- 1: Let $n, m \in \mathbb{Z}^+$ with $m \leq 10^n$. Show that the sum of the digits of the number $(10^n 1)m$ is equal to 9n.
- 2: Find the number of binary sequences of length 12 in which no 3 consecutive terms are equal.
- **3:** Show that for all $n \in \mathbb{Z}^+$, there exist $a, b \in \mathbb{Z}$ such that $2n + 1 = a^2$ and $3n + 1 = b^2$ if and only if there exist $r, s \in \mathbb{Z}$ such that $n + 1 = r^2 + (r+1)^2 = s^2 + 2(s+1)^2$.
- **4:** A disc of radius 1 is initially centred at (1,0). The disc rolls, without slipping, once around the inside of the circle of radius 2 centered at (0,0). Find the length of, and the area inside, the curve followed by the point on the disc which is initially at position $(\frac{1}{2},0)$.
- **5:** Let $f_1, f_2, \dots, f_n : \mathbf{R} \to \mathbf{R}$ be differentiable. Show that if $\{f_1, f_2, \dots, f_n\}$ is linearly independent over \mathbf{R} then dim $(\operatorname{Span}_{\mathbf{R}}\{f_1', f_2', \dots, f_n'\}) \ge n-1$.

6: Find
$$\int_{x=0}^{1} \int_{y=\sqrt{x-x^2}}^{\sqrt{1-x^2}} y e^{x^4 + 2x^2y^2 + y^4} dy dx.$$

- **7:** Let $n \in \mathbb{Z}^+$ and let $A \in M_n(\mathbb{R})$. Suppose that $4A^4 + I = 0$. Prove that trace $(A) \in \mathbb{Z}$.
- 8: Let * be an associative operation on a finite set S. Show that there is an element $a \in S$ such that a * a = a.
- **9:** Let R be a ring with 1 and let $a, b \in R$. Show that if 1 + ab is invertible then so is 1 + ba.
- 10: (a) Show that for every $A \in M_2(\mathbb{C})$ there exists $X \in M_2(\mathbb{C})$ such that $X^3 = A^2$. (b) Show that there exists $A \in M_3(\mathbb{C})$ such that for all $X \in M_3(\mathbb{C})$ we have $X^3 \neq A^2$.
- 11: Let $3 \le n \in \mathbb{Z}$. Let $a_0 = b_0 = n$ and $a_{k+1} = n^{a_k}$ and $b_{k+1} = b_k!$ for $k \ge 0$. Show that for all $k \ge 2$ we have $b_k < a_k < b_{k+1}$.
- 12: Let $f : [0,1] \to \mathbf{R}$ be \mathcal{C}^2 and increasing. For $n \in \mathbf{Z}^+$, let U_n and L_n be the upper and lower Riemann sums given by $U_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$ and $L_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k-1}{n}\right)$. Show that for large $n \in \mathbf{Z}^+$ we have $\frac{1}{3}(2L_n + U_n) \leq \int_0^1 f \leq \frac{1}{3}(L_n + 2U_n).$