{i}, b_{i}, c_{i}\right) \in \mathbf{R}^{3}$ and $0 \neq u_{i}=$ $\left(x_{i}, y_{i}, z_{i}\right) \in \mathbf{R}^{3}$. The length of L_{i} is equal to $\left|u_{i}\right|=\sqrt{x_{i}^{2}+y_{i}^{2}+z_{i}^{2}}$ and we have $\sum_{i=1}^{n}\left|u_{i}\right|=2014$. Suppose, for a contradiction, that every plane in \mathbf{R}^{3} whose distance from the origin is less than 600 intersects with one of the line segments L_{i}. Then in particular, for $c \in(-600,600)$, each of the planes $x=c, y=c$ and $z=c$ intersects one of the segments L_{i}.

Let $A_{i}=\left\{a_{i}+t x_{i} \mid 0 \leq t \leq 1\right\}$ be the orthogonal projection of L_{i} onto the x-axis. The length of A_{i} is equal to $\left|x_{i}\right|$. Note that the interval $(-600,600)$ must be contained in the union $\bigcup_{i=1}^{n} A_{i}$ because if $c \notin A_{i}$ for any i then the plane $x=c$ would not intersect any L_{i}. It follows that $1200 \leq \sum_{i=1}^{n}\left|x_{i}\right|$. Similarly, we must have $1200 \leq \sum\left|y_{i}\right|$ and $1200 \leq \sum_{i=1}^{n}\left|z_{i}\right|$. By the Cauchy Schwarz Inequality, for $x, y, z \in \mathbf{R}$ we have

$$
|x|+|y|+|z|=|(1,1,1) \cdot(|x|,|y|,|z|)| \leq|(1,1,1)||(|x|,|y|,|z|)|=\sqrt{3} \sqrt{x^{2}+y^{2}+z^{2}}
$$

and so

$$
3600 \leq \sum_{i=1}^{n}\left(\left|x_{i}\right|+\left|y_{i}\right|+\left|z_{i}\right|\right) \leq \sqrt{3} \sum_{i=1}^{n} \sqrt{x_{i}^{2}+y_{i}^{2}+z_{i}^{2}}=\sqrt{3} \sum_{i=1}^{n}\left|u_{i}\right|^{2}=2014 \sqrt{3} .
$$

But $2014 \sqrt{3}<2014 \cdot \frac{7}{4}=\frac{1007 \cdot 7}{2}=\frac{7049}{2}<\frac{7050}{2}=3525<3600$.

3: Let n be an odd integer with $n>3$. Let k be the smallest positive integer such that $k n+1$ is a square, and let l be the smallest positive integer such that $l n$ is a square. Show that n is prime if and only if $n<\min \{4 k, 4 l\}$.
Solution: Suppose first that n is prime, say $n=p$ with $p>3$. It is clear that $l=p$. We claim that $k=p-2$. Let $t \in \mathbf{Z}^{+}$with $t p+1$ equal to a square, say $t p+1=x^{2}$. Then $t p=x^{2}-1=(x+1)(x-1)$. Since p is prime, either $p \mid x+1$ or $p \mid x-1$. If $p \mid x+1$ then $p \leq x+1$ and so $t=\frac{(x+1)(x-1)}{p} \geq x-1 \geq p-2$. If $p \mid x-1$ then $p \leq x-1$ and $t \geq x+1 \geq p+2$. In either case, we have $t \geq p-2$. If $t=p-2$ then $t p+1=(p-2) p+1=p^{2}-2 p+1=(p-1)^{2}$ which is a square. Thus $k=\min \left\{t \in \mathbf{Z}^{+} \mid t p+1\right.$ is a square $\}=p-2$ as claimed. Since $k=p-2$ and $l=p$ and $n=p>3$ we have $\min \{4 k, 4 l\}=4 k=4 p-8=p+(3 p-8)>p=n$.

Now suppose that n is composite. We claim that if n has a repeated prime factor then $n>4 l$ and if n has at least two distinct prime factors then $n>4 k$, so that in either case we have $n>\min \{4 k, 4 l\}$. Suppose first that n has a repeated prime factor, say $n=p^{2} s$, where p is prime and $s \in \mathbf{Z}^{+}$. Note that since n is odd, $p \neq 2$ so $p \geq 3$. Also note that $l \leq s$ since $s n=p^{2} s^{2}$ which is a square, Thus $n=p^{2} s \geq 9 l>4 l$, as claimed.

