Solutions to the Special K Problems, 2015

1: Let $x_{0}=-1, x_{1}=3$ and $x_{n}=2 x_{n-1}+x_{n-2}$ for $n \geq 2$. Find the product $x_{n-2} x_{n-1} x_{n}$ where n is the largest integer with $n \geq 2$ for which x_{n-2}, x_{n-1} and x_{n} are all prime.
Solution: Note that $x_{2}=5, x_{3}=13$ and $x_{4}=31$, which are all prime. Since $x_{0}<x_{1}$ and whenever $x_{n-2}<x_{n-1}$ we also have $x_{n}=2 x_{n-1}+x_{n-2}=x_{n-1}+\left(x_{n-1}-x_{n-2}\right)>x_{n-1}$, it follows, by induction, that the sequence $\left\{x_{n}\right\}$ is increasing. Since $x_{2}=5=0 \bmod 5$ and whenever $x_{n}=0 \bmod 5$ we also have

$$
x_{n+3}=2 x_{n+2}+x_{n+1}=2\left(2 x_{n+1}+x_{n}\right)+x_{n+1}=5 x_{n+1}+2 x_{n}=0 \bmod 5
$$

it follows, by induction, that $x_{2+3 k}=0 \bmod 5$ for all $k \geq 0$. For all $k \geq 1$, since $x_{2+3 k}$ is a multiple of 5 and $x_{2+3 k}>x_{2}=5$, it follows that $x_{2+3 k}$ is composite. Thus the largest integer n for which x_{n-2}, x_{n-1} and x_{n} are all prime is $n=4$, and we have $x_{n-2} x_{n-1} x_{n}=5 \cdot 13 \cdot 31=2015$.

2: Let $f:[0,1] \rightarrow[0,1]$ be increasing and convex with $f(0)=0$ and $f(1)=1(f$ is convex means that for all $0 \leq a<b \leq 1$, the line segment from $(a, f(a))$ to $(b, f(b))$ lies on or above the graph of $y=f(x)$ for $a \leq x \leq b)$. Show that $f(x) f^{-1}(x) \leq x^{2}$ for all $x \in[0,1]$.
Solution: We claim that $f(a) f^{-1}(a) \leq a^{2}$ for all $a \in[0,1]$. Since $f(0)=0$ we have $f^{-1}(0)=0$ so the claim is true when $a=0$. Let $a \in(0,1]$ and note that $f(a) \in(0,1]$. Since f is convex, the graph of f lies on or below the line from $(0,0)$ to $(1,1)$, which has equation $y=x$, and so we have $f(t) \leq t$ for all $t \in[0,1]$. In particular, letting $t=f^{-1}(a)$ we obtain $a \leq f^{-1}(a)$. Since f is convex, the graph of f lies on or below the line from $(0,0)$ to $\left(f^{-1}(a), a\right)$, which has equation $y=\frac{a}{f^{-1}(a)} x$, and so we have $f(t) \leq \frac{a}{f^{-1}(a)} t$ for all $t \in\left[0, f^{-1}(a)\right]$. In particular, letting $t=a$ we obtain $f(a) \leq \frac{a}{f^{-1}(a)} a$ and so $f(a) f^{-1}(a) \leq a^{2}$, as claimed.

3: For a positive integer n, let $\tau(n)$ be the number of positive divisors of n and let $\sigma(n)$ be the sum of the positive divisors of n. Show that for all integers $n \geq 2$ we have $\frac{\sigma(n)}{\tau(n)} \leq \frac{n+1}{2}$ with equality if and only if n is prime.
Solution: When n is prime, the positive divisors of n are 1 and n so we have $\tau(n)=2$ and $\sigma(n)=n+1$ so that $\frac{\sigma(n)}{\tau(n)}=\frac{n+1}{2}$. Suppose that n is composite. Then n has at least one divisor d with $1<d<n$ and so $\tau(n) \geq 3$. For each divisor d of n with $1<d<n$, we also have $1<\frac{n}{d}<n$ so that $\frac{n}{d} \geq 2$ and hence $d \leq \frac{n}{2}$. Let $\ell=\tau(n) \geq 3$ and let the positive divisors of n be $1=d_{1}<d_{2}<\cdots<d_{\ell-1}<d_{\ell}=n$. Then

