Week 7: Assorted Problems

1: The digits $1,2, \cdots, 9$ are permuted at random to form a 9 -digit number n. Find the probability that n is a multiple of 11 .

2: Show that for all $n \in \mathbf{Z}^{+}$and $\theta \in \mathbf{R}$ we have $\sum_{k=0}^{n-1} 2^{k} \tan \left(2^{k} \theta\right)=\cot \theta-2^{n} \cot \left(2^{n} \theta\right)$.

3: Show that for all $n \in \mathbf{Z}^{+}$and $\theta \in \mathbf{R}$ we have

$$
\frac{\sin \theta+\sin 2 \theta+\cdots+\sin n \theta}{\cos \theta+\cos 2 \theta+\cdots+\cos n \theta}=\tan \frac{n+1}{2} \theta
$$

4: For which positive integers n does there exist an n-element set $S \subseteq \mathbf{Z}^{2}$ with the property that for each point $(x, y) \in S$, exactly 2 of the 4 points $(x \pm 1, y),(x, y \pm 1)$ lie in S ?

5: Show that there exist infinitely many positive integers n such that there is a triangle in the plane with sides of length $n, n+1$ and $n+2$ whose area is an integer.

6: Let $a_{1}, a_{2}, \cdots, a_{n} \in \mathbf{R} \backslash\{0\}$. Let A be the $n \times n$ matrix with entries $A_{k, l}=a_{k} / a_{l}$. Find the characteristic polynomial of A.

7: Let $a \in \mathbf{R}$ with $a \neq 0, \pm 1$. Let A be the $n \times n$ matrix with entries $A_{k, l}=a^{|k-l|}$. Find the entries of the inverse matrix A^{-1}.

8: Show that if $p(x)$ is a polynomial of degree $n \geq 1$ with real coefficients and real roots, then we have $(n-1) p^{\prime}(x)^{2} \geq n p(x) p^{\prime \prime}(x)$ for all $x \in \mathbf{R}$. Also, find every such polynomial for which equality holds.

9: Let $a, d \in \mathbf{Z}^{+}$. Show that if a is odd and $d \mid\left(a^{2}+2\right)$ then either $d=1 \bmod 8$ or $d=3 \bmod 8$.
10: Let $n, k \in \mathbf{Z}^{+}$and let $r=(2 n+1)^{k}$. Show that $(2 n+1)^{k+1}$ is a factor of $\sum_{k=0}^{2 n}(a+k)^{r}$.
11: Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be \mathcal{C}^{∞}. Suppose that for every $x \in \mathbf{R}$ there exists $n \in \mathbf{Z}^{+}$such that $f^{(n)}(x)=0$. Show that f is a polynomial.

12: Let $f, g:[0,1] \rightarrow(0, \infty)$ be continuous. Suppose that f and g / f are increasing. Show that

$$
\int_{0}^{1} \frac{\int_{0}^{x} f(t) d t}{\int_{0}^{x} g(t) d t} d x \leq 2 \int_{0}^{1} \frac{f(t)}{g(t)} d t
$$

Also, show that the constant 2 on the right is optimal.

