Week 2: Assorted Problems

1: Let n and b be positive integers with $b \geq 6$. Suppose that, in base b, we have $n=1254_{b}$ and $2 n=2541_{b}$. Find n and b (in base 10).

2: Let $x, y, z \in \mathbf{R}$. Suppose that $x+y+z=1, x^{2}+y^{2}+z^{2}=2$ and $x^{3}+y^{3}+z^{3}=3$. Find $x^{4}+y^{4}+z^{4}$.

3: Let $U=\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+y^{2}<1, y \neq x\right\}$ and let $f(x, y)=\ln \left(1-x^{2}-y^{2}\right)-\frac{1}{(y-x)^{2}}$. Find the maximum value of $f(x, y)$ for $(x, y) \in U$.

4: Find all positive integers $n<200$ such that $n^{2}+(n+1)^{2}$ is a square.
5: Four points A, B, C and D are chosen at random on the unit circle $x^{2}+y^{2}=1$. Find the probability that the line segments $A B$ and $C D$ intersect.

6: Let $A B C$ be a triangle with the sides opposite A, B and C of length a, b and c. For $0 \leq x \leq c$, let $P=P(x)$ be the point on the line segment $A B$ whose distance from A is equal to x, and let $\theta=\theta(x)$ be the angle $\theta=\angle A P C$. Show that $\int_{0}^{c} \cos \theta(x) d x=a-b$.

7: Let $a_{1}=1$ and for $n \geq 2$ let $a_{n}=\sum_{k=1}^{n-1} a_{k} a_{n-k}$. Find $\sum_{n=1}^{\infty} a_{n}\left(\frac{2}{9}\right)^{n}$.
8: Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $a, b, c, d \in \mathbf{R}$ with $a^{2}+b^{2}+c^{2}+d^{2}<\frac{1}{5}$. Show that $I+A$ is invertible.
9: Let $A \in M_{n}(\mathbf{R})$ with $A^{3}=A+I$. Show that $\operatorname{det} A>0$.
10: Find $\lim _{n \rightarrow \infty} \sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{\cdots+(n-1) \sqrt{1+n}}}}}$.
11: Let $a, b \in \mathbf{Z}^{+}$. Suppose that a and b are not both multiples of 10 . Show that there are infinitely many palindromes (in base 10) of the form $a+k b$ with $k \in \mathbf{Z}^{+}$.

12: (a) Show that $\int_{0}^{\infty} \ln \left(1+\frac{1}{x^{2}}\right) \tan ^{-1} x d x=\frac{\pi^{2}}{6}$.
(b) Let $I_{n}=\int_{0}^{\infty} \frac{\tan ^{-1} x}{\left(1+x^{2}\right)^{n}} d x$. Show that $\sum_{n=1}^{\infty} \frac{1}{n} I_{n}=\frac{\pi^{2}}{6}$.