$$
\sigma(n)=n+1+d_{2}+\cdots+d_{l-1} \leq n+1+(\ell-2) \frac{n}{2}<n+1+(\ell-2) \frac{n+1}{2}=\ell \frac{n+1}{2}=\tau(n) \frac{n+1}{2}
$$

and so $\frac{\sigma(n)}{\tau(n)}<\frac{n+1}{2}$.
4: Triangle $A B C$ has a right angle at B. The angle bisector at A meets $B C$ at D and the angle bisector at C meets $A B$ at E. Given that $A D=9$ and $C E=8 \sqrt{2}$, find $A C$.
Solution: Let $\alpha=\angle B A D=\angle C A D$ and let $\gamma=\angle B C E=\angle A C E$. Since $\pi=\angle A+\angle B+\angle C=2 \alpha+\frac{\pi}{2}+2 \gamma$, we have $\alpha+\gamma=\frac{\pi}{4}$. Note that

$$
A B=A D \cos \alpha=9 \cos \alpha \text { and } B C=C E \cos \gamma=8 \sqrt{2} \cos \left(\alpha-\frac{\pi}{4}\right)=8(\cos \alpha-\sin \alpha)
$$

and that $\tan 2 \alpha=\frac{B C}{A B}$ so we have

$$
\begin{gathered}
\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}=\tan 2 \alpha=\frac{B C}{A B}=\frac{8(\cos \alpha+\sin \alpha)}{9 \cos \alpha}=\frac{8(1+\tan \alpha)}{9} \\
9 \tan \alpha=4(1+\tan \alpha)\left(1-\tan ^{2} \alpha\right)=4\left(1+\tan \alpha-\tan ^{2} \alpha-\tan ^{3} \alpha\right) \\
0=4 \tan ^{3} \alpha+4 \tan ^{2} \alpha+5 \tan \alpha-4=(2 \tan \alpha-1)\left(2 \tan ^{2} \alpha+3 \tan \alpha+4\right)
\end{gathered}
$$

and so $\tan \alpha=\frac{1}{2}$. Since $\tan \alpha=\frac{1}{2}$ we have $\cos \alpha=\frac{2}{\sqrt{5}}$ and $\cos 2 \alpha=2 \cos ^{2} \alpha-1=\frac{2 \cdot 4}{5}-1=\frac{3}{5}$ and so

$$
A C=\frac{A B}{\cos 2 \alpha}=\frac{9 \cos \alpha}{\cos 2 \alpha}=\frac{9 \cdot \frac{2}{\sqrt{5}}}{\frac{3}{5}}=6 \sqrt{5}
$$

5: Let $f_{1}(x)=x^{2}-1$ and let $f_{n+1}(x)=f_{1}\left(f_{n}(x)\right)$ for $n \geq 1$. For each positive integer n, find the number of distinct real roots of the polynomial $f_{n}(x)$.
Solution: We shall show that $f_{n}(x)$ has exactly $n+1$ distinct real roots. We use induction to prove the stronger claim that for all $n \geq 1$ and all $c \in \mathbf{R}$, the equation $f_{n}(x)=c$ has exactly 2 (distinct real) solutions when $c>0$, exactly $n+1$ solutions when $c=0$, exactly n solutions when $c=-1$, and no solutions when $c<-1$. The claim is true when $n=1$ because we have $f_{1}(x)=c \Longleftrightarrow x^{2}-1=c \Longleftrightarrow x^{2}=1+c$ and this equation has 2 solutions when $c>-1,1$ solution when $c=-1$ and no solutions when $c<-1$. Let $n \in \mathbf{Z}$ with $n \geq 1$. Suppose, inductively, that the equation $f_{n}(x)=c$ has exactly 2 solutions when $c>0$, exactly $n+1$ solutions when $c=0$, exactly n solutions when $c=-1$ and no solutions when $c<-1$. We have $f_{n+1}(x)=f_{1}\left(f_{n}(x)\right)=f_{n}(x)^{2}-1$ and so

$$
f_{n+1}(x)=c \Longleftrightarrow f_{n}(x)^{2}-1=c \Longleftrightarrow f_{n}(x)^{2}=1+c .
$$

