Week 1: Assorted Problems

1: Solve
$$\left| \left| \left| \left| x - 8 \right| - 4 \right| - 2 \right| - 1 \right| = \frac{1}{2}.$$

- **2:** Let $a_0 = 0$ and $a_{n+1} = 1 + a_n + \sqrt{1 + 4a_n}$ for $n \ge 0$. Find a formula for a_n in terms of n.
- **3:** Let A_n be the number of binary sequences $(x_1x_2\cdots x_{2n})$ of length 2n such that for $1 \le k$ we have $(x_{2k-1}, x_{2k}) \ne (0, 0)$ and $x_{2k} = x_{2k+1}$. Find A_{10} .
- 4: Let $S = \{x = (x_1, x_2, x_3, \dots) | \text{ each } x_k \in \mathbb{Z}^+ \}$. Define functions $A, B, C, L : S \to S$ by $A(x) = a = (a_1, a_2, \dots)$ with $a_n = \sum_{k=1}^n x_k$, $B(x) = b = (b_1, b_2, \dots)$ with $b_n = x_n + 1$, $C(x) = c = (c_1, c_2, \dots)$ with $c_1 = 1$ and $c_n = x_{n-1}$ for $n \ge 2$, and L(x) = C(B(A(x))). Find $\lim_{n \to \infty} L^n(x)$ when $x = (1, 1, 1, \dots)$.
- 5: Show that an 8×8 grid, with the 4 corner squares removed, cannot be tiled using L-shaped tiles which each cover 4 unit squares.
- 6: Show that the numbers $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{4}$ cannot all be terms in the same geometric sequence.
- **7:** Let $f : \mathbf{R} \to \mathbf{R}$. Suppose that $\left| \sum_{k=1}^{n} 3^{k} (f(x+ky) f(x-ky)) \right| \le 1$ for every $n \in \mathbf{Z}^{+}$ and every $x, y \in \mathbf{R}$. Show that f must be constant.
- 8: Evaluate $\tan(20^{\circ}) \tan(40^{\circ}) \tan(60^{\circ}) \tan(80^{\circ})$.
- **9:** Evaluate the sum $\sum_{n=1}^{\infty} \left(\frac{1}{3k-2} + \frac{1}{3k-1} \frac{2}{3k} \right) = \frac{1}{1} + \frac{1}{2} \frac{2}{3} + \frac{1}{4} + \frac{1}{5} \frac{2}{6} + \cdots$

10: Show that $\sum_{n=1}^{\infty} \frac{(-1)^n \sin(\log n)}{n^r}$ converges for every r > 0.

11: Let $A \in M_n(\mathbb{C})$ and let $a \in \mathbb{C}$ with $a \neq 0$. Suppose that $A - A^* = 2aI$.

- (a) Show that $|\det A| \ge |a|^n$.
- (b) Show that if $|\det A| = |a|^n$ then A = aI.

12: Let $f : \mathbf{R} \to (0, \infty)$ be increasing and differentiable with f' bounded and $\lim_{x \to \infty} f(x) = \infty$. Let $F(x) = \int_0^x f(t) dt$. Let $a_0 = 1$ and $a_{n+1} = a_n + \frac{1}{f(a_n)}$ for $n \ge 0$, and let $b_n = F^{-1}(n)$ for $n \ge 0$. Prove that $\lim_{n \to \infty} (a_n - b_n) = 0$.