Solutions to the Special K Problems, 2015

: Let xo = -1, 21 = 3 and z,, = 2x,,_1 + ,,_o for n > 2. Find the product z,,_ox,_1x, where n is the largest
integer with n > 2 for which z,_o, ,_1 and x,, are all prime.

Solution: Note that zo = 5, 3 = 13 and z4 = 31, which are all prime. Since x¢y < x; and whenever
Tp—o < Tp—1 we also have z, = 2x,_1 + xp_2 = Tp—1 + (Tp_1 — Tp_2) > Tp_1, it follows, by induction,
that the sequence {x,} is increasing. Since x5 =5 = 0 mod 5 and whenever x,, = 0 mod 5 we also have

Tnt3 = 2Tnt2 + Tpy1 = 2(2xn+1 + mn) + Tpy1 = dTpq1 + 22, =0 mod 5,

it follows, by induction, that xoy3; = 0 mod 5 for all £k > 0. For all £ > 1, since w243 is a multiple of 5 and
Totsp > xo = b, it follows that xoy 3k is composite. Thus the largest integer n for which z,_o, x,—1 and z,
are all prime is n = 4, and we have z,,_o2x,, 12, =513 - 31 = 2015.

: Let f:[0,1] — [0,1] be increasing and convex with f(0) = 0 and f(1) = 1 (f is convex means that for
all 0 < a < b < 1, the line segment from (a, f(a)) to (b, f(b)) lies on or above the graph of y = f(z) for
a < x <b). Show that f(x)f !(z) < 2? for all x € [0, 1].

Solution: We claim that f(a)f~!(a) < a? for all a € [0,1]. Since f(0) = 0 we have f~1(0) = 0 so the claim
is true when a = 0. Let a € (0,1] and note that f(a) € (0,1]. Since f is convex, the graph of f lies on
or below the line from (0,0) to (1,1), which has equation y = z, and so we have f(¢t) < ¢ for all ¢ € [0, 1].
In particular, letting t = f~1(a) we obtain a < f~1(a). Since f is convex, the graph of f lies on or below

the line from (0,0) to (f~'(a),a), which has equation y = f*%t) z, and so we have f(t) < f%m)t for all
t € [0, f~*(a)]. In particular, letting ¢t = a we obtain f(a) < f_’f(a) a and so f(a)f~1(a) < a?, as claimed.

: For a positive integer n, let 7(n) be the number of positive divisors of n and let o(n) be the sum of the
o(n) o nt 1

T(n) = 2

positive divisors of n. Show that for all integers n > 2 we have with equality if and only if n
is prime.

Solution: When n is prime, the positive divisors of n are 1 and n so we have 7(n) = 2 and o(n) =n+ 1 so

that ;'_EZ; = "T'H Suppose that n is composite. Then n has at least one divisor d with 1 < d < n and so

7(n) > 3. For each divisor d of n with 1 < d < n, we also have 1 < % < n so that % > 2 and hence d < %
Let ¢ = 7(n) > 3 and let the positive divisors of n be 1 =dy < ds < --- < dp_1 < dp =n. Then

on)=n+l+do+-+d1<n+1+{(—-2)2 <n+1+{-2)21 =r2H = r(n) 2L

a(n) o ntl
and so ) < g

: Triangle ABC has a right angle at B. The angle bisector at A meets BC at D and the angle bisector at C'
meets AB at E. Given that AD =9 and CE = 82, find AC.

