
Solutions to the Special K Problems, 2014

1: Three circles, of radii 1, 2 and 3, are tangent in pairs at the points A, B and C. Find the area of triangle
ABC.

Solution: Let S, T and U be the circles of radii 1, 2 and 3 respectively. Let P , Q and R be the centres of
S, T and U . Let A be the point of intersection of T and U , let B be the point of intersection of U and S,
and let C be the point of intersection of S and T . Since a radius of a circle interests with a tangent at right
angles, we see that the points A, B and C lie on the edges of triangle PQR. Since S, T and U have radii
1, 2 and 3, we see that the triangle PQ has sides of the length |PQ| = 1 + 2 = 3, |QR| = 2 + 3 = 5 and
|RP | = 3 + 1 = 4. Since (3, 4, 5) is a Pythagorean triple, the triangle PQR is a right angled triangle with
its right angle at P . The angles at Q and R are given by sinQ = 4

5 and sinR = 3
5 . Using the one half base

times height formula for areas of triangles, the area of triangle ABC is

|ABC| = |PQR| − |PCB| − |QAC| − |RBA|
= 1

2 · 3 · 4−
1
2 · 1 · 1−

1
2 · 2 · 2 sinQ− 1

2 · 3 · 3 sinR

= 6− 1
2 −

8
5 −

27
10 = 6
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2: Find the number of ways to represent 10! as a sum of consecutive positive integers.

Solution: More generally, let n ∈ Z with n ≥ 2. Suppose that n = k+ (k+ 1+(k+ 2) + · · ·+ l = (l−k+1)(k+l)
2

where k, l ∈ Z+ with k ≤ l. Let u = l − k + 1 and v = k + l. Note that u, v ∈ Z+ with u < v and that u
and v have opp[osite parity. Conversely, given u, v ∈ Z+ of opposite parity with 1 ≤ u < v and uv = 2n we

can let k = v−u+1
2 and l = v+u−1

2 to get n = (l−k+1)(k+l)
2 = k + (k + 1) + · · ·+ l. Thus the number of ways

to represent n as a sum of consecutive positive integers is equal to the number of pairs of positive integers
(u, v) such that u and v have opposite parity , u < v and uv = 2n. This, in turn is equal to the number of
pairs of positive integers (a, b) such that a is even and b is odd and ab = 2n (indeed given u and v we can
take a to be the even element in {u, v} and b to be the odd element in {u, v}, and conversely given a and v
we can take u = min{a, b} and v = max{a, b}). When n = 2mp with m ≥ 0 and p odd, the element a can
be any number of the form a = 2m+1d with d

∣∣p and then b is given by b = n
a = p

d . Thus when n = 2mp,
the number of ways tho represent n as a sum of consecutive positive integers is equal to τ(p), the number
of divisors of p. In particular, when n = 10! = 28 · 34 · 52 · 71, the required number of ways is equal to
τ(34 · 52 · 71) = (4 + 1)(2 + 1)(1 + 1) = 30.



3: Given a ≥ 1, find the area of the square with one vertex at (a, 0), one vertex above the curve y =
√
x, and

the other two vertices on the curve y =
√
x.

Solution: Let A = (a, 0). Let B = (b,
√
b) and C = (c,

√
c) be the two points of the square which lie on the

curve y =
√
x with b < c, and let D be the other vertex of the square. Note that BC must be a diagonal of

the square in order for D to lie above y =
√
x. Let P = (b, 0) and Q = (c, 0). Since BACD is a square, the

line segments AC and AB have the same length and are perpendicular, and so the triangles AQC and BPA
are congruent. Thus we have |AQ| = |BP | and |QC| = |PA|, that is c − a =

√
b (1) and a − b =

√
c (2).

Adding equations (1) and (2) gives c+ b =
√
b+
√
c and so we have

√
c−
√
b = 1. Subtracting equation (1)

from equation (2) gives 2a − (b + c) =
√
c −
√
b = 1 and so we have b + c = 2a − 1. Thus the area of the

square is
|BACD| = |AC|2 = |AQ|2 + |QC|2 = |BP |2 + |QC|2 = b+ c = 2a− 1.
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4: Let n be an odd integer with n > 3. Let k be the smallest positive integer such that kn + 1 is a square,
and let l be the smallest positive integer such that ln is a square. Show that n is prime if and only if
n < min{4k, 4l}.
Solution: Suppose first that n is prime, say n = p with p > 3. It is clear that l = p. We claim that k = p−2.
Let t ∈ Z+ with tp + 1 equal to a square, say tp + 1 = x2. Then tp = x2 − 1 = (x + 1)(x − 1). Since

p is prime, either p|x + 1 or p|x − 1. If p|x + 1 then p ≤ x + 1 and so t = (x+1)(x−1)
p ≥ x − 1 ≥ p − 2.