When $c>0$, we have $f_{n+1}(x)=c \Longleftrightarrow f_{n}(x)= \pm \sqrt{1+c}$; the equation $f_{n}(x)=\sqrt{1+c}$ has exactly 2 solutions (since $\sqrt{1+c}>0$) and the equation $f_{n}(x)=-\sqrt{1+c}$ has no solutions (since $-\sqrt{1+c}<-1$) and so the equation $f_{n+1}(x)=c$ has exactly 2 solutions. When $c=0$, we have $f_{n+1}(x)=c \Longleftrightarrow f_{n}(x)= \pm \sqrt{1+c}= \pm 1$; the equation $f_{n}(x)=1$ has exactly 2 solutions and the equation $f_{n}(x)=-1$ has exactly n solutions and so the equation $f_{n+1}(x)=c$ has exactly $n+2$ solutions. When $c=-1$ we have $f_{n+1}(x)=c \Longleftrightarrow$ $f_{n}(x)^{2}=1+c=0 \Longleftrightarrow f_{n}(x)=0$ and this equation has exactly $n+1$ solutions. When $c<-1$ we have $f_{n+1}(x)=c \Longleftrightarrow f_{n}(x)^{2}=1+c$ and this equation has no solutions (since $1+c<0$).

6: Let \mathbf{Z}^{+}be the set of natural numbers. Let S be a set of subsets of \mathbf{Z}^{+}and let $n \in \mathbf{Z}^{+}$. Suppose that for all distinct sets $A, B \in S$, the intersection $A \cap B$ has at most n elements. Show that S is finite or countable.
Solution: Let \mathbf{N} be the set of natural numbers. Define a map $F: S \rightarrow \mathbf{N}^{n+1}$ as follows. Given $A \in S$, if $A=\emptyset$ then we define $\phi(A)=(0,0, \cdots, 0) \in \mathbf{N}^{n+1}$, if A is finite with $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ where $a_{1}<a_{2}<\cdots<a_{k}$ and $k \leq n$ then we define $F(A)=\left(a_{1}, a_{2}, \cdots, a_{k}, 0,0, \cdots, 0\right)$, if A is finite with $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ where $a_{1}<a_{2}<\cdots<a_{k}$ and $k \geq n+1$ then we define $F(A)=\left(a_{1}, a_{2}, \cdots, a_{n+1}\right)$, and if A is countable with $A=\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$ where $a_{1}<a_{2}<a_{3}<\cdots$ then we define $F(A)=\left(a_{1}, a_{2}, \cdots, a_{n+1}\right)$. Because two distinct sets A and B in S have at most n points in common, it follows that the map F is injective. Since F is injective and \mathbf{N}^{n+1} is countable, it follows that S is finite or countable.

BIG E

Saturday November 7, 2015 10:00 am - 1:00 pm

1: Let $x_{0}=1$ and $x_{1}=2$, and for $n \geq 1$ let $x_{2 n}=x_{2 n-1}+2 x_{2 n-2}$ and $x_{2 n+1}=2 x_{2 n}-3 x_{2 n-1}$. Find a closed form formula for $x_{2 n}$ and $x_{2 n+1}$.

Solution: Note that $x_{2 n+1}=2 x_{2 n}-3 x_{2 n-1}=2\left(x_{2 n-1}+2 x_{2 n-2}\right)-3 x_{2 n-1}=-x_{2 n-1}+4 x_{2 n-2}$ so we have

$$
\binom{x_{2 n}}{x_{2 n+1}}=\binom{2 x_{2 n-2}+x_{2 n-1}}{4 x_{2 n-2}-x_{2 n-1}}=A\binom{x_{2 n-2}}{x_{2 n-1}} \quad \text { where } \quad A=\left(\begin{array}{rr}
2 & 1 \\
4 & -1
\end{array}\right)
$$

It follows, inductively, that

$$
\binom{x_{2 n}}{x_{2 n+1}}=A\binom{x_{2 n-2}}{x_{2 n-1}}=A^{2}\binom{x_{2 n-4}}{x_{2 n-3}}=\cdots=A^{n}\binom{x_{0}}{x_{1}} .
$$

