Week 2: Assorted Problems

- 1: Let n and b be positive integers with $b \ge 6$. Suppose that, in base b, we have $n = 1254_b$ and $2n = 2541_b$. Find n and b (in base 10).
- **2:** Let $x, y, z \in \mathbf{R}$. Suppose that x + y + z = 1, $x^2 + y^2 + z^2 = 2$ and $x^3 + y^3 + z^3 = 3$. Find $x^4 + y^4 + z^4$.
- **3:** Let $U = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1, y \neq x\}$ and let $f(x, y) = \ln(1 x^2 y^2) \frac{1}{(y x)^2}$. Find the maximum value of f(x, y) for $(x, y) \in U$.
- 4: Find all positive integers n < 200 such that $n^2 + (n+1)^2$ is a square.
- **5:** Four points A, B, C and D are chosen at random on the unit circle $x^2 + y^2 = 1$. Find the probability that the line segments AB and CD intersect.
- 6: Let ABC be a triangle with the sides opposite A, B and C of length a, b and c. For $0 \le x \le c$, let P = P(x) be the point on the line segment AB whose distance from A is equal to x, and let $\theta = \theta(x)$ be the angle $\theta = \angle APC$. Show that $\int_0^c \cos \theta(x) \, dx = a b$.

7: Let
$$a_1 = 1$$
 and for $n \ge 2$ let $a_n = \sum_{k=1}^{n-1} a_k a_{n-k}$. Find $\sum_{n=1}^{\infty} a_n \left(\frac{2}{9}\right)^n$.

8: Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 where $a, b, c, d \in \mathbf{R}$ with $a^2 + b^2 + c^2 + d^2 < \frac{1}{5}$. Show that $I + A$ is invertible.

9: Let $A \in M_n(\mathbf{R})$ with $A^3 = A + I$. Show that det A > 0.

10: Find
$$\lim_{n \to \infty} \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{\dots + (n-1)\sqrt{1+n}}}}}$$
.

11: Let $a, b \in \mathbf{Z}^+$. Suppose that a and b are not both multiples of 10. Show that there are infinitely many palindromes (in base 10) of the form a + kb with $k \in \mathbf{Z}^+$.

12: (a) Show that
$$\int_0^\infty \ln\left(1 + \frac{1}{x^2}\right) \tan^{-1} x \, dx = \frac{\pi^2}{6}$$
.
(b) Let $I_n = \int_0^\infty \frac{\tan^{-1} x}{(1+x^2)^n} \, dx$. Show that $\sum_{n=1}^\infty \frac{1}{n} I_n = \frac{\pi^2}{6}$.