Solution: Let o = /BAD = /CAD and let v = /BCE = /ACE. Since 7 = LA+ /B+ /C =2a+ 5 + 27,

we have o+~ = 7. Note that

AB = ADcosa=9cosa and BC = CEcosy = 8v2cos (o — T) = 8(cosa — sin o).

and that tan2a = ﬁ—g so we have
2tan o BC  8(cosa+sina)  8(1+tana)
———— =tan2a = — = =
1 — tan® « AB 9cosa 9

9tana = 4(1 + tana)(1 — tan® o) = 4(1 4 tan a — tan® a — tan® a)
0=4tan®’a +4tan® o+ 5tana — 4 = (2tana — 1)(2tan® a + 3tan o + 4)

1 2

and so tan o = % Since tan o = = we have cosa = 7 and cos2a = 2cos? o —1=22 1 =2

= 2 and so

2 5 5

cos2a  cos2a g

9.2
AC — AB  9cosa \/5—6\/5.



5: Let fi(z) = #? — 1 and let f,41(z) = fi(fa(x)) for n > 1. For each positive integer n, find the number of
distinct real roots of the polynomial f,(z).

Solution: We shall show that f,(z) has exactly n + 1 distinct real roots. We use induction to prove the
stronger claim that for all n > 1 and all ¢ € R, the equation f,,(x) = ¢ has exactly 2 (distinct real) solutions
when ¢ > 0, exactly n + 1 solutions when ¢ = 0, exactly n solutions when ¢ = —1, and no solutions when
¢ < —1. The claim is true when n = 1 because we have fi(z) = ¢ <= 2?2 — 1 = ¢ & 22 = 1 + ¢ and
this equation has 2 solutions when ¢ > —1, 1 solution when ¢ = —1 and no solutions when ¢ < —1. Let
n € Z with n > 1. Suppose, inductively, that the equation f,(z) = ¢ has exactly 2 solutions when ¢ > 0,
exactly n + 1 solutions when ¢ = 0, exactly n solutions when ¢ = —1 and no solutions when ¢ < —1. We

have fri1(z) = fi(fn(z)) = fa(z)? — 1 and so
fnJrl(x) =Cc<— fn(x)Q —l=c= fn(x)Q =1l+c

When ¢ > 0, we have f,11(x) = ¢ <= fn(x) = £v/1 + ¢; the equation f,(x) = v/1 + ¢ has exactly 2 solutions
(since 1+ ¢ > 0) and the equation f,(x) = —+/1 + ¢ has no solutions (since —v/1+ ¢ < —1) and so the
equation f,,11(x) = ¢ has exactly 2 solutions. When ¢ = 0, we have f,,1+1(z) = ¢ < f,(z) = £V/1+ ¢ = £1;
the equation f,(z) = 1 has exactly 2 solutions and the equation f,(x) = —1 has exactly n solutions and
so the equation f,11(x) = c has exactly n + 2 solutions. When ¢ = —1 we have fy,11(z) = ¢ —
fa(@)? =1+ ¢ =0 <= f,(r) = 0 and this equation has exactly n + 1 solutions. When ¢ < —1 we have
far1(x) =c¢ <= fn(x)? =1+ c and this equation has no solutions (since 1 + ¢ < 0).

6: Let Z* be the set of natural numbers. Let S be a set of subsets of ZT and let n € ZT. Suppose that for all
distinct sets A, B € S, the intersection A N B has at most n elements. Show that S is finite or countable.

Solution: Let N be the set of natural numbers. Define a map F : S — N"*! as follows. Given A € S, if A = ()
then we define ¢(A) = (0,0,---,0) € N*HL if A is finite with A = {a1,az, -+, ar} where a; < az < -+ < ay
and k < n then we define F(A) = (a1,as9,-,ax,0,0,---,0), if A is finite with A = {aq,as,---,ar} where
a; < ag < -+ < ar and k > n + 1 then we define F(A) = (a1,a2, -, an+1), and if A is countable with
A = {a1,az2,as3,---} where a; < as < az < --- then we define F(A) = (a1,a9, -,an+1). Because two
distinct sets A and B in S have at most n points in common, it follows that the map F is injective. Since
F is injective and N™*! is countable, it follows that S is finite or countable.
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1: Let g = 1 and 27 = 2, and for n > 1 let z9,, = xop—1 + 222, 2 and zo,11 = 229, — 3T2,_1. Find a closed
form formula for zs,, and xo,41.

