Week 3: Assorted Problems

1: Find every prime number which has an even number of digits and is palindromic.
2: Show that there does not exist a 4-digit palindromic square.
3: Let ℓ, m and n be the slopes of the 3 sides of an equilateral triangle in \mathbf{R}^{2}. Show that $\ell m+m n+n \ell=-3$.

4: In triangle $A B C$, let D, E and F be the points on the sides $B C, C A$ and $A B$ such that $A D$, $B E$ and $C F$ are the internal angle bisectors at A, B and C. Show that

$$
\frac{\cos (A / 2)}{A D}+\frac{\cos (B / 2)}{B E}+\frac{\cos (C / 2)}{C F}=\frac{1}{B C}+\frac{1}{C A}+\frac{1}{A B}
$$

5: Show that given any group of people, it is possible to separate the people into two rooms in such a way that for every person in the group, at least half of that person's friends are in the other room.

6: Evaluate $\frac{1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\frac{1}{4^{3}}+\cdots}{1-\frac{1}{2^{3}}+\frac{1}{3^{3}}-\frac{1}{4^{3}}+\cdots}$.
7: Find $\int_{0}^{\pi / 3} \frac{d x}{5-4 \cos x}$.
8: A large floor is tiled with unit squares. A small square with sides of length ℓ is tossed, at random, onto the floor. Find the probability that the square lands entirely within one of the unit square tiles.

9: Let $a_{1}, a_{2}, \cdots, a_{n}$ be distinct real numbers, and let $f(x)=\prod_{k=1}^{n}\left(x-a_{k}\right)$. For $1 \leq k \leq n$, let $g_{k}(x)=\frac{f(x)}{f^{\prime}\left(a_{k}\right)\left(x-a_{k}\right)}$. Show that $f^{\prime}(x)=\sum_{k=1}^{n} f^{\prime}\left(a_{k}\right) g_{k}(x)=\sum_{k=1}^{n} f^{\prime}\left(a_{k}\right) g_{k}(x)^{2}$.

10: Let $f:[0,1] \rightarrow \mathbf{R}$ be continuous. Define $f_{n}:[0,1] \rightarrow \mathbf{R}$ recursively by $f_{0}(x)=f(x)$ and $f_{n+1}(x)=\int_{0}^{x} f_{n}(t) d t$ for $n \geq 0$. Suppose that $f_{n}(1)=0$ for all $n \geq 0$. Show that $f(x)=0$ for all x.

11: Let A, B and C be nonempty sets in \mathbf{R}^{n}. Suppose that A is bounded, C is closed and convex, and $A+B \subseteq A+C$. Show that $B \subseteq C$.

12: Let $2 \leq n \in \mathbf{Z}$ and let $A, B, C, D \in M_{n}(\mathbf{C})$. Suppose that $A C-B D=I$ and $A D+B C=O$.
(a) Show that $C A-D B=I$ and $D A+C B=O$.
(b) Show that $\operatorname{det}(A C) \geq 0$ and $(-1)^{n} \operatorname{det}(B D) \geq 0$.