If p|x − 1 then p ≤ x − 1 and t ≥ x + 1 ≥ p + 2. In either case, we have t ≥ p − 2. If t = p − 2 then
tp+1 = (p−2)p+1 = p2−2p+1 = (p−1)2 which is a square. Thus k = min

{
t ∈ Z+

∣∣tp+1 is a square
}

= p−2
as claimed. Since k = p−2 and l = p and n = p > 3 we have min{4k, 4l} = 4k = 4p−8 = p+(3p−8) > p = n.

Now suppose that n is composite. We claim that if n has a repeated prime factor then n > 4l and if n
has at least two distinct prime factors then n > 4k, so that in either case we have n > min{4k, 4l}. Suppose
first that n has a repeated prime factor, say n = p2s, where p is prime and s ∈ Z+. Note that since n is odd,
p 6= 2 so p ≥ 3. Also note that l ≤ s since sn = p2s2 which is a square, Thus n = p2s ≥ 9l > 4l, as claimed.

Finally, suppose that n has at least two distinct prime factors. Write n as n = ab with a and b odd,
1 < a < n and 1 < b < n and gcd(a, b) = 1. We wish to find a small value of t so that tn + 1 is a square.
By the Chinese Remainder Theorem, there is a unique x ∈ Z with 1 < x < n such that x = 1 mod a and
x = −1 mod b hence x2 = 1 mod n. Note that for y = n − x we have y = −1 mod a and y = 1 mod b so
y2 = 1 mod n. For z = min{x, y}, we have 1 < z < n

2 and z2 = 1 mod n, say z2 = 1 + tn. Then tn+ 1 = z2,

which is a square, and t = z2−1
n < (n/2)2

n = n
4 . Thus k = min

{
t ∈ Z+

∣∣tn+1 is a square
}
< n

4 and so n > 4k,
as claimed.



5: A zigzag is a set of the form Z = {ta+(1−t)b
∣∣0 ≤ t ≤ 1}∪{a+tu|t ≥ 0}∪{b−tu|t ≥ 0} for some a, b, u ∈ R2

with u 6= 0 (Z is the union of the line segment between a and b with a ray at a in the direction of u and a ray at
b in the direction −u). Given a positive integer n,
find the maximum number of regions into which n zigzags divide the plane.

Solution: Let an be the maximum number of regions into which n zigzags divide the plane. Since 1 zigzag
divides the plane into 2 regions, we have a1 = 2. Suppose that we have chosen a configuration of n zigzags
which divides the plane into an regions. Suppose that we add one more zigzag, say Z, to the configuration,
and that Z intersects the existing zigzags in a total of p points. These p points divide Z into p + 1 parts,
and each of these parts divides one of the existing regions into two regions. Thus we increase the number of
regions by p+1 obtaining a total of an+p+1 regions. When we add the zigzag Z, each of its 3 parts (namely
its one line segment and its two rays) intersects each of the 3n parts of the existing n zigzags at most once,
so the maximum number of points of intersection is p = 3 · 3n = 9n. Thus we have an+1 ≤ an + 9n+ 1.

We claim that is possible to choose a configuration of n + 1 zigzags so that the maximum possible
number of points of intersection is attained. To do this, first choose a configuration of n lines L0, L1, · · · , Ln

so that each pair of lines intersect and no three lines intersect (for example, we could choose Lk to be the line
y = kx−k2). Choose ε > 0 to be smaller than half the distance from any line Lk to any point of intersection
of two other lines. For each k, let L′k be a line parallel to Lk separated from Lk by a distance of ε. Then each
of Lk and L′k will intersect all of the other 2n lines. For each k, choose a rectangle akbkckdk with ak, bk ∈ Lk

and ck, dk ∈ L′k which is sufficiently large that for every j 6= k the lines Lj and L′j both intersect Lk between
ak and bk and both intersect L′k between ck and dk, and consequently both intersect the diagonal akck of
the rectangle. We then let Zk be the zigzag formed by the ray from ak through bk, the ray from ck through
dk and the diagonal akck. In this way we obtain a configuration of zigzags Z0, Z1, · · · , Zn with the proper
that each of the three parts of Zk intersects each of the three parts of Zl whenever k 6= l.