Finally, suppose that n has at least two distinct prime factors. Write n as $n=a b$ with a and b odd, $1<a<n$ and $1<b<n$ and $\operatorname{gcd}(a, b)=1$. We wish to find a small value of t so that $t n+1$ is a square. By the Chinese Remainder Theorem, there is a unique $x \in \mathbf{Z}$ with $1<x<n$ such that $x=1 \bmod a$ and $x=-1 \bmod b$ hence $x^{2}=1 \bmod n$. Note that for $y=n-x$ we have $y=-1 \bmod a$ and $y=1 \bmod b$ so $y^{2}=1 \bmod n$. For $z=\min \{x, y\}$, we have $1<z<\frac{n}{2}$ and $z^{2}=1 \bmod n$, say $z^{2}=1+\operatorname{tn}$. Then $\operatorname{tn}+1=z^{2}$, which is a square, and $t=\frac{z^{2}-1}{n}<\frac{(n / 2)^{2}}{n}=\frac{n}{4}$. Thus $k=\min \left\{t \in \mathbf{Z}^{+} \mid t n+1\right.$ is a square $\}<\frac{n}{4}$ and so $n>4 k$, as claimed.

4: Let $f:[0,1] \rightarrow \mathbf{R}$. Suppose f is continuous on $[0,1]$ with $f(0)=f(1)=0$ and $f(x)>0$ for all $x \in(0,1)$, and $f^{\prime \prime}$ exists and is continuous in $(0,1)$. Show that

$$
\int_{0}^{1}\left|\frac{f^{\prime \prime}(x)}{f(x)}\right| d x>4
$$

Solution: Since f is continuous on $[0,1]$, by the Extreme Value Theorem we can choose $u \in[0,1]$ so that $f(u) \geq f(x)$ for all $x \in[0,1]$. Since $f(x)>0$ for all $x \in(0,1)$ we must have $f(u)>0$ hence $u \neq 0$ and $u \neq 1$ and so $u \in(0,1)$. Since f is differentiable in $(0, u)$ and continuous on $[0, u]$, by the Mean Value Theorem we can choose $a \in(0, u)$ such that $f^{\prime}(a)=\frac{f(u)-f(0)}{u-0}=\frac{f(u)}{u}$. Since f is differentiable in $(u, 1)$ and continuous on $[u, 1]$, by the Mean Value Theorem we can choose $b \in(u, 1)$ such that $f^{\prime}(b)=\frac{f(1)-f(u)}{1-u}=\frac{-f(u)}{1-u}$. Then

$$
\begin{aligned}
\int_{0}^{1}\left|\frac{f^{\prime \prime}(x)}{f(x)}\right| d x & \geq \int_{0}^{1} \frac{\left|f^{\prime \prime}(x)\right|}{f(u)} d x=\frac{1}{f(u)} \int_{0}^{1}\left|f^{\prime \prime}(x)\right| d x \geq \frac{1}{f(u)} \int_{a}^{b}\left|f^{\prime \prime}(x)\right| d x \\
& \geq \frac{1}{f(u)}\left|\int_{a}^{b} f^{\prime \prime}(x) d x\right|=\frac{1}{f(u)}\left|f^{\prime}(b)-f^{\prime}(a)\right|=\frac{1}{f(u)}\left|\frac{-f(u)}{1-u}-\frac{f(u)}{u}\right| \\
& =\frac{1}{1-u}+\frac{1}{u}=\frac{1}{u(1-u)}=\frac{1}{\frac{1}{4}-\left(u-\frac{1}{2}\right)^{2}} \geq \frac{1}{1 / 4}=4 .
\end{aligned}
$$

To complete the proof, we shall show that the first inequality in the above calculation is strict, that is

$$
\int_{0}^{1} \frac{\left|f^{\prime \prime}(x)\right|}{f(x)} d x>\int_{0}^{1} \frac{\left|f^{\prime \prime}(x)\right|}{f(u)} d x
$$