Let us diagonalize A. The characteristic polynomial is

$$
f_{A}(x)=\operatorname{det}(A-x I)=\operatorname{det}\left(\begin{array}{cc}
2-x & 1 \\
4 & -1-x
\end{array}\right)=x^{2}-x-6=(x-3)(x+2)
$$

so the eigenvalues are $\lambda=3$ and $\mu=-2$. We have

$$
A-3 I=\left(\begin{array}{rr}
-1 & 1 \\
4 & -4
\end{array}\right) \sim\left(\begin{array}{rr}
-1 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A+2 I=\left(\begin{array}{ll}
4 & 1 \\
4 & 1
\end{array}\right) \sim\left(\begin{array}{ll}
4 & 1 \\
0 & 0
\end{array}\right)
$$

and so $u=\binom{1}{1}$ is an eigenvector for 3 and $v=\binom{-1}{4}$ is an eigenvector for -2 . Thus $P^{-1} A P=D$ where

$$
P=(u, v)=\left(\begin{array}{rr}
1 & -1 \\
1 & 4
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{rr}
3 & 0 \\
0 & -2
\end{array}\right) .
$$

Thus we have

$$
\begin{aligned}
\binom{x_{2 n}}{x_{2 n+1}} & =A^{n}\binom{x_{0}}{x_{1}}=\left(P D P^{-1}\right)^{n}\binom{x_{0}}{x_{1}}=P D^{n} P^{-1}\binom{x_{0}}{x_{1}} \\
& =\left(\begin{array}{cc}
1 & -1 \\
1 & 4
\end{array}\right)\left(\begin{array}{cc}
3^{n} & 0 \\
0 & (-2)^{n}
\end{array}\right) \cdot \frac{1}{5}\left(\begin{array}{cc}
4 & 1 \\
-1 & 1
\end{array}\right)\binom{1}{2} \\
& =\frac{1}{5}\left(\begin{array}{ll}
3^{n} & -(-2)^{n} \\
3^{n} & 4(-2)^{n}
\end{array}\right)\binom{6}{1}=\frac{1}{5}\binom{6 \cdot 3^{n}-(-2)^{n}}{6 \cdot 3^{n}+4(-2)^{n}} .
\end{aligned}
$$

2: Let n be a positive integer. Find the smallest positive integer d such that $d=\operatorname{det}(A)$ for some $n \times n$ matrix whose entries all lie in $\{ \pm 1\}$.
Solution: We shall show that the smallest such integer d is equal to 2^{n-1}. We claim that for every $n \times n$ matrix A with entries in $\{ \pm 1\}$, the determinant of A is a multiple of 2^{n-1}. Let A be any $n \times n$ matrix with entries in $\{ \pm 1\}$. Perform the row operations $R_{k} \mapsto R_{k}+R_{1}$ for each $k>1$ to obtain a matrix B. The first row of B has entries in $\{ \pm 1\}$, and all other rows of B have entries in $\{-2,0,2\}$. Perform the row operations $R_{k} \mapsto \frac{1}{2} R_{k}$ for each $k>1$ to obtain a matrix C with entries in $\{-1,0,1\}$. Then we have $\operatorname{det}(A)=\operatorname{det}(B)=2^{n-1} \operatorname{det}(C)$ and so $\operatorname{det}(A)$ is a multiple of 2^{n-1}, as claimed.

For each $n \in \mathbf{Z}^{+}$, let A_{n} be the $n \times n$ matrix with entries $a_{k, l}=1$ when $k \leq l$ and $a_{k l}=-1$ when $k>l$. Note that $\operatorname{det}\left(A_{1}\right)=\operatorname{det}(1)=1=2^{0}$. Let $n \geq 2$ and suppose, inductively that $\operatorname{det}\left(A_{n-1}\right)=2^{n-2}$. Note that when we perform the row operation $R_{1} \mapsto R_{1}-R_{2}$ on the matrix A_{n} we obtain the matrix

$$
B_{n}=\left(\begin{array}{cccc}
2 & 0 & \cdots & 0 \\
-1 & & & \\
\vdots & & A_{n-1} & \\
-1 & & &
\end{array}\right)
$$

Thus we have $\operatorname{det}\left(A_{n}\right)=\operatorname{det}\left(B_{n}\right)=2 \operatorname{det}\left(A_{n-1}\right)=2^{n-1}$. By induction, we have $\operatorname{det}\left(A_{n}\right)=2^{n-1}$ for all $n \geq 1$. Thus $d=2^{n-1}$ is the smallest positive integer with the desired property.

