Week 7: Assorted Problems

- 1: The digits $1, 2, \dots, 9$ are permuted at random to form a 9-digit number n. Find the probability that n is a multiple of 11.
- **2:** Show that for all $n \in \mathbf{Z}^+$ and $\theta \in \mathbf{R}$ we have $\sum_{k=0}^{n-1} 2^k \tan(2^k \theta) = \cot \theta 2^n \cot(2^n \theta)$.
- **3:** Show that for all $n \in \mathbf{Z}^+$ and $\theta \in \mathbf{R}$ we have

$$\frac{\sin\theta + \sin 2\theta + \dots + \sin n\theta}{\cos\theta + \cos 2\theta + \dots + \cos n\theta} = \tan \frac{n+1}{2}\theta.$$

- **4:** For which positive integers *n* does there exist an *n*-element set $S \subseteq \mathbb{Z}^2$ with the property that for each point $(x, y) \in S$, exactly 2 of the 4 points $(x \pm 1, y), (x, y \pm 1)$ lie in S?
- 5: Show that there exist infinitely many positive integers n such that there is a triangle in the plane with sides of length n, n + 1 and n + 2 whose area is an integer.
- **6:** Let $a_1, a_2, \dots, a_n \in \mathbf{R} \setminus \{0\}$. Let A be the $n \times n$ matrix with entries $A_{k,l} = a_k/a_l$. Find the characteristic polynomial of A.
- 7: Let $a \in \mathbf{R}$ with $a \neq 0, \pm 1$. Let A be the $n \times n$ matrix with entries $A_{k,l} = a^{|k-l|}$. Find the entries of the inverse matrix A^{-1} .
- 8: Show that if p(x) is a polynomial of degree $n \ge 1$ with real coefficients and real roots, then we have $(n-1)p'(x)^2 \ge n p(x)p''(x)$ for all $x \in \mathbf{R}$. Also, find every such polynomial for which equality holds.
- **9:** Let $a, d \in \mathbb{Z}^+$. Show that if a is odd and $d|(a^2+2)$ then either $d = 1 \mod 8$ or $d = 3 \mod 8$.
- **10:** Let $n, k \in \mathbb{Z}^+$ and let $r = (2n+1)^k$. Show that $(2n+1)^{k+1}$ is a factor of $\sum_{k=0}^{2n} (a+k)^r$.
- **11:** Let $f : \mathbf{R} \to \mathbf{R}$ be \mathcal{C}^{∞} . Suppose that for every $x \in \mathbf{R}$ there exists $n \in \mathbf{Z}^+$ such that $f^{(n)}(x) = 0$. Show that f is a polynomial.

12: Let $f, g: [0,1] \to (0,\infty)$ be continuous. Suppose that f and g/f are increasing. Show that

$$\int_0^1 \frac{\int_0^x f(t) \, dt}{\int_0^x g(t) \, dt} \, dx \le 2 \int_0^1 \frac{f(t)}{g(t)} \, dt$$

Also, show that the constant 2 on the right is optimal.