Since both integrands are continuous in $(0,1)$ with $\frac{\left|f^{\prime \prime}(x)\right|}{f(x)} \geq \frac{\left|f^{\prime \prime}(x)\right|}{f(c)}$ for all $x \in(0,1)$, it suffices to show that there exists at least one point $x \in(0,1)$ at which $\frac{\left|f^{\prime \prime}(x)\right|}{f(x)}>\frac{\left|f^{\prime \prime}(x)\right|}{f(c)}$. Equivalently, it suffices to show that there is a point $x \in(0,1)$ such that $f^{\prime \prime}(x) \neq 0$ and $f(x)<f(c)$. Let $v=\inf \{x \in[0,1] \mid f(x) \leq f(c)\}$. Note that $0<v \leq u$ and we have $f(x)<f(c)$ for all $x \in[0, v)$, and also $f(v)=f(c)$ since f is continuous. Suppose, for a contradiction, that $f^{\prime \prime}(x)=0$ for all $x \in(0, v)$. Since $f^{\prime \prime}(x)=0$ for all $x \in(0, v)$ and f is continuous at 0 and v with $f(0)=0$ and $f(v)=f(c)$, we must have $f(x)=\frac{f(c)}{v} x$ for all $x \in[0, v]$. But then $f^{\prime}(v)=\frac{f(c)}{v}>0$ which contradicts the fact that $f(v)=f(c)$ so that f has a maximum value at v.

5: Let $\left\{a_{n}\right\}$ be a sequence of real numbers with the property that for every $r \in \mathbf{R}$ with $r>1$, we have $\lim _{k \rightarrow \infty} a_{\left\lfloor r^{k}\right\rfloor}=0$. Show that $\lim _{n \rightarrow \infty} a_{n}=0$.
Solution: Suppose, for a contradiction, that $\lim _{n \rightarrow \infty} a_{n} \neq 0$. Choose $\epsilon>0$ so that for every $l \in \mathbf{Z}^{+}$there exists $n \geq l$ such that $\left|a_{n}\right|>\epsilon$. We shall construct a sequence of indices $n_{1}<n_{2}<n_{3} \cdots$ with each $\left|a_{n_{j}}\right|>\epsilon$ and a sequence of closed bounded intervals $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots$ and a sequence of exponents $k_{1}>k_{2}>k_{3}>\cdots$ such that for every $r \in I_{j}$ we have $\left\lfloor r^{k_{j}}\right\rfloor=n_{j}$, and then we shall use the existence of these sequences to obtain a contradiction.

Choose an index $n_{1}>1$ such that $\left|a_{n_{1}}\right|>\epsilon$. Let $I_{1}=\left[n_{1}, n_{1}+\frac{1}{2}\right]$ and $k_{1}=1$ and note that for all $r \in I_{1}$ we have $\left\lfloor r^{k_{1}}\right\rfloor=\lfloor r\rfloor=n_{1}$. Suppose that we have constructed indices $n_{1}<n_{2}<\cdots<n_{j-1}$ with $\left|a_{n_{i}}\right|>\epsilon$ and closed bounded intervals $I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{j-1}$ and exponents $k_{1}<k_{2}<\cdots<k_{j-1}$ such that for all $r \in I_{i}$ we have $\left\lfloor r^{k_{i}}\right\rfloor=n_{i}$. Say $I_{j-1}=[a, b]$ where $1<n_{1} \leq a<b \leq n_{1}+\frac{1}{2}$. Since $1<a<b$ we have $\left(\frac{b}{a}\right)^{k} \rightarrow \infty$ as $k \rightarrow \infty$. Choose m large enough that for all $k \geq m$ we have $\left(\frac{b}{a}\right)^{k} \geq a+\frac{1}{2}$. Then for $k \geq m$ we have $b^{k} \geq a^{k+1}+\frac{1}{2} a^{k} \geq a^{k+1}+\frac{1}{2}$ so that the intervals $\left[a^{k}, b^{k}-\frac{1}{2}\right]$ and $\left[a^{k+1}, b^{k+1}-\frac{1}{2}\right]$ overlap, and we have $\bigcup_{k=m}^{\infty}\left[a^{k}, b^{k}-\frac{1}{2}\right]=\left[a^{m}, \infty\right)$. Choose n_{j} so that $n_{j}>n_{j-1}, n_{j} \geq a^{m}$ and $\left|a_{n_{j}}\right|>\epsilon$. Choose k_{j} so that $n_{j} \in\left[a^{k_{j}}, b^{k_{j}}-\frac{1}{2}\right]$ and note that $\left[n_{j}, n_{j}+\frac{1}{2}\right] \subseteq\left[a^{k_{j}}, b^{k_{j}}\right]$. Let $I_{j}=\left[n_{j}^{1 / k_{j}},\left(n_{j}+\frac{1}{2}\right)^{1 / k_{j}}\right]$ and note that for all $r \in I_{j}$ we have $r^{k_{j}} \in\left[n_{j}, n_{j}+\frac{1}{2}\right]$ so that $\left\lfloor r^{k_{j}}\right\rfloor=n_{j}$.