3: Let $0<a_{n} \in \mathbf{R}$ for all integers $n \geq 1$. Let $b_{1}=1$, and let $b_{n+1}=b_{n}+\frac{a_{n}}{b_{n}}$ for all $n \geq 1$. Show that $\sum a_{n}$ converges if and only if $\left\{b_{n}\right\}$ converges.
Solution: If we suppose, inductively, that $1=b_{1}<b_{2}<\cdots<b_{n}$ then we have $b_{n+1}=b_{n}+\frac{a_{n}}{b_{n}} \leq b_{n}+a_{n}<b_{n}$, and it follows that the sequence $\left\{b_{n}\right\}$ is increasing with each $b_{n} \geq 1$. Thus the sequence $\left\{b_{n}\right\}$ converges if and only if it is bounded above.

Let s_{n} denote the $n^{\text {th }}$ partial sum $s_{n}=\sum_{k=1}^{n} a_{k}$. Since each $a_{k}>0$, the sequence of partial sums $\left\{s_{n}\right\}$ is increasing, and hence it converges if and only if it is bounded above.

Suppose that $\sum a_{n}$ converges, say $\sum_{k=1}^{\infty} a_{k}=S$. Since the sequence of partial sums $\left\{s_{n}\right\}$ is increasing, we have $s_{n} \leq S$ for all n. Since $b_{n+1}=b_{n}+\frac{a_{n}}{b_{n}}$ we have $a_{n}=b_{n}\left(b_{n+1}-b_{n}\right)$ for all $n \geq 1$ and so

$$
s_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} b_{k}\left(b_{k+1}-b_{k}\right) \geq \sum_{k=1}^{n}\left(b_{k+1}-b_{k}\right)=b_{n+1}-b_{1}=b_{n+1}-1
$$

Thus $b_{n+1} \leq s_{n}+1 \leq S+1$ for all $n \geq 1$ so the sequence $\left\{b_{n}\right\}$ is bounded above (by $S+1$), so it converges.
Conversely, suppose that $\left\{b_{n}\right\}$ converges, say $b_{n} \rightarrow B$. Since $\left\{b_{n}\right\}$ is increasing we have $b_{n} \leq B$ for all n. Since $a_{n}=b_{n}\left(b_{n+1}-b_{n}\right)$ we have

$$
s_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} b_{k}\left(b_{k+1}-b_{k}\right) \leq \sum_{k=1}^{n} B\left(b_{k+1}-b_{k}\right)=B\left(b_{n+1}-1\right) \leq B(B-1) .
$$

Since the sequence $\left\{s_{n}\right\}$ is increasing and bounded above (by $B(B-1)$), it converges.
4: Let G be a group. Suppose the map $\phi: G \rightarrow G$ given by $\phi(x)=x^{3}$ is an injective group homomorphism. Show that G is abelian.

Solution: Let $x, y \in G$. For any $a, b \in G$ we have $a^{3} b^{3}=\phi(a) \phi(b)=\phi(a b)=(a b)^{3}=a(b a)^{2} b$, and canceling a from the left and b from the right gives $a^{2} b^{2}=(b a)^{2}$. Taking $a=x^{2}$ and $b=y^{2}$ gives $x^{4} y^{4}=\left(y^{2} x^{2}\right)^{2}$ and taking $a=y$ and $b=x$ gives $y^{2} x^{2}=(x y)^{2}$, and so we have $x^{4} y^{4}=\left(y^{2} x^{2}\right)^{2}=\left((x y)^{2}\right)^{2}=(x y)^{4}=x(y x)^{3} y$. Canceling x from the left and y from the right gives $x^{3} y^{3}=(y x)^{3}$. Since the homomorphism ϕ is injective with $\phi(x y)=\phi(x) \phi(y)=x^{3} y^{3}=(y x)^{3}=\phi(y x)$, it follows that $x y=y x$.

5: For a positive integer n, let $\pi(n)$ be the product of the positive divisors of n. Show that for all positive integers n and m, if $\pi(n)=\pi(m)$ then $n=m$.
Solution: First note that for a positive integer n, each divisor d of n can be paired with the divisor $\frac{n}{d}$ so we have

$$
\pi(n)^{2}=\left(\prod_{d \mid n} d\right)^{2}=\prod_{d \mid n} d \cdot \frac{n}{d}=\prod_{d \mid n} n=n^{\tau(n)} \quad \text { so that } \quad \pi(n)=n^{\tau(n) / 2}
$$

where $\tau(n)$ denotes the number of positive divisors on n. For a positive integer n and a prime p, let $e_{p}(n)$ denote the exponent of p in the prime factorization of n, and note that for $k \in \mathbf{Z}^{+}$we have $e_{p}\left(n^{k}\right)=k e_{p}(n)$.

