Week 6: Assorted Problems

- 1: Find two non-congruent right-angled triangles of the same area, both with integral side lengths.
- 2: A square piece of paper has corners at positions A, B, C and D, listed in counterclockwise order. The paper is folded once, making a crease from a point P on AB to a point Q on CD. After the fold, the corners at B and C are not moved, the corner at A is moved to position A' which lies on BC, and the corner at D is moved to position D' which lies outside the square ABCD. Let R be the point of intersection of A'D' with CD. Show that the perimeter of the triangle A'CR is half the perimeter of the square ABCD.
- **3:** Show that the real number $x = 1 + \sqrt{2 + \sqrt{1 + \sqrt{2 + \cdots}}}$ is irrational.

4: Find
$$\lim_{n \to \infty} \left(\frac{\left(1 + \frac{1}{n}\right)^n}{e} \right)^n$$
.

5: Evaluate the sum $\sum_{k=n}^{2n} \binom{k}{n} \frac{1}{2^k}$.

- **6:** Let * be an associative binary operation on a set S. Suppose that for all $a \in S$ there exist $b, c \in S$ such that (ba)a = a and a(ac) = a. Show that for every $a \in S$ there exist $r, s \in S$ such that ar = ra = a and as = sa = r.
- **7:** Find every continuous function $f: \mathbf{R} \to \mathbf{R}$ with f(1) = 2 such that $f(x \cos \theta) f(x \sin \theta) = f(x)$ for all $x, \theta \in \mathbf{R}$.
- 8: Let $f : \mathbf{R} \to \mathbf{R}$ be \mathcal{C}^2 . Suppose that $\lim_{x \to \infty} \left(x^2 f''(x) + 4x f'(x) + 2f(x) \right) = 1$. Show that $\lim_{x \to \infty} f(x) = \frac{1}{2}$ and $\lim_{x \to \infty} x f'(x) = 0$.
- **9:** Show that if $f : [0,1] \to \mathbf{R}$ is a continuous function such that $xf(y) + yf(x) \le 1$ for all $x, y \in [0,1]$ then we have $\int_0^1 f(x) dx \le \frac{\pi}{4}$, and find an example of such a function for which equality holds.
- 10: Find all pairs (a, b) of positive integers such that a + b and ab + 1 are both powers of 2.

11: Let
$$a > 0$$
 and let $f : [0, a] \to [0, \infty)$ be \mathcal{C}^1 with $f(0) = 0$, $f(a) = 1$ and $\int_0^1 f(x) \, dx = 1$. Show that $\int_0^a \sqrt{f(x)^2 + f'(x)^2} \, dx \ge \sqrt{2}$.

12: Let $A \in M_n(\mathbb{C})$ with $A \neq cI$ for any $c \in \mathbb{C}$. Show that A is similar to a matrix which has at most one non-zero entry along its main diagonal.