Solution: Note that Topt1 = 29, — 3Top_1 = 2(372n—1 + 2332n_2) — 3%9p—1 = —Top_1 + 4xo,_2 SO We have
Ton | _ [ 2%2p-2 + Top-1 | _ A [ T2n-2 where A — 2 1 .
Ton+1 4292 — Tan—1 Tan—1 4 -1
It follows, inductively, that
( Ton ):A(an2>:A2($2n4):---:An($0),
Toan+1 Toan—1 Ton—3 1

Let us diagonalize A. The characteristic polynomial is

2—zx 1

fa(z) =det(A — xI) = det ( 4 1z

)zzz—x—fi:(x—3)(x+2)

so the eigenvalues are A = 3 and yu = —2. We have

—1 1 —1 1 4 1 4 1
acsr= (4 )~ (g o) e aver=(5 1)~ (5 5)

) is an eigenvector for 3 and v = ( A

P:(u,v):Gj) and D:(g‘ 2):(8 g)

T ) A (P0) = (pDP Yy (0 ) = pprpt (PO
(o) =2 (22) (&) =rr (3)
(o) (0 )G )6

e o) (D)= (i)

2: Let n be a positive integer. Find the smallest positive integer d such that d = det(A) for some n x n matrix
whose entries all lie in {£1}.

1
and so u = (1

) is an eigenvector for —2. Thus P"'AP = D where

Thus we have

Solution: We shall show that the smallest such integer d is equal to 2"~ !. We claim that for every n x n
matrix A with entries in {£1}, the determinant of A is a multiple of 2"~1. Let A be any n x n matrix
with entries in {£1}. Perform the row operations Ry — Ry + Ry for each k > 1 to obtain a matrix B.
The first row of B has entries in {1}, and all other rows of B have entries in {—2,0,2}. Perform the
row operations Ry +—> %Rk for each k > 1 to obtain a matrix C' with entries in {—1,0,1}. Then we have
det(A) = det(B) = 2"~ det(C) and so det(A) is a multiple of 2!, as claimed.

For each n € ZT, let A, be the n x n matrix with entries a;; = 1 when k <[ and ay, = —1 when k > [.
Note that det(A4;) = det(1) = 1 = 2% Let n > 2 and suppose, inductively that det(4,_1) = 2"72. Note
that when we perform the row operation Ry — Ry — Ro on the matrix A,, we obtain the matrix

20 --- 0
-1

B,

. An—l

—1
Thus we have det(4,)=det(B,)=2det(A,_1)=2""1. By induction, we have det(4,)=2""1 for all n > 1.
Thus d = 2"~ is the smallest positive integer with the desired property.



3: Let 0 < a,, € R for all integers n > 1. Let by = 1, and let b,11 = b, + 5 ™ for all n > 1. Show that S ap

n
converges if and only if {b,,} converges.

Solution: If we suppose, inductively, that 1 = b; < by < --- < b, then we have by, 11 = b, + 3> < bp+a, < by,
and it follows that the sequence {b,} is increasing with each b, > 1. Thus the sequence {b,} converges if
and only if it is bounded above.

Let s, denote the n'" partial sum s,, = E ay. Since each ay > 0, the sequence of partial sums {s,} is

increasing, and hence it converges if and only 1f it is bounded above.

Suppose that > a, converges, say Z ar = S. Since the sequence of partial sums {s,} is increasing, we
k=1
have s, < S for all n. Since b1 = b, + ‘g—: we have a,, = by, (by+1 — by,) for all n > 1 and so

n n n
Sp= . ar= > bp(bry1 —br) > > (b1 — br) =bpy1 — b1 =bpy1 — 1.
k=1 k=1 K=1

Thus bp41 < 8, +1 < S+1 for all n > 1 so the sequence {b,} is bounded above (by S+ 1), so it converges.
Conversely, suppose that {b,} converges, say b, — B. Since {b,} is increasing we have b,, < B for all n.
Since a,, = by, (bp+1 — by) we have

sn=3 ar =3 bp(bgpr — ) < B(bpyr — by) = B(buts — 1) < B(B —1).
k=1 k=1 k=1

Since the sequence {s,} is increasing and bounded above (by B(B — 1)), it converges.

