Week 1: Assorted Problems

1: Solve $||||x-8|-4|-2|-1|=\frac{1}{2}$.
2: Let $a_{0}=0$ and $a_{n+1}=1+a_{n}+\sqrt{1+4 a_{n}}$ for $n \geq 0$. Find a formula for a_{n} in terms of n.
3: Let A_{n} be the number of binary sequences $\left(x_{1} x_{2} \cdots x_{2 n}\right)$ of length $2 n$ such that for $1 \leq k$ we have $\left(x_{2 k-1}, x_{2 k}\right) \neq(0,0)$ and $x_{2 k}=x_{2 k+1}$. Find A_{10}.

4: Let $S=\left\{x=\left(x_{1}, x_{2}, x_{3}, \cdots\right) \mid\right.$ each $\left.x_{k} \in \mathbf{Z}^{+}\right\}$. Define functions $A, B, C, L: S \rightarrow S$ by $A(x)=a=\left(a_{1}, a_{2}, \cdots\right)$ with $a_{n}=\sum_{k=1}^{n} x_{k}, B(x)=b=\left(b_{1}, b_{2}, \cdots\right)$ with $b_{n}=x_{n}+1$, $C(x)=c=\left(c_{1}, c_{2}, \cdots\right)$ with $c_{1}=1$ and $c_{n}=x_{n-1}$ for $n \geq 2$, and $L(x)=C(B(A(x)))$. Find $\lim _{n \rightarrow \infty} L^{n}(x)$ when $x=(1,1,1, \cdots)$.

5: Show that an 8×8 grid, with the 4 corner squares removed, cannot be tiled using L-shaped tiles which each cover 4 unit squares.

6: Show that the numbers $\sqrt{2}, \sqrt{3}$ and $\sqrt{4}$ cannot all be terms in the same geometric sequence.
7: Let $f: \mathbf{R} \rightarrow \mathbf{R}$. Suppose that $\left|\sum_{k=1}^{n} 3^{k}(f(x+k y)-f(x-k y))\right| \leq 1$ for every $n \in \mathbf{Z}^{+}$and every $x, y \in \mathbf{R}$. Show that f must be constant.

8: Evaluate $\tan \left(20^{\circ}\right) \tan \left(40^{\circ}\right) \tan \left(60^{\circ}\right) \tan \left(80^{\circ}\right)$.
9: Evaluate the sum $\sum_{n=1}^{\infty}\left(\frac{1}{3 k-2}+\frac{1}{3 k-1}-\frac{2}{3 k}\right)=\frac{1}{1}+\frac{1}{2}-\frac{2}{3}+\frac{1}{4}+\frac{1}{5}-\frac{2}{6}+\cdots$.
10: Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sin (\log n)}{n^{r}}$ converges for every $r>0$.
11: Let $A \in M_{n}(\mathbf{C})$ and let $a \in \mathbf{C}$ with $a \neq 0$. Suppose that $A-A^{*}=2 a I$.
(a) Show that $|\operatorname{det} A| \geq|a|^{n}$.
(b) Show that if $|\operatorname{det} A|=|a|^{n}$ then $A=a I$.

12: Let $f: \mathbf{R} \rightarrow(0, \infty)$ be increasing and differentiable with f^{\prime} bounded and $\lim _{x \rightarrow \infty} f(x)=\infty$. Let $F(x)=\int_{0}^{x} f(t) d t$. Let $a_{0}=1$ and $a_{n+1}=a_{n}+\frac{1}{f\left(a_{n}\right)}$ for $n \geq 0$, and let $b_{n}=F^{-1}(n)$ for $n \geq 0$. Prove that $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=0$.

