Week 4: Assorted Problems

1: Let $n, m \in \mathbf{Z}^{+}$with $m \leq 10^{n}$. Show that the sum of the digits of the number $\left(10^{n}-1\right) m$ is equal to $9 n$.

2: Find the number of binary sequences of length 12 in which no 3 consecutive terms are equal.
3: Show that for all $n \in \mathbf{Z}^{+}$, there exist $a, b \in \mathbf{Z}$ such that $2 n+1=a^{2}$ and $3 n+1=b^{2}$ if and only if there exist $r, s \in \mathbf{Z}$ such that $n+1=r^{2}+(r+1)^{2}=s^{2}+2(s+1)^{2}$.

4: A disc of radius 1 is initially centred at $(1,0)$. The disc rolls, without slipping, once around the inside of the circle of radius 2 centered at $(0,0)$. Find the length of, and the area inside, the curve followed by the point on the disc which is initially at position $\left(\frac{1}{2}, 0\right)$.

5: Let $f_{1}, f_{2}, \cdots, f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ be differentiable. Show that if $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ is linearly independent over \mathbf{R} then $\operatorname{dim}\left(\operatorname{Span}_{\mathbf{R}}\left\{f_{1}{ }^{\prime}, f_{2}{ }^{\prime}, \cdots, f_{n}{ }^{\prime}\right\}\right) \geq n-1$.

6: Find $\int_{x=0}^{1} \int_{y=\sqrt{x-x^{2}}}^{\sqrt{1-x^{2}}} y e^{x^{4}+2 x^{2} y^{2}+y^{4}} d y d x$.
7: Let $n \in \mathbf{Z}^{+}$and let $A \in M_{n}(\mathbf{R})$. Suppose that $4 A^{4}+I=0$. Prove that trace $(A) \in \mathbf{Z}$.
8: Let $*$ be an associative operation on a finite set S. Show that there is an element $a \in S$ such that $a * a=a$.

9: Let R be a ring with 1 and let $a, b \in R$. Show that if $1+a b$ is invertible then so is $1+b a$.
10: (a) Show that for every $A \in M_{2}(\mathbf{C})$ there exists $X \in M_{2}(\mathbf{C})$ such that $X^{3}=A^{2}$.
(b) Show that there exists $A \in M_{3}(\mathbf{C})$ such that for all $X \in M_{3}(\mathbf{C})$ we have $X^{3} \neq A^{2}$.

11: Let $3 \leq n \in \mathbf{Z}$. Let $a_{0}=b_{0}=n$ and $a_{k+1}=n^{a_{k}}$ and $b_{k+1}=b_{k}$! for $k \geq 0$. Show that for all $k \geq 2$ we have $b_{k}<a_{k}<b_{k+1}$.

12: Let $f:[0,1] \rightarrow \mathbf{R}$ be \mathcal{C}^{2} and increasing. For $n \in \mathbf{Z}^{+}$, let U_{n} and L_{n} be the upper and lower Riemann sums given by $U_{n}=\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)$ and $L_{n}=\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k-1}{n}\right)$. Show that for large $n \in \mathbf{Z}^{+}$we have

$$
\frac{1}{3}\left(2 L_{n}+U_{n}\right) \leq \int_{0}^{1} f \leq \frac{1}{3}\left(L_{n}+2 U_{n}\right)
$$