We have shown that sequence an is given recursively by a1 = 2 and an+1 = an + 9n+ 1. Thus

an = 2 + (9 · 1 + 1) + (9 · 2 + 1) + (9 · 3 + 1) + · · ·+ (9 · (n− 1) + 1)

= 2 + 9(1 + 2 + 3 + · · ·+ (n− 1)) + (n− 1)

= 9 · n(n−1)2 + n+ 1

=
9n2 − 7n+ 2

2
.

6: Let {an} be a sequence of real numbers with the property that for every r ∈ R with r > 1, we have
lim
k→∞

abrkc = 0. Show that lim
n→∞

an = 0.

Solution: Suppose, for a contradiction, that lim
n→∞

an 6= 0. Choose ε > 0 so that for every l ∈ Z+ there exists

n ≥ l such that |an| > ε. We shall construct a sequence of indices n1 < n2 < n3 · · · with each |anj | > ε and
a sequence of closed bounded intervals I1 ⊇ I2 ⊇ I3 ⊇ · · · and a sequence of exponents k1 > k2 > k3 > · · ·
such that for every r ∈ Ij we have

⌊
rkj
⌋

= nj , and then we shall use the existence of these sequences to
obtain a contradiction.

Choose an index n1 > 1 such that |an1
| > ε. Let I1 =

[
n1, n1 + 1

2

]
and k1 = 1 and note that for all

r ∈ I1 we have
⌊
rk1
⌋

= brc = n1. Suppose that we have constructed indices n1 < n2 < · · · < nj−1 with
|ani
| > ε and closed bounded intervals I1 ⊇ I2 ⊇ · · · ⊇ Ij−1 and exponents k1 < k2 < · · · < kj−1 such that

for all r ∈ Ii we have
⌊
rki
⌋

= ni. Say Ij−1 = [a, b] where 1 < n1 ≤ a < b ≤ n1 + 1
2 . Since 1 < a < b we have(

b
a

)k → ∞ as k → ∞. Choose m large enough that for all k ≥ m we have
(
b
a

)k ≥ a + 1
2 . Then for k ≥ m

we have bk ≥ ak+1 + 1
2a

k ≥ ak+1 + 1
2 so that the intervals

[
ak, bk − 1

2

]
and

[
ak+1, bk+1 − 1

2

]
overlap, and we

have
∞⋃

k=m

[
ak, bk − 1

2

]
= [am,∞). Choose nj so that nj > nj−1, nj ≥ am and |anj

| > ε. Choose kj so that

nj ∈
[
akj , bkj − 1

2

]
and note that

[
nj , nj + 1

2

]
⊆
[
akj , bkj

]
. Let Ij =

[
nj

1/kj , (nj + 1
2 )1/kj

]
and note that for

all r ∈ Ij we have rkj ∈
[
nj , nj + 1

2

]
so that

⌊
rkj
⌋

= nj .
We can now obtain the desired contradiction as follows. Since the nested intervals I1 ⊃ I2 ⊃ I3 ⊃ · · ·

are nonempty, closed and bounded, their intersection is nonempty. Choose r ∈
∞⋂
j=1

Ij . For each index j,

since r ∈ Ij we have
⌊
rkj
⌋

= nj . Since lim
k→∞

abrkc = 0 it follows that lim
j→∞

abrkj c = 0 hence lim
j→∞

anj
= 0.

But this is impossible since |anj | > ε for all j.



Solutions to the Big E Problems, 2014

1: Given a ≥ 1, find the area of the square with one vertex at (a, 0), one vertex above the curve y =
√
x, and

the other two vertices on the curve y =
√
x.

Solution: Let A = (a, 0). Let B = (b,
√
b) and C = (c,

√
c) be the two points of the square which lie on the

curve y =
√
x with b < c, and let D be the other vertex of the square. Note that BC must be a diagonal of

the square in order for D to lie above y =
√
x. Let P = (b, 0) and Q = (c, 0). Since BACD is a square, the

line segments AC and AB have the same length and are perpendicular, and so the triangles AQC and BPA
are congruent. Thus we have |AQ| = |BP | and |QC| = |PA|, that is c − a =

√
b (1) and a − b =

√
c (2).