Let n and m be positive integers, and suppose that $\pi(n)=\pi(m)$. Then for all primes p we have

$$
\tau(n) e_{p}(n)=e_{p}\left(n^{\tau(n)}\right)=e_{p}\left(\pi(n)^{2}\right)=e_{p}\left(\pi(m)^{2}\right)=e_{p}\left(m^{\tau(m)}\right)=\tau(m) e_{p}(m)
$$

Let $c=\tau(m) / \tau(n)$. Then for all primes p we have $e_{p}(n)=c e_{p}(m)$. If we had $c<1$ then we would have $e_{p}(n)<e_{p}(m)$ for all primes p which would imply that $n<m$ and $\tau(n)<\tau(m)$ hence $\pi(n)<\pi(m)$. Similarly, if we had $c>1$ then we would have $\pi(n)>\pi(m)$. Thus we must have $c=1$ and so $e_{p}(n)=e_{p}(m)$ for every prime p, and so $n=m$.

6: Find $\int_{0}^{\infty} \frac{|\cos (\pi x)|}{4 x^{2}-1} d x$.
Solution: Note that the integrand is not defined when $x=\frac{1}{2}$, but it is continuous from the left and continuous from the right with

$$
\begin{aligned}
\lim _{x \rightarrow \frac{1}{2}^{-}} \frac{|\cos \pi x|}{4 x^{2}-1} & =\lim _{x \rightarrow \frac{1}{2}^{-}} \frac{\cos \pi x}{4 x^{2}-1}=\lim _{x \rightarrow \frac{1}{2}^{-}} \frac{-\pi \sin \pi x}{8 x}=-\frac{\pi}{4} \\
\lim _{x \rightarrow \frac{1}{2}^{+}} \frac{|\cos \pi x|}{4 x^{2}-1} & =\lim _{x \rightarrow \frac{1}{2}^{+}} \frac{-\cos \pi x}{4 x^{2}-1}=\lim _{x \rightarrow \frac{1}{2}^{+}} \frac{\pi \sin \pi x}{8 x}=\frac{\pi}{4} .
\end{aligned}
$$

For each integer $k \geq 0$ we have

$$
\int_{k}^{k+1} \frac{|\cos \pi x|}{4 x^{2}-1} d x=\frac{1}{4} \int_{k}^{k+1} \frac{|\cos \pi x|}{x-\frac{1}{2}}-\frac{|\cos \pi x|}{x+\frac{1}{2}} d x=\frac{1}{4}\left(\int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \frac{|\sin \pi t|}{t} d t-\int_{k+\frac{1}{2}}^{k+\frac{3}{2}} \frac{|\sin \pi t|}{t} d t\right)
$$

and so for each integer $n \geq 1$ we have

$$
\begin{aligned}
\int_{0}^{n} \frac{|\cos \pi x|}{4 x^{2}-1} d x & =\sum_{k=0}^{n-1} \int_{k}^{k+1} \frac{|\cos \pi x|}{4 x^{2}-1} d x=\frac{1}{4} \sum_{k=0}^{n-1}\left(\int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \frac{|\sin \pi t|}{t} d t-\int_{k+\frac{1}{2}}^{k+\frac{3}{2}} \frac{|\sin \pi t|}{t} d t\right) \\
& =\frac{1}{4}\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{|\sin \pi t|}{t} d t-\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \frac{|\sin \pi t|}{t} d t\right)=-\frac{1}{4} \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \frac{|\sin \pi t|}{t} d t
\end{aligned}
$$

since $\int_{-1 / 2}^{1 / 2} \frac{|\sin \pi t|}{t} d t=0$. Thus for each integer $n \geq 1$,

$$
\left|\int_{0}^{n} \frac{\mid \cos \pi x}{4 x^{2}-1} d x\right|=\frac{1}{4} \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \frac{|\sin \pi t|}{t} d t \leq \frac{1}{4} \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \frac{1}{n-\frac{1}{2}} d t=\frac{1}{4 n-2}
$$

Since $\left|\int_{0}^{n} \frac{\mid \cos \pi x}{4 x^{2}-1} d x\right|=\frac{1}{4 n-2} \longrightarrow 0$ as $n \rightarrow \infty$, it follows that $\int_{0}^{\infty} \frac{|\cos \pi x|}{4 x^{2}-1} d x=0$.

