Week 5: Assorted Problems

- 1: Find a positive integer n whose decimal representation is of the form n = aabbc, where $a, b, c \in \{1, 2, \dots, 9\}$ with b = c + 1, such that the number n^2 is a 9-digit number which contains each of the digits $1, 2, \dots, 9$ exactly once.
- 2: Show that there does not exist a 5-digit perfect square with distinct digits of the same parity.
- **3:** Let f(x) be a polynomial such that $3\frac{d}{dx}(xf(x)) = 2f(x) + f(x+1)$. Show that f is constant.
- **4:** Let $n \in \mathbb{Z}^+$. For each $k \in \mathbb{Z}^+$ let $S_k = 1^k + 2^k + 3^k + \dots + n^k$. Show that $S_5 + S_7 = 2S_3^2$.

5: Find the maximum and minimum possible values of $\frac{n(n+2)(n+3)(n+7)(n+16)}{\operatorname{lcm}(n,n+2,n+3,n+7,n+16)}$ where $n \in \mathbb{Z}^+$.

- 6: An (n-1)-sphere of radius 1 is centred at each of the n+1 vertices of a regular *n*-simplex in \mathbf{R}^n with edges of length 2 (so each of the n+1 spheres is externally tangent to every other sphere). Find the radius of the (n-1)-sphere centred at the centre of the simplex which is externally tangent to all of the unit spheres.
- 7: Let $\{a_n\}_{n\geq 1}$ be a sequence of positive real numbers and let $s_n = \sum_{k=1}^n a_k$. Suppose that $\sum_{n=1}^{\infty} a_n = \infty$. Prove that $\sum_{n=1}^{\infty} \frac{a_n}{s_n} = \infty$.
- 8: Find all $z, w \in \mathbb{C}$ with $z \neq w$ such that $z^5 + z = w^5 + w$ and $z^5 + z^2 = w^5 + w^2$.
- **9:** Let f(x) be a polynomial of degree *n*. Show that

$$\sum_{k=0}^{n} \frac{f^{(k)}(0)}{(k+1)!} x^{k+1} = \sum_{k=0}^{n} (-1)^{k} \frac{f^{(k)}(x)}{(k+1)!} x^{k+1}$$

10: Let $f : \mathbf{R} \to \mathbf{R}$ be differentiable with f(0) = 0 and $f'(x) = f(x)^2 - x^2$ for all $x \in \mathbf{R}$. Prove that $\lim_{x \to \infty} f'(x)$ exists and find its value.

11: Let $0 < a_n \in \mathbf{R}$ for $n \ge 1$ with $\lim_{n \to \infty} a_n = 0$. Prove that $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \ln\left(a_n + \frac{k}{n}\right)$ exists and find its value.

12: Let $a_n = \sum_{k=1}^n \frac{1}{k!}$. Find $\sum_{n=k}^\infty \binom{n}{k} (e-a_n)$. Hint: consider $\int_0^1 (1-x)^n e^x dx$.