Week 5: Assorted Problems

1: Find a positive integer n whose decimal representation is of the form $n=a a b b c$, where $a, b, c \in\{1,2, \cdots, 9\}$ with $b=c+1$, such that the number n^{2} is a 9 -digit number which contains each of the digits $1,2, \cdots, 9$ exactly once.

2: Show that there does not exist a 5 -digit perfect square with distinct digits of the same parity.
3: Let $f(x)$ be a polynomial such that $3 \frac{d}{d x}(x f(x))=2 f(x)+f(x+1)$. Show that f is constant.
4: Let $n \in \mathbf{Z}^{+}$. For each $k \in \mathbf{Z}^{+}$let $S_{k}=1^{k}+2^{k}+3^{k}+\cdots+n^{k}$. Show that $S_{5}+S_{7}=2 S_{3}{ }^{2}$.
5: Find the maximum and minimum possible values of $\frac{n(n+2)(n+3)(n+7)(n+16)}{\operatorname{lcm}(n, n+2, n+3, n+7, n+16)}$ where $n \in \mathbf{Z}^{+}$.

6: An $(n-1)$-sphere of radius 1 is centred at each of the $n+1$ vertices of a regular n-simplex in \mathbf{R}^{n} with edges of length 2 (so each of the $n+1$ spheres is externally tangent to every other sphere). Find the radius of the $(n-1)$-sphere centred at the centre of the simplex which is externally tangent to all of the unit spheres.

7: Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of positive real numbers and let $s_{n}=\sum_{k=1}^{n} a_{k}$. Suppose that $\sum_{n=1}^{\infty} a_{n}=\infty$. Prove that $\sum_{n=1}^{\infty} \frac{a_{n}}{s_{n}}=\infty$.

8: Find all $z, w \in \mathbf{C}$ with $z \neq w$ such that $z^{5}+z=w^{5}+w$ and $z^{5}+z^{2}=w^{5}+w^{2}$.
9: Let $f(x)$ be a polynomial of degree n. Show that

$$
\sum_{k=0}^{n} \frac{f^{(k)}(0)}{(k+1)!} x^{k+1}=\sum_{k=0}^{n}(-1)^{k} \frac{f^{(k)}(x)}{(k+1)!} x^{k+1}
$$

10: Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be differentiable with $f(0)=0$ and $f^{\prime}(x)=f(x)^{2}-x^{2}$ for all $x \in \mathbf{R}$. Prove that $\lim _{x \rightarrow \infty} f^{\prime}(x)$ exists and find its value.

11: Let $0<a_{n} \in \mathbf{R}$ for $n \geq 1$ with $\lim _{n \rightarrow \infty} a_{n}=0$. Prove that $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(a_{n}+\frac{k}{n}\right)$ exists and find its value.

12: Let $a_{n}=\sum_{k=1}^{n} \frac{1}{k!}$. Find $\sum_{n=k}^{\infty}\binom{n}{k}\left(e-a_{n}\right)$. Hint: consider $\int_{0}^{1}(1-x)^{n} e^{x} d x$.