Adding equations (1) and (2) gives c+ b =
√
b+
√
c and so we have

√
c−
√
b = 1. Subtracting equation (1)

from equation (2) gives 2a − (b + c) =
√
c −
√
b = 1 and so we have b + c = 2a − 1. Thus the area of the

square is
|BACD| = |AC|2 = |AQ|2 + |QC|2 = |BP |2 + |QC|2 = b+ c = 2a− 1.

D

C

B

P A Q

2: There are n closed (non-degenerate) line segments in R3. The sum of the lengths of the line segments is
equal to 2014. Show that there is a plane in R3, which is disjoint from all of the line segments, such that
the distance from the plane to the origin is less that 600.

Solution: Let the ith line segment be Li = {pi + tui|0 ≤ t ≤ 1} where pi = (ai, bi, ci) ∈ R3 and 0 6= ui =

(xi, yi, zi) ∈ R3. The length of Li is equal to |ui| =
√
xi2 + yi2 + zi2 and we have

n∑
i=1

|ui| = 2014. Suppose,

for a contradiction, that every plane in R3 whose distance from the origin is less than 600 intersects with
one of the line segments Li. Then in particular, for c ∈ (−600, 600), each of the planes x = c, y = c and
z = c intersects one of the segments Li.

Let Ai =
{
ai + txi

∣∣0 ≤ t ≤ 1
}

be the orthogonal projection of Li onto the x-axis. The length of Ai is

equal to |xi|. Note that the interval (−600, 600) must be contained in the union
n⋃

i=1

Ai because if c /∈ Ai for

any i then the plane x = c would not intersect any Li. It follows that 1200 ≤
n∑

i=1

|xi|. Similarly, we must

have 1200 ≤
∑
|yi| and 1200 ≤

n∑
i=1

|zi|. By the Cauchy Schwarz Inequality, for x, y, z ∈ R we have

|x|+ |y|+ |z| =
∣∣∣(1, 1, 1). (|x|, |y|, |z|)

∣∣∣ ≤ ∣∣(1, 1, 1)
∣∣ ∣∣(|x|, |y|, |z|)∣∣ =

√
3
√
x2 + y2 + z2

and so

3600 ≤
n∑

i=1

(
|xi|+ |yi|+ |zi|

)
≤
√

3
n∑

i=1

√
xi2 + yi2 + zi2 =

√
3

n∑
i=1

|ui|2 = 2014
√

3.

But 2014
√

3 < 2014 · 74 = 1007·7
2 = 7049

2 < 7050
2 = 3525 < 3600.



3: Let n be an odd integer with n > 3. Let k be the smallest positive integer such that kn + 1 is a square,
and let l be the smallest positive integer such that ln is a square. Show that n is prime if and only if
n < min{4k, 4l}.
Solution: Suppose first that n is prime, say n = p with p > 3. It is clear that l = p. We claim that k = p−2.
Let t ∈ Z+ with tp + 1 equal to a square, say tp + 1 = x2. Then tp = x2 − 1 = (x + 1)(x − 1). Since

p is prime, either p|x + 1 or p|x − 1. If p|x + 1 then p ≤ x + 1 and so t = (x+1)(x−1)
p ≥ x − 1 ≥ p − 2.

If p|x − 1 then p ≤ x − 1 and t ≥ x + 1 ≥ p + 2. In either case, we have t ≥ p − 2. If t = p − 2 then
tp+1 = (p−2)p+1 = p2−2p+1 = (p−1)2 which is a square. Thus k = min

{
t ∈ Z+

∣∣tp+1 is a square
}

= p−2
as claimed. Since k = p−2 and l = p and n = p > 3 we have min{4k, 4l} = 4k = 4p−8 = p+(3p−8) > p = n.

Now suppose that n is composite. We claim that if n has a repeated prime factor then n > 4l and if n
has at least two distinct prime factors then n > 4k, so that in either case we have n > min{4k, 4l}. Suppose
first that n has a repeated prime factor, say n = p2s, where p is prime and s ∈ Z+. Note that since n is odd,
p 6= 2 so p ≥ 3. Also note that l ≤ s since sn = p2s2 which is a square, Thus n = p2s ≥ 9l > 4l, as claimed.