4: Let G be a group. Suppose the map ¢ : G — G given by ¢(r) = 23

Show that G is abelian.

Solution: Let z,y € G. For any a,b € G we have a3b® = ¢(a)p(b) = ¢(ab) = (ab)® = a(ba)?b, and canceling
a from the left and b from the right gives a?b? = (ba)?. Taking a = 22 and b = y? gives z*y* = (y?2?)? and

is an injective group homomorphism.

taking a = y and b = x gives y?2% = (zy)?, and so we have zty* = (y?22)? = ((:cy)2)2 = (zy)* = z(yx)3y.
Canceling 2 from the left and y from the right gives 23y = (yx)3. Since the homomorphism ¢ is injective
with ¢(zy) = ¢(2)p(y) = 23y = (yx)® = ¢(yx), it follows that xy = y.

5: For a positive integer n, let m(n) be the product of the positive divisors of n. Show that for all positive
integers n and m, if 7(n) = 7(m) then n = m.

Solution: First note that for a positive integer n, each divisor d of n can be paired with the divisor % so we

have
2 _ (Hd> Hd - Hn—nT(n) so that W(n):nT(n)/27
d|n

where 7(n) denotes the number of positive divisors on n. For a positive integer n and a prime p, let e,(n)
denote the exponent of p in the prime factorization of n, and note that for k € Z* we have e, (n*) = ke,(n).
Let n and m be positive integers, and suppose that w(n) = 7(m). Then for all primes p we have

7(n) ep(n) = e, (n”™) = e, (1(n)?) = e, (w(m)?) = €, (M ™) = 7(m) e, (m).

Let ¢ = 7(m)/7(n). Then for all primes p we have e,(n) = cep(m). If we had ¢ < 1 then we would have
ep(n) < ep(m) for all primes p which would imply that n < m and 7(n) < 7(m) hence w(n) < w(m).
Similarly, if we had ¢ > 1 then we would have m(n) > 7(m). Thus we must have ¢ = 1 and so e,(n) = e,(m)
for every prime p, and so n = m.



. > | cos(mz)|
6: Find / 1 dr.

Solution: Note that the integrand is not defined when z = %, but it is continuous from the left and continuous
from the right with

. |cosmx| I cSTL . —msinTz _ w

4?1 N m—1 T 8r 4
|cosma| . —cosmr . Tsinmx

A1 0 k-1 o1 8¢ 4

For each integer k£ > 0 we have

/k‘”'1 | cos Tz p 1 /I"Jrl |cosmx| | cosmal i 1 /’H'; | sin 7t gt /k"’g | sin 7t dt
A e = = _ = = P g —
e 4x?—1 4 /. r—1 T+ 1 4\ Ji_2 t et 4 t

2

and so for each integer n > 1 we have

n—1

/" \co;mx| Z/kH |002s7mc| e — 12 /’”é | sin 7t dt—/kJrg | sin 7t @t

k=0 2

2
1 /5 | sin 7t | dt—/m_% | sin 7t | it :_1/"+2 |sin 7t gt
4\ J_ 1 t nl t 4 f_1 t
2 2

2

-

Y2 gin ot
since / M dt = 0. Thus for each integer n > 1,

~1/2
/” |czs7m?d _1/"+é|sinﬂ't dtgl/"'"é 1 i — 1 .
, 472 — 1 i) . 1), 0 n 1% T a2

2 -2 2

" | cosmx 1 > |cos
/ | dm‘ = — 0 as n — 00, it follows that / g dx = 0.
0 0

o
tnee 1?2 —1 in—2 122 —1




