Week 6: Assorted Problems

1: Find two non-congruent right-angled triangles of the same area, both with integral side lengths.

2: A square piece of paper has corners at positions A, B, C and D, listed in counterclockwise order. The paper is folded once, making a crease from a point P on $A B$ to a point Q on $C D$. After the fold, the corners at B and C are not moved, the corner at A is moved to position A^{\prime} which lies on $B C$, and the corner at D is moved to position D^{\prime} which lies outside the square $A B C D$. Let R be the point of intersection of $A^{\prime} D^{\prime}$ with $C D$. Show that the perimeter of the triangle $A^{\prime} C R$ is half the perimeter of the square $A B C D$.

3: Show that the real number $x=1+\sqrt{2+\sqrt{1+\sqrt{2+\cdots}}}$ is irrational.
4: Find $\lim _{n \rightarrow \infty}\left(\frac{\left(1+\frac{1}{n}\right)^{n}}{e}\right)^{n}$.

5: Evaluate the sum $\sum_{k=n}^{2 n}\binom{k}{n} \frac{1}{2^{k}}$.
6: Let $*$ be an associative binary operation on a set S. Suppose that for all $a \in S$ there exist $b, c \in S$ such that $(b a) a=a$ and $a(a c)=a$. Show that for every $a \in S$ there exist $r, s \in S$ such that $a r=r a=a$ and $a s=s a=r$.

7: Find every continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$ with $f(1)=2$ such that $f(x \cos \theta) f(x \sin \theta)=f(x)$ for all $x, \theta \in \mathbf{R}$.

8: Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be \mathcal{C}^{2}. Suppose that $\lim _{x \rightarrow \infty}\left(x^{2} f^{\prime \prime}(x)+4 x f^{\prime}(x)+2 f(x)\right)=1$. Show that $\lim _{x \rightarrow \infty} f(x)=\frac{1}{2}$ and $\lim _{x \rightarrow \infty} x f^{\prime}(x)=0$.

9: Show that if $f:[0,1] \rightarrow \mathbf{R}$ is a continuous function such that $x f(y)+y f(x) \leq 1$ for all $x, y \in[0,1]$ then we have $\int_{0}^{1} f(x) d x \leq \frac{\pi}{4}$, and find an example of such a function for which equality holds.

10: Find all pairs (a, b) of positive integers such that $a+b$ and $a b+1$ are both powers of 2 .
11: Let $a>0$ and let $f:[0, a] \rightarrow[0, \infty)$ be \mathcal{C}^{1} with $f(0)=0, f(a)=1$ and $\int_{0}^{1} f(x) d x=1$. Show that $\int_{0}^{a} \sqrt{f(x)^{2}+f^{\prime}(x)^{2}} d x \geq \sqrt{2}$.

12: Let $A \in M_{n}(\mathbf{C})$ with $A \neq c I$ for any $c \in \mathbf{C}$. Show that A is similar to a matrix which has at most one non-zero entry along its main diagonal.