Finally, suppose that n has at least two distinct prime factors. Write n as n = ab with a and b odd,
1 < a < n and 1 < b < n and gcd(a, b) = 1. We wish to find a small value of t so that tn + 1 is a square.
By the Chinese Remainder Theorem, there is a unique x ∈ Z with 1 < x < n such that x = 1 mod a and
x = −1 mod b hence x2 = 1 mod n. Note that for y = n − x we have y = −1 mod a and y = 1 mod b so
y2 = 1 mod n. For z = min{x, y}, we have 1 < z < n

2 and z2 = 1 mod n, say z2 = 1 + tn. Then tn+ 1 = z2,

which is a square, and t = z2−1
n < (n/2)2

n = n
4 . Thus k = min

{
t ∈ Z+

∣∣tn+1 is a square
}
< n

4 and so n > 4k,
as claimed.

4: Let f : [0, 1] → R. Suppose f is continuous on [0, 1] with f(0) = f(1) = 0 and f(x) > 0 for all x ∈ (0, 1),
and f ′′ exists and is continuous in (0, 1). Show that∫ 1

0

∣∣∣∣f ′′(x)

f(x)

∣∣∣∣ dx > 4 .

Solution: Since f is continuous on [0, 1], by the Extreme Value Theorem we can choose u ∈ [0, 1] so that
f(u) ≥ f(x) for all x ∈ [0, 1]. Since f(x) > 0 for all x ∈ (0, 1) we must have f(u) > 0 hence u 6= 0 and u 6= 1
and so u ∈ (0, 1). Since f is differentiable in (0, u) and continuous on [0, u], by the Mean Value Theorem we

can choose a ∈ (0, u) such that f ′(a) = f(u)−f(0)
u−0 = f(u)

u . Since f is differentiable in (u, 1) and continuous

on [u, 1], by the Mean Value Theorem we can choose b ∈ (u, 1) such that f ′(b) = f(1)−f(u)
1−u = −f(u)

1−u . Then∫ 1

0

∣∣∣∣f ′′(x)

f(x)

∣∣∣∣ dx ≥ ∫ 1

0

|f ′′(x)|
f(u)

dx =
1

f(u)

∫ 1

0

|f ′′(x)| dx ≥ 1

f(u)

∫ b

a

|f ′′(x)| dx

≥ 1

f(u)

∣∣∣∣∣
∫ b

a

f ′′(x) dx

∣∣∣∣∣ =
1

f(u)

∣∣∣f ′(b)− f ′(a)
∣∣∣ =

1

f(u)

∣∣∣∣−f(u)

1− u
− f(u)

u

∣∣∣∣
=

1

1− u
+

1

u
=

1

u(1− u)
=

1
1
4 −

(
u− 1

2

)2 ≥ 1
1/4 = 4.

To complete the proof, we shall show that the first inequality in the above calculation is strict, that is∫ 1

0

|f ′′(x)|
f(x)

dx >

∫ 1

0

|f ′′(x)|
f(u)

dx.

Since both integrands are continuous in (0, 1) with |f ′′(x)|
f(x) ≥ |f ′′(x)|

f(c) for all x ∈ (0, 1), it suffices to show

that there exists at least one point x ∈ (0, 1) at which |f ′′(x)|
f(x) > |f ′′(x)|

f(c) . Equivalently, it suffices to show

that there is a point x ∈ (0, 1) such that f ′′(x) 6= 0 and f(x) < f(c). Let v = inf
{
x ∈ [0, 1]

∣∣f(x) ≤ f(c)
}

.
Note that 0 < v ≤ u and we have f(x) < f(c) for all x ∈ [0, v), and also f(v) = f(c) since f is continuous.
Suppose, for a contradiction, that f ′′(x) = 0 for all x ∈ (0, v). Since f ′′(x) = 0 for all x ∈ (0, v) and f is

continuous at 0 and v with f(0) = 0 and f(v) = f(c), we must have f(x) = f(c)
v x for all x ∈ [0, v]. But then

f ′(v) = f(c)
v > 0 which contradicts the fact that f(v) = f(c) so that f has a maximum value at v.



5: Let {an} be a sequence of real numbers with the property that for every r ∈ R with r > 1, we have
lim
k→∞

abrkc = 0. Show that lim
n→∞

an = 0.