We can now obtain the desired contradiction as follows. Since the nested intervals $I_{1} \supset I_{2} \supset I_{3} \supset \ldots$ are nonempty, closed and bounded, their intersection is nonempty. Choose $r \in \bigcap_{j=1}^{\infty} I_{j}$. For each index j, since $r \in I_{j}$ we have $\left\lfloor r^{k_{j}}\right\rfloor=n_{j}$. Since $\lim _{k \rightarrow \infty} a_{\left\lfloor r^{k}\right\rfloor}=0$ it follows that $\lim _{j \rightarrow \infty} a_{\left\lfloor r^{k_{j}}\right\rfloor}=0$ hence $\lim _{j \rightarrow \infty} a_{n_{j}}=0$. But this is impossible since $\left|a_{n_{j}}\right|>\epsilon$ for all j.

6: Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be bijective. Suppose that f maps connected sets to connected sets and that f maps disconnected sets to disconnected sets. Prove that f and f^{-1} are both continuous.

Solution: Let $g=f^{-1}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$. Note that g sends connected sets to connected sets because for a connected set $B \subset \mathbf{R}^{n}$, if $g(B)$ was disconnected then $f(g(B))$ would be disconnected (since f sends disconnected sets to disconnected sets) but $f(g(B))=B$, which is connected. Similarly, g sends disconnected sets to disconnected sets. Since f and g satisfy the same hypotheses, it suffices to show that f is continuous.

To show that f is continuous, we shall show that $f^{-1}(B)$ is open for every open ball B in \mathbf{R}^{n}. Let B be an open ball in \mathbf{R}^{n}. Let $A=f^{-1}(B)=g(B)$. We need to show that A is open, or equivalently, that $\mathbf{R}^{n} \backslash A$ is closed. Suppose, for a contradiction, that $\mathbf{R}^{n} \backslash A$ is not closed. Then $\mathbf{R}^{n} \backslash A$ is not equal to its closure $\overline{\mathbf{R}^{n} \backslash A}$. Choose $a \in \overline{\mathbf{R}^{n} \backslash A}$ with $a \notin \mathbf{R}^{n} \backslash A$, that is $a \in A$. Let $b=f(a) \in B$. Note that $\{b\} \cup \mathbf{R}^{n} \backslash B$ is disconnected since B is an open ball in \mathbf{R}^{n} and $b \in B$. Since g sends disconnected sets to disconnected sets, the set $\{a\} \cup \mathbf{R}^{n} \backslash A=g\left(\{b\} \cup \mathbf{R}^{n} \backslash B\right)$ is disconnected. On the other hand, since $\mathbf{R}^{n} \backslash B$ is connected (because B is a ball in \mathbf{R}^{n}) and g sends connected sets to connected sets, it follows that the set $\mathbf{R}^{n} \backslash A=g\left(\mathbf{R}^{n} \backslash B\right)$ is connected, and since $a \in \overline{\mathbf{R}^{n} \backslash A}$ it follows that $\{a\} \cup \mathbf{R}^{n} \backslash A$ is connected (here we used the fact that for any set $C \subseteq \mathbf{R}^{n}$, if C is connected and $c \in \bar{C}$ then $\{c\} \cup C$ is connected). We have shown that the set $\{a\} \cup \mathbf{R}^{n} \backslash A$ is both connected and disconnected, which is impossible.