Solution: Suppose, for a contradiction, that lim
n→∞

an 6= 0. Choose ε > 0 so that for every l ∈ Z+ there exists

n ≥ l such that |an| > ε. We shall construct a sequence of indices n1 < n2 < n3 · · · with each |anj | > ε and
a sequence of closed bounded intervals I1 ⊇ I2 ⊇ I3 ⊇ · · · and a sequence of exponents k1 > k2 > k3 > · · ·
such that for every r ∈ Ij we have

⌊
rkj
⌋

= nj , and then we shall use the existence of these sequences to
obtain a contradiction.

Choose an index n1 > 1 such that |an1
| > ε. Let I1 =

[
n1, n1 + 1

2

]
and k1 = 1 and note that for all

r ∈ I1 we have
⌊
rk1
⌋

= brc = n1. Suppose that we have constructed indices n1 < n2 < · · · < nj−1 with
|ani
| > ε and closed bounded intervals I1 ⊇ I2 ⊇ · · · ⊇ Ij−1 and exponents k1 < k2 < · · · < kj−1 such that

for all r ∈ Ii we have
⌊
rki
⌋

= ni. Say Ij−1 = [a, b] where 1 < n1 ≤ a < b ≤ n1 + 1
2 . Since 1 < a < b we have(

b
a

)k → ∞ as k → ∞. Choose m large enough that for all k ≥ m we have
(
b
a

)k ≥ a + 1
2 . Then for k ≥ m

we have bk ≥ ak+1 + 1
2a

k ≥ ak+1 + 1
2 so that the intervals

[
ak, bk − 1

2

]
and

[
ak+1, bk+1 − 1

2

]
overlap, and we

have
∞⋃

k=m

[
ak, bk − 1

2

]
= [am,∞). Choose nj so that nj > nj−1, nj ≥ am and |anj

| > ε. Choose kj so that

nj ∈
[
akj , bkj − 1

2

]
and note that

[
nj , nj + 1

2

]
⊆
[
akj , bkj

]
. Let Ij =

[
nj

1/kj , (nj + 1
2 )1/kj

]
and note that for

all r ∈ Ij we have rkj ∈
[
nj , nj + 1

2

]
so that

⌊
rkj
⌋

= nj .
We can now obtain the desired contradiction as follows. Since the nested intervals I1 ⊃ I2 ⊃ I3 ⊃ · · ·

are nonempty, closed and bounded, their intersection is nonempty. Choose r ∈
∞⋂
j=1

Ij . For each index j,

since r ∈ Ij we have
⌊
rkj
⌋

= nj . Since lim
k→∞

abrkc = 0 it follows that lim
j→∞

abrkj c = 0 hence lim
j→∞

anj
= 0.

But this is impossible since |anj | > ε for all j.

6: Let f : Rn → Rn be bijective. Suppose that f maps connected sets to connected sets and that f maps
disconnected sets to disconnected sets. Prove that f and f−1 are both continuous.

Solution: Let g = f−1 : Rn → Rn. Note that g sends connected sets to connected sets because for
a connected set B ⊂ Rn, if g(B) was disconnected then f(g(B)) would be disconnected (since f sends
disconnected sets to disconnected sets) but f(g(B)) = B, which is connected. Similarly, g sends disconnected
sets to disconnected sets. Since f and g satisfy the same hypotheses, it suffices to show that f is continuous.

To show that f is continuous, we shall show that f−1(B) is open for every open ball B in Rn. Let B
be an open ball in Rn. Let A = f−1(B) = g(B). We need to show that A is open, or equivalently, that
Rn \ A is closed. Suppose, for a contradiction, that Rn \ A is not closed. Then Rn \ A is not equal to
its closure Rn \A. Choose a ∈ Rn \A with a /∈ Rn \ A, that is a ∈ A. Let b = f(a) ∈ B. Note that
{b} ∪Rn \ B is disconnected since B is an open ball in Rn and b ∈ B. Since g sends disconnected sets to
disconnected sets, the set {a} ∪Rn \A = g

(
{b} ∪Rn \B

)
is disconnected. On the other hand, since Rn \B

is connected (because B is a ball in Rn) and g sends connected sets to connected sets, it follows that the
set Rn \ A = g

(
Rn \B

)
is connected, and since a ∈ Rn \A it follows that {a} ∪Rn \ A is connected (here

we used the fact that for any set C ⊆ Rn, if C is connected and c ∈ C then {c} ∪C is connected). We have
shown that the set {a} ∪Rn \A is both connected and disconnected, which is impossible.


